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Abstract

We propose and develop the complex scaled multiconfigurational spin-tensor electron propaga-

tor (CMCSTEP) technique for theoretical determination of resonance parameters with electron-

atom/molecule systems including open-shell and highly correlated atoms and molecules. The mul-

ticonfigurational spin-tensor electron propagator method (MCSTEP) developed and implemented

by Yeager his coworkers in real space gives very accurate and reliable ionization potentials and

attachment energies. The CMCSTEP method uses a complex scaled multiconfigurational self-

consistent field (CMCSCF) state as an initial state along with a dilated Hamiltonian where all of

the electronic coordinates are scaled by a complex factor. CMCSCF was developed and applied

successfully to resonance problems earlier. We apply the CMCSTEP method to get 2P Be− shape

resonance parameters using 14s11p5d, 14s14p2d, and 14s14p5d basis sets with a 2s2p3dCAS. The

obtained value of the resonance parameters are compared to previous results. This is the first time

CMCSTEP has been developed and used for a resonance problem. It will be among the most ac-

curate and reliable techniques. Vertical ionization potentials and attachment energies in real space

are typically within ±0.2 eV or better of excellent experiments and full configuration interaction

calculations with a good basis set. We expect the same sort of agreement in complex space.
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I. INTRODUCTION

Resonances in electron-atom or -molecule scattering processes have attracted much at-

tention. They play major roles in electron transport and energy exchange between electronic

and nuclear motions, in vibrational excitation of molecules or molecular ions by electron im-

pact, and dissociative attachments and recombination [1, 2], and as a mechanism for DNA

damage by low-energy electrons [3, 4].

In order to avoid direct calculation of an outgoing wave in resonance problems, we use a

complex coordinate scaling (CS) technique, which was proposed and developed by Aguilar,

Balslev and Combes [5, 6] and Simon [7] in the early 1970s. In this approach the electronic

coordinates (r) of the Hamiltonian are scaled (or ’dilated’) by a complex parameter η as

r → ηr, where η = αeiθ with α > 0 and θ ∈ (−π, π). Under this transformation, the bound

states are real and are unchanged by complex scaling and the continua of the complex

scaled Hamiltonian H̄ is rotated by an angle 2θ at each threshold such that the continuum

states appear as complex eigenvalues of the complex scaled Hamiltonian H̄. The resonance

parameters E = Er − iΓr

2
hidden in the continua are exposed in complex space for some

suitable η, where Er and Γr are the resonance position and width of that resonance state,

respectively.

Other alternative methods have included the complex absorbing potential (CAP) [8, 9]

instead of CS. CAP methods have not been shown conclusively to be superior to standard

complex scaling.

Previously, we developed the quadratically convergent complex scaled multiconfigura-

tional self-consistent field [10, 11] (CMCSCF) method with step length control to obtain the

resonance parameters. In real space, MCSCF with a small complete active space (CAS) has

been proven to be a very effective method to describe nondynamical and some dynamical

correlation correctly and is computationally cheaper than very large or full configuration

interaction (CI) calculations [12] while still incorporating the fundamental physics of what

is going on. Based on the CMCSCF initial state, we also developed a new method termed as

the M1 method [11, 13], in which the complex M1 matrix is constructed from the first block

of the M matrix defined in MCSTEP [14–18]. This block allows for only simple electron

removal and addition to orbitals with no more complicated processes allowed to mix in.

MCSTEP, however, includes many additional operators which allow for more compli-
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cated electron ionization and attachment processes to be included. MCSTEP is designed to

calculate reliably the ionization potentials (IPs) and attachment energies (AEs) for atoms

and molecules which cannot generally be handled accurately by perturbation methods. In

addition to simple electron addition operators to all orbitals as in the M1 method, MC-

STEP includes operators the allow for electron removal and electron addition to all orbitals

to excited states within the CAS [14–18]. In complex space, the M1 and CMCSTEP meth-

ods use CMCSCF states as reference or initial state along with H̄. Both the CMCSCF

and M1 methods have been previously efficiently used to study the 2P Be− shape resonance

[10, 11, 13].

Moreover, we have developed and implemented the complex scaled multiconfigurational

time-dependent Hartree-Fock method (CMCTDHF) [also called the complex scaled mul-

ticonfigurational linear response method (CMCLR)]. CMCTDHF uses CMCSCF state as

the initial state. In real space multiconfigurational time-dependent Hartree-Fock (MCT-

DHF) has been successfully used to study electronic excitation energies and linear response

properties [19]. CMCTDHF has previously been implemented and successully employed to

study Auger resonances for Li and Li-like cations [20], and Be and Be-like cations [21] and

Feshbach resonances for both Be+(2p) [22] and He(2s2) [23] systems, as well.

In this work we implement the CMCSTEP method for the 2P Be− shape resonance prob-

lem using 14s11p5d, 14s14p2d, and 14s14p5d basis sets with a 2s2p3dCAS and compare

our results with previous results. The reasons why we implement this method for resonance

problem are (i) MCSTEP in real space works exceptionally well and gives the most accurate

and reliable values of vertical IPs and AEs for general atomic and molecular systems, which

are well consistent with experimental measurements [24–28], so that we expect that CMC-

STEP is able to give the most reliable values of resonance parameters; (ii) even though this

approach has been implemented for the first time in complex space, this is a direct extension

of the CMCSCF [10] and M1 [11] methods which we previously developed and implemented,

then we expect that the obtained results for this resonance problem will be different from

those previously obtained and the most accurate [10, 11].

The paper is organized as follows. In section II we discuss the theoretical part of CMC-

STEP method. In section III we present and discuss our results. Then conclusions follow.
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II. THEORY

The complex scaled electronic Hamiltonian is non-Hermitian. It is complex symmetric.

This causes the wave function |ψm〉 to be complex conjugate biorthogonal (CCBON) where

〈ψ∗
i |ψj〉 = δij (∗ means complex conjugate) [29]. It is shown that creation operators are

introduced as aT = a† = (a∗)† rather than a† with the usual anticommutation relations for

creation and annihilation operators still hold by changing ” † ” into ”T” [30, 31].

Therefore, CMCSTEP may be formulated in the same way as MCSTEP via single particle

Green’s function or electron propagator method [14–18] or super operator formalism [32] with

the modified second quantization operators and H̄ . We will not discuss MCSTEP in detail

here, but they can be found in Refs.[14–18].

CMCSTEP IPs and AEs are obtained from the following the complex generalized eigen-

value problem:

MXf = ωfNXf , (1)

where

Mrp =
∑

Γ

(−1)S0−Γ−Sf−γrW (γrγpS0S0; ΓSf)

×(2Γ + 1)1/2〈NS0||{h
∗
r(γ̄r), H̄, hp(γp)}||NS0〉, (2)

and

Nrp =
∑

Γ

(−1)S0−Γ−Sf−γrW (γrγpS0S0; ΓSf)

×(2Γ + 1)1/2〈NS0||{h
∗
r(γ̄r), hp(γp)}||NS0〉, (3)

ωf is and IP or AE from the N -electron initial tensor state |NS0〉 with spin S0 to N ± 1

electron final ion tensor state |N±1Sf 〉 which has spin Sf . W is the usual Racah coefficient,

hp(γp) and h∗p(γ̄r) are tensor operator versions of members of the operator manifold with

ranks γp and γr, respectively, {, } is the anticommutator

{A,B} = AB +BA, (4)

and {, , } is the symmetric double anticommutator

{A,B,C} =
1

2
({A, [B,C] + {[A,B], C}}). (5)
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CMCSTEP uses a CMCSCF initial state with a fairly small CAS and couples tensor ioniza-

tion and attachment operators to a tensor initial state to a final state that has the correct

spin and spatial symmetry even if the initial state is open shell and/or highly correlated.

III. RESULTS AND DISCUSSION

In this study, we investigate the low-lying 2P Be− shape resonance problem using

∆CMCSCF, M1 and CMCSTEP methods. This resonance problem has been investigated

theoretically in the past [33–43]. Recently, we studied this resonance problem in terms of

application of newly developed M1 method [11]. The Be atom has a fairly large amount

of nondynamical correlation because the 1s22p2 configuration has considerable mixing with

the principle 1s22s2 configuration [15], so that both configurations need to be included

nonperturbatively for accurate IP and AE calculations.

It is a common practice to report the resonance energy relative to the total energy of the

scattering target. In this work, in ∆CMCSCF calculations we report on the total energy of

the continuum Be− species relative to that of Be atom as

ǫ∆CMCSCF(η) = EN+1
c − EN

0 , (6)

where, EN+1
c and EN

0 are total energies of the (N + 1) electron Be− resonance state under

investigation and the N electron ground-state of the neutral Be atom, respectively, and

subscript c and 0 refer to continuum and bound states, respectively.

In ∆CMCSCF calculations we need to optimize each state separately, however, in M1

and CMCSTEP calculations we can obtain energies of all states simultaneously. In order to

be consistent with the ∆CMCSCF calculation, we report on resonance parameter ǫCMCSTEP

obtained from CMCSTEP method:

ǫCMCSTEP(η) = ωCMCSTEP

f + EN
c −EN

0 , (7)

where ωCMCSTEP

f ≡ ωf is calculated from equation (1). In the case of M1 calculations it is

obtained from the M1 complex eigenvalue problem [11] and we reported on results based on

complex eigenvalues ωM1

f rather than ωCMCSTEP

f in equation (7).

For this resonance problem, Venkatnathan et al [33] found the 14s11p basis set to be the

best one. We subsequently have shown that this 14s11p basis set is somewhat inadequate
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for resonances and that at least 14p functions are much more reliable. Hence, we chose this

basis set initially and added p and d functions to it using a geometric progression with a

view to account for the diffuse nature of the resonances. Although for the very accurate IPs

and excitation energies of Be, a larger 2s2p3s3p3dCAS which enables more correlation is

necessary [16], we employ a 2s2p3dCAS with basis sets 14s11p5d, 14s14p2d and 14s14p5d in

this calculation, since we have previously found that a larger CAS is unnecessary for accurate

shape resonance calculations [13]. However, most of the IP basis sets are designed for IPs

where tighter functions are necessary rather than for resonance calculations where what is

needed are basis functions to describe the near continuum. First, we performed ∆CMCSCF

calculations with all basis sets, and then followed it up with M1 and CMCSTEP methods.

The first two methods have already been implemented for the resonance problem with other

basis sets [10, 11]; however, here the CMCSTEP method is applied for the first time for this

resonance problem. Of these, CMCSTEP should be the most accurate, efficient and reliable

method. So far, there are no experimental results for resonance parameters of Be−.

In Table I we present IP for the X 2S state of Be atom and AE for 2P Be− resonance state

obtained from ∆CMCSCF, M1 and MCSTEP (θ = 0 rad and α = 1) calculations, in which

Im(E) = 0. A comparison of values of IPs and AEs to previously obtained theoretical values

and experimental measurements presented in this table show that MCSTEP calculations

are much better than MCSCF and M1 approaches, and will give more reliable values for

resonance problems.

In Table II we show a summary of the obtained values of 2P Be− shape resonance for three

different basis sets. In rows 2-4 of Table II we show results form ∆CMCSCF calculations.

These give larger widths than M1 or CMCSTEP. Resonance parameters obtained from M1

and CMCSTEP methods shown in rows 5-10 are fairly consistent with each other, although

CMCSTEP will be more accurate. The optimal values of α and θ enables one to estimate

the resonance parameters, and can be found by the system of equations below:

∂E

∂α
=
η

α

∂E

∂η
= 0, (8)

∂E

∂θ
= −iη

∂E

∂η
= 0, (9)

which form the trajectory method by determining E(αopt, θopt) corresponding to the stability

(loops, kinks, inflections, or any kind of ”slow down”) in the plots of Im(E) as a function of
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TABLE I. Ionization potential and attachment energies for X2S of Be atom and 2P Be− ion,

respectively.

Method and basis set IP (eV ) AE (eV )

∆MCSCF: 14s11p5d − 2s2p3dCAS 8.478 1.027

∆MCSCF: 14s14p2d − 2s2p3dCAS 8.042 1.124

∆MCSCF: 14s14p5d − 2s2p3dCAS 8.042 1.121

M1: 14s11p5d − 2s2p3dCAS 7.571 0.836

M1: 14s14p2d − 2s2p3dCAS 7.576 0.872

M1: 14s14p5d − 2s2p3dCAS 7.576 0.871

MCSTEP: 14s11p5d − 2s2p3dCAS 9.508 0.843

MCSTEP: 14s14p2d − 2s2p3dCAS 9.506 0.918

MCSTEP: 14s14p5d − 2s2p3dCAS 9.506 0.906

Ref.[15] −2s2pCAS 9.50

Ref.[15]−2s2p3s3p3dCAS 9.31

Expt.[44] 9.32

Re(E) evaluated as a series of α (α trajectory) and a series of θ values (θ trajectory) [34].

Vertical IPs and AEs in real space are typically within ±0.2 eV of excellent experiments

and full configuration interaction calculations with a good basis set [15]. We expect the

same sort of agreement in complex space. Indeed this can be seen by looking at Table II

where our results are in general agreement with considerably less accurate methods.

In Table III we have listed theoretical results obtained by other workers. Our current

results with our best basis set (14s14p5d) are quite far from complex CI [39] and density

functional theory (DFT) combined with a CAP [42] calculations. We note that the CI calcu-

lations did not include any effect of quadruple excitations. It is well known that these need

to be included for accurate CI energies and properties [43]. The complex DFT calculation

contains parameters that are experimentally determined and also the basis set used is small

(contracted Gaussian 5s4p1d functions) and not adequate for resonance calculations. How-

ever, the CMCSTEP obtained values in this work are fairly comparable with those obtained

by ∆SCF [37, 38] and electron propagator methods [33, 37, 38, 43], although these other

7



TABLE II. Summary of theoretical calculations for 2P Be− shape resonance relative to 1s22s2

ground state.

Method and basis set αopt θopt(rad) Er (eV ) Γr (eV )

∆CMCSCF: 14s11p5d − 2s2p3dCAS 1 0.49 0.714 1.541

∆CMCSCF: 14s14p2d − 2s2p3dCAS 1 0.55 0.816 1.731

∆CMCSCF: 14s14p5d − 2s2p3dCAS 1 0.55 0.819 1.736

M1: 14s11p5d− 2s2p3dCAS 1 0.36 0.764 0.796

M1: 14s14p2d− 2s2p3dCAS 1.03 0.36 0.790 0.856

M1: 14s14p5d− 2s2p3dCAS 1.03 0.37 0.789 0.874

CMCSTEP: 14s11p5d− 2s2p3dCAS 1 0.30 0.768 0.740

CMCSTEP: 14s14p2d− 2s2p3dCAS 1.03 0.30 0.795 0.681

CMCSTEP: 14s14p5d− 2s2p3dCAS 1.03 0.36 0.756 0.862

methods will not be as accurate, since they are based on a single configuration and Be atom

is inherently multiconfigurational with the 1s22p2 configuration mixing in strongly (i.e. 10%)

with the 1s22s2 configuration for the initial state. From our previous experience with calcu-

lations for IPs and AEs for atomic systems [15, 24, 25], we know that MCSTEP works very

well, therefore we can say that value of resonance parameters obtained from CMCSTEP in

this work are reliable.

In Figure 1 we show the θ-trajectories for 2P Be− shape resonance obtained from the

CMCSTEP method. Curves shown in panels (a), (b) and (c) are corresponded to calculations

with basis sets 14s11p5d, 14s14p2d and 14s14p5d with 2s2p3dCAS, respectively. Crosses

on each trajectory show a stabilized point. All trajectories show resonance points clearly

along with an increased density of points. In all trajectories θ starts at θ = 0.01 rad at the

top and increases to down with a step of 0.01 rad.

Although we have here presented results for resonance parameter for an atomic system,

2P Be−, the method can be implemented for investigating shape resonance parameters for

molecular systems. We had shown for the 2Πg N
−
2 shape resonance [13] using M1, and it

is quite consistent with previous literature results [45–48] and experimental measurements

[49, 50]. In the molecular case [13], the CS technique for the electron-nuclear Coulomb

interaction potential −Z/|r−R| has been implemented so that −(Zη−1)/|r−Rη−1|, where

Z is a nuclear charge, and r and R are the electronic and nuclear positions relative to an

origin of a fixed molecular coordinate system [34]. We will report CMCSTEP calculations

8



TABLE III. Theoretical calculations for 2P Be− shape resonance.

Method Er (eV ) Γr (eV )

Static exchange phase shift [35] 0.77 1.61

Static exchange phase shift plus polarizability phase shift [35] 0.20 0.28

Static exchange cross-section [36] 1.20 2.60

Static exchange plus polarizability cross-section [36] 0.16 0.14

∆SCF with complex 14s16p Gaussian basis set [37] 0.70 0.51

∆SCF with complex 5s11p (Slater-type) basis set [38] 0.76 1.11

Single, doubles, and triples complex CI [39] 0.32 0.30

S matrix pole (Xα) [40, 41] 0.10 0.15

Complex density functional theory [42] 0.580 0.223

Second-order dilated electron propagator based on real SCF [43] 0.57 0.99

Bi-orthogonal dilated electron propagator (bases set 14s11p ) [33]:

Zeroth order 0.62 1.00

Quasiparticle second order 0.61 1.00

Second order 0.48 0.82

Quasiparticle third order 0.54 0.82

OVGF third order 0.54 0.78

Third order 0.53 0.85

∆CMCSCF (14s11p − 2s2p3s3pCAS) [10] 0.73 1.58

M1 (14s11p3d − 2s2p3s3p3dCAS) [11] 0.72 1.12

This work:

∆CMCSCF (14s14p5d − 2s2p3dCAS) 0.819 1.736

M1 (14s14p5d − 2s2p3dCAS) 0.789 0.874

CMCSTEP (14s14p5d − 2s2p3dCAS) 0.756 0.862

for several molecules using this procedure in the near future.
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(a) (b) (c)

FIG. 1. The θ-trajectories for 2P Be− shape resonance obtained from the CMCSTEPmethod. The

curves shown in panels (a), (b) and (c) correspond to basis sets 14s11p5d, 14s14p2d and 14s14p5d

with 2s2p3dCAS, respectively, and a cross shows a stabilized point. Computational parameters

are α = 1 (a), 1.03 (b,c) and ∆θ = 0.01rad.

IV. CONCLUSIONS

In this work we have developed the CMCSTEP method and presented theoretical calcu-

lations for 2P Be− shape resonance using three different (∆CMCSCF, M1 and CMCSTEP)

methods. In our group we previously developed ∆CMCSCF and M1 methods, however,

we here have developed and implemented for the first time the CMCSTEP method for res-

onance problems, using three different bases sets 14s11p5d, 14s14p2d and 14s14p5d with

2s2p3dCAS. In CMCSTEP calculations we use the CMCSCF state as an initial state. The

obtained values of 2P Be− shape resonance from CMCSTEP method are compared with

previously obtained results in the literature. Based on our previous results from MCSTEP

calculations for IPs and AEs for atomic and molecular systems, the results from CMCSTEP

calculations are probably the most reliable and practical for resonance problems.

In next step of our research work we intend to apply the CMCSTEP method to resonance

problems for open-shell atomic and molecular systems, as well as studies for Feshbach and

Auger resonances.
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