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·Abstract 

We present a measurement of anti-proton, kaon, and energetic pion production at 

· 0° for, the readions 28 Si+28Si at 2.0 GeV/n~cleon (Eavailabte/A. 820 MeV)" and 1.65 

· GeV/nucleon (EavailablefA....:.:.700 MeV), and for. 20 Ne+NaF at -2.0 GeV/nucleon. For a 

given reacti~·n, the parti~le yields exhibit a scaling behavior indep.ende"ut of particle species~ 
)' 

PACS numbers 25. 70Np 



The study of subthreshold particle production in relativistic nucleus-nucleus collisions, 

especially at values of E/ A much lower than the threshold for production of the particle 

in p-p collisions, provides an interesting probe of collective phenomena at large nuclear 

densities and temperatures. Since conventional sources of particle production hardly con-

tribute at subthreshold energies, subtle phenomena at large nuclear densities may become 

evident by an enhancement of these particle yields over the expected rates. Subthreshold 

pion production has been observed in light ion collisions at bombarding energies as low 

as 25 MeV /nucleon1•2 , and in collisions of heavy nuclei at bombarding energies down to 

138 MeV /nucleon.3•4 Subthreshold J(- production has been detected for collisions of light 

ions at bombarding energies ranging from 2.0 GeV /nucleon down to 1.0 GeV /nucleon.5 At 

boiubarding energies of 1-2 GeV /nucleon, nuclear densities are ex~ected to approach 3-4 

times normal nuclear matter densities,6 which may be sufficient for. the creation of exotic 

nuclear states (such as Lee-Wick matter, 7 pion condensation, 8 etc.). predicted to occur at 

large nuclear densities. 

Carroll et al. 9 reported the first observation of anti-proton production with nuclear 

beams, in the reaction 28 Si + 28 Si at 2.1 GeV /nucleon. The p yield observed in this 

measurement is more than 3 orders of magnitude larger than expected on the basis of 

calculations10 that take into account the internal nuclear momentum of the projectile and 

target nucleons. This same set of calculations is able to reproduce experimental data on 

subthreshold anti-proton production in p+Cu collisions11 , where for bombarding ener­

gies ranging from 6 GeV down to 2.9 GeV, the p yields drop by 6 orders of magnitude . . 
The basic ingredient in this calculation is a parameterization for the internal nuclear mo­

mentum based on data from electron scattering12 , and backward proton production.13 

Subthreshold anti-proton production has also been observed in Dubna14, although at a 
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significantly higher bombarding energy, for the reaction 12 C + 63 Cu at 3.65 GeV /nucleon 

(Eavailable/ A=1350 MeV). 

We r~port on a recent experiment in which we theasured p, ](-, J(+, ~nd '7i--' produc­

tion at 0° in the reaction 28 Si + 28Si at 2.0 GeV/nucieon (Eavailabte/A · 820 MeV), and 

p, K-, and 7r- production for 28 Si + 28 Si at.l.65 GeV /nucleon (Eavailabte/A=700 MeV), 

~nd for 2°Ne + NaF at 2.0 GeV /nucleon. The measurements were made at the Lawreri.ce 

Berkeley Laboratory BEVALAC accelerator on a bea~·lin:e designed. specificaiiy for this 

measurement. Secondary particles produced at .th~ production target were guided along a 

spectrometer consisting of two magnetic bend.s and focusing elements. Detector stations at 

beam focii included scintillatio~ cou~ters for TOF and beam definition, aerogel Cerenkov 

(f3thresh ~ 6.98c) and focusing liquid. Cerenkov (f3thresh "' 0.9c) counters, and at the end 

station a lead glass array to measure total deposited energy. The spectrometer, discussed 

in reference 9, will be described elsewhere. is The. beam intensity was ~t 5 X 109 ions/spill, 

with a pr~duction target of thickness corresponding to 50 % interaction length for ion-ion 

collisions. 

The data analysis included cuts on the scintillation ccmnter puls~ heights to define the 

beam and reduce effects due to pile-up, as well as cuts on the Cerenkov counters to highlight 
' . . ~ . 

the kaon and anti-proton signals. The data is normalized to previously measured pion cross 

sections, 16 and corrected for absorption of the secondaries (including p annihilation) 17 in 

the pr9dution target and detectors, and for the decay of pions and lmons. The ion energies 

quoted are the mean energies after taking into account the dE/ dX of the ions in the 

production target. 

Figure 1 illustrates the quality of the data for secondaries produced at 1.9 GcV /c and 

0° in the reaction 28 Si +28 Si at 2.0 GeV /nucleon. The left hand side of figure 1 shows 
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the Time of Flight (TOF) measurements over the 7 meters flight path between detector 

station 1 and 2 (relative to pions). At top left, the TOF spectrum for negative particles 

not vetoed by the ?-erogel Cerenkoy ~ounters is shown. A clear distinction between the 7f­

and K- peaks is seen, and even the anti-proton peak appears above the background. ( 

Note that the aerogel Cerenkov c<;:>un~ers together were bnly 99.9% efficient to pions.) The 

middle left plot shows theTOF for events which also did not trigger the liquid Cerenkov 

counters .. A distinct signal containing 50 anti-protons is seen. Out of 2 x 108 events, only 

2 pions survivedtheCerenkov vetoes, with no other events ( aside from the p events) seen 

over the 50 nanosecond TOF wir1dow. This data is taken from two separate runs, with a 50 

% and a 25 % ion-ion interaction: length target respectively. The ratios of 7f-, K-, and p 

were consistent for these targets. The bottom left figure shows the TOF distribution when 
! . ' . 

,the line was tuned for positive secondaries at the same momentum'. Peaks corresponding 

~o 1r+, K+, and protons appear at the same postion in TOF as their negatively charged 

counterparts. The plots on the rig~t sid<:! of figure 1 show the total response of the lead 

glass array, in units of equivalent electromagnetic energy, for pion, anti-proton, and proton 

events. These distributions of pulse heights differ significantly, with' the anti-proton events 

depositing more equival~nt ele~tromagnetic energy than the prot<?n events and the pion 

events at· the same momentum. This rules out the possibility that the p events are H-

wns. 

Figure: 2 shows the invariant cross sections for p, ](-, ](+, and 7f- production as 

a function of the partiCle kinetic energy in the nucleus-nucleus center of mass ( KEc.m. •,__.,. 

), for the reaction 28 Si + 28 Si at 2.0 GeV /nucleon. Also added are several data points 

from previous 7f- and K- measurements.l8 The 7f- and K- distributions appear to be 

exponential, i.e. Ed3
r7 /dP

3 ""exp(~K Ec.m./ E 0 ), with the slope parameter Eo= 108 ± 7 
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MeV for the 1r-, and a similar value of -Eo · 103 ±· 7 MeV for the K-:-. The 1r- slope 

parameter, measured here at 0°, is similar to the value of 102 ± 5Me V measured for pions 

a:t 90° in the c.m. for Ne+NaF at 2.1 GeV/nucleon19 . Our K+ spectrum, with Eo ~f 

240 ± 92 MeV, is much flatter than the value of 140 MeV reported by Schnetzer et al. 20 

for Ne+NaF---tK+ at finite laboratory angles, and may reflect contribution from associated 

ptoduction at small angles. Lastly, our p spectrum appears to have a dip at KEc.m. =0, 

although the statistical uncertaint~es do not make it. possible to rt1le out an exponential 

falloff. The p slopeparameter obtained by fitting the two higher energy data points yield 

a value for Eo of'l20 ±50 MeV, similar to E 0 for the 1r-. and K-, where;;s a value for E 0 of 

210 ± 98 MeV is obtained when fitting all three p data points. A dip in the p spectrum at 

low p c.m. velocities can be expected if the anti-protons are produc~d in central collisions 
' ' I • 

and where a large number of nucleons exist at mid-rapidity, since p-p annihilation cross· 

sectionas are large (a "' 200 mb) at low relative velocities. 21 

We mention a very interesting feature appearing in figure 2. At a fixed value of KEc.m., 

the difference ·in the invariant cross section .between 1r- and K- production is almost 

identical to .the difference between the K- and p production. The threshold excitational 

energy required for particle production in p-p collisions, denoted by Ethresh' is equal to mrr 

for pion production, 2x mf( for K.,- production, and 2x mp for anti-proton production. 

It is an interesting coincidence that the differences in Ethresh bctweenpions and K-, i.e. 

(2 X m J( - mrr) = 848M e V, is very close in absolute value to the difference in Ethresh 

between K- and p production, i.e (2 X mp- 2 x m]() = 884M eV. This feature leads us to 

the speculationthat particle production for this reaction scales with the ~xcitation energy 

required, independent of particle. type. 

The above feature is exploited in figure 3, which contains the same invariant cross 
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sections for 1r-, K-, K+, and p as in figure 2, but plotted as a function of the variable E* 

= Ethresh + KEc.m. (note .that for K+, Ethresh = (rnA -mN) + ffi[( ). The particle yields 

exhibit a scaling in the ,Variable E* which appears not to be dep~ndent on the particle 

type. Slight deviations from this scaling are noticeable, although the general trends follow 

this scaling over 9 orders of magnitude. The deviations from· scaling may be .due to the 

difference in final state interactions at the later stages of the collision process for the 

different particle type~.22 Figures 4 and 5 show the invariant cross sections for 1r- ,.K-, 

and pproduction for the reactions 28Si + 28 at 1.65 GeV /nucleon and for 20 Ne + NaF at 

2.0 GeV /nucleon; respectively, also as a function of the variable E*. The scaling behavior 

is also demonstrated for each of these reactions. 

The universal scaling may be parameterized by an exponential function, i.e. 

Ed3u )dP3 = J(8 exp( -E* /E8 ), wherethe variables Es and K 8 depend on the bombarding 

energy and the size of the colliding system. Since there are deviations from the scaling 

behavior, a least x2 fit of all the data points would be dominated by the 7r- and K­

data. which .contain the smallest statistical error bars, and Would Iniss the p data points 

by a considerable amount. We have therefore chosen to estimate the value of Es for the 

reactions shown ill figures 3-5 by connecting only the data points for pions at KEc.m.= 270 

Me\l with .that for pat KEc.m;= 55 MeV. The solid curves shown, in figures 3-5 reflect a 

va~.ue of E 8 = 87MeV forSi+Si at 2 GeV/n, E 8 =.80MeV for Si+Si at 1.65 GeV/n, and 

E 8 .. 86MeV for Ne+NaF at 2 GeV /n. 

The scaling behavior observed for particle production in nucleus-nucleus collisions 

suggest a common production mechanism independent of particle type. This is an impor­

tant generalization since it would disfavor a mechanism peculiar to one particular particle 

species, such as the strangeness exchange mechanism (Y 1r -+ K- N) to explain subthreshold 
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K- production. Since most of the data in figures 3-5 lie beyond the energies accessible to 

individual N-N collisions (i.e., for values of E*> Eavailable/ A), a collective mechanism for 

the production of heavy and energetic particles in relativistic nuclear collisions is inferred, 
;:;; , ' ', 

An attempt to find scaling for particle production in nucleus-nucleus collisions has also 

!been reported by Baldin et al. 23 The scaling~e observe is simil~r in nature to tl1at studied 

by Hagedorn24 in high energy p-p collisions, with the distinction that the scaling reported 

here is mostly for products that require more energy than is availaqle in the average N-N 
,, ' I 

collision. 
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Figure Captions 

Figure 1.28Si + 28 Si-+ secondaries at P_:.1.9 GeV/c and'0°. Spectra on left show time of 

flight for negatives with aerogel Cenrekov veto (top), aerogel and liquid cerenkov <:"" 

veto (middle), and for positives (bottom). Spectra on right show lead glass response 

for pions (top), anti-protons (middle), and for protons (bottom). 

Figure 2.Inv~riant cross sections for 1r-, J(+, K-, and p production at 0° for the reaction 

28si + '28Si at 2.0 G~V /n~~leon, plotted as a function ofparticle kinetic energy in 

th~·nucleus-nucleus center of mas's frame (K Ec.m.)· 

Figure 3.Invariant cross sections for 1r-, !(+, K-, and p production, at 0° for the reaction 

28 Si + 2·~·Si at 2.0 GeV /nucleon (Eavailable/ A . 820M eV) plotted as a function of 
' 

the scaling variable E* = Eairesh + KEc.m. (same data as in figure 2). 

Figure4.28Si + 28 Si at 1.65 GeV/nucleon (Eavailabi~/A = 700MeV). 

Figure5.20 Ne+NaF at 2.0 GeV/nucleon (Eavailable/A = 8201\.feV) 
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