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Accurate short-term wind speed forecasting is needed for the rapid de-
velopment and efficient operation of wind energy resources. This is, however,
a very challenging problem. Although on the large scale, the wind speed is
related to atmospheric pressure, temperature, and other meteorological vari-
ables, no improvement in forecasting accuracy was found by incorporating
air pressure and temperature directly into an advanced space–time statisti-
cal forecasting model, the trigonometric direction diurnal (TDD) model. This
paper proposes to incorporate the geostrophic wind as a new predictor in
the TDD model. The geostrophic wind captures the physical relationship be-
tween wind and pressure through the observed approximate balance between
the pressure gradient force and the Coriolis acceleration due to the Earth’s
rotation. Based on our numerical experiments with data from West Texas,
our new method produces more accurate forecasts than does the TDD model
using air pressure and temperature for 1- to 6-hour-ahead forecasts based on
three different evaluation criteria. Furthermore, forecasting errors can be fur-
ther reduced by using moving average hourly wind speeds to fit the diurnal
pattern. For example, our new method obtains between 13.9% and 22.4%
overall mean absolute error reduction relative to persistence in 2-hour-ahead
forecasts, and between 5.3% and 8.2% reduction relative to the best previous
space–time methods in this setting.

1. Introduction. Because it is a rich resource that is both green and renew-
able, wind energy has been developing rapidly worldwide; see the book by Haugen
and Musser (2012) on renewable energy and the reviews by Genton and Hering
(2007), Zhu and Genton (2012), and Pinson (2013) for more information about
wind energy.

Wind power cannot be simply added into current power systems. Rather, its
introduction creates costs and inefficiencies in power systems. Because of the
high uncertainties, nondispatchable and limited predictability of wind energy, an
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increase in the proportion of wind power in a system requires a corresponding
increase of fast but expensive nonwind backup power to balance wind fluctua-
tions.

The solution to reducing the uncertainties of wind power generation is ac-
curate wind forecasting. In particular, short-term forecasting up to a few hours
ahead is essential. Long-term wind forecasting is less accurate, while high-quality
short-term prediction is possible. In order to describe the uncertainty in the fore-
cast of a future event, the forecast ought to be probabilistic, that is, in the form
of a predictive probability distribution; see Gneiting and Katzfuss (2014) for an
overview.

At the same time, short-term forecasting is closely related to a power system
dispatch. In a power market, one-day-ahead, hours-ahead, and even minutes-ahead
price adjustments are used to determine how much electricity each power plant
should generate to meet demand at minimum cost; see Xie et al. (2011). Moreover,
if there is a gap between the demand and the estimated supply, there is enough
time to draw on less expensive backup power plants. Accurate short-term forecasts
reduce the cost for reserves and stabilize the power system.

A number of short-term, statistical, wind forecasting models have been devel-
oped; see reviews by Giebel et al. (2011), Kariniotakis et al. (2004), Monteiro et al.
(2009), Zhu and Genton (2012) and Pinson (2013). Statistical space–time forecast-
ing models that take into account both spatial and temporal correlations in wind
have been found to be particularly accurate for short-term forecasting problems.
The regime-switching space–time diurnal (RSTD) models, proposed by Gneiting
et al. (2006), were found to outperform persistence (PSS), autoregressive and vec-
tor autoregressive models. Since the RSTD models were introduced, researchers
have sought to generalize and improve them. For example, Hering and Genton
(2010) proposed the trigonometric direction diurnal (TDD) model to generalize
the RSTD model by treating wind direction as a circular variable and including it
in their model. Zhu et al. (2014) generalized the RSTD model by allowing fore-
casting regimes to vary with the prevailing wind and season, obtaining compara-
ble forecasting accuracy. They referred to their model as a rotating RSTD model.
Pinson and Madsen (2012) used a first-order Markov chain to determine the regime
sequence in offshore wind power forecasting problems and proposed the so-called
adaptive Markov-switching autoregressive models.

All of the aforementioned statistical wind forecasting models use only histori-
cal wind information—wind speed and direction—to predict future winds. Other
atmospheric parameters, such as temperature and pressure, are closely tied to the
wind through various physical processes and could potentially be included in mod-
els to improve prediction accuracy. Directly incorporating temperature and pres-
sure as statistical predictors turns out not to be helpful, however, because winds,
for example, are related more closely to horizontal gradients of pressure rather than
pressure itself. Outside the tropics, the wind field is closely tied to the large-scale
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atmospheric pressure field through a balance between the horizontal pressure gra-
dient force and the Coriolis acceleration from the Earth’s rotation. This relationship
is known as geostrophic balance [e.g., Wallace and Hobbs (2006), Section 7.2].
Because of the physical relationship between pressure gradients and winds, the at-
mospheric pressure field contains information about the wind that is not contained
in surface wind measurements. For a general introduction to meteorological basics
of wind power generation, see Emeis (2013) and the references therein. In this pa-
per, a new predictor is introduced to the TDD model, the geostrophic wind (GW),
which is the theoretical horizontal wind velocity that exactly balances the observed
pressure gradient force. This new model is named TDDGW.

Numerical experiments applying the TDDGW model to data from West Texas
are carried out for 1- to 6-hour-ahead wind forecasting. The geostrophic wind di-
rection (D) and the difference in temperature (T) between the current and previ-
ous day are also considered, with corresponding models named TDDGWD and
TDDGWT, respectively. Additionally, simpler but more efficient methods are pro-
posed to fit the prevailing diurnal wind pattern to obtain better forecasts. Mean
absolute errors (MAE), root mean squared errors (RMSE) and continuous ranked
probability scores (CRPS), as well as probability integral transform histograms,
are used to evaluate the performance of the forecasting models.

The remainder of this paper is organized as follows. In Section 2 the geostrophic
wind estimation procedure is briefly introduced. In Section 3 the TDDGW model is
proposed, along with the TDDGWD and TDDGWT models and modified diurnal
pattern fitting methods. The West Texas data are used as a case study in Section 4.
In Section 5 forecast results are evaluated and compared with those from reference
models. Section 6 offers final remarks. The abbreviations used in the paper are
listed in Table 1.

2. Estimating the geostrophic wind. Using pressure as a vertical coordinate,
the eastward and northward components of the geostrophic wind, ug and vg , are
given by

ug = −g0

f

∂Z

∂y
and vg = g0

f

∂Z

∂x
,(1)

where x and y are local eastward and northward Cartesian coordinates, g0 is the
acceleration of gravity, f = 2� sinφ is the Coriolis parameter, φ is latitude, � is
the rotation rate of the Earth, and Z is the height of a convenient nearby surface of
constant pressure.

For the region covered by this study, differences in Z between stations are small
[O(10 m)] compared to the magnitude of Z [O(1000 m)], so care must be taken to
remove systematic biases and noise in individual measurements of Z to accurately
estimate the horizontal pressure gradient. To compute the geostrophic wind com-
ponents from a network of surface pressure observing stations, the following steps
are used. First, because the barometers at different stations are typically located
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TABLE 1
List of abbreviations

y Wind speed
θ Wind direction
wg Geostrophic wind speed
θg Geostrophic wind direction
PSS Persistence
RSTD Regime switching space–time diurnal model
TDD Trigonometric direction diurnal model
TDDGW TDD model incorporating geostrophic wind information
TDDGWT Including 24-hour temperature difference into TDDGW
TDDGWD Including geostrophic wind direction into TDDGW
TDDGWDT Including 24-hour temperature difference and geostrophic

wind direction into TDDGW
YMD Modified diurnal pattern fitted with yearly period
SMD Modified diurnal pattern fitted with seasonal period
MD Modified diurnal pattern fitted with 45 days’ period

at different elevations above sea level, it is necessary to adjust the pressure mea-
surements to a standard reference pressure. This can be done with good accuracy
through the hydrostatic equation, which in integral form is written as

Z = Zi + RT̄

g0
ln

(
pi

pref

)
,(2)

where Zi is the geopotential height of barometer i, pi is the pressure measurement
by barometer i, pref is the desired reference pressure level (e.g., 850 hPa), Z is
the unknown geopotential height of the reference pressure level, R is the gas con-
stant for air (287 J K−1 kg−1), and T̄ is the layer-averaged temperature between
pi and pref, which in this paper is estimated using surface temperature measure-
ments.

Because �Z/Z � 1 for horizontal scales of interest in this study, systematic
biases and random noise in the barometers would lead to large errors in estimates
of the pressure gradient. Biases are removed by subtracting the time-mean pres-
sure at each station for the time series. This will also remove any real time-mean
geostrophic wind, but for statistical wind forecasting purposes, only variations in
the geostrophic wind are of interest. Random noise in the pressure measurements
are removed by fitting a smooth (planar) surface,

Z(x, y) = a0 + a1x + a2y,(3)

to the geopotential heights at each time. From this, we get

∂Z

∂x
= a1 and

∂Z

∂y
= a2,
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which can be substituted into equation (1) to give

ug = −g0

f
a2 and vg = g0

f
a1.(4)

The geostrophic wind speed and direction are given by wg =
√

u2
g + v2

g and θg =
tan−1(vg/ug), respectively.

3. The trigonometric direction diurnal model with geostrophic wind.

3.1. The TDD model and reference models. The TDD model [Hering and
Genton (2010)] is an advanced space–time model for short-term wind speed fore-
casting problems. It generalizes the RSTD model [Gneiting et al. (2006)] by treat-
ing wind direction as a circular variable and including it in the model, such that
the alterable and locally dependent forecasting regimes are eliminated. The main
idea of this model is presented in this section in order to develop our new model.

Let ys,t and θs,t , s = 1, . . . , S and t = 1, . . . , T , be surface wind speed and
direction measurements at station s at time t , respectively. The objective is to pre-
dict the k-step-ahead wind speed, yi,t+k , at one of the stations, i ∈ {1, . . . , S}. For
short-term wind speed forecasting problems, the k-step-ahead is from 1 to 6 hours.

Like Gneiting et al. (2006) and Hering and Genton (2010), it is assumed in
the TDD model that ys,t+k follows a truncated normal distribution, N+(μs,t+k,

σs,t+k), with μs,t+k and σs,t+k as the center parameter and the scale parameter,
respectively, considering that the density of the wind speed is nonnegative. Of
course, there are other alternative probability distributions to fit wind speed, such
as the Weibull, Rayleigh and Beta distributions; see Monahan (2006), Monahan
et al. (2011) and Zhu and Genton (2012).

If the two parameters of the truncated normal distribution are modeled appro-
priately, accurate probabilistic forecasts can be achieved beyond point forecasts.
In the TDD model, these two parameters are modeled as follows, taking s = 1 as
an example:

(a) The center parameter, μ1,t+k , is modeled in two parts:

μ1,t+k = D1,t+k + μr
1,t+k.

The first part, D1,t+k , is the diurnal component in the wind speed, which is fitted
by two pairs of trigonometric functions:

D1,h = d0 + d1 sin
(

2πh

24

)
+ d2 cos

(
2πh

24

)

(5)

+ d3 sin
(

4πh

24

)
+ d4 cos

(
4πh

24

)
,

where h = 1,2, . . . ,24.
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The residual of the wind speed after removing the diurnal component is modeled
as

μr
1,t+k = α0 + ∑

s=1,...,S

[ ∑
j=0,1,...,qs

αs,j y
r
s,t−j

(6)

+ ∑
j ′=0,1,...,q ′

s

{
βs,j ′ cos

(
θr
s,t−j ′

) + γs,j ′ sin
(
θr
s,t−j ′

)}]
.

Equation (6) models the k-step-ahead wind speed residual as a linear combi-
nation of current and past wind speed residuals at all stations up to time lag qs

depending on station s, as well as a pair of trigonometric functions of wind direc-
tion residuals whose diurnal patterns are also fitted by the model in (5) up to time
lag q ′

s , which is not necessarily equivalent to qs . Both qs and q ′
s are determined

by the modified Bayesian information criterion (BIC) as described by Hering and
Genton (2010).

(b) The scale parameter is modeled by a simple linear model of volatility value,
vr
t , in the following form:

σ1,t+k = b0 + b1v
r
t ,

where vr
t = { 1

2S

∑S
s=1

∑1
l=0(y

r
s,t−l − yr

s,t−l−1)
2}1/2 and b0, b1 > 0.

The coefficients in the center parameter and scale parameter models are esti-
mated numerically by minimizing the continuous ranked probability score (CRPS)
for a truncated normal distribution, based on a 45-day-sliding window; see
Gneiting et al. (2006) and Gneiting and Raftery (2007).

Two models are introduced briefly here as references:

(i) PSS assumes the future wind speed is the same as the current wind speed,
ŷs,t+k = ys,t .

(ii) As mentioned above, in the RSTD model [Gneiting et al. (2006)], forecast-
ing regimes are defined based on the prevailing wind direction, and for each regime
a separate model is fitted only with historical wind speeds as predictors in equation
(6) plus speeds from neighboring stations.

3.2. The TDDGW model. Based on the discussion of the geostrophic wind
in Section 2, it is clear that atmospheric pressure and temperature play important
roles in wind speed and direction. To reduce the uncertainties in wind, an efficient
short-term forecasting model should include this critical information. However,
the experiments in the next section show that incorporating air pressure and tem-
perature directly into the TDD model does not reduce errors in forecasts. This
is because in the TDD model, particularly in the mean structure in equation (6),
linearity is assumed between future wind speeds and the covariates. This assump-
tion is invalid between wind speed and air pressure or temperature. As a result, no
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improvement is achieved by incorporating these variables directly into the TDD
model.

Instead of seeking nonlinear forms between wind speeds and air pressure and
temperature in the mean structure of the TDD model, it is proposed to use the
geostrophic wind as a predictor, as this better expresses the physical relationship
between temperature, pressure and wind. In the TDDGW model, geostrophic wind
is incorporated into the TDD model, hence keeping the model structure almost the
same. Specifically, the TDD model is modified by adding geostrophic wind into
the center parameter model in equation (6):

μr
1,t+k = α0 + ∑

s=1,...,S

[ ∑
j=0,1,...,qs

αs,j y
r
s,t−j

+ ∑
j ′=0,1,...,q ′

s

{
βs,j ′ cos

(
θr
s,t−j ′

) + γs,j ′ sin
(
θr
s,t−j ′

)}]
(7)

+ c0(wg)
r
1,t + c1(wg)

r
1,t−1 + c2(wg)

r
1,t−2 + · · · + cq(wg)

r
1,t−q,

where q is the time lag of geostrophic wind depending on the station, s, deter-
mined by the aforementioned modified BIC method and, again, wg indicates the
geostrophic wind speed. Since geostrophic wind is the theoretical wind above the
planetary boundary layer in the atmosphere, its value for a small area is almost
constant. This is why the geostrophic wind is used as a common predictor in equa-
tion (7).

In addition to including geostrophic wind in the TDD model, the geostrophic
wind direction and the temperature difference between the current and previous
day are also considered, because, from the atmospheric science point of view, these
variables are closely related to surface wind. These two modified TDDGW models
are named TDDGWD and TDDGWT, and with the two variables simultaneously,
TDDGWDT.

Additionally, the diurnal pattern fitting is also modified. Instead of the daily
wind pattern in the model in equation (5), the average wind speed of each hour
within a certain period is treated as the diurnal pattern. Depending on the period
used, there are several versions of the diurnal pattern modeling: MD, a diurnal
pattern that takes into account winds in a 45-day-sliding window; SMD, a diurnal
pattern that is calculated for each season; and YMD, a diurnal pattern based on a
whole year’s data (or several years’ data).

4. West Texas data.

4.1. Data description. The wind data considered here were collected from
mesonet towers at a height of 10 m above the surface in West Texas and East-
ern New Mexico, and was also used by Xie et al. (2014). The original data archive
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FIG. 1. The distribution of selected mesonet towers (triangles) in West Texas (Panhandle plains).
The four towers of PICT, JAYT, SPUR and ROAR are marked by circled triangles. The 12 stations
selected to estimate the geostrophic wind are marked by triangles.

contains five-minute means of three-second measurements of wind and other atmo-
spheric parameters from more than 60 stations. In the experiment, hourly-averaged
data of five-minute means from 1 January 2008 to 31 December 2010 are used, di-
vided into training data (2008–2009) and testing data (2010). Although most wind
turbine towers today are at least 60 m tall [Busby (2012)], winds at 10 m height
provide some information about the wind at turbine height depending on the state
of the planetary boundary layer. Moreover, we are using 10 m winds because it is
all that is available from this data set.

In our numerical experiment, a small area in the Panhandle plains is chosen with
four stations to test the newly proposed model; see Figure 1. This area includes
PICT, JAYT, SPUR and ROAR stations in and around Dickens county, between 40
to 55 miles apart from one another. These four locations are marked by a circled
triangle in Figure 1. Our goal is to predict 1- to 6-hour-ahead wind speeds at these
four locations. The recorded data include wind speed, wind direction, temperature
and pressure. To estimate the geostrophic wind in the TDDGW model, 12 surface
stations were selected (triangles in Figure 1) that surround the four test stations.
More information is given at http://www.mesonet.ttu.edu/wind.html.

The area where the four target stations are located in West Texas has both
northerly and southerly prevailing winds as shown by Xie et al. (2014) with wind
roses based on the 2008–2009 training data set. High frequencies and large speed
ranges are found from the north and south directions at all four stations. More
specifically, the southerly wind dominates this area, with more frequent wind blow-
ing from the south than from the north. Different from the other three locations, the
station SPUR has a high frequency from the northwest direction. The wind speed
marginal density plots at the four stations are displayed in Figure 2 based on the
wind data from 2008 and 2009. They are positive and skewed to the right.

http://www.mesonet.ttu.edu/wind.html
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FIG. 2. Marginal density plots of wind speeds at PICT, JAYT, SPUR and ROAR in 2008–2009.

4.2. Geostrophic wind and surface wind. To estimate the geostrophic wind
based on surface measurements of air pressure and temperature, the aforemen-
tioned two steps in Section 2 are carried out. First, for each hour, surface pressure
measurements are represented by the geopotential height with equation (2). For the
value of T̄ , the average temperature from the 12 stations in Figure 1 is used and
850 hPa for the reference pressure, pref. Second, using the 12 stations’ geopoten-
tial height data, along with their latitude and longitude data, a geopotential height
plane (3) is fitted for each hour, resulting in a geopotential height gradient based
on the coefficients of the plane of the x and y horizontal components as shown in
equation (4). The monthly average geopotential height is removed before fitting the
plane. With these two steps, each hourly surface wind record has a corresponding
geostrophic wind estimated from the temperature and pressure information.

The four days’ hourly geostrophic wind speeds (solid curve) and surface winds
(dashed curve) in 2008 at PICT in Figure 3 (top) indicate that the former has larger
values than the latter, while the latter has larger amplitude of variation. Since the
effects of friction forces, which slow down the wind speed and change direction,
are ignored in the geostrophic balance, the geostrophic winds are stronger and
smoother than the surface winds. Also, it can be seen in Figure 3 that they share
similar patterns, which is consistent with the large positive correlation coefficient
between the surface wind and the geostrophic wind as listed in Table 2 in the next
section. The bottom plot displays the density estimations of the geostrophic wind
speed (solid curve) and the surface wind speed (dashed curve), from which we can
see again that the geostrophic wind speed has a larger range than does the surface
wind speed.

Figure 4 displays scatter plots of wind speed vs. surface temperature (left), pres-
sure (middle) and geostrophic wind speed (right) based on the training data at
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FIG. 3. Geostrophic wind (GW) vs. surface wind (SW) (top) and density plots of the geostrophic
wind and surface wind (bottom).

PICT. From the first plot, we can see that the surface wind speed is very weakly
correlated with temperature. The correlation coefficient between them is 0.19. The
correlation coefficient of the surface wind speed and pressure is −0.34, indicating
a weakly negative linear trend in the scatter plot as well. However, the linearity
correlation between surface wind and geostrophic wind is stronger, with correla-
tion coefficient equal to 0.53. This shows that geostrophic wind not only contains
important temperature and pressure information, but also meets the linearity as-
sumption such that it can be integrated into the TDD model. More importantly,
geostrophic wind has physical interpretability.

Figure 5 shows the averaged diurnal pattern of the surface wind speed and
geostrophic wind in different seasons of 2008–2009 at PICT (left) and ROAR
(right). The plots show that geostrophic wind has higher speed than surface wind,
which is slowed down by the ground friction. The geostrophic wind for the two
stations is the same, but the surface winds are different albeit similar. Through the

FIG. 4. Scatter plots of wind speed vs. temperature (Celsius) (left), pressure (hPa) (middle) and
geostrophic wind speed (m/s) (right).
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FIG. 5. Daily pattern of wind speed (lower part in each plot) and geostrophic wind speed (upper
part in each plot) in different seasons of 2008–2009 at PICT (left) and ROAR (right).

hours of the day, the geostrophic wind fluctuates with a range from 7 to 15 m/s,
while the surface wind is smoother with a range from 3 to 6 m/s. Seasonally,
geostrophic wind and surface wind are consistent, having higher speed during
winter (December to February) and spring (March to May) than summer (June
to August) and fall (September to November).

5. Numerical results.

5.1. Training results. In the training procedure the models for the center pa-
rameter are obtained based on the training data set to forecast 1- to 6-hour-ahead
wind speed at each of the four stations. For example, to predict yP,t+2, the 2-hour-
ahead wind speed at PICT, the variables listed in Table 2, except geostrophic wind
direction, are put into the selection pool, and the aforementioned BIC is applied
to select significant predictors. The variables in the selection pool include current
and up to 10-step lags of wind speed, geostrophic wind speed, and pairs of cosine
and sine of the wind direction at all four stations. In the TDDGWD model, the co-
sine and sine of the geostrophic wind direction are also considered. Different from
the cosine and sine of the surface wind direction, which have negative correlations
with the 2-hour-ahead wind speed at PICT, the cosine and sine of the geostrophic
wind direction are positively correlated with the 2-hour-ahead wind speed at PICT
(see Table 2). In the table, the indexes, P , J , S and R, indicate the four locations.

5.2. Evaluation of forecasts. The trained TDDGW, TDDGWT, TDDGWD
and TDDGWDT models are applied to the testing data set with modified diur-
nal modeling, MD, SMD and YMD, to predict probabilistically 1- to 6-hour-
ahead wind speeds at the four stations. Prediction mean absolute errors (MAE)
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TABLE 2
Correlation coefficients between yP,t+2 and the current and up to 5-step lag surface wind
speed (y), direction (θ ), geostrophic wind speed (wg ) and geostrophic wind direction (θg )

at four stations (P , J , S and R)

Variable t t − 1 t − 2 t − 3 t − 4 t − 5

yP 0.80 0.70 0.62 0.54 0.47 0.40
wg,P 0.57 0.55 0.53 0.50 0.47 0.43
cos(θP ) −0.06 −0.08 −0.11 −0.13 −0.15 −0.17
sin(θP ) −0.14 −0.16 −0.17 −0.19 −0.20 −0.20
cos(θg,P ) 0.10 0.09 0.09 0.09 0.10 0.10
sin(θg,P ) 0.17 0.15 0.13 0.11 0.09 0.07

yJ 0.74 0.66 0.58 0.51 0.45 0.39
cos(θJ ) −0.12 −0.14 −0.15 −0.16 −0.17 −0.18
sin(θJ ) −0.14 −0.17 −0.19 −0.21 −0.22 −0.23

yS 0.73 0.64 0.55 0.48 0.40 0.33
cos(θS) −0.19 −0.20 −0.20 −0.20 −0.20 −0.20
sin(θS) −0.06 −0.09 −0.11 −0.14 −0.16 −0.18

yR 0.76 0.70 0.64 0.59 0.53 0.48
cos(θR) −0.03 −0.04 −0.06 −0.08 −0.10 −0.12
sin(θR) −0.05 −0.08 −0.11 −0.13 −0.16 −0.17

are used to evaluate the performance of the forecasts, which are defined as∑T
t=1 |yP,t+2 − ŷP ,t+2|, at station PICT for 2-hour-ahead, for example. When

ŷP ,t+2 equals to the median of the predictive distribution, the error reaches the
minimum value. Thus, for the truncated normal distribution, we take the median
as forecast:

ŷP ,t+2 = μP,t+2 + σP,t+2 · �−1{
0.5 + 0.5 · �(−μP,t+2/σP,t+2)

};
see Gneiting (2011) for a discussion of quantiles as optimal point forecasts. A 45-
day-sliding window is used to estimate the coefficients in the models with the
CRPS method. Forecasts are compared with the reference models listed in Sec-
tion 3.1 in addition to the TDD model.

Besides MAE, the RMSE and CRPS are also used to compare model perfor-
mance. Compared with MAE, RMSE has stronger penalty on large forecast errors.
CRPS essentially provides a measure of probabilistic forecast performance. The
computation of the CRPS for the truncated normal distribution can be found in
Gneiting et al. (2006).

In Table 3 the prediction MAE values of 2-hour-ahead forecasts at PICT in
2010 from the TDDGW model with aforementioned different diurnal modeling
methods are listed. Overall, the MD method has the smallest MAE values among
the four, 0.88 m/s compared with 0.92 m/s, 0.89 m/s and 0.90 m/s, from TD-
DGW, TDDGW-SMD and TDDGW-YMD methods, respectively. The TDDGW-



1794 X. ZHU, K. P. BOWMAN AND M. G. GENTON

TABLE 3
MAE values (m/s) of 2-hour-ahead forecasts from TDDGW with different diurnal component fitting

methods at PICT in 2010. The smallest MAE value of each column is boldfaced

Site Model Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Overall

PICT TDDGW 0.95 0.81 1.02 0.93 0.91 0.96 0.91 0.91 0.84 0.82 0.97 0.98 0.92
PICT TDDGW-MD 0.94 0.80 0.96 0.89 0.92 0.91 0.83 0.86 0.81 0.77 0.92 0.94 0.88
PICT TDDGW-SMD 0.94 0.84 0.98 0.88 0.93 0.93 0.85 0.86 0.82 0.78 0.94 0.96 0.89
PICT TDDGW-YMD 0.98 0.81 0.98 0.91 0.95 0.96 0.86 0.88 0.80 0.81 0.96 0.98 0.90

MD model has the smallest MAE values, 10 out of the 12 months, followed by
TDDGW-SMD, 3 out of 12 months.

The modified methods fit the diurnal pattern better than the one in equation (5).
This is because the latter fits the pattern by a continuous smooth function of the
time of a day. The fitted results would be adjusted to the average wind speed of the
day, while MD, SMD and YMD only provide the average wind speed on the hours.
Since the focus is on hourly ahead forecasting, here using MD, SMD and YMD
is reasonable without losing functionality in practice. Therefore, in the following
only forecasts from models that use the MD method to fit the diurnal component
are displayed.

The MAE, RMSE and CRPS values of 2-hour-ahead forecasts from different
models at PICT in 2010 are listed in Table 4. At PICT, it can be observed that all
the space–time models outperform the PSS model as expected, with smaller MAE
values. Except for February, our new models that incorporate geostrophic wind
give more accurate forecasts than the RSTD and TDD models do, with the MAE
value 0.88 m/s compared with 0.94 m/s and 0.95 m/s. Up to two decimal points,
the TDDGW-MD, TDDGWT-MD, TDDGWD-MD and TDDGWDT-MD models
have similar MAE values, around 0.88 m/s. Looking more closely, the TDDGWD-
MD gives the largest reduction in the relative MAE value, around 18.3%. As ex-
pected, the models including geostrophic wind are better than the other two space–
time models (RSTD and TDD) with 13.2% and 12.1% reductions in MAE values
relative to PSS. Comparing the results of the TDDGW and TDDGW-MD models,
the modified diurnal pattern modeling based on the 45-day-sliding window helps
to provide a 3.7% reduction in the MAE value relative to PSS. Similar results can
be seen based on CRPS and RMSE. Our new models produce the smallest CRPS
and RMSE.

Looking across the 4 locations, our new method obtains between 13.9% and
22.4% overall mean absolute error reduction relative to persistence in 2-hour-
ahead forecasts, and between 5.3% and 8.2% reduction relative to the best previous
space–time methods in this setting.

To assess calibration, we display the histograms of the probability integral trans-
form (PIT) of our models in Figure 6 for 2-hour-ahead forecasts at PICT in 2010.
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TABLE 4
MAE, RMSE and CRPS values (m/s) of 2-hour-ahead forecasts from various forecasting models at

PICT in 2010. The smallest value of each criteria in each column is boldfaced

Site Model Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Overall

MAE
PICT PSS 1.06 0.87 1.21 1.15 1.15 1.13 1.03 1.05 0.96 0.97 1.17 1.14 1.08
PICT RSTD 0.93 0.79 1.07 0.98 1.02 0.95 0.89 0.90 0.83 0.82 0.99 1.01 0.94
PICT TDD 0.95 0.81 1.07 0.99 1.00 0.97 0.89 0.93 0.84 0.86 1.01 1.03 0.95
PICT TDDGW-MD 0.94 0.80 0.96 0.89 0.92 0.91 0.83 0.86 0.81 0.77 0.92 0.94 0.88
PICT TDDGWT-MD 0.94 0.82 0.96 0.90 0.92 0.91 0.83 0.86 0.81 0.77 0.92 0.95 0.88
PICT TDDGWD-MD 0.91 0.82 0.97 0.89 0.92 0.90 0.84 0.86 0.80 0.78 0.92 0.94 0.88
PICT TDDGWDT-MD 0.91 0.83 0.97 0.90 0.92 0.90 0.84 0.86 0.80 0.78 0.92 0.94 0.88

RMSE
PICT PSS 1.45 1.19 1.66 1.54 1.52 1.52 1.40 1.44 1.30 1.31 1.63 1.56 1.47
PICT RSTD 1.25 1.05 1.40 1.29 1.35 1.25 1.20 1.16 1.09 1.07 1.30 1.35 1.24
PICT TDD 1.25 1.07 1.41 1.28 1.31 1.26 1.19 1.21 1.09 1.09 1.31 1.38 1.25
PICT TDDGW-MD 1.23 1.05 1.28 1.15 1.22 1.22 1.13 1.12 1.05 1.02 1.21 1.28 1.17
PICT TDDGWT-MD 1.23 1.07 1.28 1.15 1.22 1.21 1.12 1.12 1.05 1.02 1.20 1.28 1.17
PICT TDDGWD-MD 1.20 1.08 1.29 1.15 1.23 1.22 1.12 1.13 1.03 1.02 1.21 1.28 1.17
PICT TDDGWDT-MD 1.21 1.09 1.29 1.16 1.23 1.21 1.12 1.13 1.03 1.02 1.21 1.28 1.17

CRPS
PICT RSTD 0.67 0.57 0.77 0.71 0.73 0.68 0.65 0.64 0.59 0.59 0.71 0.72 0.67
PICT TDD 0.68 0.58 0.77 0.71 0.71 0.69 0.64 0.67 0.60 0.61 0.72 0.74 0.68
PICT TDDGW-MD 0.66 0.58 0.70 0.64 0.66 0.65 0.60 0.62 0.58 0.56 0.66 0.68 0.63
PICT TDDGWT-MD 0.66 0.59 0.70 0.64 0.66 0.65 0.60 0.61 0.58 0.55 0.66 0.68 0.63
PICT TDDGWD-MD 0.65 0.59 0.70 0.64 0.66 0.65 0.60 0.62 0.56 0.56 0.67 0.68 0.63
PICT TDDGWDT-MD 0.65 0.60 0.70 0.64 0.66 0.65 0.60 0.62 0.57 0.56 0.67 0.68 0.63

The PIT is the value attained by the predictive distribution at the observation
[Dawid (1984), Diebold, Gunther and Tay (1998)]. We see that all six PIT his-
tograms are approximately uniform, hence indicating calibration and prediction
intervals that have close to nominal coverage at all levels. To assess sharpness,
we compute the average width of the 90% central prediction intervals. We ob-
tain 3.59 m/s for RSTD and 3.61 m/s for TDD, whereas for the models based
on geostrophic wind the values drop to between 3.34 m/s for TDDGW-MD
and 3.29 m/s for TDDGWDT-MD, a reduction of forecast uncertainty of about
7–9%.

Figure 7 displays overall MAE values of forecasts from the PSS, RSTD, TDD
and TDDGW-MD models for 1- to 6-hour-ahead forecasting at PICT in 2010.
We can see that the space–time models improve the forecasting accuracy with
smaller MAE values compared to PSS. Our new model has smallest MAE values
for all the six forecast horizons. The RSTD and TDD have quite close results.
At the same time, as expected, forecasting accuracy decreases with the increase
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FIG. 6. PIT histograms for RSTD, TDD, TDDGW-MD, TDDGWT-MD, TDDGWD-MD and
TDDGWDT-MD predictive distributions of 2-hour-ahead forecasts at PICT in 2010.

of forecasting horizon for all the four models, but the space–time models have
a smaller increasing rate than the PSS model. Similar results were obtained with
RMSE and CRPS, as well as at other locations.
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FIG. 7. Plot of MAE (m/s) of forecasts from the PSS, RSTD, TDD and TDDGW-MD models for 1-
to 6-hour-ahead forecasting at PICT in 2010.

6. Final remarks. Accurate wind prediction is critical in running power sys-
tems that have large shares of wind power. In recent decades many studies have
been devoted to improving short-term wind forecasting for large-scale wind power
development around the world.

This paper developed statistical short-term wind forecasting models based on
atmospheric dynamics principles. It proposed the use of the geostrophic wind as
a predictor. The geostrophic wind is a good approximation to the winds in the ex-
tratropical free troposphere and can be estimated using only surface pressure and
temperature data. In terms of the underlying atmospheric physics, the geostrophic
wind is correlated to the real wind more strongly than either temperature or pres-
sure. This is demonstrated by the fact that no improvement was found by di-
rectly incorporating atmospheric temperature and pressure into the most advanced
space–time forecasting model to date. The geostrophic wind can be approximated
from networks of standard surface meteorological observations. More importantly,
it helps to reduce prediction errors significantly when incorporated into space–time
models.

In this paper, more accurate forecasts were achieved by incorporating geo-
strophic wind as a predictor into space–time statistical models and modifying di-
urnal pattern models in 1- to 6-hour-ahead wind speed forecasting. In addition,
trigonometric functions of the geostrophic wind direction and temperature differ-
ences between the current and previous day were also considered. We showed how
simpler but more efficient methods can be applied to fit the diurnal pattern of wind
to obtain better forecasts.

With our new model and existing space–time models, we forecast the 1- to 6-
hour-ahead wind speeds at four locations in West Texas. Three different criteria
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were used to evaluate the performance of the models, including MAE, RMSE and
CRPS. The results showed that our new models outperform the PSS, RSTD and
TDD in terms of all three criteria. Moreover, PIT histograms confirmed that our
new models based on geostrophic wind were calibrated and sharp. Xie et al. (2014)
further quantified the overall cost benefits on power system dispatch by reducing
uncertainties in near-term wind speed forecasts based on the TDDGW model.
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orological data.

REFERENCES

BUSBY, R. L. (2012). Wind Power: The Industry Grows Up. PennWell Corporation, Tulsa, OK.
DAWID, A. P. (1984). Statistical theory. The prequential approach. J. Roy. Statist. Soc. Ser. A 147

278–292. MR0763811
DIEBOLD, F. X., GUNTHER, T. A. and TAY, A. S. (1998). Evaluating density forecasts with appli-

cations to financial risk management. Internat. Econom. Rev. 39 863–883.
EMEIS, S. (2013). Wind Energy Meteorology. Springer, Berlin.
GENTON, M. G. and HERING, A. S. (2007). Blowing in the wind. Significance 4 11–14.

MR2359227
GIEBEL, G., BROWNSWORD, R., KARINIOTAKIS, G., DENHARD, M. and DRAXL, C. (2011).

The state-of-the-art in short-term prediction of wind power: A literature overview, 2nd ed.
ANEMOS.plus, 109 p.

GNEITING, T. (2011). Quantiles as optimal point forecasts. Int. J. Forecast. 27 197–207.
GNEITING, T. and KATZFUSS, M. (2014). Probabilistic forecasting. Annual Review of Statistics and

Its Application 1 125–151.
GNEITING, T. and RAFTERY, A. E. (2007). Strictly proper scoring rules, prediction, and estimation.

J. Amer. Statist. Assoc. 102 359–378. MR2345548
GNEITING, T., LARSON, K., WESTRICK, K., GENTON, M. G. and ALDRICH, E. (2006). Calibrated

probabilistic forecasting at the stateline wind energy center: The regime-switching space-time
method. J. Amer. Statist. Assoc. 101 968–979. MR2324108

HAUGEN, D. M. and MUSSER, S. (2012). Renewable Energy. Greenhaven Press, Detroit, MI.
HERING, A. S. and GENTON, M. G. (2010). Powering up with space-time wind forecasting. J. Amer.

Statist. Assoc. 105 92–104. MR2757195
KARINIOTAKIS, G., PINSON, P., SIEBERT, N., GIEBEL, G. and BARTHELMIE, R. (2004). The

state-of-the-art in short-term prediction of wind power-from an offshore perspective. In Sympo-
sium ADEME, IFREMER, Renewable Energies at Sea. Brest, FR.

MONAHAN, A. H. (2006). The probability distribution of sea surface wind speeds. Part I: Theory
and SeaWinds observations. J. Climate 19 497–520.

MONAHAN, A. H., HE, Y., MCFARLANE, N. and DAI, A. (2011). The probability distribution of
land surface wind speeds. J. Climate 24 3892–3909.

MONTEIRO, C., BESSA, R., MIRANDA, V., BOTTERUD, A., WANG, J. and CONZELMANN, G.
(2009). Wind power forecasting: State-of-the-art 2009. Technical Report ANL/DIS-10-1, Ar-
gonne National Laboratory, US Dept. Energy.

PINSON, P. (2013). Wind energy: Forecasting challenges for its operational management. Statist.
Sci. 28 564–585. MR3161588

PINSON, P. and MADSEN, H. (2012). Adaptive modelling and forecasting of offshore wind power
fluctuations with Markov-switching autoregressive models. J. Forecast. 31 281–313. MR2924797

http://www.mesonet.ttu.edu
http://www.mesonet.ttu.edu
http://www.ams.org/mathscinet-getitem?mr=0763811
http://www.ams.org/mathscinet-getitem?mr=2359227
http://www.ams.org/mathscinet-getitem?mr=2345548
http://www.ams.org/mathscinet-getitem?mr=2324108
http://www.ams.org/mathscinet-getitem?mr=2757195
http://www.ams.org/mathscinet-getitem?mr=3161588
http://www.ams.org/mathscinet-getitem?mr=2924797


IMPROVED WIND SPEED FORECASTING 1799

WALLACE, J. M. and HOBBS, P. V. (2006). Atmospheric Science: An Introductory Survey. Elsevier,
Boston, MA.

XIE, L., CARVALHO, P., FERREIRA, L., LIU, J., KROGH, B., POPLI, N. and ILIĆ, M. (2011).
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