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Abstract
Background: Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases
that affect several mammalian species. At least three factors related to the host prion protein are
known to modulate susceptibility or resistance to a TSE: amino acid sequence, atypical number of
octapeptide repeats, and expression level. These factors have been extensively studied in breeds
of Bos taurus cattle in relation to classical bovine spongiform encephalopathy (BSE). However, little
is currently known about these factors in Bos indicus purebred or B. indicus × B. taurus composite
cattle. The goal of our study was to establish the frequency of markers associated with enhanced
susceptibility or resistance to classical BSE in B. indicus purebred and composite cattle.

Results: No novel or TSE-associated PRNP-encoded amino acid polymorphisms were observed for
B. indicus purebred and composite cattle, and all had the typical number of octapeptide repeats.
However, differences were observed in the frequencies of the 23-bp and 12-bp insertion/deletion
(indel) polymorphisms associated with two bovine PRNP transcription regulatory sites. Compared
to B. taurus, B. indicus purebred and composite cattle had a significantly lower frequency of 23-bp
insertion alleles and homozygous genotypes. Conversely, B. indicus purebred cattle had a
significantly higher frequency of 12-bp insertion alleles and homozygous genotypes in relation to
both B. taurus and composite cattle. The origin of these disparities can be attributed to a
significantly different haplotype structure within each species.

Conclusion: The frequencies of the 23-bp and 12-bp indels were significantly different between B.
indicus and B. taurus cattle. No other known or potential risk factors were detected for the B. indicus
purebred and composite cattle. To date, no consensus exists regarding which bovine PRNP indel
region is more influential with respect to classical BSE. Should one particular indel region and
associated genotypes prove more influential with respect to the incidence of classical BSE,
differences regarding overall susceptibility and resistance for B. indicus and B. taurus cattle may be
elucidated.
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Background
Transmissible spongiform encephalopathies (TSEs) are a
class of neurodegenerative diseases that affect various
mammals, including cattle, sheep, mink, cervids, and
humans. They are caused by abnormally folded prion pro-
teins that induce the conversion of the normal and non-
infectious cellular form of the host prion protein (PrPC)
into the abnormal and infectious form (PrPSc) [1]. Suscep-
tibility or resistance to a TSE can be influenced by several
factors of the host prion protein, such as specific amino
acid polymorphisms, the number of octapeptide repeats
present, and prion protein expression levels. These 3 fac-
tors are all relevant to prion biology in cattle.

Bovine spongiform encephalopathy (BSE) is a TSE of cat-
tle. Based upon Western blot and in vivo analysis, BSE can
be differentiated into two strains, classical and atypical
BSE [2-4]. Although amino acid differences in the prion
protein are a major component in susceptibility and
resistance to TSE disease in humans [5] and sheep [6],
they are not associated with classical BSE cases in cattle.
However, the prion protein gene (PRNP) for the 2006 US
atypical BSE case encoded an amino acid change in one
allele at bovine codon 211 (Glutamic Acid → Lysine;
E211K) [7]. This change is analogous to the human
E200K amino acid replacement, which is associated with
the leading cause of heritable TSE disease in humans [5].
To date, the E211K change has been reported in only two
bovine samples, the atypical BSE-positive cow [7] and its
only known living offspring [8].

The octapeptide repeat region is a series of amino acid
repeats near the N-terminal portion of PrPC, has been
implicated in binding divalent cations, and may affect the
structure and function of the prion protein [9]. Humans,
sheep, and cervids (deer) normally possess 5 octapeptide
repeats, while cattle typically have 5 or 6 repeats [10,11].
The presence of extra repeats encoded within the octapep-
tide region is correlated with an increase in TSE suscepti-
bility, as has been observed in humans that possess more
than 5 octapeptide repeats [12,13]. Additionally, trans-
genic mice expressing bovine PrPC containing 7 or 10
repeats are also more susceptible when challenged with
BSE [14,15]. Of the breeds tested to date, only Brown
Swiss cattle are known to encode 7 octapeptide repeats
[16,17], and they have been reported to be more suscepti-
ble to BSE than other cattle breeds [18,19]. These data sug-
gest that bovine PrPC containing 7 or more octapeptide
repeats may enhance susceptibility to BSE.

In addition to qualitative changes in the mammalian
prion protein itself, the level of mammalian PrPC expres-
sion is also known to influence susceptibility or resistance
to a TSE disease. Over-expression of PrPC in transgenic
mice challenged with a TSE resulted in shorter incubation

periods as compared to wild type mice [20,21]. Con-
versely, transgenic mice possessing one functional PRNP
allele had decreased expression levels of PrPC, which led
to a longer incubation time after a TSE inoculation [22].
Mice lacking functional PRNP alleles (Prnp0/0) were resist-
ant to TSE challenge [23]. In cattle, two non-coding poly-
morphisms have been associated with PrPC expression
levels [24,25]. The first is a 23-bp deletion within the pro-
moter region that removes a binding site for the RP58
repressor protein, and the second is a 12-bp deletion
within intron 1 that removes a SP1 transcription factor
binding site [26]. Cattle possessing these deletions, and
therefore lacking binding sites for their respective regula-
tory elements, have been reported to be more susceptible
to classical BSE [24,26]. These polymorphisms do not
influence resistance to atypical BSE [27,28].

To date, most analyses of cattle populations for these spe-
cific BSE susceptibility factors have focused on breeds
derived from Bos taurus. However, few relevant studies
currently exist for Bos indicus or B. indicus × B. taurus com-
posite cattle. Since B. indicus purebred and composite cat-
tle are dispersed throughout the world, we elected to
determine the frequencies of known genetic factors asso-
ciated with BSE susceptibility and resistance in a diverse
sample intended to represent the global population. In
this report, we provide a detailed comparative analysis of
the 23-bp promoter region, 12-bp intron region, and rel-
evant PRNP polymorphisms for B. indicus, B. taurus, and
B. indicus × B. taurus composite cattle. Differences in the
frequencies of these established risk factors may also elu-
cidate differences in overall resistance and/or susceptibil-
ity to classical BSE between the cattle groups investigated.

Results
PRNP indel allele and genotype frequencies
Allele and genotype frequencies for the 23-bp and 12-bp
indel regions were compared between B. indicus, B. taurus,
and B. indicus × B. taurus composite cattle (Table 1). Sig-
nificant differences were observed in the distribution of
alleles and genotypes between B. indicus and B. taurus cat-
tle with respect to both regions (P < 0.01). However, com-
posite cattle differed from B. taurus cattle only for the 23-
bp indel (P < 0.01) and from B. indicus cattle only for the
12-bp indel (P < 0.01). Interestingly, the B. indicus cattle
had a significantly lower frequency of the 23-bp promoter
insertion allele as compared to B. taurus, but had a signif-
icantly higher frequency of the 12-bp insertion allele
within intron 1. These data are highlighted by the differ-
ences at both loci for the homozygous insertion geno-
types, which are associated with enhanced putative
resistance to classical BSE. For the 23-bp homozygous
insertion, the frequency observed in B. taurus (14%) was
much higher than that observed in either B. indicus (2%)
or composite (3%) cattle, whereas the frequency of the
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12-bp homozygous insertion was much higher in B. indi-
cus (76%) as compared to either B. taurus (20%) or com-
posite (18%) cattle. This disparity is explained by the
indel haplotype assignments and corresponding frequen-
cies.

PRNP indel haplotype frequencies
Three 23-bp and 12-bp haplotype combinations occur in
B. taurus, B. indicus, and composite cattle: 1) 23-bp inser-
tion-12-bp insertion, 2) 23-bp deletion-12-bp insertion,

and 3) 23-bp deletion-12-bp deletion. Haplotype fre-
quencies were different between all three cattle popula-
tions (P < 0.01; Table 1). It should be noted that the 23-
bp deletion-12-bp insertion is the minor haplotype in B.
taurus (8%), but it is the major haplotype B. indicus
(75%).

PRNP haplotype analysis
The bovine PRNP haplotype structure was analyzed for
the concatenated 23-bp indel, 12-bp indel, and coding

Table 1: Allele, genotype, and haplotype frequencies for the 23-bp and 12-bp insertion/deletion polymorphism

Allele

Frequencies P-value

23-bp n + - B. indicus Composite B. taurus

B. indicusa 116 0.12 0.88 -------- 0.1553 <0.0001
Compositeb 76 0.20 0.80 -------- 0.0021
B. taurusc 4552 0.38 0.62 --------

12-bp n + - B. indicus Composite B. taurus

B. indicusa 116 0.87 0.13 -------- <0.0001 <0.0001
Compositeb 76 0.47 0.53 -------- 0.7030
B. taurusc 4564 0.45 0.55 --------

Genotype

Frequencies P-value

23-bp n +/+ +/- -/- B. indicus Composite B. taurus

B. indicusa 58 0.02 0.21 0.78 -------- 0.3061 <0.0001
Compositeb 38 0.03 0.34 0.63 -------- 0.0049
B. taurusc 2276 0.14 0.48 0.39 --------

12-bp n +/+ +/- -/- B. indicus Composite B. taurus

B. indicusa 58 0.76 0.22 0.02 -------- <0.0001 <0.0001
Compositeb 38 0.18 0.58 0.24 -------- 0.4235
B. taurusc 2282 0.20 0.48 0.32 --------

Haplotype

Frequencies P-value

23-12-bp n ++ -+ -- B. indicus Composite B. taurus

B. indicusa 116 0.12 0.75 0.13 -------- <0.0001 <0.0001
Compositeb 76 0.20 0.28 0.53 -------- <0.0001
B. taurusd 3604 0.40 0.08 0.53 --------

Frequencies and statistical comparisons for the 23-bp and 12-bp alleles, genotypes, and haplotypes in B. indicus, B. taurus, and B. indicus × B. taurus 
composite cattle. Allele frequencies were compared using Fisher's exact test, and genotype and haplotype frequencies were compared using the 
Chi-square test. Superscript indicates origin of data; complete details can be found in the Methods section and Additional files 1, 2, 3.
a This study, [17]; b This study, [17]; c This study, [17,24,33-36,41]; d This study, [17,24,33,35,36,41]
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sequence polymorphisms. A total of 41 haplotypes were
established among B. taurus, B. indicus, and composite cat-
tle. For clarity, only the 16 haplotypes with a frequency
above 0.02 are shown in Table 2. These 16 haplotypes rep-
resent greater than 97% of the B. taurus and B. indicus cat-
tle and more than 92% of the composite cattle.
Haplotypes #9 and #10 were the two most frequent hap-
lotypes among B. indicus, comprising 47% of the haplo-
types in this group, but they accounted for less than 2% in
B. taurus. Similarly, haplotypes #3 and #11 represented
78% of B. taurus haplotypes, but only 17% in B. indicus.
Interestingly, haplotype #2 accounted for 17% of the hap-
lotypes among composite cattle, but it was rare in both B.
taurus and B. indicus cattle. These results highlight the 23
and 12-bp indel frequency disparities and species-specific
coding region SNPs between B. taurus and B. indicus cattle.

PRNP coding region
The PRNP coding region sequences were compared
between B. indicus, B. taurus, and composite cattle. There
were a total of 30 single nucleotide polymorphisms
(SNPs), all of which have been reported previously [29],
and none of which led to a lysine replacement at codon
211 (E211K). Of the 30 SNPs detected, 5 were found in
both B. indicus and B. taurus cattle, 8 were specific to B.
indicus, and 17 were specific to B. taurus (Table 3). How-
ever, 11 of the 17 SNPs in B. taurus were only detected in
Brown Swiss cattle. The SNP at nucleotide 461 was the
only polymorphism that led to an amino acid change
(S154N) and was found in B. indicus purebred and com-
posite cattle. To date, the S154N change has not been
found to be associated with BSE and is not analogous to a
TSE-associated polymorphism in another species. Every B.

indicus and composite sample possessed 5 or 6 octapep-
tide repeats. The 5 octapeptide repeat allele occurred 51
times in this data set, and 44 of these alleles (86%) were
part of the 23-bp deletion-12-bp insertion haplotype. This
is significantly different (P < 0.01) than the 6 octapeptide
repeat allele, where the 23-bp deletion-12-bp insertion
haplotype was only present 161 times in 1343 alleles
(12%).

Discussion
This study assessed the prevalence of specific BSE-associ-
ated factors in B. indicus purebred and composite cattle,
which were then compared to frequencies observed in B.
taurus cattle. Through PRNP sequence analysis, we sur-
veyed cattle for the presence of an E211K amino acid
replacement, as well as the presence of 7 or more octapep-
tide repeats. In addition, we determined the frequencies of
the 23-bp and 12-bp indel regions associated with bovine
PRNP transcriptional regulation.

None of the PRNP alleles for the B. indicus samples evalu-
ated in this study exhibited an E211K amino acid replace-
ment or any novel coding region polymorphism. To date,
the E211K change has been reported in only two bovine
samples, the 2006 Alabama atypical BSE case [7] and its
only known living offspring [8]. The affected animal was
a composite (B. taurus × B. indicus), but because no paren-
tal information is currently available, it is unknown
whether the corresponding nucleotide change was inher-
ited or the result of spontaneous mutation. If it was inher-
ited, then the E211K allele may have originated in either
a B. taurus ancestor or a B. indicus ancestor. Unfortunately,
the data presented here cannot facilitate a species level

Table 2: Haplotypes and their respective frequencies for B. indicus, B. taurus, and composite cattle

23-bp 12-bp 69 75 108 126 # rep 234 339 461 555 576 630 675 678 B. indicus Composite B. taurus

1 - - C G T A 6 A C G C C C C T ---- 0.04 0.06
2 - - C G T A 6 G T G C C C C T 0.01 0.17 0.02
3 - - C G T A 6 G C G C C C C T 0.12 0.21 0.40
4 - - C G T A 6 G C G C T C C T ---- 0.04 0.04
5 - + C G T A 5 -- C G C C C C T ---- 0.03 0.03
6 - + C G T A 5 -- C G C C C C C 0.02 0.01 ----
7 - + C G T A 6 A C G T C C C T 0.10 ---- ----
8 - + C G T A 6 A C G T C T C T 0.14 0.05 ----
9 - + C G T A 6 G C G C C C C T 0.30 0.12 0.01
10 - + T G T A 6 G C G C C C C T 0.17 0.03 <0.01
11 + + C G T A 6 A C G C C C C T 0.05 0.13 0.38
12 + + C G T A 6 G T G C C C C T ---- 0.03 0.01
13 + + C G T A 6 G C G C C C C T ---- 0.03 0.02
14 + + C G A G 6 A C A C C C T C 0.03 ---- ----
15 + + C A A G 6 G C A C C C C C 0.03 0.01 ----
16 + + T G T A 6 G C G C C C C T ---- 0.03 <0.01

Haplotype positions are the 23-bp and 12-bp insertions (+) or deletions (-), nucleotide position in the PRNP coding sequence, and the number of 
octapeptide repeats (#rep). Frequencies of each haplotype in B. indicus, B. taurus, and composite cattle are listed.
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assignment, as the PRNP coding sequence of the 2006 Ala-
bama case did not possess any species-specific polymor-
phisms. This particular animal was determined to possess
one haplotype with a 23 and 12-bp insertion, and the
other with a 23 and 12-bp deletion [27]. These 2 haplo-
types occur in 92% of B. taurus, but only in 25% B. indicus
cattle (Table 1), as estimated by our analyses. Unless more
information becomes available, it cannot be determined
where the E211K replacement may have originated.

No B. indicus sample had an octapeptide region contain-
ing more than 6 repeats. Notably, humans are the only
TSE-susceptible mammal besides the Brown Swiss breed
of B. taurus cattle for which additional octapeptide repeats
have been observed. Interestingly, a transgenic mouse
model expressing bovine PrPC with 1 extra repeat was
more susceptible to BSE challenge than a transgenic
mouse with the normal number of repeats, but did not
develop a spontaneous prion disease [14]. However, a
transgenic mouse expressing a bovine PRNP gene encod-
ing 4 additional repeats did in fact develop a spontaneous
prion disease [15]. While cattle with 1 additional octapep-
tide repeat may have an enhanced risk for classical BSE
only if exposed to infected material, the appearance of
PRNP genes encoding extra octapeptide repeats in any cat-
tle breed may be cause for concern.

The incidence of E211K as well as octapeptide regions
with 7 repeats among cattle does not provide a species-
level explanation for potential differences in susceptibility
to BSE among B. taurus and B. indicus cattle. Therefore,
only the 23-bp and 12-bp indel regions seem pertinent in
these populations because both of these bovine PRNP
sequence regions have been shown to influence transcrip-
tion levels of PrPC. The B. indicus purebred and composite
cattle had a very low frequency of the 23-bp insertion as
compared to B. taurus, while only B. indicus purebred cat-
tle had a high frequency of the 12-bp insertion. To date,
no consensus has emerged regarding whether one of these
bovine PRNP regions is more influential than the other

with respect to classical BSE resistance in cattle. Origi-
nally, only the 23-bp region was found to be significantly
associated with (classical) BSE resistance [26]. Using a
reporter gene assay, it was later concluded that the 23-bp
indel region was the most relevant locus, as the only con-
structs that lowered expression levels were those contain-
ing the 23-bp insertion [25]. In contrast, other reports
indicate the 12-bp indel is more relevant both statistically
[24] and in a reporter gene assay [30]. The discrepancy
between the significance of these two regions with respect
to resistance or susceptibility to classical BSE may be influ-
enced by 3 or more factors. First, the 23-bp and 12-bp
regions are physically linked (~2-Kbp apart). Therefore,
recombination is most likely rare given the small distance
separating the two indel polymorphisms. Moreover, high
levels of linkage disequilibrium have been detected for
genetic variation within the bovine PRNP promoter and
intron 1 [31]. Secondarily, the 23-bp insertion and 12-bp
deletion haplotype is absent among cattle surveyed to
date, thereby creating an equal-to-greater overall fre-
quency of 12-bp insertions as compared to the frequency
spectrum of 23-bp insertions. More specifically, twice as
many haplotypes (n = 12) contribute to the overall fre-
quency of the 12-bp intron 1 insertion as those contribut-
ing to the frequency of the 23-bp insertion (n = 6; Table
2). This may inevitably bias indel association studies.
Lastly, species specific allelic variation associated with the
genetic backgrounds of B. taurus and B. indicus may differ-
entially interact with the 23-bp promoter and 12-bp
intron 1 PRNP polymorphisms, perhaps making each pol-
ymorphism more or less relevant in a particular bovine
species. On the basis of indel genotype alone, if it is ulti-
mately concluded that the 23-bp insertion has a greater
influence than the 12-bp insertion with respect to resist-
ance to classical BSE in cattle following exposure to
infected material, B. indicus purebred and composite cattle
would be at greater risk than B. taurus cattle. Conversely,
if the 12-bp insertion were to modulate a greater level of
resistance to BSE, then B. indicus cattle would be at a lower
risk than B. taurus and composite cattle.

Table 3: Shared and species-specific single nucleotide polymorphisms

Species Single nucleotide polymorphism location

B. indicus 75 108 126 461 555 630 675a 678

B. taurus 57b 183c 189c 195c 207c 210 231c 237c 255c

261c 267c 270c 294d 315b 327c 378b 534e

Both species 69 234 339 405 576

Distribution of single nucleotide polymorphisms (SNPs) observed in only B. indicus samples, only B. taurus samples, or both. Polymorphisms at 
positions observed in B. indicus × B. taurus composite samples are in bold and underlined. Polymorphisms observed in only one breed (and therefore 
not necessarily representative of SNPs in the species) are noted with superscript.
aBrahman, bGelbvieh, cBrown Swiss, dBlonde D'Aquitaine, eCharolais
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Conclusion
We determined the frequencies of known genetic factors
associated with differential susceptibility to BSE in B. indi-
cus purebred and B. indicus × B. taurus composite cattle, as
compared to B. taurus purebred cattle. No deviations from
the expected numbers of octapeptide repeats were
detected for B. indicus purebred and composite cattle.
Likewise, the E211K substitution was not detected within
the PRNP coding sequences for cattle investigated herein.
However, a significant difference was detected for a com-
parison of the 23-bp and 12-bp indel genotype frequen-
cies between B. indicus and B. taurus cattle. The origin of
this result could be attributed to significant differences in
haplotype frequencies among B. indicus, B. taurus, and
composite cattle. Currently, it is unknown which bovine
PRNP region (23-bp promoter; 12-bp intron 1), if either,
may be more important with respect to differential sus-
ceptibility to classical BSE in cattle following exposure to
the etiologic agent. Should either the 23-bp promoter
region or the 12-bp intron 1 region of the bovine PRNP
prove more biologically relevant to the manifestation of
disease, substantial heritable differences in overall suscep-
tibility or resistance to classical BSE may exist between B.
indicus and B. taurus cattle.

Methods
Samples
Samples utilized herein were derived from a composite of
resources that included DNA, semen, and previously pub-
lished data. Semen samples from the following 77 unre-
lated B. indicus, B. taurus, and composite cattle were
provided by ABS Global Inc.: B. indicus: Brahman (26),
Nelore (6), Gir (12), Guzerat (1), Tabapua (1); Compos-
ite: Santa Gertrudis (7), Brangus (10); B. taurus: Short-
horn (14). DNA samples were available from 15
additional unrelated sires: B. indicus: Brahman (3),
Nelore (8); Composite: Brangus (4). The remaining sam-
ples were obtained from the literature, and the breed,
number of samples, and citations are as follows: B. indi-
cus: Brahman (1); Composite: Beefmaster (4), Braford
(4), Brahmousin (2), Brangus (2), Santa Gertrudis (2),
Simbrah (3);B. taurus: Angus (4), Belgian Blue (4),
Blonde D'Aquitaine (5), Braunvieh (5), Charolais (5),
Corriente (1), Gelbvieh (4), Hereford (3), Maine Anjou
(4), Murray Gray (2), Normande (1), Red Angus (4), Red
Poll (1), Salers (3), Scottish Highland (1), Senepol (2),
Shorthorn (5), Simmental (8), Tarentaise (1), Texas Long-
horn (4), White Park (1) [17,29]; U.S. Holstein (690)
[32]; U.K. Holstein (276) [24]; German Holstein (80),
German Fleckvieh (60), German Brown (41), Swiss
Brown (103), Swiss Scharzfleck (26), Swiss Simmental ×
Red Holstein (121) [33]; Japanese Holstein (278), Japa-
nese Black (186) [34]; Polish Holstein-Friesian (281)
[35]; Korean Holstein (52) [36].

Genotyping and sequencing
DNA was extracted, amplified, and analyzed as previously
described [27]. Briefly, DNA was isolated from semen
using the High Pure PCR Template Preparation Kit (Roche
Applied Science, Indianapolis, IN). Primer pairs were used
to amplify, via PCR, a 130 or 153-bp region surrounding
the 23-bp promoter indel, a 190 or 202-bp region captur-
ing the12-bp intron 1 indel, and a 986-bp region encom-
passing the PRNP coding region in cattle. Genotypes were
distinguished based on PCR product size using a 4% NuS-
ieve gel (Cambrex, Rockland, ME). The PRNP coding
region was sequenced, and the results were submitted to
GenBank (EU564437–EU564528). Frequencies of the 23-
bp and 12-bp alleles, genotypes, and haplotypes for each
breed are listed in Additional files 1, 2 and 3.

Haplotype analysis
Unphased genotypes were tested for deviation from
Hardy-Weinberg Equilibrium (HWE) using the exact test
[37] in conjunction with the online software Genepop
http://genepop.curtin.edu.au/genepop_op1.html with a
cutoff of 0.01. A few alleles were below the cutoff in one
of the three cattle groups (B. indicus, B. taurus, or compos-
ite). However, haplotype reconstruction both with and
without these alleles proved to be equivalent, so they were
kept in the data set for comparative purposes. It should be
noted, however, that the samples used in this study violate
HWE, as they are not a result of random mating. Neverthe-
less, violation of the random mating assumption is not
known to prevent accurate bovine PRNP haplotype recon-
structions [31]. Haplotype phases were inferred using a
Bayesian statistical approach implemented within the
program PHASE 2.1 [38,39]. Haplotype phases that were
previously established by cloning and sequencing were
designated as such in the raw data, and the octapeptide
region was considered a multi-allelic locus since 4–7
repeats have been observed in cattle [29]. Only allele fre-
quencies above 0.10 were used in order to maximize the
overall accuracy of the haplotype reconstruction. Analysis
was performed using 100 iterations of the data, with 10
additional iterations performed on the final run of the
algorithm.

Statistical analysis
Statistical analyses were performed using GraphPad Prism
4 (Graphpad Software Inc, San Diego, CA). Fisher's exact
test [40] was used to test for differences between allele fre-
quencies, and the Chi-square test was used to test for dif-
ferences between genotype frequencies, as well as between
haplotype frequencies (Table 1). Differences between
octapeptide repeat allele frequencies and haplotype fre-
quencies were calculated using Fisher's exact test. For all
comparisons, P ≤ 0.05 was considered statistically signifi-
cant. Using the Bonferroni correction for multiple signifi-
cance tests for the allele, genotype, and haplotype
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analyses (k = 15), only the 23-bp genotype test between B.
taurus and composite cattle was no longer considered sig-
nificantly different (data not shown).
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