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We show that the KLM scheme [Knill, Laflamme and Milburn, Nature 409, 46] can be imple-
mented using polarization encoding, thus reducing the number of path modes required by half.
One of the main advantages of this new implementation is that it naturally incorporates a loss
detection mechanism that makes the probability of a gate introducing a non-detected error, when
non-ideal detectors are considered, dependent only on the detector dark-count rate and independent
of its efficiency. Since very low dark-count rate detectors are currently available, a high-fidelity gate
(probability of error of order 10−6 conditional on the gate being successful) can be implemented
using polarization encoding. The detector efficiency determines the overall success probability of
the gate but does not affect its fidelity. This can be applied to the efficient construction of optical
cluster states with very high fidelity for quantum computing.

I. INTRODUCTION

The implementation of quantum computation using
linear optical elements and measurements with post-
selection has attracted a great deal of attention since the
seminal work by Knill, Laflamme, and Milburn [1]. In
that paper the authors showed how the ideas of linear
optical manipulation of photons, together with photode-
tection and postselection, can be combined with the con-
cept of state teleportation through a quantum gate [2] to
perform universal quantum computation. The price paid
is that the two-qubit gates become non-deterministic.
Whenever the gate fails, our qubit is measured in the
computational basis with known outcome. A very im-
portant feature of this scheme is that gate failures are
known, and this can be used to implement error correct-
ing codes tailored to this particular situation.

In [1] the authors also showed that the success proba-
bility of the controlled-sign gate (CSIGN) can be made
arbitrarily close to one by adding more ancilla modes.
This result, combined with the existence of a threshold
for quantum computation [3] implies that only a constant
overhead is required to implement gates whose failure
probability is below the threshold. A naive calculation
shows that of the order of 104 ancilla modes are required
per two-qubit gate, which is difficult to achieve in prac-
tice. The situation can be improved by devising error-
correcting codes that exploit characterisitics of the error
model. This reduces the overhead required, but it still
does not render the scheme easy to implement.

An approach that seems to be closer to being prac-
tical was proposed by Nielsen [4]. Instead of using the
ideas of linear-optical quantum computing (LOQC) to

∗Electronic address: Federico.Spedalieri@jpl.nasa.gov

perform a quantum computation in the usual quantum
circuit model, Nielsen proposed using the LOQC CSIGN
gate to build optical cluster states that can then be used
to do quantum computations as proposed by Raussendorf
and Briegel [5]. The key point is that higher probabilities
of gate failure can be tolerated while still being able to
construct the required cluster state. Furthermore, even a
gate that succeeds with arbitrarily small probability can
be used to efficiently build a cluster state [6, 7]. This al-
lows an LOQC gate with only a small number of ancilla
modes to be sufficient for building the cluster state.

In its most basic form, the KLM scheme is extremely
fragile against detectors errors. Failure to detect a pho-
ton introduces errors into the quantum state that are not
detected. To minimize their effect on the quantum com-
putation we need to have detectors with efficiencies above
99%, which are far beyond from what is currently avail-
able. A modified scheme was also presented in Ref. [1],
that would detect this photon loss at the price of requir-
ing a more complicated entangled ancilla, with double
the number of path modes required by the basic scheme.
This would considerably complicate the implementation
of this loss-detecting gate since the associated interferom-
eter would be more difficult to control and stabilize. Nev-
ertheless, such loss-detection mechanism is crucial even
for the application of the basic KLM scheme to the con-
struction of optical cluster states, since imperfect detec-
tors can significantly affect the performance of the gate,
introducing errors with probability of 30% and higher
for currently available detectors, even when the gate is
assumed to be successful.

The implementation of the KLM scheme using polar-
ization encoding has two useful features. First, it re-
quires half the number of path modes to implement the
gates, which makes the associated interferometers easier
to setup and control. And second, when using polariza-
tion encoding, the basic form of the KLM scheme already
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has a photon loss detection mechanism. The underlying
reason for this feature emerges in a more natural way
than for the modified dual-rail KLM scheme, and it is
due to the conservation of the number of photons pass-
ing through a linear optical setup composed of mirrors,
beam-splitters and phase-shifters. Even with the pho-
ton loss detection mechanism, the KLM scheme requires
high-efficiency single-photon sources and high-efficiency
detectors to apply the non-linear phase gate in the con-
struction of an entangled ancilla with the required high-
fidelity. By implementing the scheme in the polariza-
tion basis, we can completely discard the requirement for
high-efficiency detectors, if we replace the single-photon
sources by high-fidelity Bell-pair sources. The errors in-
troduced by the gate will then be due only to the dark-
count rate of the detectors, which can be as low as 10−8

dark counts per gate. Thus, successful gates will also
be high-fidelity gates, and they can be used to construct
high-fidelity optical cluster states.
This paper is organized as follows. In Section II we

present a detailed calculation of the KLM scheme using
polarization encoding, including the application of the
CSIGN gate and the generation of the required entangled
ancillas. In Section III we discuss the effect of errors due
to non-ideal detectors, both in the original KLM scheme
and the one with polarization encoding, and show that
the loss detection mechanism is crucial for the construc-
tion of a high-fidelity non-deterministic gate. In Section
IV we discuss applications to the construction of opti-
cal cluster states and finally in Section V we present our
conclusions.

II. THE KLM SCHEME WITH POLARIZATION

ENCODING

One of the pillars on which the KLM scheme is based is
the near-deterministic teleportation of the state of an op-
tical mode using linear-optical elements, photodetectors,
and an ancilla prepared in a particular entangled state.
The success probability of this teleportation depends on
the number of ancilla modes. For an ancilla state of 2n
modes, the probability of success is n

n+1 . The telepor-
tation procedure goes as follows. First, the mode to be
teleported together with the first n ancilla modes are sent
through an optical device that performs a Fourier trans-
form among the modes. This device can be constructed
using beam-splitters, phase shifters, and mirrors. After
the Fourier transform, we measure the number of photons
present in each mode. For this step, number-resolving
photodetectors are required. If the total number of pho-
tons measured is 0 or n+1, the gate failed and our qubit
is measured in the computational basis. If k photons
are measured, with 0 < k < n + 1, then the state of
our qubit can be recovered by post-selecting mode n+ k
of the ancilla and applying a phase shift that depends
on the distribution of the photons measured among the
first n + 1 modes. The same can be accomplished with

polarization encoding as we show below.

A. Near-deterministic teleportation

We will encode the state of our qubit (corresponding
to an optical mode) into the polarization of the photon,
so we will have |0〉 → |H〉 and |1〉 → |V 〉. The state of
our qubit will then be written as

|ψ〉 = α|H〉+ β|V 〉. (1)

The ancilla state required to implement the teleportation
has the same form as the state used in the original KLM
paper with 0 replaced by H and 1 by V . We will keep
the same notation used in Ref. [1] and note this state by
|tn〉. Then we have

|tn〉 =
1√
n+ 1

n∑

j=0

|V 〉j |H〉n−j |H〉j |V 〉n−j . (2)

The main difference between this teleporting state and
the one used in the original KLM is that (2) has exactly
one photon per mode, for a total of 2n photons. The
analogous state in the original KLM scheme is

|tn〉KLM =
1√
n+ 1

n∑

j=0

|1〉j |0〉n−j|0〉j |1〉n−j , (3)

that has only n photons in 2n modes. This difference
will allow us to detect photodetector failure and hence
minimize the errors introduced by the gate.
We will now give a detailed calculation of how the tele-

portation works. It is useful to write the states in terms
of creation operators applied to the vacuum. We will call

a†k the creation operator of a vertically polarized photon

in mode k, and b†k the creation operator of a horizontally
polarized photon in mode k. Then we have

a†k|vac〉 = |V 〉k
b†k|vac〉 = |H〉k, (4)

where |vac〉 represents the vacuum state. We will write
|vac〉1...n to represent the vaccum state of modes 1 to n.
The Fourier transform applied to a set of n+1 modes,

that for convenience we will call modes 0 to n, is given
in terms of its action on the creation operators

F̂n(a
†
k) =

1√
n+ 1

n∑

lk=0

ωklka†lk

F̂n(b
†
k) =

1√
n+ 1

n∑

lk=0

ωklkb†lk , (5)

where ω = ei
2π

n+1 . This Fourier transform can be imple-
mented with linear optical elements [8]. One important
point is that this operation does not mix the polariza-
tions of the photon, which can be seen from Eqs. (5) in
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the fact that the creation operators for each polarization
transform among themselves.
We can now rewrite the teleporting state |tn〉 using the

creation operators for horizontally and vertically polar-
ized photons. So, we get

|tn〉 =
1√
n+ 1

n∑

j=0

a†1 . . . a
†
jb

†
j+1 . . . b

†
nb

†
n+1 . . . b

†
n+ja

†
n+j+1 . . . a

†
2n|vac〉1...2n. (6)

The teleportation trick starts by considering the joint state formed by our qubit in state (1) together with the state
|tn〉. Expanding this, we have

|ψ〉|tn〉 =
1√
n+ 1

n∑

j=0

{

αb†0

(
j
∏

k=1

a†k

)(
n∏

k=1

b†j+k

)(
n−j
∏

k=1

a†n+j+k

)

+ βa†0

(
j
∏

k=1

a†k

)(
n∏

k=1

b†j+k

)(
n−j
∏

k=1

a†n+j+k

)}

|vac〉0...2n.

(7)

This is a state of 2n+1 modes. Note that the difference
between the two terms is, besides the values of α and β,
that the first term has a creation operator for a horizon-
tally polarized photon in mode 0, while the second has
a creation operator for a vertically polarized photon in
that mode.
The next step is to apply the Fourier tansform to the

first n+1 modes (i.e., modes 0 to n). Note that, since the
two terms have different numbers of creation operators
of each type (H or V ), and since the Fourier transform
does not mix polarizations, the same will hold after the
transformation is applied. The state obtained after the
Fourier transform is

(
1√
n+ 1

)n+2 n∑

j=0







∑

0≤l0,...,ln≤n

ω
∑

n

k=0
klk
(

αb†l0a
†
l1
. . . a†ljb

†
lj+1

. . . b†ln + βa†l0a
†
l1
. . . a†ljb

†
lj+1

. . . b†ln

)

|vac〉0...n






|H〉j |V 〉n−j

︸ ︷︷ ︸

modes(n+1,...,2n)

.

(8)

Note that the α terms have j of the V-photons and n−
j+1 of the H-photons, while the β terms have j+1 of the
V-photons and n − j of the H-photons. This difference
will be responsible for transfering the superposition in
the state of mode 0 to one of the last n modes of the
ancilla.
Now the idea (following KLM) is to perform a mea-

surement that collapses the state vector (8) to a certain
value of j for the α terms, and to j−1 for the β terms. In
the KLM scheme this is accomplished by measuring the
number of photons in each of the n+ 1 output modes of
the Fourier transform. Here however, that is not enough
since there are two kinds of photons, so just measuring
the number of photons present in each mode does not
collapses the state vector (8) into the state we want. To
solve this problem we just need to perform a stronger
measurement that tells us not just how many photons
are in one mode but how many of each polarization are
present. This measurement can be easily implemented
by sending the output of each mode through a polarizing
beam-splitter (PBS), and then measuring the number of
photons present in each of the two output ports of the

PBS. This requires the same number-resolving photode-
tectors used for the original KLM scheme, with the only
difference that we now need twice as many.
Let us assume that we have performed this measure-

ment, and we have obtained that in mode j, there are
rj of the V-photons and hj of the H-photons. Note that
since there was one photon per mode in the first n + 1
modes of (7), the total number of photons measured at
the output of the Fourier transform must be n+ 1. This
is the key feature that allows us to know when a detector
fails to detect a photon. But now we want to know what
is the state of the whole system after this projective mea-
surement. First, let us consider the two simplest cases.
If
∑n

j=0 rj = n + 1, then all the photons detected are

V-photons (i.e., hj = 0, ∀j). Looking at (8), we can see
that the only term that has n+1 of the V-photons in the
first n+ 1 modes corresponds to the β term with j = n.
Any other term in (8) has at least one H-photon. Then
the state corresponding to that measurement result is to
be

|V 〉n+1|H〉n. (9)
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This correponds to a projective measurement of our qubit
in the computational basis. The superposition is de-
stroyed and the teleportation failed. The probability

of obtaining this measurement result is |β|2
(n+1) . Sim-

ilarly, if we measure that
∑n

j=0 rj = 0, that means
∑n

j=0 hj = n+1, and we can repeat the reasoning above
replacing V-photons by H-photons. So again, the result
is a projective measurement in the computational basis,
which destroys the superposition. The probability of this

event ocurring is |α|2
(n+1) , and so the total probability of

failure of the teleportation is 1
(n+1) independent of the

input state.

So let us now assume that
∑n

j=0 rj 6= n+1, 0, and write
∑n

j=0 rj = k. Then we also have
∑n

j=0 hj = n − k + 1,
since the total number of photons detected is always n+1.
The state corresponding to that measurement result is

(
1√
n+ 1

)n+2 {
∑

S ω
∑

n

p=0
p lpαb†l0a

†
l1
. . . a†lkb

†
lk+1

. . . b†ln |vac〉0...n|H〉k|V 〉n−k+

+
∑

S′ ω

∑
n

p=0
p lpβa†l0a

†
l1
. . . a†lk−1

b†lk . . . b
†
ln
|vac〉0...n|H〉k−1|V 〉n−k+1

}

, (10)

with

S = {(l0, . . . , ln)/ {l1, . . . , lk} contains the value j, rj times, and

{l0, lk+1, . . . , ln} contains the value j, hj times, j ∈ {0, . . . , n}}
S ′ = {(l0, . . . , ln)/ {l0, . . . , lk−1} contains the value j, rj times, and

{lk, . . . , ln} contains the value j, hj times, j ∈ {0, . . . , n}} . (11)

By looking at the two sums in (10) we can see that
these two terms have the same state for the first n + 1
modes since they have the same number of V-photons
and H-photons in each of the first n+ 1 modes (fixed by
the result of the measurement). The only difference is
given by the state of the last n modes and by the factors
introduced by the two sums

∑

S
ω

∑
n

p=0
p lp and

∑

S′

ω

∑
n

p=0
p lp . (12)

Since the sums are over two different sets of (n+1)-tuples,
it is not clear if this will change the relative weights in the
superposition given by α and β. However, after a little
algebra it can be shown that these two factors differ only
by an overall phase. More precisely we have

∑

S′

ω

∑
n

p=0
p l′p =

∑

S
ω

∑
n

p=0
p lp ω

−
∑

n

p=0
lp , (13)

where ω = e
2πi
n+1 as defined earlier. By following the above

calculation carefully, it is not hard to show that

n∑

p=0

lp =

n∑

j=0

j(rj + hj). (14)

It is worth noting that since (rj+hj) is the total number
of photons measured in mode j, this exponent has ex-
actly the same form as the dephasing introduced by the

teleportation procedure in the original KLM scheme. In
summary we have that

∑

S′

ω

∑
n

p=0
p l′p = ω

−
∑

n

j=0
j(rj+hj)

∑

S
ω

∑
n

p=0
p lp . (15)

Taking all of this into account we can rewrite the state
(10) as

|Φ〉0...n|H〉k−1

(

α|H〉+ β ω
−
∑

n

j=0
j(rj+hj)|V 〉

)

|V 〉n−k+1,

(16)
where |Φ〉0...n is a normalized state of the first n+1modes
fixed by the result of the measurement. We can see that
the superposition was teleported to the mode n+k, up to
a known relative phase. But since we know exactly the
value of that phase, we can get rid of it by using phase
shifters, and then the final state becomes

|Φ〉0...n|H〉k−1 (α|H〉+ β|V 〉) |V 〉n−k+1. (17)

The last n modes, with the exception of mode n + k
of course, are left in a known state and can be reused
later. It is worth noting that the state (17) has exactly
the same form as the state that we obtain in the original
KLM scheme, if we replace all H’s by zeros and all V’s
by ones.
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B. Near-deterministic CSIGN

The near-deterministic teleportation procedure de-
scribed above can be combined with the idea of applying
a quantum gate through teleportation to perform a near-

deterministic CSIGN gate. To do this we will need a
teleporting state of 4n modes, which is nothing but two
copies of the teleporting state |tn〉 with CSIGN gates ap-
plied to the mode pairs (n+k, 3n+ l), 1 ≤ k, l ≤ n. This
(unnormalized) state can be written as

|t′n〉 =
n∑

i,j=0

(−1)(n−j)(n−i)|V 〉j |H〉n−j |H〉j |V 〉n−j × |V 〉i|H〉n−i|H〉i|V 〉n−i. (18)

Note that this is a state of 4n modes that has 4n pho-
tons. To apply a CSIGN gate to two modes A and B
we can proceed by teleporting the mode A using the first
2n modes of |t′n〉 and then teleporting mode B using the
last 2n modes |t′n〉. Each teleporting step will proceed
as before, requiring post-selection and phase correction,
and failing independently with probability 1

n+1 . The cal-
culation is essentially the one presented in the previous
subsection applied twice, so we will not present it explic-
itly here.

C. State preparation

As described in Ref. [1] the KLM scheme for LOQC
reduces to a state preparation problem: we need to be
able to construct the state |t′n〉 using only linear optics
and photodetection. In the original scheme with dual-rail
encoding, we proceed as follows. From the state |01〉|01〉
of four optical modes (generated using a single photon
source), we construct the state

1

2
(|01〉+ |10〉)(|01〉+ |10〉), (19)

by applying beam splitters to the mode pairs (1, 2) and
(3, 4). Then we send modes 1 and 3 through a Mach-
Zender interferometer with a (non-deterministic) non-
linear sign-shift gate applied to each arm. This gate
(which can be performed using linear optics and photo-
detection) applies the transformation

α0|0〉+ α1|1〉+ α2|2〉 → α0|0〉+ α1|1〉 − α2|2〉. (20)

After the interferometer the state of the system is

|t′1〉KLM =
1

2
(|1010〉+ |0110〉+ |1001〉 − |0101〉), (21)

which can be used to apply a CSIGN gate with probabil-
ity 1

4 . To apply this gate with higher success probability
we need to construct the states |t′n〉 with n > 1. This
is done by a recursive procedure that uses |t′p〉 to build
|t′n〉, where p < n. By recycling these resources whenever
a gate fails, it can be shown that the number of trials
required to build |t′n〉 scales as 2O(

√
n).

Preparing the corresponding states with polarization
encoding can be done much in the same way with some
minor but essential modifications. First we should note
that the analog of the beam-splitter transformation with
dual-rail encoding, which takes the form

|01〉 → cos θ |01〉+ sin θ |10〉, (22)

cannot be implemented with linear optics if we are using
polarization encoding, since in this case it takes the form

|HV 〉 → cos θ |HV 〉+ sin θ |V H〉, (23)

which is an entangling operation between two pho-
tons and cannot be implemented with linear optics
alone. However, this operation can be applied non-
deterministically if we are allowed to use the non-
deterministic CSIGN. To see this, first note that the re-
quired trasformation is represented by the unitary matrix
(in the basis {|HH〉, |HV 〉, |V H〉, |V V 〉})






1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1




 , (24)

and this matrix can be implemented by the quantum cir-
cuit All the one qubit operations can be applied deter-

Hθ

R θZ Z

H

H H

R

FIG. 1: Quantum circuit that applies the HV-beam splitter.

ministically, while the CSIGN (or C-Z) can be applied
with some probability.
Let us assume for the moment that we can construct

the state |t′1〉 with polarization encoding. Then we can
generate the states |t′n〉 for n > 1 following the same
algorithm used in the original KLM scheme if we replace
all beam-splitters by the circuit of Fig. 1. Following
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that procedure it is not hard to see that the only effect
is that the number of non-deterministic gates required
(roughly) doubles, but it remains linear on n. Thus the
resource required to build the teleporting states |t′n〉 with
polarization encoding are only polynomially bigger than
the resources required in the original KLM scheme.
Finally, we need to show that we can construct the

state

|t′1〉 =
1

2
(|V HV H〉+ |HV V H〉+ |V HHV 〉 − |HVHV 〉),

(25)
using only linear optics and photodetection. It is inter-
esting to note that this state is the same four-photon
cluster state used by Walther et al. in their experimental
demonstration of a one-way quantum computer [9]. First
we note that we can deterministically transform a state
with dual-rail encoding into a state with polarization en-
coding by using a polarizing beam-splitter (PBS), so we
have

α|10〉+ β|01〉 → α|H〉+ β|V 〉. (26)

Now we can apply the quantum encoder introduced by
Pittman et al. [10] plus polarization rotators to perform,
with probability 1

2 , the operation

α|H〉+ β|V 〉 → α|V H〉+ β|HV 〉. (27)

Composing these two transformations we can perform

α|10〉+ β|01〉 → α|V H〉+ β|HV 〉, (28)

with probability 1
2 . Now consider the state

1

2
(|1010〉+ |0110〉+ |1001〉 − |0101〉). (29)

This is nothing but the state |t′1〉KLM in the original
KLM scheme, and we know it can be constructed with
probability 1

16 using linear optics and photodetection. By
applying the transformation (28) to the mode pairs (1, 2)
and (3, 4) in (29), we obtain the state (25) with proba-
bility 1

64 . This probability is not claimed to be optimal.

III. ERRORS INTRODUCED BY REAL

DETECTORS

Both the original KLM scheme and its implementa-
tion with polarized photons described above assume all
the detectors are perfect, i.e, they have unit quantum effi-
ciency and zero dark counts. If we allow for real detectors
and still require the scheme to apply the entangling gates
with a probability of failure low enough such that error
correction and fault tolerant design allows for arbitrar-
ily long quantum computation, the required efficiencies
turn out to be extremely high, compared to the presently
available detectors. A naive estimation requires a detec-
tor efficiency higher than 99.99%. A clever use of error

correction, exploting the properties of the error model,
may reduce this requirement. However, no significant
improvement that would render the scheme viable with
currently available detectors has been proposed so far.

On top of the high-efficiency requirement for the detec-
tors, the scheme requires a rather large overhead in terms
of extra ancilla modes. Again, a naive calculation of this
overhead yields 104 ancilla modes required per CSIGN
gate. Exploiting the properties of the failure modes can
reduce this requirement to about 50 ancilla modes per
CSIGN gate. This is still a rather large number to be
practical for an actual implementation.

A big step forward in reducing this required overhead
was the proposal by Nielsen [4] to combine the techniques
of the KLM scheme with the cluster-state model of quan-
tum computation [5]. Rather than using the CSIGN gate
for the actual computation, we can use it to construct a
cluster state on which we can later perform our quantum
computation. The advantage of this approach is that
lower success probabilities can be tolerated with only a
modest overhead on the time required to build the cluster
state, thus reducing the extra ancilla modes to four.

However, this proposal cannot escape the requirement
of very high efficiency detectors. The reason behind this
is the fact that low-efficiency detectors will make the fi-
delity of the CSIGN gate low even when the gate is as-
sumed to be successful. This will reduce the fidelity of the
cluster state and require a larger state to accomodate for
fault tolerance and error correction during the cluster
state computation. At this point, using polarization en-
coding instead of dual-rail encoding shows a clear advan-
tage. Polarization encoding allows for very high fidelity
CSIGN gates, conditioned on gate success (at the price of
a lower probability of success), even with currently avail-
able detectors. Since a cluster state can be efficiently con-
structed using gates with arbitrarily small success prob-
ability [6, 7], using polarization encoding allows for effi-
cient construction of high-fidelity cluster states. In the
remainder of this section, we will analyze in more detail
the errors introduced by real detectors for both the origi-
nal KLM scheme and the one with polarization encoding,
and discuss the advantages of the latter.

A. Errors in KLM

We will model a real detector with two parameters: a
quantum efficiency η and a dark count rate λ. We will
assume that the dark counts follow a Poisson distribu-
tion, so the probability of having d dark counts during
the measuring interval τ will be

D(d) = e−λτ (λτ)
d

d!
. (30)

We can then write the conditional probability of the de-
tector measuring k photons when l photons were present
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as [11]

PD(k|l) =
k∑

d=0

D(k − d)

(
l

d

)

ηd(1− η)l−d. (31)

We now analyze the effects of real detectors on the
implementation of the near-deterministic teleportation
step, which is the basis of the whole scheme. Let us
recall that, to perform that step, we need to measure
the number of photons present in each of the first n+ 1
modes after applying a Fourier transform to them. The
total number of photons measured, k, tells us whether
the gate succeeded (if k 6= 0, n+ 1), and in that case to
which one of the last n modes of the ancilla was the state
of our qubit teleported to. It is then clear that accurately
determining the value of k is essential for the success of
the scheme. Imperfect detectors will degrade our ability
to determine k.
The finite efficiency and dark-count rate of the detec-

tors will sometimes produce a result k′ for the total num-
ber of photons that is different from the actual number
of photons present k, since some detectors may fail to de-
tect one or more photons, while others will register dark
counts. (For actual detectors, failure to detect a photon
has a higher probability than dark counts, but we will
keep our analysis general.) If k′ 6= 0, n + 1, we will as-
sume that the teleportation was successful and post-select
the wrong output mode as the one carrying the state of
our qubit. This wrong mode will be in either the |0〉 state
or the |1〉 state, depending on whether k′ < k or k′ > k.
This is similar to the measurement error introduced by
the teleportation failure associated with k = 0, n + 1 in
the original scheme. The difference is that this new fail-
ure goes completely undetected. The gate is assumed to
have succeeded when in fact it has introduced a measure-
ment error that will propagate through the computation.
Another undetected error may occur when the num-

ber of non-detected photons is equal to the number of
dark counts. In this case the total number of photons
is correct, but their distribution among the first n + 1
modes may have been changed. Since this distribution
determines the phase correction that needs to be applied
after a successful teleportation, a phase error may be in-
troduced in the computation.
As we can appreciate, considering real detectors can

modify the KLM scheme significantly. The main change
is that the probability of a detected failure pf is no longer
1−ps, where ps is the probability of success, since we now
have non-detected errors ocurring with some probability
pnde. Also, the probability of a detected failure may no
longer be independent of the input state. Actually, it
depends on the input state whenever the probability of
dark counts is different from the probability of photon
non-detection, as is the case for currently available de-
tectors. The root of this is our encoding of information
in photon number, while the failure of the detectors is bi-
ased towards decreasing photons numbers (dark counts
are usually negligible with respect to detection failure).

Using the conditional probabilities given by (31) we
can compute the probabilities of detected failure pf ,
and the probability of errors introduced by the tele-
portation conditioned on no detected errors, defined by
pe = pnde/(1 − pf ) for different values of detector effi-
ciency and dark-count rates as a function of the number
of ancilla modes n. In particular, we considered the pa-
rameters corresponding to the number-resolving photo-
detector demonstrated by Miller et al. [12]. In that work
a 20% quantum efficiency was reported, with dark counts
of the order of 10−7, when considering a measuring time
τ ∼ 100µs. It was also reported that this scheme could
be improved to achieve an efficiency of 80%. Using this
value, we plotted the different probabilities for n = 2, 3, 4.
As we can see from Fig. 2, the probability of a detected

2 3 4
n

0.2

0.3

0.4

0.5

pf

pe

FIG. 2: Probability of detected failure pf and probability of
error pe introduced by a “successful” gate in the KLM scheme
(η = 0.8 , λτ ∼ 10−7).

failure still decreases with n. However, the probability
of an error being introduced by the gate when no fail-
ure is detected increases with n. Furthermore, this error
is rather high (∼ 27%) even for n as small as 2. For
n = 4 this error is greater than 40%. This can be eas-
ily understood since increasing n increases the number
of non-detected failure modes. From this point of view,
increasing n is actually counterproductive.

B. Errors with polarization encoding

The effect of errors introduced by real detectors when
we use polarization encoding is remarkably different. As
discussed before, the role of the total number of photons
is played by the total number of vertically polarized pho-
tons. Since both the teleporting state and the input qubit
have exactly one photon per mode, the total number of
photons (both vertically and horizontally polarized) mea-
sured after the Fourier transform must be n + 1. If this
number is different from n+1 then we know for sure that
some of the detectors failed, and we have lost the infor-
mation about which mode the input qubit was teleported
to. This case should be considered as a detected failure
of the gate. Note that the most common error for real
detectors (failure to detect a photon) will be recognized,
while it would have gone undetected in the original KLM
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scheme.

Even if we use polarization encoding, there would be
undetected errors occurring when we assume the gate has
succeeded. These errors will require the same number of
detector failures to measure a photon and registered dark
counts. Depending on which detectors register these fail-
ures, we may choose the wrong output mode (i.e., we have
the wrong information about the total number of verti-
cally polarized photons present), or we may introduce a
phase error (total number of V-photons is correct but
their distribution among modes is not). The key point is
that the probability of these type of errors is dramatically
reduced because of the low probability of dark counts in
currently available detectors. Using the same detector
parameters discussed above, we computed the probabil-
ity of detected failure pf for the teleportation step (see
Fig. 3). We can see that the probability of a detected

2 3 4
n

0.6

0.7

0.8
pf

FIG. 3: Probability of detected failure pf using polarization
encoding (η = 0.8 , λτ ∼ 10−7).

failure is greater than for the KLM scheme (66% com-
pared to 33% for n = 2). Furthermore, this probability
increases with n instead of decreasing. This can be eas-
ily understood. First, the probability of a detected fail-
ure depends essentially on the efficiency of the detectors.
When using polarization encoding, we require double the
number of detectors than for the KLM scheme, thus it
is not surprising that our gate has a higher probability
of failing. The scaling with n may not have been fore-
seen but should not be unexpected, since now the failure
probability includes errors derived from detector failures
that are more abundant for higher values of n, as the
number of detectors required is 2(n+ 1).

We have also computed the probability of error condi-
tioned on no detected failure, pe = pnde/(1 − pf ), with
pnde the probability of a nondetected error. The results
are shown in Fig. 4. This error probability is several
orders of magnitude lower than the corresponding one
for the KLM scheme using the same detector param-
eters. Its order of magnitude is given roughly by the
order of magnitude of the dark-count probability since
the most likely error corresponds to one detector failing
to register a photon and another detector registering a
dark count (events with higher number of dark counts
are strongly suppressed). Lowering this probability can

2 3 4
n

4.·10-7

8.·10-7

1.2·10-6

pnde

FIG. 4: Probability of error pe introduced by the gate when
no failure was detected and using polarization encoding (η =
0.8 , λτ ∼ 10−7).

be achieved by reducing the dark count rate, indepen-
dent of the detector efficiency. We still have the same
behavior with increasing n that is related to the higher
number of events associated with errors as the number
of detectors required grows.

IV. APPLICATION TO CLUSTER STATE

QUANTUM COMPUTING

As we discussed before, coupling the KLM scheme with
the cluster state model of quantum computation greatly
reduces the number of ancilla modes required. This, to-
gether with the existence of protocols to efficiently build
these cluster states with non-deterministic gates, makes
this approach very appealing. For optical cluster states
however, other issues need to be addressed. For the clus-
ter state approach to be successful we need to be able to
deal with the inevitable errors that will occur during its
construction and during the computation itself. Since the
computation proceeds by performing single qubit mea-
surements while the quantum information is propagated
along the cluster by quantum correlations, an efficient
measurement procedure is required. This is not that sim-
ple in an optical implementation since currently available
photodetectors do not have very high quantum efficiency.
A good detector may have an efficiency of 80%, which
means that on average one in five photons of the cluster
will not be detected. This rate of loss of cluster qubits
can make quantum computing impossible. An incremen-
tal encoding was proposed by Gilchrist et al. [13] to make
the computation fault tolerant to photon loss. Another
idea recently proposed by Varnava et al. [14], exploits the
fact that the cluster state is an eigenstate of a set of sta-
bilizer operators to infer the results of measurements on
photons that fail to be detected by the photodetectors.
This scheme allows us to perform the required measure-
ments for a quantum computation provided the efficiency
of the detectors is above 50% (which are currently avail-
able).
Errors can also be introduced during the construc-

tion of the cluster, which in turn may introduce non-
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Markovian errors during the computation. Fortunately,
as in the case of the quantum circuit model of quan-
tum computing, there is an error threshold below which
a fault tolerant design allows us to perform an arbitrar-
ily long computation, although the value of this thresh-
old is not yet known for the cluster state model [15, 16].
However, it is not expected to be significantly smaller
than the threshold for the quantum circuit model since
we can recast the cluster state approach as a quantum
circuit. For example, we can consider the qubits in the
cluster to be a quantum registry initialized in a particu-
lar product state, the CSIGN gates required to build the
cluster can be regarded as the gates in the circuit model,
and the measurements that implement the computation
on the cluster can be considered as part of the readout
measurements in the circuit model. Assuming perfect
measurements, this shows that a CSIGN gate with error
probability below the quantum circuit threshold should
be enough to construct a cluster state with fidelity high
enough to allow quantum computing in the cluster state
model. The typical value quoted for the error threshold
in the quantum circuit model is around 10−4, which cor-
responds to a general error model. A higher threshold
might be possible if we take advantage of the properties
of the error model associated with a particular implemen-
tation.

Thus emerges the greatest advantage of using polar-
ization encoding instead of dual-rail encoding. Dual-rail
encoding has a very high probability of non-detected er-
rors being introduced when applying a CSIGN gate, and
hence when constructing a cluster state using Nielsen’s
approach, unless very high efficiency detectors are used.
On the other hand, polarization encoding allows us to
reduce this non-detected errors independently of the ef-
ficiency of the detectors. The only requirement is that
the dark-count rate of the detectors be sufficiently small,
which is actually the case for currently available detec-
tors. For example, a number-resolving photodetector was
reported in Ref. [12] with a 20% efficiency and dark-count
rate of the order of 10−9 for a measuring time of 1µsec.
Another number-resolving detector with an efficiency of
88% has been reported in Ref. [17]. Although this detec-
tor was reported to be essentially noise-free, no measured
value of the dark-count rate was given.

There are several recipes to efficiently build a clus-
ter state using non-deterministic gates [6, 7], and any of
these approaches can be used to build an optical clus-
ter state using the techniques described in this paper.
The one specific advantage that we would like to exploit
is the low probability of non-detected errors when using
polarization encoding. As we saw in Fig. 4 this prob-
ability increases with the number ancilla modes used in
the application of the CSIGN gate, so the smallest entan-
gled ancilla state required (four photons in four modes)
is actually the one that minimizes the error probability.

Using the smallest entangled ancilla state given by

|t′1〉 =
1

2
(|V HVH〉+ |HV V H〉+ |V HHV 〉 − |HVHV 〉),

(32)
has some other advantages. In Fig. 5 we can see the setup
required to implement the CSIGN gate. One advantage is

BS

t’1|

����
����
����
����

��������

A

B

2

3

1

4

BS PBS

PBS

FIG. 5: Optical setup required to implement a CSIGN be-
tween two photons using a four photon entangled ancilla state.
The two input modes A and B are combined through beam-
splitters with modes 1 and 4 of the entangled ancilla |t′1〉, re-
spectively. After the beam-splitters, the number of vertically
and horizontally polarized photons in each mode is measured.
When the gate succeeds, modes 2 and 3 carry the state of the
input modes with a CSIGN gate applied to them, up to phase
shifts.

that we only need to apply the optical Fourier transform
to a pair of modes and that can be accomplished with a
single balanced beam-splitter. We do not need to apply
the more complicated interferometer required when more
than two modes are input to the Fourier transform, which
is experimentally very challenging. Also, since after the
measurements only two modes are left, we do not have to
physically post-select the output modes and only a phase
shift may need to be applied to them. These two proper-
ties could be very useful if we want to integrate this gate
into an optical chip, since no complex interferometers are
involved and the output modes are fixed.
Furthermore, the success or failure of the gate is her-

alded by the number of vertically and horizontally po-
larized photons detected, while the total number of pho-
tons that must be detected is fixed and equal to four.
Each step of the teleportation succeeds only when one
vertically polarized photon and one horizontally polar-
ized photon are detected, which in the setup presented
in Fig. 5 means that two independent detectors must
fire. This feature allows us to implement the same gate
with detectors that are not number-resolving. Since a suc-
cess corresponds to two independent detectors clicking,
we do not need to know how many photons each detector
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measured. Again, the only possible errors introduced by
the detectors malfunctioning are related to dark counts,
which have an extremely low probability.
Besides the errors introduced by the detectors, the fi-

delity of this CSIGN gate can be affected by errors in
the entangled ancilla state. If the state we use is not ex-
actly the state (32), the gate applied will not be exactly a
CSIGN gate, even when the measurements tell us it was
successful. Thus, to assure the high fidelity of the gate we
need to require the fidelity of the entangled ancilla with
respect to the ideal state given by (32) to be high. Since
we want the gate to work with fidelity at least 1− 10−4

(to be below the error threshold) we need the fidelity be-
tween the two states to be of the same order. In Section
II.C. we showed that this state can be constructed with
linear optical elements and photodetectors, but this con-
struction is based in the nonlinear sign (NS) gate that is
the basis of the KLM scheme, and the fidelity of the NS
gate is very fragile against detector inefficiencies because
it operates in the photon number basis.
Nevertheless, we can non-deterministically construct a

high efficiency copy of (32) with linear optics and non-
ideal detectors if we have access to high-fidelity polariza-
tion Bell pairs. We first combine two Bell pairs to form
a GHZ state that might not have high-efficiency. To do
this, we mix one mode from each Bell pair on a balanced
beam-splitter and measure the number of photons in one
of the outgoing modes irrespective to their polarization,
as seen in Fig. 6. If only one photon is measured by the

1

Φ+

Φ+

PBS

3

2

FIG. 6: Generation of a polarization GHZ state from two Bell
pairs using a polarization beam-splitter and photodetection.
A detector failure will introduce an error only in mode 2,
which in that case will contain no photons.

detector, the state of the remaining three modes is a GHZ
state in the polarization basis. If that number is zero or
two, the procedure is aborted. If non-ideal detectors are
used an error may be introduced when two photons ar-
rive at the detector but only one is registered due to its
non-unit efficiency. This operation is very similar to the
type-I fusion introduced by Browne and Rudolph [18].
The important point is that even when this error occurs,
the only output mode affected is the one coming out of
the beam-splitter that will then have no photons. The
other two output modes will still have one photon each.
The second step is to take two copies of this GHZ

state and combine the two modes that may have an error
(i.e., no photon) using polarization rotators, polarization

beam-splitters and phase shifters, and then measure the
number of photons in each mode irrespective to their po-
larization, as seen in Fig. (7). If there were no errors in

Phase shifter

PBS

Polarization rotator

FIG. 7: The two modes of two pairs of GHZ states con-
structed according to the scheme in Fig. 6 that may have an
error, are sent through the setup shown above. The polariza-
tion beam-splitters reflect vertically polarized photons. The
operation is successful when exactly one photon is registered
by each detector. Then, the state of the remaining four modes
of the the two GHZ pairs can be transformed into |t′1〉 using
phase-shifters and polarization rotators.

the construction of the two GHZ states, we expect ex-
actly two photons to be detected. If we detect less than
two photons, the GHZ states had errors and the proce-
dure is aborted. If we detect two photons in one of the
detectors (and zero in the other one), the output state is
equivalent to two Bell pairs that can be reused to gen-
erate more GHZ states. If we detect one photon in each
mode, the state of the remaining output modes is given
by

1

2
(ei

π
4 |HHHH〉+ e−iπ

4 |HHV V 〉+

+e−iπ
4 |V V HH〉+ ei

π
4 |V V V V 〉). (33)

By applying polarization rotators and polarization-
dependent phase-shifters, we can transform this state
into (32). The key feature of this construction is that
even though an error may be introduced in the first step
by a non-ideal detector, the effect of this error will be
restricted to a photon missing in only a pair of modes,
and it can be detected when these two modes are mixed
and the total number of photons is measured [19]. Then,
an error in the final cluster state can only be related to
the occurrence of a dark count in one of the detectors,
and for currently available detectors the probability of
such event is below 10−6. As long as the fidelity of the
initial bell pairs is high enough, this procedure generates
a four-photon high-fidelity cluster state that can be used
to apply a high-fidelity CSIGN gate.
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V. CONCLUSIONS

In this paper we have shown that the KLM techniques
can be extended to the case of polarization encoding.
This implementation has two main advantages. Firstly,
it requires half the number of path modes when compared
to the usual dual-rail encoding. This can be very helpful
in an actual implementation, since a higher number of
path modes makes it more difficult to control and stabi-
lize the interferometric setup required to implement the
gates. And secondly, when polarization encoding is used,
the analogous to the basic KLM scheme already has a
photon loss detection mechanism. This is due to the fact
that with this encoding we have one photon per path
mode, instead of the one photon per two path modes
of dual-rail encoding. Thus, when applying the non-
deterministic gates using photodetection, we know the
total number of photons that are expected, and the in-
formation about the operation of the gate is carried by
the distribution of horizontally and vertically polarized
photons.
The original KLM scheme can be modified to also in-

clude a photon loss detection mechanism. This requires
a more complicated entangled ancilla that has double the
number of path modes. Polarization encoding not only
reduces this number by half, but also incorporates the
loss mechanism in a natural way that makes it easier to
understand how it works. It is just a consequence of
the fact that the total photon number is conserved by
any linear-optical device. The construction of the entan-
gled ancilla can proceed much in the same fashion as in
the KLM case, although the number of nondeterministic
steps required roughly doubles. This is due to the fact
that the polarization entangled ancilla have double the
number of photons.
We have also studied numerically the effects of detec-

tor efficiency on the basic KLM scheme and showed how
important having a loss detection mechanism is. With-
out it, even when the gate is assumed to be successful
the probability of errors can be as high as 30%, and fur-
thermore it increases with the number of ancilla modes.
Even though for perfect detectors the probability of suc-
cess of the gate increases with the number of ancillas,
with imperfect detectors the probability of the gate in-
troducing no errors actually increases with the number of
ancilla modes. This shows that even for applications in
which the success probability of the gate is not required

to be high (as in the construction of cluster states follow-
ing Nielsen’s proposal), either loss detection or the use
of high-efficiency detectors are crucial for the success of
the scheme.
Another interesting feature is that if the smallest en-

tangled ancilla is used, which is a four-mode entan-
gled state, the implementation of the CSIGN gate be-
comes simpler. On one hand it does not require number-
resolving photodetectors, and on the other hand only a
beam-splitter is required to mix the input modes with
the entangled ancila, instead of the very complex inter-
ferometer required by the general Fourier transformation
in the KLM implementation. Incidentally, it is worth
noting that this mixing with a beam splitter is very simi-
lar to the Type-II fusion operation introduced by Browne
and Rudolph [18], which can also be used to grow clus-
ter states. This operation also has the nice feature of
its fidelity being independent of the detector efficiency
(although this point was not mentioned by the authors.)
This simplified implementation of the gate, together with
the fact that the output modes need not be physically
post-selected when the gate is successful, makes it very
appealing for integration into an optical chip.
It is important to note that even with the loss detec-

tion mechanism, the KLM scheme requires high-efficiency
detectors and high-fidelity single-photon sources in or-
der to apply the nonlinear sign gate that is the basis of
the scheme. Here we have presented and alternative ap-
proach that allows us to do away with high-efficiency de-
tector and single-photon source requirements, provided
we have access to a high-fidelity polarization-entangled
Bell pair source. This gives us another possible path to
the implementation of LOQC with low errors using cur-
rently availabe detectors.
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