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ABSTRACT 

 

 The dawn of the big data era has led to the inception of new and creative 

compute paradigms that utilize heterogeneity, specialization, processor-in-memory and 

approximation due to the high demand for memory bandwidth and power. Relaxing the 

constraints of applications has led to approximate computing being put forth as a feasible 

solution for high performance computation.  The latest fad such as machine learning, 

video/image processing, data analytics, neural networks and other data intensive 

applications have heightened the possibility of using approximate computing as a 

feasible solution as these applications allow imprecise output within a specific error 

range.  

 This work presents Bit Based Approx-NoC, a hardware data approximation 

framework with a lightweight bit-based approximation technique for high performance 

NoCs. Bit-Based Approx-NoC facilitates approximate matching of data patterns, within 

a controllable error range, to compress them thereby reducing the data movement across 

the chip. The proposed work exploits the entropy between data words in order to 

increase their inherent compressibility. Evaluations in this work show on average 5% 

latency reduction and 14% throughput improvement compared to the state of the art NoC 

compression mechanisms.  
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1.  INTRODUCTION  

 

 Approximate Computing [1, 2, 3, 4] has emerged as an attractive alternate 

compute paradigm by trading off computation accuracy for benefits in both performance 

and energy efficiency. Approximate techniques exploit the underlying ability of 

applications to withstand some amount of imprecision/loss in the quality of the 

application results. Many evolving applications in machine learning, image/video 

processing and pattern recognition have already employed approximation techniques to 

achieve better performance [5, 6, 7, 8, 9].  

 Prior research work has proposed various approximation techniques for evolving 

data intensive applications. Several software approximation mechanisms [10, 11, 12] 

have attempted to reduce the computation overhead by approximately executing certain 

sections of the application code. Hardware mechanisms are of two categories, which are 

those that utilize approximate computation or approximate storage, propose to trade-off 

accuracy for high performance and energy efficiency. These hardware techniques can be 

broadly categorized into compute-based or memory-based approximation. 

 A significant portion of research on hardware approximation techniques has 

focused on either the compute-based approximation [13, 14, 15] for faster but inaccurate 

execution, or the storage-based [16, 17, 18] (cache/DRAM-based) for low overhead 

(area/power) memory. However, there has been no prior research on approximate 

communication techniques for the interconnection fabric of multicore systems until the 

work on Approx-NoC, A data approximation framework [19].  
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 A large amount of strain has been placed on the NoCs for high memory 

throughput due to the upcoming memory intensive applications in the big data period 

and communication-centric applications such as image/video processing. This has led to 

designers trying to solve the memory bandwidth issue [20, 21, 22, 23]. Hence designing 

a high-performance NoC, which can efficiently provide high throughput, has become 

critical to overall system performance. Therefore, the need to explore hardware 

approximation techniques that can leverage the modern approximate computing 

paradigm for high throughput NoCs is impending. 

 Previously, work has been done on an approximation engine with Value based 

approximation technique [19]. The Approx-NoC framework operates by first utilizing an 

approximation engine, with a lightweight error control logic, to approximate the given 

data block to the nearest compressible reference data pattern [19]. Then the encoder 

module of an underlying NoC compression technique [24, 25] is used to compress the 

data block. 

 This work proposes an extension to the Approx-NoC framework by adding a bit-

based approximation technique (BAXX), with a light weight error margin compute 

logic, which can be used in the manner of plug and play module for any underlying NoC 

data compression mechanisms. The main idea of BAXX boils down to transforming 

each memory data block such that the lower order bits of all the words are placed 

together, to improve the inherent compressibility of data while avoiding high 

approximation value error. The transformed data has higher inherent compressibility and 
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increased value locality. The error threshold to control the extent of data approximation 

is determined by the programmer and can be dynamically adjusted at run time.  

 To this order, this work presents two low overhead microarchitecture 

implementations of bit-based approximation for both dynamic dictionary-based 

compression (DI-COMP) and static frequent pattern compression (FP-COMP). 

The major contributions of this work are as follows: 

• Design of an approximation engine with a data-type aware Bit Based Approximation 

Technique (BAXX) where the data block is transformed following which computations 

are performed on the data block before approximating the data block. 

• Low overhead micro-architectural implementations of BAXX for both the FP-COMP 

(static) technique as well as for the DI-COMP (dynamic) technique with lightweight 

error control logic. 

• The evaluation results show that Bit-Based Approx-NoC provides promising 

opportunities in the big data application domain. Overall we have 57% improvement in 

the compression ratio as compared to the baseline system and 5% improvement 

compared to the state of the art compression techniques. The work has 4% latency 

improvement and 14% throughput improvement over the state-of-the-art compression 

techniques.  
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2.  BACKGROUND 

 

 NoC is a network-based communication subsystem on an integrated circuit. 

NoCs have emerged as the most competent method to connect an ever-increasing 

number of varied on-chip components. It facilitates data transfer among multiple 

components such as processor cores, memories, and specialized IP blocks present in the 

Chip Multi-Processor (CMP) system. This chapter briefly talks about the general NoC 

architecture and the various building blocks involved in this work. 

2.1 NoC Architecture 

 The NoC architecture is made of three main blocks Network Interface (NI), 

Routers and Links.  

 Network Interface 

 The NI facilitates communication between the IP cores and the on-chip network. 

It acts as a bridge between the network and the cores. NI injects packets from the core 

into the network and ejects data packets from the network to the cores. NI also facilitates 

homogeneity in the on-chip network as it packs and un-packs the data as per the various 

communication protocols followed by the different components of the CMP.  

 Traditionally, when data to be transmitted enters the NI from the tile, it is 

packetized and fragmented into flits in preparation for transmission. The packet is then 

injected into the router via the NI-port in a flit-by-flit manner. When the packet reaches 

its destination, the flits are assembled in order to restore the packet. This work consists 

of a BAXX module and an encoder/decoder pair for data compression in the NI. 
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 Routers 

 The flits are injected into the routers one by one following which the flits are 

transported through the network until they reach their destination. There are four 

constraints that govern the design of the network, namely topology, routing, flow control 

and router microarchitecture. Each of these parameters is discussed below. 

• Topology: Topology defines the physical layout of the network, that is, it defines 

the physical connections between nodes and links in the network. Topology 

determines the number of hops required to transfer a message from the source to 

its destination.  Hop count has a direct impact on the power consumed by the 

network. This work employs a mesh topology. Mesh is a k-ary n-cube design, 

where k is the number of nodes along each dimension and n is the number of 

dimensions. This work uses an 8x8 mesh network. 

• Routing Algorithm: For a given network, the routing algorithm decides the route 

to be taken by the packets in order to reach their destination. The routing 

algorithms ability to balance the traffic flow across the network directly impacts 

the latency and throughput of the network. This work employs the XY routing 

algorithm. 

• Flow Control: Flow control manages the allocation of resources to packets as 

they progress along their route to their destination.  The key resources are buffers 

and channels. In this work the NoC is configured to use wormhole switching, 

which manages resources at the granularity of flits. With wormhole switching 
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mechanism, a flit is allowed to move to the next router as soon as sufficient 

buffer space is available in the downstream router to hold this flit.   

• Router Microarchitecture: Router microarchitecture defines the build of the 

routers used in the NoC. The main building blocks of a router are input buffers, 

VC allocator, routing computation logic, switch allocator and crossbar. This 

work uses 4 Virtual channels.  

 Links 

 A communication link is composed of a set of wires and connects two routers in 

the network. Links may consist of one or more logical or physical channels and each 

channel is composed of a set of wires. Generally, a flit is the size of a phit, physical unit 

and this is the smallest unit that can be transmitted through a link at any given point of 

time. Flit length is usually the same as the channel width. 

2.2. Compression in NoCs 

 The NoC can have two types of compression, cache compression where the 

cache architecture needs to be modified in order to compress data and store data in this 

compressed manner and NI compression/decompression modules where the 

compression/decompression modules are present in the NI and can be used in a plug and 

play manner, packets are compressed before being injected into the network. This work 

employs the latter approach and uses encoder/decoder pair as plug and play modules for 

data compression in the NI. Once compression is done, the data is transmitted to the 

routers in a flit-by-flit fashion. 
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2.3. Approximate Computing 

 Approximate computing is an attractive new compute paradigm that has come 

about for data-intensive applications. Approximate computing leverages the ability of 

applications and systems to have a certain level of tolerance for imprecision of the 

computation results. Applications employ approximation in order to gain better 

performance and energy efficiency at the cost of imprecision. This work leverages this 

fact and employs a bit-based approximation technique in order to approximately 

compute data by changing certain bits of a word in a block of the cache in order to 

further increase the compression ratio of the data packets in the network and hence 

reduce the volume of data movement across the chip.  
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3.  RELATED WORK 

 

 Approximate computing techniques rely on the ability of applications and 

systems to tolerate imprecision/loss of quality in the computation results. Various 

upcoming applications in machine learning, image/video processing and pattern 

recognition have utilized approximation methods in order to achieve better performance 

[5, 6, 7, 8, 9].  

 Prior research   has proposed various approximation techniques for the upcoming 

data-intensive applications. Software approximation techniques [10, 11, 12] have 

attempted to reduce the computation overhead by executing only certain sections of the 

application code. Several hardware approximation techniques either approximate the 

computation or the storage; hence propose to tradeoff computational accuracy for higher 

efficiency. Hardware techniques can be classified into compute-based approximation or 

memory-based approximation.  The compute-based approximation techniques use 

imprecise computation units [13, 14, 15] or neural network models [26, 7, 27, 28] while 

the memory-based approximation techniques exploit the data similarity across the 

memory hierarchies. Compute-based approximation units are used for code acceleration 

while the memory-based approximation units are used in order to achieve larger capacity 

and more energy efficiency.  However, no research prior to Approx-NoC [19] has used 

approximation techniques for the high throughput NoCs. 
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3.1. Bit-Plane Compression 

 J Kim et al. [29] proposed Bit Plane Compression (BPC) for transforming data 

for better compression in many core architectures. BPC introduces the concept of a Bit-

Plane transformation to compression. Prior to encoding BPC algorithm transforms each 

memory data block using a novel transformation technique DeltaBitPlane-XOR (DBX), 

in order to improve the inherent compressibility of the data.  

 The DBX transformation is composed of three steps; first Delta, that subtracts the 

adjacent values in the memory; followed by Bit-Plane, that rotates the input values such 

that each new value contains one bit of each of the original input values all at the same 

bit position; the final step is the XOR the adjacent values. The DBX transformation 

increases the value locality and hence reduces entropy, thus increasing the inherent 

compressibility.  

 Following the DBX transformation, long zero runs of bit-planes are encoded by 

Zero Run Length Encoding (Z-RLE), whereas the non-zero bit-planes are encoded using 

frequent pattern encoding. The DBX transformation greatly increases the effectiveness 

of the compression algorithm. 

3.2. APPROX-NoC: A Data Approximation Framework for NoC Architectures 

 The work done previously was on approximation which was memory-based or 

compute-based. However, there has been no prior work on approximate computing 

techniques for the interconnection fabric of multicore systems until the work done by   

R. Boyapati et al. [19]. 
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 Architectural Overview of the Approx-NoC Framework 

3.2.1.1. APPROX-NoC Framework 

 The baseline system consists of various tiles. Each tile may consist of 

core/accelerator units, FPGA/ASICS, caches or on-chip memory controller units. As 

shown in Figure 3-1 each component of the tile is connected to a router via NI ports.  

 

 

Figure 3-1: APPROX-NoC Architectural Overview 

 

 The Approx-NoC framework has a VAXX module that is present in the NI, 

along with an encode/decode unit for data compression. Once the message is sent to the 

NI, the data is first approximated based on the approximation logic, following which the 

data is compressed and then divided into flits and injected to the router in a flit-by-flit 

fashion. The packetization and de-packetization of the message for flow control is 

performed in the NI.  
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 Figure 3-2 describes the working of the Approx-NoC framework. For a particular 

cache block that needs to be injected into the network, the metadata present in the cache 

block is first checked to see if the block of cache is approximable or not and the data 

type of the cache block is checked as well, integer (int) or floating-point (fp). If the 

cache block is not approximable it is directly sent to the compression unit, otherwise the 

data type of the cache block is checked, if it is an int the entire cache block is 

approximated word by word and if it is an fp, only the mantissa of all the words are 

approximated one after the other. Following the VAXX unit, all the approximated words 

are sent to the compression unit.  

 

 

Figure 3-2 Approx NoC Flowchart 
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 After compression the data is then sent into the router from the NI in a flit-by-flit 

manner. The flits are then sent to the destination through the network where it is 

decompressed, and the approximate block is then recovered. 

3.2.1.2. VAXX model Design  

 In order to compute an approximated value for a particular data block the VAXX 

model is used. Data blocks are approximated only when all the words of that data block 

are approximable, this information is part of the metadata of the cache block. The data 

blocks are approximated within a specified error threshold. The main design of the 

VAXX model lies in the Approximate Value Compute Logic (AVCL) design. AVCL 

consists of the floating-point mantissa extraction, error range computation and the 

approximation logic.  

 

Figure 3-3 Approximate Value Compute Logic 
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 For a particular value, the VAXX model needs to calculate how much deviation 

from the actual value is allowed, this is calculated by using the specified error threshold. 

For example, if the error threshold is 20% and the value is 1001 (9), then the allowed 

values would be 1000 (8), 1010 (10) and 1011 (11). This basically means that the last 

two bits, from the least significant bit (LSB) side are considered as don’t cares, that is 

10xx.  

  In order to calculate the error range from the error threshold %(e). 100/e will 

give the number of shift bits, which are used to right shift the given value by.  

Error_range = given_value * (e/100). This means that for e = 25%, the number of shift 

bits is 4. So, if the data value is 128 then the error_range can be estimated to be 32.    

 The procedure mentioned above can be followed for int approximation, however 

for fp approximation a few slightly complex steps need to be followed as only the 

mantissa of the fp values can be approximated. First the mantissa field of the fp number 

is extracted and 0’s are padded to the most significant bits in order to make the mantissa 

bit the same size as the int values. Figure 3-3 shows the AVCL model design for both int 

and fp data types. For cache blocks that are deemed unapproximable the AVCL unit is 

bypassed.  

 Implementation of Approx-NoC 

 The VAXX implementation is done on top of FP-COMP namely, FP-VAXX and 

DICT-COMP, namely DICT-VAXX.   
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3.2.2.1. Frequent Pattern Mechanisms 

 Prior work on compression proposed a FP-COMP [30] technique for data 

compression and [24] has extended it for NoCs with low overhead decompression which 

has been used in this work. This mechanism is static and hence compares a static set of 

frequent patterns as shown in Figure 3-4.  

 

Figure 3-4 Frequent Pattern Compression [30] 

 

3.2.2.1.1. FP-VAXX Implementation 

 The microarchitecture of the FP-VAXX is shown in Figure 3-5. First the 

approximate pattern is computed for each data word using the AVCL unit. Upon finding 

the don’t care bits of the data word, the rest of the word, which is the shaded portion as 

shown in Figure 3-5, is matched to the appropriate frequent pattern which is present in 

the pattern matching table (PMT). Upon a pattern match, the data word is compressed. 

The PMT structure has been implemented using a content addressable memory (CAM) 

based structure. For data words that are approximable based on their value only the 
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shaded portion needs to be a match, however for data that is not approximable the 

AVCL is bypassed and the entire data word needs to be a match in order to undergo 

compression.  

 

Figure 3-5 FP-VAXX Microarchitecture 

  

3.2.2.2. Dictionary-Based Mechanisms 

 DI-COMP keeps track of repeating data patterns in a dynamic manner and 

maintains an encoded index consistency between the senders and receivers so that future 

data patterns that match these data patterns can be compressed. In order to keep track of 

the recurring data patters a table-based mechanism similar to [25] is proposed. Figures 3-

6 (a) and (b) depict the encoder at decoder PMTs with size entries of 4 in a (3x3) NoC at 

node 3 and node 6 respectively.  
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Figure 3-6 Encoder and Decoder PMTs 

 

 In the encoder PMT for an N node NoC, each entry will have a vector of (N-1) 

encoded indices; each of these indices indicates whether a particular data pattern can be 

compressed for a specific destination in the network. As the decoder performs detection 

in an independent manner, the encoder can have different index values for different 

destinations but for the same data pattern.  

 The decoder PMT consists of the data pattern, frequency counter, encoded index 

and a vector of (N-1) valid bits, one for each of the N-1 encoders. The decoders detect 

the repeating data patterns and place them in the decoder PMT, while sending a new 

updated encoder index to the encoder PMT. This has been depicted in Figures 3-6 (a) 

and (b). 
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3.2.2.2.1. DI-VAXX Implementation 

 Unlike the FP-VAXX scheme where a data block is first passed through the 

AVCL before being compressed, the DI-VAXX scheme tightly couples the AVCL unit 

with the DI-COMP unit. At the time that the pattern is recorded the approximate pattern 

is computed for every given pattern in the DI-COMP and the approximate versions are 

saved. This enables fast matching and the AVCL unit is removed from the path of 

packetization.  

 

Figure 3-7 DI-VAXX Microarchitecture 

 

 The work proposes Ternary Content Addressable Memory (TCAM) structure to 

make the value-based approximation faster. TCAMs are similar to CAMs in their 

functioning and along with the 0 or 1 state they also have the x (don’t care) state. This 

means that in TCAM a state 10xx can be stored in the place of 1001 and patterns 1000, 
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1001, 1010 and 1011 will be a match to this entry. The decoders on the other hand have 

a CAM structure and recover the original 1001 pattern from the table. The 

microarchitecture of the TCAM based DI-VAXX is shown in Figure 3-7.  

 The operation of the DI-VAXX is as explained; the receivers/decoders detect the 

frequent patterns and send the update to the encoder PMTs. The encoder calculates the 

approximate patterns with the don’t care bits and stores the new value in the PMT at the 

specified index, if the entry already exists the index is just updated to reflect the new 

index. When a data pattern arrives at the encoder, the TCAM is accessed and in case 

there is a TCAM hit the encoder index is sent for compression, this tight coupling 

reduces the latency overhead.  

 For data patterns that are not approximable the TCAM-based mechanism does 

not facilitate compression. Hence this work proposes to have storage capability in the 

encoders for the original patterns in addition to the approximate patterns enabling 

compression for data patterns that are not-approximable. 
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4.  BIT BASED APPROX-NOC 

 

4.1. Motivation 

 Defining approximate data similarity is necessary. Data similarity is defined 

according to a predefined error threshold. For example, when 0% error is allowed then the 

two patterns must be an exact match to be considered similar, however with an error of e% 

allowed two patterns are considered similar if the difference between them is less than e%. 

The value difference is defined as the variance in the value between the two patterns. For 

example, the 8-bit patterns 10101011 and 10100000 have a value difference of 11. VAXX 

technique works well for both the FPC and DICT mechanisms in this regard for a 

predefined error threshold value. For both the mechanisms there is significant 

improvement in the compression ratio and the number of flits that are injected as 

compared to FPC-COMP and DICT-COMP mechanisms. However, there is more room 

for improvement. 

 The fact that needs to be considered is that error in data increases as we try to 

approximate the higher order bits. Approximating a word becomes more and more expensive 

as we go to the higher order bits, which are the most significant bit (MSB) side of the word. 

In the VAXX mechanism if we only approximate the lower order bits, then the higher order 

bits of the various words need to match in order to come across a pattern match. If the lower 

order bits of all the words of a cacheline are clustered together and then approximated, we 

can approximate any bit of the new clustered word as they are all least significant bits 

(LSBs) and hence would not be expensive and this would inherently increase the 
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compression ratio. The idea builds the motivation to explore an improved version of the 

existing Approx-NoC framework, Bit-Based Approx-NoC.  

4.2. Key Idea 

Bit-Based Approx-NoC is an improved version of the existing Approx-NoC 

framework and uses the same baseline NoC architecture mentioned in Section 3.2.1.1.  

Figures 4-1 and 4-2 show the main idea behind the bit-based approximation 

(BAXX) approach. In Figure 4-1, it can be seen that at the sender NI when a cache block 

arrives, it is pre-processed. In the pre-processing step a transpose is applied to the entire 

cache block. The transpose is performed in order to have the bits from each word of 

equal weightage together, in our case as we have a 16-way cache block with each way 

consisting of 32 bits, we take two bits from each way to form the new transposed cache 

block, with the LSBs clustered together and the MSBs clustered together. In Figure 4-2, 

the post-processing step at the receiver NI is shown. At the receiver NI, the compressed 

cache block is transposed again taking two bits at a time in order to get back the 

approximated word. In this step the approximated bits are brought back to their original 

positions.     
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Figure 4-1 Pre-Process step at Sender NI 

 

    

Figure 4-2 Post-Process step at Receiver NI 

 

 Figure 4-3 describes the flow of the entire algorithm involved in Bit-Based 

Approx-NoC. The cache block is received at the NI it is then checked to see if is 

approximable or not. If it is approximable, the cache block is then pre-processed as 

shown in Figure 4-1. Once it is transposed, BAXX technique is used to approximate the 
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cache block. Upon approximation the approximated words are then sent into the 

compression unit to produce compressed data. The compressed data is then injected into 

the network and routed to the destination. At the destination the data is decompressed, 

following which the data is post-processed as shown in Figure 4-2. Upon post-

processing the approximated words are retrieved.  

 

 

Figure 4-3 Flowchart of the BAXX Approach 
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 BAXX Technique 

 For the BAXX technique first the number of bits that can be approximated per 

word needs to be found out. As a transpose is being applied on the entire cache block, 

the number of bits that can be approximated will be the minimum number of bits that 

can be approximated across all the words of the entire cache block. Once this is found 

out, we calculate the number of rows of the new transposed cache block that can be 

approximated; this is done as we first try to approximate only the LSBs followed by 

more significant bit. For example, if the number of bits that can be approximated is 2 

then only the first row of the transposed cache block, which is the row containing the 

bits of each word of position 0 and position 1 can be approximated. As all the bits of one 

row hold the same weightage any of the 32 bits of the new transposed word can be 

approximated hence inherently enhancing the compressibility of the words. The BAXX 

technique has been implemented for both the FP and the DICT compression techniques. 

4.2.1.1. FP-BAXX 

  In this technique, we use BAXX method on top of the FP-COMP technique. 

Upon finding the minimum number of bits that can be approximated across all the words 

of the cache block, the new transposed cache block is approximated row by row. In FP-

BAXX we approximate allowed bits to 0 in order to increase the compressibility of the 

data. Once the don’t care bits of the word are determined, the rest of the word is matched 

to a pattern corresponding to the entries in the PMT. If there is a frequent pattern hit, 

then we compress that particular word.  
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4.2.1.2. DICT-BAXX 

 In this technique, we use BAXX method on top of the DICT-COMP technique. 

Upon finding the minimum number of bits that can be approximated across all the words 

of the cache block and then transposing the cache block, the new words are 

approximated one after another. This is done by comparing each word to the PMT and 

checking if there is a pattern match, if there is a pattern match then the word is 

approximated to that pattern. If this pattern appears frequently then the PMT is updated. 

In the case of DICT-BAXX approximation and compression are tightly bound together.  
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5.  EXPERIMENTAL EVALUATION 

 

 In the field of Computer Architecture research modeling architectural hypothesis 

in software-based simulators is widely used. It helps in evaluating the design of a model 

before building an expensive hardware system. Building hardware systems can be 

expensive and if there is a fault or a change needs to be made to the design, then the 

entire hardware needs to change, and this can be a tedious and expensive task. 

Simulators on the other hand are low cost and can be changed as per the new 

requirements of the design.  Simulators are easier to debug and also provide performance 

metrics.  

 A baseline configuration and suitable workloads need to be selected in order to 

implement and test the design. Usually the metrics such as performance that are obtained 

from the baseline configuration are used to compare against the new design, to see if the 

new design does indeed provide better performance or any other metric being tested. 

Selecting a simulator needs to be done with utmost care and this is due to the fact that 

there are various simulators that cater to different needs, and based upon the application 

and need a simulator must be chosen to evaluate the design. 

5.1. Simulator Configuration and Methodology 

 For evaluating the Bit-Based Approx NoC framework we use an in-house 

network simulator. We implement DI-BAXX and FP-BAXX mechanisms in the in-

house simulator. For detailed impact evaluations the in-house NoC simulator is used 

with the default error threshold set to 10% and percentage of approximable packets set to 
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75%. Further sensitivity studies have been carried out by varying the error threshold and 

the approximable packet ratio. In order to evaluate the impact of the work on the overall 

application error, the Pin [31] tool has been used.  

 

Table 5-1: Approx-NoC Simulator Configuration 

 

 

System Parameters 

32 Out-of-Order Cores at 2GHz 

32KB L1I$and 64KB L1D$, 2-way 2MB 

L2$ and 16 directories 

Cache Coherence: MOESI_hammer 

 

 

NoC Parameters 

8×8 2D-mesh 

2GHz three stage router 

4 Virtual channels (4-flit buffer) 

64-bit flit size 

wormhole switching, XY routing 

Error Threshold 5%, 10% (default), 20% 

Approximable Data Packet Ratio 25%, 50%, 75% (default) 

Dictionary-based Mechanisms 8 entry PMT 

 

 The BAXX implementation uses the knowledge of the data type of the variables 

in each benchmark. It is assumed that the Approx-NoC framework is aware of the data 

type of the cache block that is going to be compressed. The Approx-NoC simulator 

Configuration and NoC parameters are listed in Table 5-1.  
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 In order to evaluate the proposed work benchmarks from the PARSEC [32] suite 

have been used as they have been used in the past to evaluate work related to 

approximate computing. In order to evaluate our work, we perform trace-based 

simulation. Trace-based simulation is one in which the model’s inputs are derived from a 

sequence of observations made on a real system. We run the benchmarks using gem5 

[33] to collect the communication traces for the region of interest which are then fed into 

the NoC simulation environment and are then simulated for 100 million cycles for 

detailed evaluations of the proposed mechanisms.   
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6.  RESULTS AND ANALYSIS                                                                           

 This chapter presents performance evaluation of the Bit-Based Approx-NoC 

framework using benchmarks from different application suites and synthetic workloads. 

First we analyze the performance impact of the BAXX technique on the average packet 

latency, compression ratio and reduction in flits injected. Following this the chapter 

presents the use of synthetic workloads to evaluate the impact of the technique on the 

network throughput. We then perform sensitivity studies in order to put the technique 

under test under different conditions of error threshold and approximable data packet 

ratio. Following this the chapter dwells into the impact of the technique on the 

application errors.  

6.1 Performance Analysis 

6.1.1 Average Packet Latency 

 Figure 6-1 shows the average packet latency comparison, in an 8x8 mesh NoC, 

for the two implementations of the BAXX technique which are FPC-BAXX and DICT-

BAXX. Across all benchmarks the DI-BAXX technique reduces the overall latency by 

4% with respect to the baseline and 1% with respect to DI-COMP mechanism. The 

average packet latency of DI-VAXX is similar to that of DI-BAXX. It is observed that 

the latency reduction percentage is not proportional to the percentage of flits reduced; 

this is due to the fact that the network is not getting congested. It is not getting congested 

as the injection rate of the packets is quite low, so the queuing latency of each of the 

baseline techniques for all the benchmarks is low and so the latency reduction cannot be 

observed. However, if the injection rate is increased then there will be congestion in the 
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network and so the impact of the approximation techniques can be seen. This is further 

studied and analyzed in section 6.2. 

 

 
Figure 6-1 Average Packet Latency and Overall Approximation Quality 

 

6.1.2 Approximation Effectiveness 

 The reduction in the traffic load is shown by plotting the number of data flits 

injected under each Approx-NoC mechanism in Figure 6-2. The DI-BAXX method 

reduces the number of data flits injected by 4% and 54% compared to DI-COMP and 

baseline respectively. The DI-BAXX method also reduces the number of data flits 

injected by 3.6% compared to the DI-VAXX method. Similarly, the FP-BAXX method 

reduces the number of data flits injected by 11% and 57% compared to the FP-COMP 

and baseline. The FP-COMP method also reduces the number of data flits injected by 

6.3% as compared to the FP-VAXX method.   

 Figure 6-3 depicts the effectiveness of bit-based approximation in improving the 

compression ratio. DI-BAXX and FP-BAXX improve the compression ratio by 4.2% 

and 12% as compared to DI-COMP and FP-COMP respectively.  The DI-BAXX and 

FP-BAXX mechanisms also enhance the compression ratio by 3.7% and 6.7% as 
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compared to the respective value-based mechanisms which are DI-VAXX and FP-

VAXX.  

 

 
Figure 6-2 Reduction in Number of Injected Flits 

   

 
Figure 6-3 Compression Ratio 
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6.1.3 Data Value Quality 

 Figure 6-1 also shows the data value quality after approximation for all the 

benchmarks. Before approximating each word, the error is checked against the error 

threshold. However, each word is approximated to a different degree and so the data 

error, that is the difference in the error between the actual word and the approximated 

word varies from word to word. It can be observed that the data quality is close to 97% 

for almost all the benchmarks and this is due to the fact that only part of the data word is 

approximated, and the other remaining portion of the word is compressed without any 

error and hence the original word and the approximated word are close to each other in 

value proximity.   

6.2 Throughput Analysis 

 In order to analyze the impact of the BAXX technique on the network throughput 

we have used synthetic workloads. Figure 6-4 depicts the throughput of the BAXX 

mechanism of the Approx-NoC framework compared against the Baseline, DI-COMP, 

FP-COMP and also the two already existing VAXX mechanisms. The plots depict the 

data traces for two benchmarks; blackscholes and streamcluster for two traffic patterns 

which are Uniform Random (UR) and Transpose (TR). When compared to the 

compression schemes BAXX improves the throughput by 14% for UR and 12% for TR. 

This is owed to the fact that the number of injected flits have reduced hence the injection 

load reduces due to data approximation. From the graph it can be seen that the 

throughput improvement is a lot more than the packet latency improvement shown in 

Figure 6-1. This is due to the fact that the injection rate has been increased gradually and 
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hence congestion can be observed in the network and so the actual benefit of 

approximation can be seen. From our observations it can be seen that the FP-BAXX 

mechanism works best, especially for UR traffic pattern as can be observed in Figures 6-

4 (a) and (c).  

                  
                (a) Blackscholes (UR)                                                 (b) Blackscholes (TR)                  

 

                                                                             
                (c) Streamcluster (UR)                                                          (d) Streamcluster (TR)  

 

Figure 6-4: Throughput analysis with Different Benchmark Data Traces under 

Uniform Random (UR) and Transpose (TR) Traffic patterns 
 

                  

6.3 Sensitivity Studies 

 The sensitivity of the two BAXX mechanisms to the error threshold and 

percentage of approximable packets is shown in this section. 

6.3.1 Error Threshold 

 Figure 6-5 shows the average packet latency for all the benchmarks across the 

Bit-Based Approx-NoC framework by varying the error threshold percentage. As the 
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error threshold is increased from 5% to 10% (default) to 20%, the impact of the BAXX 

mechanism for the Approx-NoC framework on the packet latency decreases, this is owed 

to the fact that higher the error threshold, more bits of the data words can be 

approximated and hence increasing the chance of approximate matching. It can be 

observed that there is significant improvement in the packet latency with increase in the 

error threshold in certain benchmarks such as x264 and Swaptions across both the FP-

based technique as well as the DICT-based technique. However, in the Canneal 

benchmark it can be observed that the packet latency is increasing with the increase in 

the error threshold and this can be owed to the fact that for the Canneal benchmark the 

number of flits injected indeed increases with approximation. 

 

 
Figure 6-5 Error Threshold Sensitivity Analysis 
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6.3.2 Approximable Packets Ratio  

 Figure 6-6 shows the average packet latency for all the benchmarks across the 

Bit-Based Approx-NoC framework by varying the percentage of approximable packets. 

The packet latency reduces as the percentage of approximable packets increases from 

20% to 50% to 75% (default). This is owed to the fact that increasing the approximable 

packets increases the chance for approximate matching of the data. We can observe 

significant improvement for Swaptions and x264 benchmarks with both the DI-BAXX 

and the FP-BAXX techniques. The rest of the benchmarks do not show a significant 

improvement in the latency as the percentage of approximable packets is increased. This 

is due to the low queuing latency in the NoC and small data-to-control packet ratio for 

the benchmarks, leading to a lower impact on the overall network latency. 

6.4 Full System Output Accuracy Analysis 

 In order to analyze the impact of Bit-Based Approx-NoC on the entire system Pin 

[31] Instrumentation framework has been used. This section presents the overall 

application output errors across all the benchmarks. The BAXX technique has been 

implemented on top of a coherent cache simulator tool. In order to analyze the impact, 

we model a system with 16 cores and each core has a 64KB two-way L1 private data 

cache of cache line size 64 Bytes. The system emulates packet response whenever there 

is a miss that requires a data response from another node.  

 Application output accuracy for all benchmarks is shown in Figure 6-7. We 

observe that with the predetermined 10% error threshold all the benchmarks output 

errors fall within this bound except for blackscholes and streamcluster. Hence, we can 
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state that there needs to be a tradeoff between the output accuracy and the performance 

benefits.    

 Figure 6-7 also shows the application output accuracy with different error 

thresholds. For all cases it is well within the error threshold bounds and hence it is 

observed that it is possible to achieve high throughput and low latency by exploiting 

approximate computing while maintaining an acceptable amount of error quality.  

  

 
Figure 6-6 Approximable Packets Ratio Sensitivity Analysis 
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Figure 6-7 Application Output Accuracy  
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7.  CONCLUSION 

  

 In this work I propose Bit-Based Approximation for Approx-NoC, a hardware 

data approximation framework for high throughput NoCs in the memory intensive big 

data era. The work presents a Bit- Based approximation logic that can be used as a plug 

and play module with an underlying compression technique. This work uses two 

underlying compression techniques; frequent pattern compression and dictionary-based 

compression. The work evaluates the low-cost micro architectural implementation of the 

BAXX technique.  

 It has been observed that the FP-mechanisms achieve higher approximation rate 

as compared to the DI-mechanism, however the DI-mechanism outperforms the FP-

mechanism when there is some amount of data repetition. The best latency reduction 

achieved is 11% when compared to the existing compression techniques. The evaluation 

using synthetic workloads shows the best throughput improvement to be 14%.  

 Relaxing the constraints of applications is indeed a viable solution for high 

performance computing. Approximate computing in NoCs exploits this fact and helps to 

meet the high bandwidth requirements of NoCs in the big data era.   
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