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UNIFORMLY MOST POWERFUL BAYESIAN TESTS
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Texas A&M University

Uniformly most powerful tests are statistical hypothesis tests that
provide the greatest power against a fixed null hypothesis among all
tests of a given size. In this article, the notion of uniformly most pow-
erful tests is extended to the Bayesian setting by defining uniformly
most powerful Bayesian tests to be tests that maximize the proba-
bility that the Bayes factor, in favor of the alternative hypothesis,
exceeds a specified threshold. Like their classical counterpart, uni-
formly most powerful Bayesian tests are most easily defined in one-
parameter exponential family models, although extensions outside of
this class are possible. The connection between uniformly most pow-
erful tests and uniformly most powerful Bayesian tests can be used
to provide an approximate calibration between p-values and Bayes
factors. Finally, issues regarding the strong dependence of resulting
Bayes factors and p-values on sample size are discussed.

1. Introduction. Uniformly most powerful tests (UMPTs) were proposed
by Neyman and Pearson in a series of articles published nearly a century ago
[e.g., Neyman and Pearson (1928, 1933); see Lehmann and Romano (2005)
for a comprehensive review of the subsequent literature]. They are defined as
statistical hypothesis tests that provide the greatest power among all tests
of a given size. The goal of this article is to extend the classical notion of
UMPTs to the Bayesian paradigm through the definition of uniformly most
powerful Bayesian tests (UMPBTs) as tests that maximize the probability
that the Bayes factor against a fixed null hypothesis exceeds a specified
threshold. This extension is important from several perspectives.

From a classical perspective, the outcome of a hypothesis test is a deci-
sion either to reject the null hypothesis or not to reject the null hypothesis.
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2 V. E. JOHNSON

Table 1

Probabilities of a random variable under competing hypotheses

X 1 2 3

Null hypothesis 0.99 0.008 0.001
Alternative hypothesis 0.01 0.001 0.989

This approach to hypothesis testing is closely related to Popper’s theory
of critical rationalism, in which scientific theories are never accepted as be-
ing true, but instead are only subjected to increasingly severe tests [e.g.,
Popper (1959), Mayo and Spanos (2006)]. Many scientists and philosophers,
notably Bayesians, find this approach unsatisfactory for at least two reasons
[e.g., Jeffreys (1939), Howson and Urbach (2005)]. First, a decision not to
reject the null hypothesis provides little quantitative information regarding
the truth of the null hypothesis. Second, the rejection of a null hypothesis
may occur even when evidence from the data strongly support its validity.
The following two examples—one contrived and one less so—illustrate these
concerns.

The first example involves a test for the distribution of a random vari-
able X that can take values 1, 2 or 3; cf. Berger and Wolpert (1984). The
probability of each outcome under two competing statistical hypotheses is
provided in Table 1. From this table, it follows that a most powerful test
can be defined by rejecting the null hypothesis when X = 2 or 3. Both error
probabilities of this test are equal to 0.01.

Despite the test’s favorable operating characteristics, the rejection of the
null hypothesis for X = 2 seems misleading: X = 2 is 8 times more likely to
be observed under the null hypothesis than it is under the alternative. If both
hypotheses were assigned equal odds a priori, the null hypothesis is rejected
at the 1% level of significance even though the posterior probability that
it is true is 0.89. As discussed further in Section 2.1, such clashes between
significance tests and Bayesian posterior probabilities can occur in variety
of situations and can be particularly troubling in large sample settings.

The second example represents a stylized version of an early phase clin-
ical trial. Suppose that a standard treatment for a disease is known to be
successful in 25% of patients, and that an experimental treatment is con-
cocted by supplementing the standard treatment with the addition of a new
drug. If the supplemental agent has no effect on efficacy, then the success
rate of the experimental treatment is assumed to remain equal to 25% (the
null hypothesis). A single arm clinical trial is used to test this hypothesis.
The trial is based on a one-sided binomial test at the 5% significance level.
Thirty patients are enrolled in the trial.

If y denotes the number of patients who respond to the experimental
treatment, then the critical region for the test is y ≥ 12. To examine the
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properties of this test, suppose first that y = 12, so that the null hypothesis
is rejected at the 5% level. In this case, the minimum likelihood ratio in
favor of the null hypothesis is obtained by setting the success rate under the
alternative hypothesis to 12/30 = 0.40 (in which case the power of the test
is 0.57). That is, if the new treatment’s success rate were defined a priori to
be 0.4, then the likelihood ratio in favor of the null hypothesis would be

Lmin =
0.25120.7518

0.4120.618
= 0.197.(1)

For any other alternative hypothesis, the likelihood ratio in favor of the null
hypothesis would be larger than 0.197 [e.g., Edwards, Lindman and Savage
(1963)]. If equal odds are assigned to the null and alternative hypothesis,
then the posterior probability of the null hypothesis is at least 16.5%. In
this case, the null hypothesis is rejected at the 5% level of significance even
though the data support it. And, of course, the posterior probability of the
null hypothesis would be substantially higher if one accounted for the fact
that a vast majority of early phase clinical trials fail.

Conversely, suppose now that the trial data provide clear support of the
null hypothesis, with only 7 successes observed during the trial. In this case,
the null hypothesis is not rejected at the 5% level, but this fact conveys little
information regarding the relative support that the null hypothesis received.
If the alternative hypothesis asserts, as before, that the success rate of the
new treatment is 0.4, then the likelihood ratio in favor of the null hypothesis
is 6.31; that is, the data favor the null hypothesis with approximately 6:1
odds. If equal prior odds are assumed between the two hypotheses, then the
posterior probability of the null hypothesis is 0.863. Under the assumption of
clinical equipoise, the prior odds assigned to the two hypotheses are assumed
to be equal, which means the only controversial aspect of reporting such odds
is the specification of the alternative hypothesis.

For frequentists, the most important aspect of the methodology reported
in this article may be that it provides a connection between frequentist
and Bayesian testing procedures. In one-parameter exponential family mod-
els with monotone likelihood ratios, for example, it is possible to define a
UMPBT with the same rejection region as a UMPT. This means that a
Bayesian using a UMPBT and a frequentist conducting a significance test
will make identical decisions on the basis of the observed data, which sug-
gests that either interpretation of the test may be invoked. That is, a decision
to reject the null hypothesis at a specified significance level occurs only when
the Bayes factor in favor of the alternative hypothesis exceeds a specified
evidence level. This fact provides a remedy to the two primary deficiencies
of classical significance tests—their inability to quantify evidence in favor of
the null hypothesis when the null hypothesis is not rejected, and their ten-
dency to exaggerate evidence against the null when it is. Having determined
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the corresponding UMPBT, Bayes factors can be used to provide a simple
summary of the evidence in favor of each hypothesis.

For Bayesians, UMPBTs represent a new objective Bayesian test, at least
when objective Bayesian methods are interpreted in the broad sense. As
Berger (2006) notes, “there is no unanimity as to the definition of objective
Bayesian analysis. . . ” and “many Bayesians object to the label ‘objective
Bayes,”’ preferring other labels such as “noninformative, reference, default,
conventional and nonsubjective.” Within this context, UMPBTs provide a
new form of default, nonsubjective Bayesian tests in which the alternative
hypothesis is determined so as to maximize the probability that a Bayes fac-
tor exceeds a specified threshold. This threshold can be specified either by a
default value—say 10 or 100—or, as indicated in the preceding discussion,
determined so as to produce a Bayesian test that has the same rejection re-
gion as a classical UMPT. In the latter case, UMPBTs provide an objective
Bayesian testing procedure that can be used to translate the results of clas-
sical significance tests into Bayes factors and posterior model probabilities.
By so doing, UMPBTs may prove instrumental in convincing scientists that
commonly-used levels of statistical significance do not provide “significant”
evidence against rejected null hypotheses.

Subjective Bayesian methods have long provided scientists with a formal
mechanism for assessing the probability that a standard theory is true. Un-
fortunately, subjective Bayesian testing procedures have not been—and will
likely never be—generally accepted by the scientific community. In most
testing problems, the range of scientific opinion regarding the magnitude of
violations from a standard theory is simply too large to make the report of a
single, subjective Bayes factor worthwhile. Furthermore, scientific journals
have demonstrated an unwillingness to replace the report of a single p-value
with a range of subjectively determined Bayes factors or posterior model
probabilities.

Given this reality, subjective Bayesians may find UMPBTs useful for com-
municating the results of Bayesian tests to non-Bayesians, even when a
UMPBT is only one of several Bayesian tests that are reported. By re-
ducing the controversy regarding the specification of prior densities on pa-
rameter values under individual hypotheses, UMPBTs can also be used to
focus attention on the specification of prior probabilities on the hypotheses
themselves. In the clinical trial example described above, for example, the
value of the success probability specified under the alternative hypothesis
may be less important in modeling posterior model probabilities than incor-
porating information regarding the outcomes of previous trials on related
supplements. Such would be the case if numerous previous trials of similar
agents had failed to provide evidence of increased treatment efficacy.

UMPBTs possess certain favorable properties not shared by other objec-
tive Bayesian methods. For instance, most objective Bayesian tests implicitly
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define local alternative prior densities on model parameters under the alter-
native hypothesis [e.g., Jeffreys (1939), O’Hagan (1995), Berger and Pericchi
(1996)]. As demonstrated in Johnson and Rossell (2010), however, the use of
local alternative priors makes it difficult to accumulate evidence in favor of
a true null hypothesis. This means that many objective Bayesian methods
are only marginally better than classical significance tests in summarizing
evidence in favor of the null hypothesis. For small to moderate sample sizes,
UMPBTs produce alternative hypotheses that correspond to nonlocal al-
ternative prior densities, which means that they are able to provide more
balanced summaries of evidence collected in favor of true null and true al-
ternative hypotheses.

UMPBTs also possess certain unfavorable properties. Like many objec-
tive Bayesian methods, UMPBTs can violate the likelihood principle, and
their behavior in large sample settings can lead to inconsistency if evidence
thresholds are held constant. And the alternative hypotheses generated by
UMPBTs are neither vague nor noninformative. Further comments and dis-
cussion regarding these issues are provided below.

In order to define UMPBTs, it useful to first review basic properties of
Bayesian hypothesis tests. In contrast to classical statistical hypothesis tests,
Bayesian hypothesis tests are based on comparisons of the posterior prob-
abilities assigned to competing hypotheses. In parametric tests, competing
hypotheses are characterized by the prior densities that they impose on the
parameters that define a sampling density shared by both hypotheses. Such
tests comprise the focus of this article. Specifically, it is assumed throughout
that the posterior odds between two hypotheses H1 and H0 can be expressed
as

P(H1 | x)
P(H0 | x)

=
m1(x)

m0(x)
× p(H1)

p(H0)
,(2)

where BF10(x) =m1(x)/m0(x) is the Bayes factor between hypotheses H1

and H0,

mi(x) =

∫

Θ

f(x | θ)πi(θ |Hi)dθ(3)

is the marginal density of the data under hypothesis Hi, f(x | θ) is the
sampling density of data x given θ, πi(θ | Hi) is the prior density on θ

under Hi and p(Hi) is the prior probability assigned to hypothesis Hi, for
i= 0,1. The marginal prior density for θ is thus

π(θ) = π0(θ |H0)P (H0) + π1(θ |H1)p(H1).

When there is no possibility of confusion, πi(θ |Hi) will be denoted more
simply by πi(θ). The parameter space is denoted by Θ and the sample space
by X . The logarithm of the Bayes factor is called the weight of evidence. All
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densities are assumed to be defined with respect to an appropriate underly-
ing measure (e.g., Lebesgue or counting measure).

Finally, assume that one hypothesis—the null hypothesis H0—is fixed on
the basis of scientific considerations, and that the difficulty in construct-
ing a Bayesian hypothesis test arises from the requirement to specify an
alternative hypothesis. This assumption mirrors the situation encountered
in classical hypothesis tests in which the null hypothesis is known, but no
alternative hypothesis is defined. In the clinical trial example, for instance,
the null hypothesis corresponds to the assumption that the success proba-
bility of the new treatment equals that of the standard treatment, but there
is no obvious value (or prior probability density) that should be assigned to
the treatment’s success probability under the alternative hypothesis that it
is better than the standard of care.

With these assumptions and definitions in place, it is worthwhile to re-
view a property of Bayes factors that pertains when the prior density defin-
ing an alternative hypothesis is misspecified. Let πt(θ |H1) = πt(θ) denote
the “true” prior density on θ under the assumption that the alternative
hypothesis is true, and let mt(x) denote the resulting marginal density of
the data. In general πt(θ) is not known, but it is still possible to compare
the properties of the weight of evidence that would be obtained by using
the true prior density under the alternative hypothesis to those that would
be obtained using some other prior density. From a frequentist perspective,
πt might represent a point mass concentrated on the true, but unknown,
data generating parameter. From a Bayesian perspective, πt might repre-
sent a summary of existing knowledge regarding θ before an experiment is
conducted. Because πt is not available, suppose that π1(θ |H1) = π1(θ) is
instead used to represent the prior density, again under the assumption that
the alternative hypothesis is true. Then it follows from Gibbs’s inequality
that

∫

X

mt(x) log

[

mt(x)

m0(x)

]

dx−
∫

X

mt(x) log

[

m1(x)

m0(x)

]

dx

=

∫

X

mt(x) log

[

mt(x)

m1(x)

]

dx

≥ 0.

That is,
∫

X

mt(x) log

[

mt(x)

m0(x)

]

dx≥
∫

X

mt(x) log

[

m1(x)

m0(x)

]

dx,(4)

which means that the expected weight of evidence in favor of the alternative
hypothesis is always decreased when π1(θ) differs from πt(θ) (on a set with
measure greater than 0). In general, the UMPBTs described below will thus
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decrease the average weight of evidence obtained in favor of a true alter-
native hypothesis. In other words, the weight of evidence reported from a
UMPBT will tend to underestimate the actual weight of evidence provided
by an experiment in favor of a true alternative hypothesis.

Like classical statistical hypothesis tests, the tangible consequence of a
Bayesian hypothesis test is often the rejection of one hypothesis, say H0,
in favor of the second, say H1. In a Bayesian test, the null hypothesis is
rejected if the posterior probability of H1 exceeds a certain threshold. Given
the prior odds between the hypotheses, this is equivalent to determining a
threshold, say γ, over which the Bayes factor between H1 and H0 must fall
in order to reject H0 in favor of H1. It is therefore of some practical interest
to determine alternative hypotheses that maximize the probability that the
Bayes factor from a test exceeds a specified threshold.

With this motivation and notation in place, a UMPBT(γ) may be formally
defined as follows.

Definition. A uniformly most powerful Bayesian test for evidence thresh-
old γ > 0 in favor of the alternative hypothesis H1 against a fixed null hy-
pothesis H0, denoted by UMPBT(γ), is a Bayesian hypothesis test in which
the Bayes factor for the test satisfies the following inequality for any θt ∈Θ
and for all alternative hypotheses H2 :θ ∼ π2(θ):

Pθt
[BF10(x)> γ]≥Pθt

[BF20(x)> γ].(5)

In other words, the UMPBT(γ) is a Bayesian test for which the alternative
hypothesis is specified so as to maximize the probability that the Bayes
factor BF10(x) exceeds the evidence threshold γ for all possible values of
the data generating parameter θt.

The remainder of this article is organized as follows. In the next section,
UMPBTs are described for one-parameter exponential family models. As
in the case of UMPTs, a general prescription for constructing UMPBTs is
available only within this class of densities. Specific techniques for defining
UMPBTs or approximate UMPBTs outside of this class are described later
in Sections 4 and 5. In applying UMPBTs to one parameter exponential
family models, an approximate equivalence between type I errors for UMPTs
and the Bayes factors obtained from UMPBTs is exposed.

In Section 3, UMPBTs are applied in two canonical testing situations:
the test of a binomial proportion, and the test of a normal mean. These two
tests are perhaps the most common tests used by practitioners of statistics.
The binomial test is illustrated in the context of a clinical trial, while the
normal mean test is applied to evaluate evidence reported in support of the
Higgs boson. Section 4 describes several settings outside of one parameter
exponential family models for which UMPBTs exist. These include cases in
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which the nuisance parameters under the null and alternative hypothesis
can be considered to be equal (though unknown), and situations in which it
is possible to marginalize over nuisance parameters to obtain expressions for
data densities that are similar to those obtained in one-parameter exponen-
tial family models. Section 5 describes approximations to UMPBTs obtained
by specifying alternative hypotheses that depend on data through statistics
that are ancillary to the parameter of interest. Concluding comments appear
in Section 6.

2. One-parameter exponential family models. Assume that {x1, . . . ,
xn} ≡ x are i.i.d. with a sampling density (or probability mass function
in the case of discrete data) of the form

f(x | θ) = h(x) exp[η(θ)T (x)−A(θ)],(6)

where T (x), h(x), η(θ) and A(θ) are known functions, and η(θ) is monotonic.
Consider a one-sided test of a point null hypothesis H0 : θ = θ0 against an
arbitrary alternative hypothesis. Let γ denote the evidence threshold for a
UMPBT(γ), and assume that the value of θ0 is fixed.

Lemma 1. Assume the conditions of the previous paragraph pertain, and
define gγ(θ, θ0) according to

gγ(θ, θ0) =
log(γ) + n[A(θ)−A(θ0)]

η(θ)− η(θ0)
.(7)

In addition, define u to be 1 or −1 according to whether η(θ) is monoton-
ically increasing or decreasing, respectively, and define v to be either 1 or
−1 according to whether the alternative hypothesis requires θ to be greater
than or less than θ0, respectively. Then a UMPBT(γ) can be obtained by
restricting the support of π1(θ) to values of θ that belong to the set

argmin
θ

uvgγ(θ, θ0).(8)

Proof. Consider the case in which the alternative hypothesis requires
θ to be greater than θ0 and η(θ) is increasing (so that uv = 1), and let θt
denote the true (i.e., data-generating) parameter for x under (6). Consider
first simple alternatives for which the prior on θ is a point mass at θ1. Then

Pθt(BF10 > γ) =Pθt [log(BF10)> log(γ)]
(9)

=Pθt

{

n
∑

i=1

T (xi)>
log(γ) + n[A(θ1)−A(θ0)]

η(θ1)− η(θ0)

}

.

It follows that the probability in (9) achieves its maximum value when the
right-hand side of the inequality is minimized, regardless of the distribution
of
∑

T (xi).
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Now consider composite alternative hypotheses, and define an indicator
function s according to

s(x, θ) = Ind

(

exp

{

[η(θ)− η(θ0)]
n
∑

i=1

T (xi)− n[A(θ)−A(θ0)]

}

> γ

)

.(10)

Let θ∗ be a value that minimizes gγ(θ, θ0). Then it follows from (9) that

s(x, θ)≤ s(x, θ∗) for all x.(11)

This implies that
∫

Θ

s(x, θ)π(θ)dθ ≤ s(x, θ∗)(12)

for all probability densities π(θ). It follows that

Pθt(BF10 > γ) =

∫

X

s(x, θ)f(x | θt)dx(13)

is maximized by a prior that concentrates its mass on the set for which
gγ(θ, θ0) is minimized.

The proof for other values of (u, v) follows by noting that the direction of
the inequality in (9) changes according to the sign of η(θ1)− η(θ0). �

It should be noted that in some cases the values of θ that maximize
Pθt(BF10 > γ) are not unique. This might happen if, for instance, no value
of the sufficient statistic obtained from the experiment could produce a
Bayes factor that exceeded the γ threshold. For example, it would not be
possible to obtain a Bayes factor of 10 against a null hypothesis that a
binomial success probability was 0.5 based on a sample of size n = 1. In
that case, the probability of exceeding the threshold is 0 for all values of the
success probability, and a unique UMPBT does not exist. More generally, if
T (x) is discrete, then many values of θ1 might produce equivalent tests. An
illustration of this phenomenon is provided in the first example.

2.1. Large sample properties of UMPBTs. Asymptotic properties of
UMPBTs can most easily be examined for tests of point null hypotheses
for a canonical parameter in one-parameter exponential families. Two prop-
erties of UMPBTs in this setting are described in the following lemma.

Lemma 2. Let X1, . . . ,Xn represent a random sample drawn from a
density expressible in the form (6) with η(θ) = θ, and consider a test of
the precise null hypothesis H0 : θ = θ0. Suppose that A(θ) has three bounded
derivatives in a neighborhood of θ0, and let θ∗ denote a value of θ that defines
a UMPBT(γ) test and satisfies

dgγ(θ
∗, θ0)

dθ
= 0.(14)
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Then the following statements apply:

(1) For some t ∈ (θ0, θ
∗),

|θ∗ − θ0|=
√

2 log(γ)

nA′′(t)
.(15)

(2) Under the null hypothesis,

log(BF10)→N(− log(γ),2 log(γ)) as n→∞.(16)

Proof. The first statement follows immediately from (14) by expanding
A(θ) in a Taylor series around θ∗. The second statement follows by noting
that the weight of evidence can be expressed as

log(BF10) = (θ∗ − θ0)

n
∑

i=1

T (xi)− n[A(θ∗)−A(θ0)].

Expanding in a Taylor series around θ0 leads to

log(BF10) =

√

2 log(γ)

nA′′(t)

[

n
∑

i=1

T (xi)− nA′(θ0)−
n

2
A′′(θ0)

√

2 log(γ)

nA′′(t)

]

+ ε,(17)

where ε represents a term of order O(n−1/2). From properties of exponential
family models, it is known that

Eθ0 [T (xi)] =A′(θ0) and Varθ0(T (xi)) =A′′(θ0).

Because A(θ) has three bounded derivatives in a neighborhood of θ0, [A
′(t)−

A′(θ0)] and [A′′(t)−A′′(θ0)] are order O(n−1/2), and the statement follows
by application of the central limit theorem. �

Equation (15) shows that the difference |θ∗ − θ0| is O(n−1/2) when the
evidence threshold γ is held constant as a function of n. In classical terms,
this implies that alternative hypotheses defined by UMPBTs represent Pit-
man sequences of local alternatives [Pitman (1949)]. This fact, in conjunc-
tion with (16), exposes an interesting behavior of UMPBTs in large sam-
ple settings, particularly when viewed from the context of the Jeffreys–
Lindley paradox [Jeffreys (1939), Lindley (1957); see also Robert, Chopin
and Rousseau (2009)].

The Jeffreys–Lindley paradox (JLP) arises as an incongruity between
Bayesian and classical hypothesis tests of a point null hypothesis. To un-
derstand the paradox, suppose that the prior distribution for a parameter
of interest under the alternative hypothesis is uniform on an interval I con-
taining the null value θ0, and that the prior probability assigned to the null
hypothesis is π1. If π1 is bounded away from 0, then it is possible for the
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null hypothesis to be rejected in an α-level significance test even when the
posterior probability assigned to the null hypothesis exceeds 1−α. Thus, the
anomalous behavior exhibited in the example of Table 1, in which the null
hypothesis was rejected in a significance test while being supported by the
data, is characteristic of a more general phenomenon that may occur even in
large sample settings. To see that the null hypothesis can be rejected even
when the posterior odds are in its favor, note that for sufficiently large n
the width of I will be large relative to the posterior standard deviation of θ
under the alternative hypothesis. Data that are not “too far” from fθ0 may
therefore be much more likely to have arisen from the null hypothesis than
from a density fθ when θ is drawn uniformly from I . At the same time, the
value of the test statistic based on the data may appear extreme given that
fθ0 pertains.

For moderate values of γ, the second statement in Lemma 2 shows that
the weight of evidence obtained from a UMPBT is unlikely to provide strong
evidence in favor of either hypothesis when the null hypothesis is true. When
γ = 4, for instance, an approximate 95% confidence interval for the weight
of evidence extends only between (−4.65,1.88), no matter how large n is.
Thus, the posterior probability of the null hypothesis does not converge to
1 as the sample size grows. The null hypothesis is never fully accepted—nor
the alternative rejected—when the evidence threshold is held constant as n
increases.

This large sample behavior of UMPBTs with fixed evidence thresholds
is, in a certain sense, similar to the JLP. When the null hypothesis is true
and n is large, the probability of rejecting the null hypothesis at a fixed
level of significance remains constant at the specified level of significance.
For instance, the null hypothesis is rejected 5% of the time in a standard
5% significance test when the null hypothesis is true, regardless of how large
the sample size is. Similarly, when γ = 4, the probability that the weight
of evidence in favor of the alternative hypothesis will be greater than 0
converges to 0.20 as n becomes large. Like the significance test, there remains
a nonzero probability that the alternative hypothesis will be favored by the
UMPBT even when the null hypothesis is true, regardless of how large n is.

On a related note, Rousseau (2007) has demonstrated that a point null
hypothesis may be used as a convenient mathematical approximation to
interval hypotheses of the form (θ0 − ε, θ0 + ε) if ε is sufficiently small. Her
results suggest that such an approximation is valid only if ε < o(n). The
fact that UMPBT alternatives decrease at a rate of O(n−1/2) suggests that
UMPBTs may be used to test small interval hypotheses around θ0, provided
that the width of the interval satisfies the constraints provided by Rousseau.

Further comments regarding the asymptotic properties of UMPBTs ap-
pear in the discussion section.
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3. Examples. Tests of simple hypotheses in one-parameter exponential
family models continue to be the most common statistical hypothesis tests
used by practitioners. These tests play a central role in many science, tech-
nology and business applications. In addition, the distributions of many test
statistics are asymptotically distributed as standard normal deviates, which
means that UMPBTs can be applied to obtain Bayes factors based on test
statistics [Johnson (2005)]. This section illustrates the use of UMPBT tests
in two archetypical examples; the first involves the test of a binomial success
probability, and the second the test of the value of a parameter estimate that
is assumed to be approximately normally distributed.

3.1. Test of binomial success probability. Suppose x∼Bin(n,p), and con-
sider the test of a null hypothesis H0 :p= p0 versus an alternative hypothesis
H1 :p > p0. Assume that an evidence threshold of γ is desired for the test;
that is, the alternative hypothesis is accepted if BF10 > γ.

From Lemma 1, the UMPBT(γ) is defined by finding p1 that satisfies
p1 > p0 and

p1 = argmin
p

log(γ)− n[log(1− p)− log(1− p0)]

log[p/(1− p)]− log[p0/(1− p0)]
.(18)

Although this equation cannot be solved in closed form, its solution can
be found easily using optimization functions available in most statistical
programs.

3.1.1. Phase II clinical trials with binary outcomes. To illustrate the
resulting test in a real-world application that involves small sample sizes,
consider a one-arm Phase II trial of a new drug intended to improve the
response rate to a disease from the standard-of-care rate of p0 = 0.3. Suppose
also that budget and time constraints limit the number of patients that can
be accrued in the trial to n = 10, and suppose that the new drug will be
pursued only if the odds that it offers an improvement over the standard of
care are at least 3:1. Taking γ = 3, it follows from (18) that the UMPBT
alternative is defined by taking H1 :p1 = 0.525. At this value of p1, the Bayes
factor BF10 in favor of H1 exceeds 3 whenever 6 or more of the 10 patients
enrolled in the trial respond to treatment.

A plot of the probability that BF10 exceeds 3 as function of the true
response rate p appears in Figure 1. For comparison, also plotted in this
figure (dashed curve) is the probability that BF10 exceeds 3 when p1 is set
to the data-generating parameter, that is, when p1 = pt.

Figure 1 shows that the probability that BF10 exceeds 3 when calculated
under the true alternative hypothesis is significantly smaller than it is un-
der the UMPBT alternative for values of p < 0.4 and for values of p > 0.78.
Indeed, for values of p < 0.334, there is no chance that BF10 will exceed 3.
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Fig. 1. Probability that the Bayes factor exceeds 3 plotted against the data-generating pa-
rameter. The solid curve shows the probability of exceeding 3 for the UMPBT. The dashed
curve displays this probability when the Bayes factor is calculated using the data-generating
parameter.

This is so because (0.334/0.30)x remains less than 3.0 for all x ≤ 10. The
decrease in the probability that the Bayes factor exceeds 3 for large values of
p stems from the relatively small probability that these models assign to the
observation of intermediate values of x. For example, when p= 0.8, the prob-
ability of observing 6 out 10 successes is only 0.088, while the corresponding
probability under H0 is 0.037. Thus BF10 = 2.39, and the evidence in favor
of the true success probability does not exceed 3. That is, the discontinu-
ity in the dashed curve at p≈ 0.7 occurs because the Bayes factor for this
test is not greater than 3 when x= 6. Similarly, the other discontinuities in
the dashed curve occur when the rejection region for the Bayesian test (i.e.,
values of x for which the Bayes factor is greater than 3) excludes another
immediate value of x. The dashed and solid curves agree for all Bayesian
tests that produce Bayes factors that exceed 3 for all values of x≥ 6.

It is also interesting to note that the solid curve depicted in Figure 1
represents the power curve for an approximate 5% one-sided significance
test of the null hypothesis that p= 0.3 [note that P0.3(X ≥ 6) = 0.047]. This
rejection region for the 5% significance test also corresponds to the region
for which the Bayes factor corresponding to the UMPBT(γ) exceeds γ for
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Fig. 2. Expected weight of evidence produced by a UMPBT(γ) against a null hypothesis
that p0 = 0.3 when the sample size is n= 10 (solid curve), versus the expected weight of
evidence observed using the data-generating success probability at the alternative hypothesis
(dashed curve). The data-generating parameter value is displayed on the horizontal axis.

all values of γ ∈ (2.36,6.82). If equal prior probabilities are assigned to H0

and H1, this suggests that a p-value of 0.05 for this test corresponds roughly
to the assignment of a posterior probability between (1.0/7.82,1.0/3.36) =
(0.13,0.30) to the null hypothesis. This range of values for the posterior
probability of the null hypothesis is in approximate agreement with values
suggested by other authors, for example, Berger and Sellke (1987).

This example also indicates that a UMPBT can result in large type I
errors if the threshold γ is chosen to be too small. For instance, taking γ = 2
in this example would lead to type I errors that were larger than 0.05.

It is important to note that the UMPBT does not provide a test that
maximizes the expected weight of evidence, as equation (4) demonstrates.
This point is illustrated in Figure 2, which depicts the expected weight of
evidence obtained in favor of H1 by a solid curve as the data-generating
success probability is varied in (0.3,1.0). For comparison, the dashed curve
shows the expected weight of evidence obtained as a function of the true pa-
rameter value. As predicted by the inequality in (4), on average the UMPBT
provides less evidence in favor of the true alternative hypothesis for all values
of p ∈ (0.3,1.0) except p= 0.525, the UMPBT value.



UNIFORMLY MOST POWERFUL BAYESIAN TESTS 15

3.2. Test of normal mean, σ2 known. Suppose xi, i= 1, . . . , n are i.i.d.
N(µ,σ2) with σ2 known. The null hypothesis is H0 :µ= µ0, and the alter-
native hypothesis is accepted if BF10 > γ. Assuming that the alternative
hypothesis takes the form H1 :µ= µ1 in a one-sided test, it follows that

log(BF10) =
n

σ2

[

x̄(µ1 − µ0) +
1

2
(µ2

0 − µ2
1)

]

.(19)

If the data-generating parameter is µt, the probability that BF10 is greater
than γ can be written as

Pµt

[

(µ1 − µ0)x̄>
σ2 log(γ)

n
− 1

2
(µ2

0 − µ2
1)

]

.(20)

If µ1 > µ0, then the UMPBT(γ) value of µ1 satisfies

argmin
µ1

σ2 log(γ)

n(µ1 − µ0)
+

1

2
(µ0 + µ1).(21)

Conversely, if µ1 <µ0, then optimal value of µ1 satisfies

argmin
µ1

σ2 log(γ)

n(µ1 − µ0)
+

1

2
(µ0 + µ1).(22)

It follows that the UMPBT(γ) value for µ1 is given by

µ1 = µ0 ± σ

√

2 log γ

n
,(23)

depending on whether µ1 > µ0 or µ1 <µ0.
Figure 3 depicts the probability that the Bayes factor exceeds γ = 10 when

testing a null hypothesis that µ= 0 based on a single, standard normal ob-
servation (i.e., n= 1, σ2 = 1). In this case, the UMPBT(10) is obtained by
taking µ1 = 2.146. For comparison, the probability that the Bayes factor ex-
ceeds 10 when the alternative is defined to be the data-generating parameter
is depicted by the dashed curve in the plot.

UMPBTs can also be used to interpret the evidence obtained from clas-
sical UMPTs. In a classical one-sided test of a normal mean with known
variance, the null hypothesis is rejected if

x̄ > µ0 + zα
σ√
n
,

where α is the level of the test designed to detect µ1 >µ0. In the UMPBT,
from (19)–(20) it follows that the null hypothesis is rejected if

x̄ >
σ2 log(γ)

n(µ1 − µ0)
+

1

2
(µ1 + µ0).
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Fig. 3. Probability that Bayes factor in favor of UMPBT alternative exceeds 10 when
µ0 = 0 and n= 1 (solid curve). The dashed curve displays this probability when the Bayes
factor is calculated under the alternative hypothesis that µ1 equals the data-generating
parameter (displayed on the horizontal axis).

Setting µ1 = µ0 + σ
√

2 log(γ)/n and equating the two rejection regions, it
follows that the rejection regions for the two tests are identical if

γ = exp

(

z2α
2

)

.(24)

For the case of normally distributed data, it follows that

µ1 = µ0 +
σ√
n
zα,(25)

which means that the alternative hypothesis places µ1 at the boundary of
the UMPT rejection region.

The close connection between the UMPBT and UMPT for a normal
mean makes it relatively straightforward to examine the relationship be-
tween the p-values reported from a classical test and either the Bayes fac-
tors or posterior probabilities obtained from a Bayesian test. For example,
significance tests for normal means are often conducted at the 5% level.
Given this threshold of evidence for rejection of the null hypothesis, the
one-sided γ threshold corresponding to the 5% significance test is 3.87, and
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Fig. 4. Correspondence between p-values and posterior model probabilities for a UMPBT
test derived from a 5% test. This plot assumes equal prior probabilities were assigned to
the null and alternative hypotheses. Note that both axes are displayed on the logarithmic
scale.

the UMPBT alternative is µ1 = µ0 + 1.645σ/
√
n. If we assume that equal

prior probabilities are assigned to the null and alternative hypotheses, then
a correspondence between p-values and posterior probabilities assigned to
the null hypothesis is easy to establish. This correspondence is depicted in
Figure 4. For instance, this figure shows that a p-value of 0.01 corresponds
to the assignment of posterior probability 0.08 to the null hypothesis.

3.2.1. Evaluating evidence for the Higgs boson. On July 4, 2012, scien-
tists at CERN made the following announcement:

We observe in our data clear signs of a new particle, at the level of 5 sigma, in
the mass region around 126 gigaelectronvolts (GeV). (http://press.web.cern.ch/
press/PressReleases/Releases2012/PR17.12E.html).

In very simplified terms, the 5 sigma claim can be explained by fitting a
model for a Poisson mean that had the following approximate form:

µ(x) = exp(a0 + a1x+ a2x
2) + sφ(x;m,w).

Here, x denotes mass in GeV, {ai} denote nuisance parameters that model
background events, s denotes signal above background, m denotes the mass

http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.html
http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.html
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of a new particle, w denotes a convolution parameter and φ(x;m,w) de-
notes a Gaussian density centered on m with standard deviation w [Prosper
(2012)]. Poisson events collected from a series of high energy experiments
conducted in the Large Hadron Collider (LHC) at CERN provide the data
to estimate the parameters in this stylized model. The background param-
eters {ai} are considered nuisance parameters. Interest, of course, focuses
on testing whether s > 0 at a mass location m. The null hypothesis is that
s= 0 for all m.

The accepted criterion for declaring the discovery of a new particle in the
field of particle physics is the 5 sigma rule, which in this case requires that the
estimate of s be 5 standard errors from 0 (http://public.web.cern.ch/public/).

Calculation of a Bayes factor based on the original mass spectrum data
is complicated by the fact that prior distributions for the nuisance param-
eters {ai}, m, and w are either not available or are not agreed upon. For
this reason, it is more straightforward to compute a Bayes factor for these
data based on the test statistic z = ŝ/ se(ŝ) where ŝ denotes the maximum
likelihood estimate of s and se(ŝ) its standard error [Johnson (2005, 2008)].
To perform this test, assume that under the null hypothesis z has a stan-
dard normal distribution, and that under the alternative hypothesis z has a
normal distribution with mean µ and variance 1.

In this context, the 5 sigma rule for declaring a new particle discovery
means that a new discovery can only be declared if the test statistic z > 5.
Using equation (24) to match the rejection region of the classical significance
test to a UMPBT(γ) implies that the corresponding evidence threshold is
γ = exp(12.5) ≈ 27,000. In other words, a Bayes factor of approximately
γ = exp(12.5) ≈ 27,000 corresponds to the 5 sigma rule required to accept
the alternative hypothesis that a new particle has been found.

It follows from the discussion following equation (25) that the alternative
hypothesis for the UMPBT alternative is µ1 = 5. This value is calculated
under the assumption that the test statistic z has a standard normal dis-
tribution under the null hypothesis [i.e., σ = 1 and n = 1 in (23)]. If the
observed value of z was exactly 5, then the Bayes factor in favor of a new
particle would be approximately 27,000. If the observed value was, say 5.1,
then the Bayes factor would be exp(−0.5[0.12−5.12]) = 44,000. These values
suggest very strong evidence in favor of a new particle, but perhaps not as
much evidence as might be inferred by nonstatisticians by the report of a
p-value of 3× 10−7.

There are, of course, a number of important caveats that should be con-
sidered when interpreting the outcome of this analysis. This analysis as-
sumes that an experiment with a fixed endpoint was conducted, and that
the UMPBT value of the Poisson rate at 126 GeV was of physical signifi-
cance. Referring to (23) and noting that the asymptotic standard error of
z decreases at rate

√
n, it follows that the UMPBT alternative hypothesis

favored by this analysis is O(n−1/2). For sufficiently large n, systematic er-

http://public.web.cern.ch/public/
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Table 2

Common one parameter exponential family models for which UMPBT(γ) exist

Model Test Objective function

Binomial p1 > p0 {log(γ)− n log[(1− p)/(1− p0)]}(log{[p(1− p0)]/[(1− p)p0]})
−1

Exponential µ1 > µ0 {log(γ) + n[log(µ1)− log(µ0)]}[1/µ0 − 1/µ1]
−1

Neg. Bin. p1 > p0 {log(γ)− r log[(1− p1)/(1− p0)]}[log(p1)− log(p0)]
−1

Normal σ2
1 > σ2

0 {2σ2
1σ

2
0(log(γ) +

n

2
[log(σ2

1)− log(σ2
0)])}[σ

2
1 − σ2

0 ]
−1

Normal µ1 > µ0 [σ2 log(γ)](µ1 − µ0)
−1 + 1

2
(µ0 + µ1)

Poisson µ1 > µ0 [log(γ) + n(µ1 − µ0)][log(µ1)− log(µ0)]
−1

rors in the estimation of the background rate could eventually lead to the
rejection of the null hypothesis in favor of the hypothesis of a new particle.
This is of particular concern if the high energy experiments were continued
until a 5 sigma result was obtained. Further comments regarding this point
appear in the discussion section.

3.3. Other one-parameter exponential family models. Table 2 provides
the functions that must be minimized to obtain UMPBTs for a number of
common exponential family models. The objective functions listed in this
table correspond to the function gγ(·, ·) specified in Lemma 1 with v = 1.
The negative binomial is parameterized by the fixed number of failures r
and random number of successes x = 0,1, . . . observed before termination
of sampling. The other models are parameterized so that µ and p denote
means and proportions, respectively, while σ2 values refer to variances.

4. Extensions to other models. Like UMPTs, UMPBTs are most easily
defined within one-parameter exponential family models. In unusual cases,
UMPBTs can be defined for data modeled by vector-valued exponential
family models, but in general such extensions appear to require stringent
constraints on nuisance parameters.

One special case in which UMPBTs can be defined for a d-dimensional
parameter θ occurs when the density of an observation can be expressed as

f(x | θ) = h(x) exp

[

d
∑

i=1

ηi(θ)Ti(x)−A(θ)

]

,(26)

and all but one of the ηi(θ) are constrained to have identical values under
both hypotheses. To understand how a UMPBT can be defined in this case,
without loss of generality suppose that ηi(θ), i = 2, . . . , d are constrained
to have the same value under both the null and alternative hypotheses,
and that the null and alternative hypotheses are defined by H0 : θ1 = θ1,0
and H1 : θ1 > θ1,0. For simplicity, suppose further that η1 is a monotonically
increasing function.
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As in Lemma 1, consider first simple alternative hypotheses expressible
as H1 : θ1 = θ1,1. Let θ0 = (θ1,0, . . . , θd,0)

′ and θ1 = (θ1,1, . . . , θd,1)
′. It follows

that the probability that the logarithm of the Bayes factor exceeds a thresh-
old log(γ) can be expressed as

P[log(BF10)> log(γ)]

=P{[η1(θ1,1)− η1(θ1,0)]T1(x)− [A(θ1)−A(θ0)]> log(γ)}(27)

=P

[

T1(x)>
log(γ) + [A(θ1)−A(θ0)]

[η1(θ1,1)− η1(θ1,0)]

]

.

The probability in (27) is maximized by minimizing the right-hand side
of the inequality. The extension to composite alternative hypotheses follows
the logic described in inequalities (11)–(13), which shows that UMPBT(γ)
tests can be obtained in this setting by choosing the prior distribution of θ1

under the alternative hypotheses so that it concentrates its mass on the set

argmin
θ

log(γ) + [A(θ1)−A(θ0)]

[η1(θ1,1)− η1(θ1,0)]
,(28)

while maintaining the constraint that the values of ηi(θ) are equal under
both hypotheses. Similar constructions apply if η1 is monotonically decreas-
ing, or if the alternative hypothesis specifies that θ1,0 < θ0,0.

More practically useful extensions of UMPBTs can be obtained when it is
possible to integrate out nuisance parameters in order to obtain a marginal
density for the parameter of interest that falls within the class of exponen-
tial family of models. An important example of this type occurs in testing
whether a regression coefficient in a linear model is zero.

4.1. Test of linear regression coefficient, σ2 known. Suppose that

y∼N(Xβ, σ2In),(29)

where σ2 is known, y is an n × 1 observation vector, X an n × p design
matrix of full column rank and β = (β1, . . . , βp)

′ denotes a p× 1 regression
parameter. The null hypothesis is defined as H0 :βp = 0. For concreteness,
suppose that interest focuses on testing whether βp > 0, and that under
both the null and alternative hypotheses, the prior density on the first p− 1
components of β is a multivariate normal distribution with mean vector 0

and covariance matrix σ2Σ. Then the marginal density of y under H0 is

m0(y) = (2πσ2)−n/2|Σ|−1/2|F|−1/2 exp

(

− R

2σ2

)

,(30)

where

F=X′

−pX−p +Σ−1, H=X−pF
−1X′

−p, R= y′(In −H)′y,(31)

and X−p is the matrix consisting of the first p− 1 columns of X.
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Let βp∗ denote the value of βp under the alternative hypothesis H1 that
defines the UMPBT(γ), and let xp denote the pth column of X. Then the
marginal density of y under H1 is

m1(y) =m0(y)× exp

{

− 1

2σ2
[βp∗

2x′

p(In−H)xp−2βp∗x
′

p(In−H)y]

}

.(32)

It follows that the probability that the Bayes factor BF10 exceeds γ can
be expressed as

P

[

x′

p(In −H)y>
σ2 log(γ)

βp∗
+

1

2
βp∗x

′

p(In −H)xp

]

,(33)

which is maximized by minimizing the right-hand side of the inequality. The
UMPBT(γ) is thus obtained by taking

βp∗ =

√

2σ2 log(γ)

x′
p(In −H)xp

.(34)

The corresponding one-sided test of βp < 0 is obtained by reversing the sign
of βp∗ in (34).

Because this expression for the UMPBT assumes that σ2 is known, it is
not of great practical significance by itself. However, this result may guide
the specification of alternative models in, for example, model selection al-
gorithms in which the priors on regression coefficients are specified condi-
tionally on the value of σ2. For example, the mode of the nonlocal priors
described in Johnson and Rossell (2012) might be set to the UMPBT values
after determining an appropriate value of γ based on both the sample size
n and number of potential covariates p.

5. Approximations to UMPBTs using data-dependent alternatives. In
some situations—most notably in linear models with unknown variances—
data dependent alternative hypotheses can be defined to obtain tests that
are approximately uniformly most powerful in maximizing the probability
that a Bayes factor exceeds a threshold. This strategy is only attractive
when the statistics used to define the alternative hypothesis are ancillary to
the parameter of interest.

5.1. Test of normal mean, σ2 unknown. Suppose that xi, i= 1, . . . , n, are
i.i.d. N(µ,σ2), that σ2 is unknown and that the null hypothesis is H0 :µ=
µ0. For convenience, assume further that the prior distribution on σ2 is an
inverse gamma distribution with parameters α and λ under both the null
and alternative hypotheses.

To obtain an approximate UMPBT(γ), first marginalize over σ2 in both
models. Noting that (1+a/t)t → ea, it follows that the Bayes factor in favor
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of the alternative hypothesis satisfies

BF10(x) =

[∑n
i=1(xi − µ0)

2 + 2λ
∑n

i=1(xi − µ1)2 + 2λ

]n/2+α

(35)

≈
[

1 + (x̄− µ0)
2/s2

1 + (x̄− µ1)2/s2

]n/2+α

(36)

≈ exp

{

− n

2s2
[(x̄− µ1)

2 − (x̄− µ0)
2]

}

,(37)

where

s2 =

∑n
i=1(xi − x̄)2 +2λ

n+ 2α
.(38)

The expression for the Bayes factor in (37) reduces to (19) if σ2 is replaced
by s2. This implies that an approximate, but data-dependent UMPBT al-
ternative hypothesis can be specified by taking

µ1 = µ0 ± s

√

2 log γ

n
,(39)

depending on whether µ1 > µ0 or µ1 <µ0.
Figure 5 depicts the probability that the Bayes factor exceeds γ = 10 when

testing a null hypothesis that µ= 0 based on an independent sample of size
n = 30 normal observations with unit variance (σ2 = 1) and using (39) to
set the value of µ1 under the alternative hypothesis. For comparison, the
probability that the Bayes factor exceeds 10 when the alternative is defined
by taking σ2 = 1 and µ1 to be the data-generating parameter is depicted by
the dashed curve in the plot. Interestingly, the data-dependent, approximate
UMPBT(10) provides a higher probability of producing a Bayes factor that
exceeds 10 than do alternatives fixed at the data generating parameters.

5.2. Test of linear regression coefficient, σ2 unknown. As final example,
suppose that the sampling model of Section 4.1 holds, but assume now that
the observational variance σ2 is unknown and assumed under both hypothe-
ses to be drawn from an inverse gamma distribution with parameters α and
λ. Also assume that the prior distribution for the first p−1 components of β,
given σ2, is a multivariate normal distribution with mean 0 and covariance
matrix σ2Σ. As before, assume that H0 :βp = 0. Our goal is to determine a
value βp∗ so that H1 :βp = βp∗ is the UMPBT(γ) under the constraint that
βp > 0.

Define y1 = y− xpβp∗ and let y0 = y. By integrating with respect to the
prior densities on σ2 and the first p − 1 components of β, the marginal
density of the data under hypothesis i, i= 0,1 can be expressed as

mi(y) = 2απ−n/2|Σ|−1/2 λα

Γ(α)
Γ(n/2 + α)|F|−1/2R

−n/2−α
i ,(40)
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Fig. 5. Probability that Bayes factor based on data-dependent, approximate UMPBT
alternative exceeds 10 when µ0 = 0 and n = 30 (solid curve). The dashed curve displays
this probability when the Bayes factor is calculated under the alternative hypothesis that µ1

equals data-generating parameter (displayed on the horizontal axis) and σ2 = 1 (the true
value).

where F is defined in (31), and

Ri = y′

i(In −H)yi + 2λ.(41)

It follows that the Bayes factor in favor of H1 can be written as

BF10 =

[

1 +
βp∗

2x′
p(In −H)xp − 2βp∗x

′
p(In −H)y

R0

]

−n/2−α

(42)

≈ exp

{

− 1

2s2p
[βp∗

2x′

p(In −H)xp − 2βp∗x
′

p(In −H)y]

}

,(43)

where

s2p =
R0

n+ 2α
.(44)

The UMPBT(γ) is defined from (43) according to

P(BF10 > γ) =P

[

x′

p(In −H)y>
s2p log(γ)

βp∗
+

1

2
βp∗x

′

p(In −H)xp

]

.(45)
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Minimizing the right-hand side of the last inequality with respect to βp∗
results in

βp∗ =

√

2s2p log(γ)

x′
p(In −H)xp

.(46)

This expression is consistent with the result obtained in the known vari-
ance case, but with s2p substituted for σ2.

6. Discussion. The major contributions of this paper are the definition of
UMPBTs and the explicit description of UMPBTs for regular one-parameter
exponential family models. The existence of UMPBTs for exponential family
models is important because these tests represent the most common hypoth-
esis tests conducted by practitioners. The availability of UMPBTs for these
models means that these tests can be used to interpret test results in terms
of Bayes factors and posterior model probabilities in a wide range of scien-
tific settings. The utility of these tests is further enhanced by the connection
between UMPBTs and UMPTs that have the same rejection region. This
connection makes it trivial to simultaneously report both the p-value from
a test and the corresponding Bayes factor.

The simultaneous report of default Bayes factors and p-values may play
a pivotal role in dispelling the perception held by many scientists that a
p-value of 0.05 corresponds to “significant” evidence against the null hy-
pothesis. The preceding sections contain examples in which this level of
significance favors the alternative hypothesis by odds of only 3 or 4 to 1.
Because few researchers would regard such odds as strong evidence in favor
of a new theory, the use of UMPBTs and the report of Bayes factors based
upon them may lead to more realistic interpretations of evidence obtained
from scientific studies.

The large sample properties of UMPBTs described in Section 2.1 deserve
further comment. From Lemma 2, it follows that the expected weight of
evidence in favor of a true null hypothesis in an exponential family model
converges to log(γ) as the sample size n tends to infinity. In other words, the
evidence threshold γ represents an approximate bound on the evidence that
can be collected in favor of the null hypothesis. This implies that γ must be
increased with n in order to obtain a consistent sequence of tests.

Several criteria might be used for selecting a value for γ in large sample
settings. One criterion can be inferred from the first statement of Lemma 2,
where it is shown that the difference between the tested parameter’s value
under the null and alternative hypotheses is proportional to [log(γ)/n]1/2.
For this difference to be a constant—as it would be in a subjective Bayesian
test—log(γ) must be proportional to n, or γ = exp(cn) for some c > 0. This
suggests that an appropriate value for c might be determined by calibrating
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the weight of evidence against an accepted threshold/sample size combina-
tion. For example, if an evidence threshold of 4 were accepted as the standard
threshold for tests conducted with a sample size of 100, then c might be set
to log(4)/100 = 0.0139. This value of c leads to an evidence threshold of
γ = 16 for sample sizes of 200, a threshold of 64 for sample sizes of 300, etc.
From (24), the significance levels for corresponding z-tests would be 5%, 1%
and 0.2%, respectively.

The requirement to increase γ to achieve consistent tests in large sam-
ples also provides insight into the performance of standard frequentist and
subjective Bayesian tests in large sample settings. The exponential growth
rate of γ required to maintain a fixed alternative hypothesis suggests that
the weight of evidence should be considered against the backdrop of sample
size, even in Bayesian tests. This is particularly important in goodness-of-fit
testing where small deviations from a model may be tolerable. In such set-
tings, even moderately large Bayes factors against the null hypotheses may
not be scientifically important when they are based on very large sample
sizes.

From a frequentist perspective, the use of UMPBTs in large sample set-
tings can provide insight into the deviations from null hypotheses when they
are (inevitably) detected. For instance, suppose that a one-sided 1% test has
been conducted to determine if the mean of normal data is 0, and that the
test is rejected with a p-value of 0.001 based on a sample size of 10,000.
From (24), the implied evidence threshold for the test is γ = 15, and the
alternative hypothesis that has been implicitly tested with the UMPBT is
that µ = 0.023σ. Based on the observation of x̄= 0.031σ, the Bayes factor
in favor of this alternative is 88.5. Although there are strong odds against
the null, the scientific importance of this outcome may be tempered by the
fact that the alternative hypothesis that was supported against the null
represents a standardized effect size of only 2.3%.

This article has focused on the specification of UMPBTs for one-sided
alternatives. A simple extension of these tests to two-sided alternatives can
be obtained by assuming that the alternative hypothesis is represented by
two equally-weighted point masses located at the UMPBT values determined
for one-sided tests. The Bayes factors for such tests can be written as

P

[

0.5ml(x) + 0.5mh(x)

m0(x)
> γ

]

,(47)

where ml and mh denote marginal densities corresponding to one-sided
UMPBTs. Letting m∗(x) = max(ml(x),mh(x)) for the data actually ob-
served, and assuming that the favored marginal density dominates the other,
it follows that

P

[

0.5ml(x) + 0.5mh(x)

m0(x)
> γ

]

≈P

[

m∗(x)

m0(x)
> 2γ

]

.(48)
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Thus, an approximate two-sided UMPBT(γ) can be defined by specifying
an alternative hypothesis that equally concentrates its mass on the two one-
sided UMPBT(2γ) tests.

Additional research is needed to identify classes of models and testing
contexts for which UMPBTs can be defined. The UMPBTs described in
this article primarily involve tests of point null hypotheses, or tests that
can be reduced to a test of a point null hypothesis after marginalizing over
nuisance parameters. Whether UMPBTs can be defined in more general
settings remains an open question.
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