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We study the fragility of spin glasses to small temperature perturbations numerically using population an-
nealing Monte Carlo. We apply thermal boundary conditions to a three-dimensional Edwards-Anderson Ising
spin glass. In thermal boundary conditions all eight combinations of periodic versus antiperiodic boundary con-
ditions in the three spatial directions are present, each appearing in the ensemble with its respective statistical
weight determined by its free energy. We show that temperature chaos is revealed in the statistics of crossings
in the free energy for different boundary conditions. By studying the energy difference between boundary con-
ditions at free-energy crossings, we determine the domain-wall fractal dimension. Similarly, by studying the
number of crossings, we determine the chaos exponent. Our results also show that computational hardness in
spin glasses and the presence of chaos are closely related.

Chaos refers to sensitivity to small perturbations. In ad-
dition to dynamical systems where the phenomenon was
first identified, there are many statistical mechanical systems
where chaotic effects have been predicted and observed. For
example, hysteresis, memory, and rejuvenation effects found
in random elastic manifolds, polymers [1–4], as well as spin
glasses are considered to be a direct manifestation of the pres-
ence of chaos [5–7]. It is surprising and fascinating that both
the nonequilibrium and equilibrium states of spin glasses are
so fragile to small perturbations. Chaos is therefore central
to the understanding of both equilibrium and nonequilibrium
properties of spin glasses, as well as related systems. The con-
nection between chaos in spin glasses and dynamical systems
has been recently explored [8]. Furthermore, there is mount-
ing evidence that chaos in spin glasses is directly related to
the computational hardness and long thermalization times [9]
of these paradigmatic benchmark problems. As such, quan-
tifying and understanding chaotic effects in spin-glass-like
Hamiltonians could be of great importance for the develop-
ment of any novel algorithm or computing architecture [10–
12].

In this work we study the effects of thermal perturbations.
Temperature chaos refers to the property that a small change
in temperature results in a complete reorganization of the
equilibrium configuration of the system. Temperature chaos
has long been predicted for spin glasses [13–16]. Although
some early studies raised doubts about the existence of tem-
perature chaos [17], increasing numerical evidence for tem-
perature chaos has emerged in recent years for various mod-
els such as the random-energy random-entropy model [18]
and also more realistic three- and four-dimensional Ising spin
glasses [9, 19, 20]. It has been suggested that temperature
chaos would only be observable in spin glasses at very large
system sizes and large changes in the temperature [21, 22].
However, some studies [20] demonstrated the existence of
temperature chaos via scaling arguments.

One direct manifestation of temperature chaos is that the
free-energy difference between two boundary conditions that
differ by a domain wall may change sign as a function of tem-

perature. Previous studies examined the free-energy differ-
ence between periodic and antiperiodic boundary conditions
in a single direction to identify temperature chaos [19, 23].
This motivates us to study temperature chaos using thermal
boundary conditions [24], in which all 2d combinations of pe-
riodic and anti-periodic boundary conditions in the d spatial
directions appear in a single simulation with their appropri-
ate statistical weights. Thermal boundary conditions provide
a novel and elegant way to study temperature chaos.

Here we quantitatively investigate temperature chaos using
population annealing Monte Carlo [24–28]. This simulation
approach is ideal to study chaos effects in spin glasses because
multiple boundary conditions can be studied at the same time.
We show that temperature chaos is revealed in the statistics
of crossings in the free energy for pairs of boundary condi-
tions [23] and thus establish both qualitatively and quantita-
tively the presence of chaos in spin glasses. Our approach can
be applied to a multitude of problems and, in particular, to
the search for hard benchmark instances for novel computing
paradigms [11, 12].

What causes temperature chaos? Temperature chaos re-
sults from the existence of dissimilar classes of configura-
tions with similar free energies but differing energies and
entropies [15, 16]. Consider two classes of spin configura-
tions, σ1 and σ2, corresponding to distinct basins in the free-
energy landscape. Within each class, all spin configurations
are similar but the two classes are dissimilar and differ by a
large relative domain wall. Let ∆F (T ) be the free-energy
difference at temperature T between these two classes, with
∆F (T ) = ∆E(T ) − T∆S(T ) where ∆E and ∆S are the
energy and entropy, respectively, of the relative domain wall.
Suppose now that ∆E and ∆S are both much larger than ∆F
and weakly dependent on temperature; then a small change
in temperature may lead to sign change in ∆F . Suppose
that ∆F , ∆E, and ∆S all behave as power laws in the size
scale ` of the relative domain wall separating spin configu-
rations σ1 and σ2 with leading behavior ∆F ∼ `θ but with
∆E ∼ ∆S ∼ `ds/2 and ds/2 > θ. Here θ is the stiffness
exponent and ds is the fractal dimension of the domain wall.
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As ` increases, the temperature perturbation δT required to
change the sign of ∆F decreases, i.e., δT ∼ `−ζ with the
chaos exponent ζ given by ζ = ds/2− θ [16].

We investigate temperature chaos in the Edwards-Anderson
(EA) Ising spin-glass model [29]. The EA Hamiltonian is

H = −
∑
〈ij〉

Jijsisj , (1)

where si = ±1 are Ising spins. The sum 〈ij〉 is over the
nearest-neighbor sites in a cubic lattice with N = L3 sites.
Jij is the interaction between spins si and sj , and is chosen
from a Gaussian distribution with mean zero and variance 1.
We refer to each disorder realization as a “sample.”

We use thermal boundary conditions (TBC) to study tem-
perature chaos in the EA model. In the TBC ensemble each
boundary condition i occurs in the ensemble with a weight de-
pending on its free energy Fi. The probability pi of boundary
condition i in the ensemble is given by pi = exp[−β(Fi−F )],
where F is the total free energy of the system in TBC and β
the inverse temperature. Thermal boundary conditions were
introduced to minimize the finite-size effects due to domain
walls and have proved to be useful in studying the low-
temperature phase of the EA model [24]. They have been
used with exact algorithms for finding ground states of two-
dimensional spin glasses [30, 31] (referred to there as “ex-
tended” boundary conditions). A more restricted version of
TBC using periodic and antiperiodic boundary conditions in
only a single direction was used in Refs. [19, 32–34].

In thermal boundary conditions, a domain wall on the scale
of the linear system size L separates each boundary condition.
Thus temperature chaos manifests itself as a strong tempera-
ture dependence in the relative free energies of the different
boundary conditions (BCs). Because the stiffness exponent
is positive, in the low-temperature phase one expects that for
large systems a single BC will dominate the ensemble for al-
most all temperatures. However, as the temperature changes,
the dominant boundary condition will frequently change. A
crossing event occurs when the free-energy difference be-
tween two BCs changes sign. The proliferation of crossing
events is a direct indication of temperature chaos. Boundary-
condition crossing events between periodic and antiperiodic
BCs in one direction were studied in the two-dimensional EA
model in Ref. [23] and identified as a signature of tempera-
ture chaos. Figure 1 shows BC probabilities pi for all eight
boundary conditions as a function of temperature for a single
L = 10 sample. As expected, at high temperatures, each BC
occurs with equal probability. However, at low temperatures,
four different BCs dominate in different temperature ranges
and, indeed, the dominant boundary condition at the lowest
temperatures has a tiny probability in a range just below the
critical temperature.

We carried out simulations of the three-dimensional EA
model in TBC using population annealing Monte Carlo [24–
28]. Population annealing is similar to simulated annealing:
In both algorithms, the system is cooled from a high temper-
ature to a low temperature following an annealing schedule.
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FIG. 1: (Color online) A single size L = 10 sample displaying sev-
eral boundary-condition crossing. The plot shows the probabilities
of the eight boundary conditions {pi} as a function of inverse tem-
perature β.

However, population annealing involves cooling a population
of replicas and includes a resampling of the population as it
is cooled. At each temperature step in the annealing sched-
ule, each replica is acted on independently by the Metropolis
algorithm. In the resampling step, which occurs before the
temperature is changed, replica i is differentially reproduced
according to its energy Ei. The expected number of copies
of replica i is exp[−(β′ − β)Ei]/Q(β, β′) for a temperature
step from β to β′. The normalization Q(β, β′) is chosen such
that the expected population size is unchanged by the resam-
pling step, Q(β, β′) = (1/R0)

∑
i exp[−(β′ − β)Ei], where

R0 is the expected population size. The actual number of
copies made of replica i is a random integer whose mean is
exp[−(β′ − β)Ei]/Q(β, β′). Note that expected number of
copies of each replica is exactly the reweighting factor be-
tween Gibbs distributions at β and β′. Thus, if the population
is representative of the Gibbs distribution at inverse temper-
ature β and R0 is large, then after resampling, the popula-
tion is representative the Gibbs distribution at β′. The anneal-
ing schedule consists of NT temperature steps equally spaced
in β with NS = 10 Metropolis sweeps at each temperature.
Thermal boundary conditions are easily simulated in popula-
tion annealing by initializing the population at β = 0 with
1/8 of the population in each of the eight BCs [28]. Re-
sampling takes care of making sure that at every temperature,
each BC appears with the correct statistical weight. We study
2000 samples of sizes L = 4 (R0 = 5 104, NT = 101), 6
(R0 = 2 105, NT = 101), 8 (R0 = 5 105, NT = 201), 10
(R0 = 106, NT = 301), and 12 (R0 = 106, NT = 301),
down to temperature T = 0.33. The critical temperature is
Tc ≈ 0.951 [35] so the simulations include temperatures that
are deep within the low-temperature phase. For some hard
samples [24] we use larger population sizes. In the case of
L = 12 approximately 300 samples needed to be run with up
to a factor of 10 larger population sizes.



3

Using population annealing we carry out a quantitative
study of boundary condition crossings. The temperature dif-
ference between crossing scales as L−ζ so that the num-
ber of crossing NC in a fixed temperature interval scales as
NC ∼ Lζ . Also, at crossings, we have that ∆F = 0 so
that ds/2 can be obtained from the scaling of the average of
∆E at crossings as function of L. Finally, in a previous study
we measured the stiffness exponent in TBC. We defined the
sample stiffness λ as λ = log[f/(1− f)] where f is the prob-
ability of being in the dominant BC, i.e., f = maxi[{pi}]. We
measured θ as the scaling of the median of λ with system size
L. Thus, within TBC we can independently measure all three
exponents θ, ds/2, and ζ and verify the relation ζ = ds/2−θ.

Crossings can be divided into two classes: Dominant cross-
ings are those such that the two equal BC probabilities at the
crossing are larger than all other BC probabilities. All other
crossings are subdominant. For large systems, the BC prob-
ability at a subdominant crossing is expected to be typically
suppressed by a factor exp(L−θ) relative to the dominant BC
and thus be increasingly difficult to observe in TBC simula-
tions. To avoid finite-size corrections in counting crossings,
here we focus on dominant crossings. On the other hand,
for measuring ∆E = T∆S (∆S the change in entropy) at
crossings we do not expect a distinction between dominant
and subdominant crossings and, to improve statistics, we use
all crossing with pi > 0.05.

Figure 2 is a log-log plot (base 10) of NC vs L where
NC counts dominant crossing in the range β ∈ (1.5, 3.0).
A simple power-law fit NC ∼ Lζ yields ζ = 0.96(5). All
quoted error bars are one standard deviation statistical er-
rors. To test the effect of temperature on this exponent, we
also calculated ζ from two smaller temperature ranges. For
β ∈ (1.5, 2.0) we find ζ = 1.07(8), and from β ∈ (2.0, 3.0)
we find ζ = 0.85(9). For higher temperatures, critical fluc-
tuations may contaminate the measurement of the chaos ex-
ponent while for lower temperatures the number of crossings
is suppressed by the smallness of the entropy. We note that
there is a significant trend to a smaller value of ζ at lower
temperatures. If one assumes that a single exponent holds
throughout the low-temperature phase, this trend suggests sig-
nificant temperature-dependent finite-size corrections. The in-
set to Fig. 2 shows a histogram of the number of crossings in
the range β ∈ (1.5, 3.0) with pi > 0.05 for size L = 12 as
a function of inverse temperature and reveals that the num-
ber of crossings decreases with temperature, consistent with
the fact that the entropy decreases with temperature so that in-
creasingly large temperature changes are required to change
the free-energy difference between BCs. In the large-volume
limit, the number of dominant crossings per sample is ex-
pected to become infinite but for size L = 12 temperature
chaos events are infrequent but not rare–there are on aver-
age 0.86 crossings with pi > 0.05 per sample in the range
β ∈ (1.5, 3.0) and 0.33 dominant crossings per sample in
the same temperature range. An advantage of using bound-
ary condition crossings in TBC is that temperature chaos is
not a rare event for accessible system sizes in contrast to over-

lap correlations in a single boundary condition where chaotic
effects are weak in most samples [9].

2.2

2.4

2.6

2.8

3

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

lo
g
1
0
(N

C
)

log10(L)

0

200

400

600

1.6 2 2.4 2.8

N
(β
)

β

L = 12

FIG. 2: (Color online) Number of dominant crossing in the range
β ∈ (1.5, 3.0) vs size L, for L = 4, 6, 8, 10, and 12. The straight
line is the best power law fit (see text). The inset is a histogram of the
number of all crossings with pi > 0.05 with respect to β for system
size L = 12.

Figure 3 is a log-log plot (base 10) of the median and mean
of the absolute energy difference |∆E| vs L at all crossings
in the range β ∈ (1.5, 3.0) such that pi > 0.05. A sim-
ple power-law fit for the mean yields |∆E| ∼ Lds/2 with
ds/2 = 1.18(2) with the same result for the median. We
again test the effect of the temperature range on ds/2 by di-
viding the β range into two intervals, β ∈ (1.5, 2.0) and
β ∈ (2.0, 3.0), from which we obtain the the results for the
mean ds/2 = 1.14(2) and ds/2 = 1.26(3), respectively.
There is a significant trend toward larger values at lower tem-
peratures, suggesting temperature-dependent finite-size cor-
rections.

Our results for the three-dimensional EA model, ds/2 =
1.17(2) and ζ = 0.96(5), are comparable but slightly smaller
than previous work: For example, ds/2 = 1.29(1) was found
in Ref. [36] based on perturbations of the ground state, and
ds/2 = 1.31(1) was found in Ref. [37] based on the variance
of the link overlap. Recall that our result for ds/2 in the lower
temperature range is 1.26(3), which is within error bars of
these zero-temperature results and suggests large temperature-
dependent finite-size corrections. Our result, ζ = 0.96(5), is
somewhat smaller than ζ = 1.04 found in Ref. [20] from the
spin overlap between different temperatures. Combined with
our estimate of θ = 0.27(2) [24] we find that the predicted re-
lation ζ = ds/2−θ is reasonably well satisfied by our results.

Temperature chaos partially explains why spin-glass simu-
lations are computationally costly [9]. All known efficient al-
gorithms for equilibrating three-dimensional spin glasses rely
on coupled simulations at many temperatures. Algorithms in
this class include parallel tempering Monte Carlo [38], the
Wang-Landau algorithm [39], and the algorithm used in this
work, population annealing [25, 26]. In these algorithms,
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FIG. 3: (Color online) Log-log plot of the mean (red circles) and
median (blue squares) energy difference between dominant boundary
conditions at crossing in the range β ∈ (1.5, 3.0) for L = 4, 6, 8,
10, and 12. The straight line is the best power law fit (see text). Error
bars are smaller than the symbols.

fast mixing at high temperatures provides new configurations
to the low-temperature simulations. Temperature chaos de-
creases the effectiveness of these algorithms because the con-
figurations supplied from higher temperatures are often rather
different from the important configurations at lower temper-
atures. In TBC, temperature chaos means that BCs that are
important at high temperature are unimportant at low temper-
ature. This phenomenon is evident in Fig. 1. One might worry
that boundary conditions that should be important at low tem-
perature are completely lost at higher temperatures so that the
simulations do not reach the correct TBC equilibrium. To ver-
ify that this is not the case, we performed an additional check
of the equilibration of the TBC ensemble by re-doing several
hundred of the hardestL = 12 samples using an order of mag-
nitude larger population sizes in the simulation and we found
no difference in the number of crossings for any sample.

A direct measure of hardness for population annealing for
a given sample is the characteristic family size ρ. In popula-
tion annealing, most of the original population is eliminated
by successive resampling steps and the final population is de-
scended from a small subset of the initial population. Every
member of the final population can be uniquely assigned to a
“family” descended from some member of the initial popula-
tion. Let ni be the fraction of the low-temperature population
descended from replica i in the initial population. ρ is then
defined as

ρ = lim
R0→∞

R0 exp
[∑

i

ni log ni

]
, (2)

where R0 is the population size in the simulation (ni = 0
there is no contribution to the sum). In practice, ρ is mea-
sured using the large R0 of the simulation. Since there may
be correlations between members of the same family, the pop-
ulation size R0 in the simulation must be much larger than

ρ to assure a large number of independent measurements and
small statistical errors. Thus samples with the largest ρ require
the most computational resources to simulate. We have shown
[24] that ρ is also strongly correlated with the integrated auto-
correlation time for parallel tempering Monte Carlo, measured
in Ref. [40] so that the same conclusions are likely to hold for
parallel tempering. Figure 4 shows the disorder average of
log10 ρ vs L measured at β = 3 for two different classes of
disorder samples. TheNC = 0 class has no temperature chaos
events (crossings with pi > 0.05) in the range β ∈ (1.5, 3.0)
while the NC > 0 class has one or more temperature chaos
events in the same range. The error bars are smaller than the
data points and the plots show that ρ scales exponentially in
L, ρ ∝ exp(L/`), for both classes but that the characteristic
size scale ` = 1.27(14) is significantly smaller for the chaotic
samples than for nonchaotic samples where ` = 1.62(10).
It is an interesting question whether temperature chaos slows
down all algorithms for spin glasses, not just those that de-
pend on coupling multiple temperatures. Recent studies have
shown that [11, 12] computationally hard instances for clas-
sical algorithms are also computationally hard for quantum
annealing machines, like the D-Wave Two quantum annealer.
As such, by measuring ρ for a given sample, we have a simple
way to uniquely classify the complexity of a given instance.
This means that our approach is of great importance in the de-
velopment of hard problems to discern whether quantum an-
nealing can outperform simulated annealing simulations (see,
for example, Refs. [41–45]).
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FIG. 4: (Color online) The average of the log (base 10) of the hard-
ness ρ, measured at β = 3, vs size L for two classes of samples,
those without crossing in the range β ∈ (1.5, 3.0), NC = 0 (red
circles) and those with at least one crossing in that range, NC > 0
(blue squares). Error bars are smaller than the symbols. The insets
are histograms of values of ρ for the two classes of samples.

We have seen that thermal boundary conditions allow us to
identify temperature chaos with boundary condition crossings
and provide a tool for studying chaos quantitatively even for
the small sizes accessible to simulations. It would be interest-
ing to apply these ideas to other types of chaos in spin glasses
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such as bond chaos. We have also established that temperature
chaos is a significant determinant of computational hardness
for multicanonical algorithms but it remains an open question
as to whether temperature chaos is correlated with hardness
for all algorithms.
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