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Abstract: Aflatoxin B1 (AFB1) is a potent carcinogen that causes growth stunting, 

immunosuppression and liver cancer in multiple species. The recent trend of replacing 

fishmeal with plant-based proteins in fish feed has amplified the AFB1 exposure risk in 

farm-raised fish. NovaSil (NS), a calcium montmorillonite clay, has previously been 

shown to reduce AFB1 bioavailability safely and efficaciously in several mammalian 

species. This study was designed to: (1) evaluate AFB1 impact on cultured red drum, 

Sciaenops ocellatus, over the course of seven weeks; and (2) assess NS supplementation as 

a strategy to prevent aflatoxicosis. Fish were fed diets containing 0, 0.1, 0.25, 0.5, 1, 2, 3, 

or 5 ppm AFB1. Two additional treatment groups were fed either 5 ppm AFB1 + 1% NS or 

5 ppm AFB1 + 2% NS. Aflatoxin B1 negatively impacted red drum weight gain, survival, 

feed efficiency, serum lysozyme concentration, hepatosomatic index (HSI), whole-body 

lipid levels, liver histopathological scoring, as well as trypsin inhibition. NovaSil inclusion 

in AFB1-contaminated diets improved weight gain, feed efficiency, serum lysozyme 

concentration, muscle somatic index, and intraperitoneal fat ratios compared to  
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AFB1-treated fish. Although not significant, NS reduced AFB1-induced histopathological 

changes in the liver and decreased Proliferating Cell Nuclear Antigen (PCNA) staining. 

Importantly, NS supplementation improved overall health of AFB1-exposed red drum. 

Keywords: red drum; aflatoxin; calcium montmorillonite; NovaSil; histopathology; immune 

 

1. Introduction 

Mycotoxins are toxic metabolites produced by a diverse group of fungi that contaminate 

agricultural crops prior to harvest or during storage post-harvest [1,2]. Aflatoxin B1 (AFB1),  

a mycotoxin produced by Aspergillus flavus and A. parasiticus, is one of the most potent,  

naturally-occurring carcinogens known to mankind. Aflatoxin B1 exposure causes decreases in weight 

gain, growth stunting and immunosuppression in animals, while increasing hepatocellular carcinoma 

incidence [3]. Different species including humans, poultry, swine, and fish all exhibit varying levels of 

mortality and morbidity upon exposure to AFB1 [4–6]. However, because the damaging AFB1 effects 

are largely species and dose-specific, additional studies are necessary to determine AFB1 susceptibility 

for at-risk unevaluated species. 

As a vital part of the global food industry, aquaculture contributes nearly half of all food of aquatic 

origin intended for human consumption [7]. Fishmeal, one the most expensive fish feed ingredients, is 

widely used in the aquaculture industry as the major protein source for farm-raised fish [8]. Menhaden 

(Brevoortia sp.) is a clupeid fish species and the most prevalent form of fishmeal used in North 

America [9]. Recent studies have been directed toward the development of plant-based alternative 

protein sources such as soybean, peanut, corn and cottonseed meal [10–13]. However, incorporation of 

plant-based ingredients into feed increases the risk for AFB1 contamination and subsequent exposure. 

Aflatoxin B1 presence in aquaculture feeds and fish feed ingredients has been well-documented, 

especially in developing countries [14–16]. 

One strategy to reduce aflatoxin exposure in humans and animals is the use of enterosorption 

therapy. NovaSil (NS), a calcium montmorillonite clay, binds AFB1 in the gastrointestinal tract, 

thereby reducing overall AFB1 bioavailability [17]. With a dioctahedral-layered structure and 

negatively charged interlayer, NS has high affinity and capacity for AFB1 molecules, which exhibit a 

partial positive charge [18]. Numerous in vivo studies have demonstrated the safety and efficacy of this 

technology [19–21], although additional studies are needed to determine the efficacy and proper 

dosage for farm-raised fish [22]. 

Red drum, Sciaenops ocellatus, is a common recreational and commercial fish native to the Atlantic 

and Gulf Coast regions of the United States [23]. Red drum is currently farmed in China, Israel, 

Ecuador and North America [24]. Despite its prevalence and economic importance to the food 

industry, no studies have evaluated red drum AFB1 susceptibility. The study presented here was 

designed to address two objectives: (1) to evaluate red drum susceptibility to AFB1 using a multi-level 

AFB1 challenge incorporated into the feed; and (2) to assess the ability of NS to prevent AFB1 toxicity 

in red drum. 
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2. Results 

2.1. Growth Parameters 

Aflatoxin B1 treatment effects, including weight gain (%), survival (%), and feed efficiency, did not 

result in linear trends, with R2 values of 0.22, 0.01 and 0.1, respectively. Weight gain of individual 

treatment means were significantly different, and varied with the 0 ppm AFB1 group experiencing the 

highest weight gain and the 2, 3, and 5 ppm exposure groups exhibiting the least amount of weight 

gain (Table 1). Likewise, AFB1 significantly reduced feed efficiency in a non-linear manner, with the  

0 ppm AFB1 treatment group demonstrating the highest feed efficiency (0.91) and treated groups 

ranging from 0.49–0.75. Survival also greatly varied across treatments with 0 ppm AFB1 having the 

highest survival rate. 

Among the NS-supplemented treatment groups, only weight gain and feed efficiency were 

significantly different compared to AFB1 controls, with p-values of 0.039 and 0.005, respectively. In 

the case of feed efficiency, 0 ppm AFB1 and 5 ppm AFB1 were the most significantly different. 

NovaSil inclusion at both 1% and 2% positively affected weight gain, feed efficiency, and survival 

after AFB1 exposure, although not in a dose-dependent manner. 

2.2. Immune Response 

A summary of immune parameters evaluated for each group is shown in Table 2. The 0.1 ppm 

AFB1-exposed fish exhibited the highest plasma lysozyme values (246 units/mL), while the  

5 ppm-exposed fish displayed the lowest levels (45 units/mL). Trypsin inhibition (%) results indicated 

that 1, 2, 3, and 5 ppm AFB1-exposed groups had the lowest percent inhibition and 0.25 ppm AFB1 the 

highest. Additionally, neither the lysozyme nor the trypsin results suggested linearity with an R2 of 

0.3947 and 0.109, respectively. The nitro blue tetrazolium (NBT) test showed no significant 

differences among any of the AFB1-exposed groups. 

NovaSil had a significant impact (p = 0.021) on the plasma lysozyme concentration with 5 ppm 

AFB1 + 2% NS outperforming all other treatments. NovaSil did not significantly alter levels of NBT or 

trypsin inhibition. 

2.3. Somatic Indexes 

Somatic indexes for spleen, MSI and IPF did not vary within the AFB1-treated groups; however, 

HSI varied slightly between treatments. The highest HSI levels were recorded in the 0.1 AFB1-treated 

group, while the 2 ppm and 5 ppm exposure groups exhibited the lowest values (Table 3). A linear 

trend was not present in any of the groups. 

In the NS-supplemented groups, muscle and IPF levels recovered to control levels in the treatment 

group administered 2% NS. Likewise, the means of main effect data indicate that NS inclusion at 

either 0% and 1% was statistically different than 2%. 
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Table 1. Growth performance of red drum fed different concentrations of Aflatoxin B1 (AFB1) 
1 and AFB1 + NovaSil (NS) 2,3,4. 

Variable 
Weight gain 5 

(%) 
Survival (%) 

Feed 
efficiency 

Variable Weight gain (%) Survival (%) Feed efficiency 

AFB1 (ppm) Individual treatment means AFB1 (ppm) NS (%) Individual treatment means 

0 332 a 80.0 a 0.91 a 0 0 332 ab 80.0 0.91 a 
0.1 223 bc 46.6 b 0.62 bc 5 0 188 c 55.5 0.62 c 

0.25 224 bc 55.5 b 0.65 bc 5 1 339 a 73.3 0.82 ab 
0.5 254 ab 60.0 ab 0.75 ab 5 2 218 bc 57.7 0.71 bc 
1 212 bc 60.0 ab 0.73 abc p-value  0.039 0.261 0.005 
2 136 c 60.0 ab 0.49 c Pooled Std. Error  7.047 1.801 0.008 

3 183 bc 62.2 ab 0.67 bc AFB1 (ppm) NS (%) Means of main effect 

5 188 bc 55.5 b 0.62 bc 0  332 80.0 0.91 a 
R2 0.229 0.010 0.100 5  249 62.2 0.72 b 

p-value 0.005 0.132 0.030  0 260 a 67.7 0.77 
Pooled Std. Error 5.189 1.309 0.013  1 339 ab 73.3 0.82 

     2 218 b 57.7 0.71 

      ANOVA: p-values 

    AFB1  0.083 0.138 0.003 

    NS  0.043 0.387 0.029 

1 Aflatoxin B1; 
2 NovaSil; 3 Values are means of three replicate groups of fish (n = 3); 4 Values in a column that do not have the same superscript are significantly different 

according to Duncan’s multiple range test (p < 0.05); 5 Initial average weight was 2.1 ± 0.1 g/fish. 
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Table 2. Immune parameters of red drum 1. 

Variable 
Serum 

lysozyme 
(units/mL) 

NBT (mg/mL 
blood) 2 

Trypsin 
inhibition (%) 

Variable 
Serum Lysozyme 

(units/mL) 
NBT (mg/mL 

blood) 2 

Trypsin 
inhibition 

(%) 

AFB1 (ppm) Individual treatment means AFB1 (ppm) NS (%) Individual treatment means 

0 165 ab 3.52 83.6 ab 0 0 165 ab 3.52 83.6 
0.1 246 a 3.35 82.4 b 5 0 45 c 3.07 81.9 

0.25 131 bcd 2.54 86.3 a 5 1 76b c 3.32 81.3 
0.5 155 abc 3.30 83.2 b 5 2 185 a 3.21 79.4 
1 106 bcd 1.78 81.9 b p-Value  0.024 0.944 0.577 
2 82 bcd 3.05 80.5 b Pooled Std. Error  5.550 0.104 0.395 

3 63 cd 2.21 82.7 b AFB1 (ppm) NS (%) Means of main effect 

5 45 d 3.07 81.9 b 0  165 3.52 83.6 
R2 0.394 0.015 0.109 5  102 3.20 80.9 

p-Value 0.004 0.250 0.038   0 105 3.30 82.7 
Pooled Std. Error 5.705 0.102 0.192  1 76 3.32 81.3 

     2 185 3.21 79.4 

      ANOVA: p-Values 

    AFB1 0.018 0.622 0.291 
    NS  0.021 0.948 0.674 

1 Values in a column that do not have the same superscript letters are significantly different according to Duncan’s multiple range test (p < 0.05); 2 Values are means of 

determinations on two fish from each of three replicate groups (6 fish/treatment, n = 6).  
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Table 3. Somatic indices of red drum fed different concentrations of AFB1 
1 and AFB1 + NS 2,3,4. 

Variable Spleen MSI 5 HSI 6 IPF 7 Variable Spleen MSI 5 HSI 6 IPF 7 

AFB1 (ppm) Individual treatment means AFB1 (ppm) NS (%) Individual treatment means 

0 0.04 28.94 1.67 abc 0.32 0 0 0.04 28.94 a 1.67 0.32 a 
0.1 0.04 27.42 1.98 a 0.11 5 0 0.04 26.06 b 0.88 0.01 b 

0.25 0.04 26.18 1.79 ab 0.20 5 1 0.09 28.33 ab 0.82 0.10 b 
0.5 0.05 27.87 1.20 abc 0.26 5 2 0.20 29.70 a 1.56 0.46 a 

1 0.03 27.79 1.15 abc 0.07 p-Value  0.528 0.031 0.292 0.003 

2 0.18 26.25 0.72 c 0.18 Pooled Std. Error  0.015 0.135 0.070 0.012 

3 0.05 25.72 0.94 abc 0.06 AFB1 (ppm) NS (%) Means of main effect 

5 0.04 26.06 0.88 bc 0.01 0  0.04 28.94 1.67 0.32 
R2 0.004 0.141 0.267 0.152 5  0.11 28.03 1.09 0.19 

p-Value 0.503 0.417 0.091 0.466  0 0.04 27.50 1.27 0.17 a 
Pooled Std. Error 0.015 0.315 0.091 0.03  1 0.09 28.33 0.82 0.10 a 

  2 0.20 29.70 1.56 0.46 b 

   ANOVA: p-Values 

 AFB1  0.494 0.298 0.205 0.112 

 NS  0.429 0.019 0.332 0.002 

1 Aflatoxin B1; 2 NovaSil; 3 Values in a column that do not have the same superscript letters are significantly different according to Duncan’s multiple range test  

(p < 0.05); 4 Values are means of determinations on two fish from each of three replicate groups (6 fish/treatment, n = 6); 5 Muscle somatic index; 6 Hepatosomatic index;  
7 Intraperitoneal fat.  
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2.4. Proximate Composition 

No linear trends were present in the AFB1-treated groups (Table 4). Percent lipid composition was 

highest in the 0 ppm AFB1 group and the lowest at 2 ppm AFB1, but varied among other treatments. 

There were some variations in ash values as well; however, these results were not linearly correlated. 

Inclusion of NS in the diets did not exhibit any statistically significant changes in whole-body 

proximate composition. 

Table 4. Proximate composition of red drum (fresh-weight basis) 1,2. 

Variable 
%  

Lipid 

%  

Protein 

%  

Moisture 

%  

Ash 
Variable % Lipid 

% 

Protein 

% 

Moisture

%  

Ash 

AFB1 (ppm) Individual treatment means 
AFB1 

(ppm) 
NS (%) Individual treatment means 

0 2.70 a 76.01 78.38 16.38 ab 0 0 2.21 76.01 78.30 3.54 

0.1 2.37 ab 74.45 79.34 17.56 a 5 0 1.98 76.52 79.29 3.73 

0.25 1.97 bcd 70.06 79.67 13.64 b 5 1 2.20 73.92 76.91 4.28 

0.5 2.42 ab 74.33 77.69 16.72 ab 5 2 2.19 72.93 79.04 4.35 

1 2.17 abc 71.64 78.71 18.04 a p-Value  0.510 0.723 0.173 0.629 

2 1.45 d 74.20 84.55 19.43 a 
Pooled 

Std. Error
 0.022 0.488 0.140 0.098 

3 1.77 cd 71.64 80.60 17.22 a 
AFB1 

(ppm) 
NS (%) Means of main effect 

5 1.98 bcd 76.52 79.29 18.02 a 0  2.21 76.01 78.38 3.54 

R2 0.211 0.021 0.024 0.109 5  2.12 74.46 78.41 4.12 

p-Value 0.002 0.476 0.452 0.038  0 2.10 76.20 78.83 3.64 

Pooled Std. 

Error 
0.033 0.441 0.402 1.728  1 2.20 73.90 76.91 4.28 

  2 2.19 72.90 79.04 4.35 

   ANOVA: p-Values 

 AFB1  0.534 0.611 0.964 0.357 

 NS  0.394 0.604 0.095 0.663 
1 Values are means of determinations on three fish from each of the three replicates (n =3). 2 Values in a column that do 

not have the same superscript letters are significantly different according to Duncan’s multiple range test (p < 0.05). 

2.5. Histopathological Response and Immunohistochemistry 

Significant histological changes were observed between treatments (Table 5), with 3 and 5 ppm 

AFB1 eliciting the most severe hepatic alterations. Although some samples revealed significant hepatic 

lesions in groups treated with 5 ppm AFB1 + 1% or 2% NS, the findings in these fish were considered 

mild when compared to the 5 ppm AFB1 without NS. There were no significant differences in 

Proliferating Cell Nuclear Antigen (PCNA) values among all treatments, nor did PCNA staining 

exhibit a positive linear correlation. Histological changes, characterized by restoration of 

hepatocellular macrovacuolation and reduced megalocytosis and karyomegaly, were noted with the 

addition of NS in the diet; however, these results were not statistically significant (Figure 1). A 

decrease in PCNA staining as compared to the 5 ppm inclusion level was noted, but also did not 

achieve significant levels with 1% or 2% NS inclusion in the diet (Figure 2). 
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Table 5. Histopathology and immunohistochemistry. 

Variable Histology Score 1 PCNA Variable Histology Score PCNA 

AFB1 (ppm) 
Individual  

treatment means 
AFB1 (ppm) NS (%) 

Individual  
treatment means 

0 5.25 a 6.27 0 0 13.16 ab 6.27 
0.1 10.67 a 8.59 5 0 19.00 b 10.49 

0.25 17.33 ab 9.35 5 1 9.16 a 9.11 
0.5 30.16 c 11.34 5 2 7.66 a 9.72 
1 25.83 bc 9.52 p-Value  0.0925 0.7542 
2 31.83 c 9.06 Pooled Std. Error  0.838 0.836 

3 37.00 c 10.30 AFB1 (ppm) NS (%) Means of main effect 

5 37.00 c 10.49 0  13.16 6.27 
R2 0.2353 0.0204 5  11.94 9.78 

p-Value 0.0001 0.5059  0 16.08 8.38 
Pooled Std. Error 1.130 0.815  1 9.16 9.11 

  2 7.66 9.72 

   ANOVA: p-Values 

 AFB1  0.7248 0.3251 
 NS  0.0491 0.9454 

1 Values in a column that do not have the same superscript letters are significantly different according to 

Duncan’s multiple; range test (p < 0.05).  

3. Discussion 

Aflatoxin B1 displayed a significant effect across multiple treatment levels. The survival rate for the 

basal diet group (0 ppm AFB1) was similar to control survival results reported in other red drum 

studies [25,26], although survival was negatively affected by AFB1 presence. Likewise, the impact  

on feed efficiency and weight gain found in this study has been similarly documented in other  

AFB1-exposure publications, including research analyzing the effects of aflatoxins on several different 

farmed aquatic species [27–31]. The majority of AFB1-sensitive ichthyoids are cold-water species and 

our findings suggest that red drum may be one of the first identified AFB1-sensitive warm-water 

species. However additional studies are necessary to determine the specific metabolic mechanisms 

responsible for this sensitivity. 
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Figure 1. Liver histopathology in AFB1-exposed red drum. Liver sections were stained with hematoxylin and eosin. Treatments were as 

follows: (A) 0 ppm AFB1 (B) 1 ppm AFB1 (C) 3 ppm (D) 5 ppm AFB1 (E) AFB1 + 1% NS and (F) 5 ppm AFB1 + 2% NS. Marked 

pleomorphism, megalokaryosis with prominent nucleoli (arrows) and loss of hepatocellular cytoplasmic macrovacuolation was observed in 

the treatment groups that received large amounts of aflatoxin (B,C,D). Although not significant, inclusion of NS resulted in decreased 

histopathological scores attributable to increased cytoplasmic vacuolation and reduced cellular pleomorphism. 
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Figure 2. Proliferating Cell Nuclear Antigen (PCNA) positive cells in red drum hepatocytes. Liver sections were stained with PCNA (arrows) 

and hematoxylin counterstain. Treatments were as follows: (A) 0 ppm AFB1 (B) 1 ppm AFB1 (C) 3 ppm AFB1 (D) 5 ppm AFB1  

(E) 5 ppm AFB1 + 1% NS (F) 5 ppm AFB1 + 2% NS. Although not significant, inclusion of NS resulted in a decrease of PCNA-positive 

hepatocytes. Reduction in cell proliferation suggests that NS afforded some protection from AFB1 toxicity and cellular proliferation. 
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The published aquaculture literature indicates that incremental increases in AFB1 exposure do not 

typically result in dose-dependent, linear responses [32–34]. Herein, analysis of growth performance 

factors indicated that some of the most significant AFB1 effects were present at the lowest level of 

AFB1-exposure (0.1 ppm) for feed efficiency, survival, and weight gain. Hormetic responses for 

growth and immunological parameters have been observed in several species [35]. Hormesis is defined 

as a biphasic response to a xenobiotic, characterized by a low-dose stimulatory effect and high-dose 

inhibitory or toxic effect in which a U-shaped or J-shaped model is apparent [36]. Instances of  

AFB1-associated hormesis have also been documented in multiple species [32,37,38]. Several 

measured parameters in the current study suggest that AFB1-exposed red drum exhibited an “inverted 

U-shaped” immunological hormetic response to AFB1 as suggested by plasma lysozyme at the  

0.1 ppm level and trypsin inhibition at the 0.25 ppm level. Additionally, HSI results indicated a similar 

increase at the 0.1 ppm level followed by subsequent decreases at higher AFB1 levels. 

Several studies have indicated that PCNA is a suitable marker for cellular proliferation in  

fish [39,40] as well as other species [41,42]. However, our study did not indicate any significant 

differences in PCNA staining among the treatments. It is possible that the levels of AFB1 used in this 

study were not capable of inducing significant cellular proliferation as observed with other species. 

While there was a slight increase in PCNA with the presence of AFB1, there was a decrease in HSI. 

The increase in PCNA is due to liver damage and mitotic activity from AFB1-exposure, while the 

overall decrease in HSI is likely attributed to the loss of vacuolation and fat in the liver. Histological 

evaluation indicated liver changes characterized by anisokaryosis, megalocytosis and karyomegaly  

in AFB1-exposed red drum, which have been noted in a series of AFB1 studies with other fish  

species [43–45]. Hepatocellular lipid deposition, a well-documented classical sign of aflatoxicosis in 

fish [46,47], was present in red drum exposed to AFB1. However, red drum kept in captivity typically 

display fatty deposition and hepatocellular macrovacuolation [48], which should be taken into 

consideration for accurate red drum liver evaluation. The hepatocellular vacuolation seen in control 

livers was markedly reduced, as anisocytosis and karyomegaly increased, especially in fish exposed to 

higher levels of aflatoxin. Interestingly, hepatocellular vacuolation and liver fat were restored in fish 

treated with NS. Ideally, further red drum AFB1 studies should pair liver histological evaluation with 

other molecular markers to confirm liver damage, such as inducible nitric oxide synthase ([49] or  

γ-glutamyl transpeptidase [50,51]. Additionally, because feed efficiency, IPF and liver fat decreased 

with AFB1 exposure, it is possible that there was increased energy expenditure in these fish because 

less food was utilized. However, more research is needed to determine the exact mechanism of fat loss 

in AFB1-exposed red drum. 

In this study, NS supplementation in the diets of AFB1-exposed fish resulted in a protective effect, 

which was evident by the significant improvement in many of the tested parameters. Other studies 

have reported that a 2% inclusion level of bentonite, a common clay containing montmorillonite, in 

trout feed reduced toxic AFB1 effects [52]. Yet other studies suggest that a 0.5% inclusion level was 

sufficient to protect tilapia from 1.5 ppm AFB1 [45]. Bentonites have been added into fish feed at 

concentrations up to 10% with no alteration in whole-body proximate composition [53]. Discrepancies 

in the aquaculture literature concerning the proper inclusion level of clay-based binders indicate a need 

to establish a clay dosing regimen for fish at risk for AFB1 exposure. 
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4. Materials and Methods 

4.1. Experimental Diets 

The control basal diet was composed of 400 g protein kg−1 and 110 g lipid kg−1, containing an 

estimated 3.5 kcal digestible energy kg−1 (Table 6) and fulfilling all documented nutrient requirements 

of red drum [54]. Aflatoxin B1 (Sigma-Aldrich, St. Louis, MO, USA) was incorporated into the diet by 

first dissolving the AFB1 in chloroform and subsequently adding it to Celufil, a non-nutritive bulking 

agent (USB Corporation, Cleveland, OH, USA). The chloroform was evaporated to dryness from the 

mixture in a dark room under a fume hood, leaving the Celufil amended with AFB1. A  

V-mixer was used to blend all dry ingredients, with the exception of the AFB1-spiked Celufil, for  

20 min. The dry ingredients were then mixed with the AFB1-spiked Celufil in a Hobart mixer until 

homogeneity was achieved. The oil component and 700 mL of H2O were further added to the dry 

ingredients and mixed for 1 h. Aflatoxin-free Celufil was incorporated into the basal diet for 

comparison. The moist feed was cold-pelleted through a 3-mm die on a meat grinder attachment and 

dried in a dark room for 24 h. Diets were subsequently bagged and stored at −20 °C until needed. The 

ten diets contained the following: 0 ppm AFB1 (i.e., 0 ppm AFB1 + 0% NS), 0.1 ppm AFB1, 0.25 ppm 

AFB1, 0.5 ppm AFB1, 1 ppm AFB1, 2 ppm AFB1, 3 ppm AFB1, 5 ppm AFB1, 5 ppm AFB1 + 1% NS 

and 5 ppm AFB1 + 2% NS. A NS control group was not included since its safety was previously 

evaluated over the course of 10 weeks in a similar warm-water species [22]. 

4.2. Fish Stock and Culture Conditions 

Fingerling red drum were transported from the Texas Parks and Wildlife hatchery located at Lake 

Jackson, TX to the Texas A&M Aquacultural Research and Teaching Facility. Fish were stocked and 

conditioned in round tanks with a commercial diet (Rangen, Inc., Angelton, TX, USA) for 2 weeks, 

then transferred to aquaria and conditioned for 1 week on the basal diet. A closed, re-circulating 

system was composed of 110 L aquaria with water flowing at 1 L/min. Biofiltration was used to 

maintain ammonia, nitrate and nitrite concentrations at non-toxic levels. Salinity was maintained at  

7 ppt with artificial salts and water temperature was kept constant at 37 ± 2 °C by controlling air 

temperature in the wet laboratory. Supplemental aeration provided an adequate dissolved oxygen  

level of at least 80% air saturation. A 12:12 h light:dark cycle was maintained throughout the 

conditioning and trial period and water quality was monitored on a daily basis. Fifteen fish (2.1 ± 0.1 g) 

were stocked in each aquarium. The 10 dietary treatments were randomly assigned to triplicate 

aquaria, requiring a total of 30 tanks. Fish were fed a morning and afternoon ration over the course of 

7 weeks. The diets were fed to fish beginning at a rate of 6% of the initial body weight and tapered to 

3% over the span of the trial to prevent overfeeding and to approach apparent satiation. The system 

was monitored for mortalities and any deceased fish were immediately removed and evaluated for 

cause of death. With the exception of weight gain and survival, which were monitored on a weekly and 

daily basis, respectively, all other parameters were evaluated at the end of 7 weeks. 
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Table 6. Ingredient and proximate composition of experimental diets (g/100 g of dry weight). 

Level of AFB1 (ppm) 0 0.1 0.25 0.5 1 2 3 5 5 5 

Level of NS (%) 0 0 0 0 0 0 0 0 1 2 

Menhaden Meal a 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 34.9 
Soybean Meal b 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 

Dextrinized Starch c 16.0 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 
Menhaden Oil a 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 

Vitamin Premix d 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 
Mineral Premix c 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 

CMC c 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 
Glycine e 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Lysine e 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

NS f 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 2.3 
AFB1-spiked Celufil g 0.0 0.2 0.7 1.6 4.5 0.5 0.8 1.6 1.6 1.6 

Celufil e 5.5 5.3 4.8 3.9 1.0 5.0 4.7 3.9 2.8 1.7 

Proximate Composition  
(% dry matter) 

          

Protein 36.2 35.8 35.7 35.2 35.6 35.5 36.1 35.6 35.2 35.5 
Lipid 9.5 9.3 10.3 10.4 10.7 10.6 10.6 10.7 10.7 11.1 

Dry Matter 94.5 94.7 94.9 93.6 94.3 94.8 95.2 95.4 95.4 95.0 
Ash 11.1 10.9 10.9 11.3 11.1 10.9 10.9 11.1 11.8 12.9 

a Special Select, Omega Protein, Houston, TX, USA; b De-hulled, roasted/cooked and solvent extracted, 

Producers Cooperative Association, Bryan, TX; c MP Biomedicals LLC, Solon, OH; d Contains (as g kg−1): 

Ca(C6H10O6)·5H2O, 348.49; Ca(H2PO4)·2H2O, 136.0; FeSO4·7H2O, 5.0; MgSO4·7H2O, 132.0; K2HPO4, 

240.0; NaH2PO4·H2O, 88.0; NaCl, 45.0; AlCl3 6H2O, 0.15; KI, 0.15; CuSO4·5H2O, 0.5; MnSO4·H2O, 0.7; 

CoCl2·6H2O, 1.0; ZnSO4·7H2O, 3.0; Na2SeO3, 0.011; e USB Corporation, Cleveland, OH; f Englehard 

Corporation, Jackson, MS; g Sigma-Aldrich, St. Louis, MO, USA. 

4.3. Fish Growth and Health Responses 

Weight gain (% of initial weight), feed efficiency (g weight gain/g dry diet fed), and survival rate 

(% per treatment group) were calculated at the end of the trial. Two fish were sampled from each 

aquaria and homogenized together using a blender. Whole-body analysis was performed by evaluating 

moisture, ash, protein and lipid content according to previously established procedures [55]. Somatic 

indexes including spleen, liver (HSI), intraperitoneal (IPF) fat and muscle (MSI) were averaged based 

on 2 fish per aquaria (n = 6). Each somatic index was calculated as follows: (organ weight/body 

weight) × 100. Only the dextral side of each fish was filleted, weighed, and then doubled to  

obtain MSI. 

4.4. Immunological Responses 

Immunological parameters were evaluated including plasma lysozyme of white blood cell origin, 

neutrophil oxidative radical production in whole blood, and % trypsin inhibition. Two fish were 

randomly selected and bled from each tank, then pooled according to treatment (6 fish per treatment). 

A total of approximately 1–2 mL of blood was collected per treatment group using heparinized 
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syringes. Plasma lysozyme was analyzed by employing a turbidimetric method [56,57]. Blood 

neutrophil oxidative radical production was measured utilizing a nitro blue tetrazolium (NBT)  

assay [56,58]. Plasma was also used to determine % trypsin inhibition according to a previously 

established method [59]. 

4.5. Histological Response 

Livers were dissected from two fish per tank, or six per treatment. Immediately after dissection, 

livers were fixed in 10% formalin overnight. Livers were subsequently rinsed with 70% ethanol 

solution and transferred to vials containing 10 mL fresh 70% ethanol. Samples were processed and 

paraffin embedded within 48 h for routine histopathology at the Texas A&M Veterinary Pathobiology 

Histology Laboratory (College Station, TX, USA). Samples were sectioned at a thickness of 5 µm and 

stained with hematoxylin and eosin (H&E). Lesions were blindly examined and scored according to 

the criteria listed in Table 7. 

Table 7. Histological evaluation criteria. 

Score Evaluation Description 

0 Normal Intracytoplasmic vacuolation, mostly macrovacuolar with one of the 
control livers also having micro and macrovesiculation.  
Nuclei are small and pushed to the periphery with small nucleoli. 

1+ Minimal Scattered increase in nuclear size and mostly inconspicuous nucleoli. 
2+ Mild Mild hypertrophy and pleomorphism with slightly prominent nuclei 

and more evident nucleoli. Some loss of intracytoplasmic 
macrovacuoles, and formation of microvacuoles. 

3+ Moderate Moderate cellular pleomorphism, with anisocytosis, anisokaryosis, 
megalocytosis and megalokaryosis. Sparse intracytoplasmic vacuoles. 

4+ Marked Diffuse loss of cytoplasmic vacuolation, mostly solid cytoplasm. 
Marked pleomorphism, anisocytosis, anisokaryosis,  
megalocytosis and megalokaryosis. 

4.6. Immunohistochemistry 

Immunohistochemistry for proliferating cell nuclear antigen (PCNA) was performed on 

deparaffinized sections of liver mounted on positively charged, silanized slides using an automated 

staining system for immunohistochemistry (Lab Vision Autostainer 360, Runcom, Cheshire, UK). 

Briefly, slides were placed in a heated chamber with DIVA decloaking solution (Biocare Medical 

LLC., Concord, CA, USA) and heated to 121 °C for antigen retrieval. The slides were incubated with a 

1:200 dilution of PCNA (Fisher Scientific, Walther, MA, USA) for 20 min followed by a secondary 

antibody, ImmpRESS (Vector Scientific, Burlingame, CA, USA) for 30 min. The primary antibody 

was omitted on negative control tissues. Slides were then stained with DAB Quanto (Vector Scientific, 

Burlingame, CA, USA) for 5 min, followed by counterstaining with hematoxylin (Biocare Medical 

LLC., Concord, CA, USA) for 1.5 min. Slides were further dehydrated and mounted. Negative and 

positive control tissues were stained together with all fish livers. Canine and mouse small intestine, 

bronchial epithelium and tonsils were used as positive control tissues. All photographs were taken at 



Toxins 2013, 5 1569 

 

 

400× magnification. Stained nuclei were counted, averaged and evaluated for each treatment using 

CellProfiler software [60]. The percentage of PCNA positive cells ((positive/total nuclei) ×100) was 

calculated based on 4 fields/fish × 6 fish/treatment (24 fields/treatment). 

4.7. Statistical Analysis 

All statistics were computed using Statistical Analysis System (SAS) version 9.2 (SAS Institute, 

Cary, NC, USA). Data from groups exposed to 0–5 ppm AFB1 were subject to a general linear model 

regression, while 0 ppm AFB1, 5 ppm AFB1, 5 ppm AFB1 + 1% NS and 5 ppm AFB1 + 2% NS group 

data were subject to an incomplete factorial ANOVA for all parameters except histopathological 

scoring. Histopathological scores were first subject to Aligned Rank Transformation [61] and then 

further analyzed using a general linear model regression or incomplete factorial ANOVA. All 

differences among treatment means were determined using Duncan’s multiple range test. Treatment 

differences were considered significant at p < 0.05. 

5. Conclusions 

These findings indicate that red drum are susceptible to AFB1 in levels as low as 0.1 ppm. Other 

unevaluated species should be tested for AFB1 susceptibility, especially warm-water species raised in 

tropical and subtropical environments where the mycotoxin contamination risk is high. NovaSil 

supplementation at levels between 1%–2% may be used in fish feed safely to effectively reduce AFB1 

toxicity. Therefore, this technology could be used by the aquaculture industry as a strategy to reduce 

aflatoxin-related morbidity and mortality in fish. 
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