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Abstract

Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine
effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam)
inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication
of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi
increased interferon-c production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and
generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi
administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively
transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a
strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi). No
evidence of adverse effects was noted among vaccinated foals.
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Introduction

Rhodococcus equi is a facultative intracellular pathogen recog-

nized clinically as a leading cause of severe pneumonia in foals [1–

4]. To date, an efficacious vaccine against R. equi for foals is

lacking and there is no approved vaccine for foals against R. equi
in North America. Although a variety of strategies have been

evaluated for vaccination against R. equi (including immunization

of mares [5–9], inactivated R. equi administered parenterally to

foals or mice [7,10], sub-unit vaccines [8,9,11], DNA vaccines

[12,13], and live, mutant vaccines [14,15]), oral administration of

live, virulent R. equi is the only vaccination strategy that has been

demonstrated repeatedly to protect foals against experimental

intrabronchial challenge with virulent R. equi [16–18]. However,

the administration of live, virulent organisms is not considered an

acceptable strategy for vaccination of foals at horse breeding farms

because of concerns for environmental dissemination and the

potential to cause disease in some foals.

Inactivated bacteria and viruses can elicit protective immune

responses against systemic infections, including those of the

respiratory tract [19–22]. Electron beam (eBeam) irradiation is a

technology for microbial inactivation that is currently used for

sterilization and pasteurization [23–26]. Electron beam irradiation

at appropriate doses can be used to inactivate large volumes of

microbial cultures or to sterilize materials such as medical devices

[27–29], and has advantages relative to heat or formalin
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inactivation. Inactivation with either heat or formalin is known to

denature proteins, including immunogenic epitopes on the cell

surface [30,31]. More importantly, formalin is widely recognized

as resulting in incomplete inactivation of organisms, and has been

associated with vaccine-associated disease resulting from inade-

quate inactivation [32]. Thus, there is need for a reliable method

of microbial inactivation that will retain the bacterial cell structure

as similar as possible to a live organism for use in producing

vaccines. We therefore identified a dose of eBeam irradiation that

would inhibit bacterial replication while maintaining outer

membrane integrity of R. equi, and examined the immunogenicity

of R. equi inactivated accordingly when administered enterally to

newborn foals.

Material and Methods

Ethics statement
All procedures for this study were reviewed and approved by the

Texas A&M University Institutional Animal Care and Use

Committee (protocol number AUP# 2011-124) and the Texas

A&M University Institutional Biosafety Committee (permit

number 20110183-Cohen). The foals used in this study are owned

by Texas A&M University, and permission for their use was

provided in compliance with the Institutional Animal Care and

Use Committee procedures.

Preparation of bacteria and electron beam irradiation
Rhodococcus equi strain EIDL 5-331 (a virulent isolate from a

Texas foal) was used for this study. One colony-forming unit

(CFU) was inoculated into 50 ml of brain-heart infusion (BHI)

broth and shaken for 24 h at 37uC, sub-cultured in 1000 ml of

BHI broth and shaken for 24 h at 37uC. The bacterial suspension

was centrifuged at 34006g (5810R, Eppendorf AG, Hamburg,

Germany) for 20 min at 4uC, the supernatant discarded, and the

pellets washed with 100 ml of phosphate-buffered saline (PBS),

using the same centrifugation protocol. The supernatant was

discarded, the bacteria were resuspended in sterile 0.9% NaCl

solution, and the concentration of bacteria was determined

spectrophotometrically (Genesys 20, Thermo Scientific, Waltham,

MA, USA). For eBeam dose identification experiment, 25 ml of

bacterial suspensions of either approximately 16108 (concentra-

tion 1) or 16109 CFU/ml (concentration 2) were double-bagged

in heat-sealed sacs with no headspace, sealed inside a 95-kPa

transport bag (Therapak, Duarte, CA, USA), and exposed to

irradiation doses ranging from 0 to 7 kGy (in integer-unit doses)

using a 10-MeV, 18-kW linear accelerator. Alanine dosimeters

were used to verify the delivered eBeam dose. The interaction of

ionizing radiation with alanine releases free radicals [33], which

were measured by electron paramagnetic spin spectroscopy (E-

scan, Bruker BioSpin, Corp., Billerica, MA, USA). Twenty-five ml

of non-irradiated bacteria were inactivated for 30 min in a water

bath at 85uC, and were used as the heat-inactivated negative

control. After irradiation, quantitative culture was performed to

determine the concentration of replicating R. equi in each

irradiated sample, and to calculate the D10-value, the dose

required for 90% reduction of the initial population [40].

Experiments were conducted in triplicates, performed on 3

different days. For vaccine preparations administered to foals,

eBeam irradiated R. equi were cultured on days 1, 3, 5, 7, and 14

post-irradiation to confirm absence of bacterial replication.

Cell wall integrity of irradiated R. equi
The immunogenic proteins of R. equi are expressed on the

surface of the bacterium [34]; therefore, maintaining cell wall

integrity is important for retaining the immunogenicity of a whole

organism. Bacteria were grown as described above, and were

eBeam irradiated at the minimum dose that effectively inactivated

all microorganisms for the bacterial concentration; live and heat-

inactivated R. equi were prepared as positive and negative

controls, respectively. Samples were kept at 4uC for 12 h, and 1,

2, and 4 weeks after either irradiation or heat-inactivation. Two

methods were used to determine whether the bacterial cell wall

was intact. The first was a fluorescence-based assay (LIVE/DEAD

BacLight bacterial viability kit, Molecular Probes, Inc., Eugene,

OR, USA), which utilizes a mixture of SYTO 9 green-fluorescent

nucleic acid stain that stains all bacteria, and propidium iodide

that only penetrates damaged membranes [35], used according to

the manufacturer’s instructions. Briefly, bacterial samples were

treated with either PBS (does not damage the integrity of the cell

wall) or 70% isopropyl alcohol (should cause damage to the cell

wall). Then, a series of tubes containing a mixture with

percentages of PBS treated:alcohol treated bacteria (0:100,

10:90, 50;50, 90:10, 100:0) were prepared. Samples were

transferred to a 96-well flat-bottom microplate and mixed with

staining solution. Fluorescence of both SYTO 9 green and

propidium iodide were measured in each well with excitation

wavelength at 485 and 530 nm, respectively, using a microplate

reader (Synergy 2, Biotek, Winooski, VT, USA). A ratio of green/

red fluorescence was calculated (Gen5, Biotek, Winooski, VT,

USA) and plotted against the percentage of PBS treated:alcohol

treated bacteria. The second method was transmission electron

microscopy (TEM) of irradiated samples, heat-inactivated, and live

R. equi at 12 h, and 1, 2, or 4 weeks after processing. Bacterial

cells were fixed in 2% glutaraldehyde, 3% formaldehyde in 0.1 M

sodium cacodylate buffer, then post-fixed with 1% osmium

tetroxide and 0.5% potassium ferrocyanide, dehydrated in an

ascending alcohol series, and embedded in epoxy resin. Ultrathin

sections of the cells were examined with an FEI Morgagni 268

transmission electron microscope at an accelerating voltage of

80 kV. Digital images were acquired with a MegaView III camera

operated with iTEM software (Olympus Soft Imaging Systems,

Germany), and subsequently post-processed with Adobe Photo-

shop.

Study animals
Thirty-four healthy Quarter Horse foals and their respective

dams were used for this study. All foals had age-appropriate results

of complete blood count on day 2 of life, and had adequate

transfer of passive immunity as assessed by a commercially-

available qualitative immunoassay for serum concentration of total

IgG (SNAP test; IDEXX, Inc., Westbrook, ME, USA). All foals

were monitored daily by technical staff and twice weekly by a

veterinarian, and remained in good health without clinical signs of

disease throughout the study. Individual foals were randomly

assigned to the following groups: 1) EBRE 1 group (n = 9) which

received 261010 CFUs of R. equi inactivated by 4 kGy of eBeam

radiation in 100 ml of saline adjuvanted with 100 mg of cholera

toxin B subunit (CTB, List Biological Laboratories, Campbell, CA,

USA); 2) EBRE 2 group (n = 10) which received 161011 CFUs of

R. equi inactivated by 5 kGy of eBeam radiation in 100 ml of

saline adjuvanted with 100 mg of CTB; 3) Saline (negative)

control group (n = 9) which received 100 ml of saline adjuvanted

with 100 mg of CTB; and, 4) LVRE (positive) control group (n = 6)

which received 161010 CFUs of live R. equi in 100 ml of saline.

All treatments were administered enterally with a nasogastric tube

on days 2, 9, 16, and 23 of life. Physiological saline (NaCl 0.9%)

was used as a diluent for eBeam vaccines, live bacteria, and the

negative control.

eBeam R. equi Vaccine
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Sample collection
Samples were collected from foals on day 2 (prior to

vaccination) and on day 32 of life. For the broncho-alveolar

lavage (BAL) procedure, a 3-meter endoscope disinfected with

glutaraldehyde prior to use was passed via the nose into the lungs,

until the tube became gently lodged in a bronchus. Sterile saline

(30 ml) was instilled into the lung via the endoscope’s infusion

channel, followed by 20 ml of air to flush, and immediately

aspirated to recover at least 15 ml of fluid.

Naso-pharyngeal samples were collected by inserting a 16-inch

cotton swab pre-moistened with 3 ml of sterile saline in the nasal

ventral meatus. The naso-pharyngeal area was swabbed, the liquid

was manually squeezed from the swab using a 35-ml syringe into a

tube, and samples were frozen at 280uC until assayed.

Blood was collected from a jugular vein into tubes: 5 ml of

blood were collected into a tube without anticoagulant and

centrifuged at 30006g for 5 min to harvest serum, which was

separated and frozen at 280uC until assayed, and 16 ml of blood

was collected into tubes with sodium heparin as an anticoagulant

for isolation of peripheral blood mononuclear cells (PBMCs).

Mammary secretions and serum from the foals’ respective dams

were collected on day 2 postpartum (PP) for assessment of

maternal antibodies. Mares and foals are naturally exposed to R.
equi from the environment [36]; therefore, a considerable level of

antibody response was expected from the tested mares and foals

from natural exposure.

Cell-mediated immune response
The cell-mediated immune (CMI) response to vaccination was

assessed by interferon- c (IFN-c) production by PBMCs following

specific stimulation with eBeam inactivated R. equi. PBMCs were

isolated using Ficoll-Paque gradient separation (GE Healthcare,

Piscataway, NJ, USA) and carbonyl iron (Sigma-Aldrich, St. Louis,

MO, USA), resuspended in RPMI-1640 media (Gibco, Life

Technologies, Grand Island, NY, USA) with 15% fetal bovine

serum (Gibco, Life Technologies, Grand Island, NY, USA) and

1.5% penicillin-streptomycin (Gibco, Life Technologies, Grand

Island, NY, USA), and cultured for 48 h at 37uC with 5% CO2

with either media only, the mitogen ConA (positive control; 5 mg/

ml, Sigma-Aldrich, St. Louis, MO, USA), or eBeam inactivated R.
equi (multiplicity of infection of 10). After 48 h, supernatants from

each group were harvested, centrifuged at 3006g, and frozen at

280uC until examined for IFN-c production using an equine IFN-

c enzyme linked immunosorbent assay (ELISA) kit (Mabtech Inc.,

Mariemont, Ohio, USA) according to manufacturer’s instructions.

Optical densities (OD) were determined using a microplate reader

Synergy 2 (Biotek, Winooski, VT, USA), and standard curves were

generated and IFN-c concentrations in each sample were

calculated for each isotype using the software Gen 5 (Biotek,

Winooski, VT, USA).

Mucosal and systemic humoral immune responses
Mucosal humoral immune responses were assessed by quanti-

fying total and R. equi-specific IgA and IgG isotypes IgG1, IgG3/5,

and IgG4/7 in BAL fluid, and total and R. equi-specific IgA in

naso-pharyngeal swab eluates. Systemic humoral response was

assessed among foals by quantifying serum concentrations of total

and R. equi-specific IgA and IgG isotypes (IgG1, IgG4/7, IgG3/5).

Concentrations of total IgA and IgG isotypes (IgG1, IgG3/5, and

IgG4/7) were determined by ELISA using a commercial kit (Bethyl

Laboratories, Montgomery, TX, USA) according to manufactur-

er’s instructions. Reference serum (Bethyl Laboratories, Mon-

tgomery, TX, USA) was added for the positive controls and to

establish standard curves, and dilution buffer was used as blank.

Optical densities were determined by using a microplate reader.

Standard curves were generated and immunoglobulin concentra-

tions in each sample were calculated for each isotype using the

software Gen 5.

For determination of R. equi-specific IgA and IgG isotypes we

used a protocol described previously [37]. Briefly, ELISA plates

(Maxisorp, Nalge Nunc International, Rochester, NY) were coated

with 2.5 mg/ml of R. equi antigen diluted in coating buffer

(Carbonate-bicarbonate buffer, Sigma-Aldrich, St. Louis, MO)

overnight at 4uC. The protocol for preparation of R. equi antigen

has been described previously [38], except R. equi strain 5–331

was used in this study. Plates were washed five times with Tris-

buffered saline (TBS) with 0.005% Tween 20, blocked with 200 ml

TBS 1% bovine serum albumin for 30 min at room temperature

(RT), and washed again. Two-fold serial dilutions of serum and

mammary secretions samples from study foals, positive control R.
equi hyperimmune plasma (Mg Biologics, Ames, IA), and negative

control fetal horse serum (Biowest, Miami, FL, USA) were added

in duplicates to the wells and incubated for 60 min at 22uC. Both

BAL fluid and naso-pharyngeal (NP) swab eluates were used

undiluted. After another washing, goat anti-horse IgA, IgG1, or

IgG3/5 peroxidase conjugated, or sheep anti-horse IgG4/7

peroxidase conjugated (Bethyl Laboratories, Montgomery, TX)

were added to the wells and incubated for 60 min at RT. Plates

were washed again, and TMB One Component HRP Microwell

Substrate (Bethyl Laboratories, Montgomery, TX) was added to

the wells and incubated for 15 min at RT in the dark. The

reaction was stopped by adding sulfuric acid solution to the wells.

Optical densities were determined by using a microplate reader.

Relative quantities for day 2 and day 32 samples were obtained by

using the following formula:

RelativeQuantity~
(ODsample)-(ODnegativecontrol)

(ODpositivecontrol)-(ODnegativecontrol)

The ratio of the relative quantities on day 32 to the relative

quantities on day 2 was used to describe the relative increase/

decrease of antibodies following vaccination.

Data Analysis
Analysis of growth curves and cell wall integrity fluorescence

data were performed using linear mixed-effects models with

experimental replicates modeled as random effects [39]. The D10-

value was calculated from the negative inverse of the slope from

the linear mixed-effects regression of the irradiation dose on the

logarithm10 of the microbial population. [40]. Transmission

electron microscopy data were descriptive only.

Foal data were analyzed using the ratio of relative quantities on

day 32 to relative quantities on day 2 of life (baseline) of

immunoglobulins or IFN-c concentrations, or the proportion of

foals that had an increase in these relative quantities. When

appropriate, data were log10-transformed to ensure they met the

assumptions underlying the modeling strategy.

Ratio data were analyzed using a generalized linear model with

concentrations as the outcome variable and study group as the

independent variable of interest. Model fit was assessed by

examining diagnostic plots of residuals. Post-hoc pair-wise

comparisons among groups were made using the method of Sidak

[41]. Proportions of foals with increased immunoglobulin isotypes

were compared among groups using Fisher’s exact test.

Association (correlation) between immunoglobulin concentra-

tion in mare serum and mammary secretions immunoglobulins,

eBeam R. equi Vaccine
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and mare mammary secretions and NP swab eluates IgA were

made using linear regression analysis. Comparisons of immuno-

globulin concentrations among treatment groups were performed

using Kruskal-Wallis testing. All analyses were conducted using S-

PLUS (Version 8.0; Insightful, Inc.) and R (Version 2.12.1; R

Statistical Project) and a significance level of P,0.05.

Results

Effects of eBeam irradiation on R. equi
The doses required to prevent replication of R. equi at

concentrations of 16108 and 16109 CFU/ml were 4 and

5 kGy, respectively (Fig. 1). The D10-values estimated for R. equi
strain 5–331 in 0.9% NaCl exposed to 10-MeV, 18-kW eBeam

irradiation for the 2 concentrations were similar (0.48 [0.37 to

0.69] and 0.53 [0.47 to 0.61]); approximately 0.505 kGy) and did

not differ significantly (P.0.05).

The green/red fluorescence ratio increased significantly (P,

0.05) with the percentage of intact bacteria in all groups except the

heat-inactivated group (Fig. S1A, B, C and D), indicating that

eBeam irradiation did not damage bacterial membrane integrity

but that heat-inactivation did. Using TEM, the overall integrity of

the outer bacterial cell wall of all treated groups was preserved

(Fig. S2A, B, C, and D). Changes affecting the wall were confined

to the layered cell wall (LCW) of all groups, and were more severe

among bacteria of heat-inactivated groups suggesting a more

severe compromise of the cell wall integrity (consistent with the

fluorescent-based results). The internal cell contents were only

morphologically affected in bacteria of the heat-inactivated group.

Noticeable changes included enlarged nuclear areas that were

admixed with a filamentous material and inconspicuous glycogen-

like deposits (Fig. S2D).

Systemic immune response
Cell-mediated immune response. Stimulation with ConA

significantly (P,0.05) stimulated IFN-c production in cultured

PBMCs from foals from all treatment groups on both days 2 and

32 relative to unstimulated cells, and stimulation with eBeam

irradiated R. equi resulted in significantly greater IFN-c produc-

tion on day 32 (P,0.05) relative to unstimulated control (media

only) (Fig. S3). The IFN-c response was significantly (P,0.05)

greater for foals in the LVRE, EBRE 1, and EBRE 2 groups than

for foals in the saline control group (Fig. 2).

Humoral immunity. Serum concentrations of total IgA,

IgG4/7, and IgG3/5 decreased significantly with age for foals in all

Figure 1. Survival curves for R. equi samples in 0.9% NaCl irradiated with eBeam doses ranging from 0 to 7 kGy. Survival curve for
Concentration 1 (16108 CFU/ml) is indicated by the symbol #; Survival curve for Concentration 2 (16109 CFU/ml) is indicated by the symbol 6; *0
represents true 0 and not 100 = 1.
doi:10.1371/journal.pone.0105367.g001

eBeam R. equi Vaccine
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groups (Fig. S4); however, there were no significant differences in

the decline of total immunoglobulins among groups.

There were no significant differences among groups in values of

the day 32-to-day 2 ratio of R. equi-specific serum IgA (Fig. 3A);

however, the ratios were significantly (P,0.05) less than 1 for all

groups. The day 32-to-day 2 ratios of serum IgG1 and IgG4/7 were

significantly (P,0.05) greater for the LVRE group than other

groups (Fig. 3B and C); there were no other significant differences

among groups. Similarly, the ratios were significantly (P,0.05)

greater for the LVRE group than the 2 vaccine groups (but not

controls; Fig. 3D). Note that the magnitudes of increase were

small.

Mucosal humoral immune response
Naso-pharyngeal samples. Total IgA concentration in

naso-pharyngeal samples were increased for all but 1 foal;

however, there were no significant differences among groups in

either the relative magnitude of increase from day 2 to day 32

(Fig. 4A) or the proportion of foals that had increased IgA

following vaccination (Figure 4B), although the EBRE2 and

LVRE groups tended to be increased. Although the relative

increase of R. equi-specific IgA in NP samples tended to be greater

for the EBRE2 and LVRE groups (Fig. 4B), there were no

significant differences among groups.

The proportions of foals that had increased R. equi-specific IgA,

however, differed significantly among groups (P = 0.0223; Fisher’s

exact test; Fig. 4D). Post-hoc specific pair-wise comparisons

indicated that the proportion of foals in the EBRE2 group that

had increased R. equi-specific IgA was significantly (P,0.05)

greater than that of the saline controls (Fig. 4D).

BAL fluid. The ratio of total and R. equi-specific IgA and IgG

isotypes for day 32 relative to day 2 were significantly (P,0.05 for

all) greater than 1 for all groups, indicating a significant increase

with age (Fig. S5); however, there were no significant differences

among groups in the values of these ratios. No significant

association was observed in either total or R. equi-specific IgA

between samples of BAL fluid and NP swabs from individual foals

(Fig. S6).

Figure 2. Ratio of IFN-c concentration in culture media of eBeam inactivated R. equi-stimulated isolated peripheral blood
mononuclear cells. Relative quantities on day 32 relative to day 2 (log10-transformed) from 34 foals in 4 treatment groups: 1) Saline: enteral
adjuvant only controls (N = 9); 2) EBRE 1: foals receiving 161011 R. equi eBeam irradiated with 4 kGy enterally (N = 10); 3) EBRE 2: foals receiving
261010 R. equi eBeam irradiated with 5 kGy enterally (N = 9); and, 4) LVRE: foals receiving 161010 live, virulent R. equi enterally (N = 6). Bars with
differing letters indicate significant (P,0.05) differences among groups.
doi:10.1371/journal.pone.0105367.g002

eBeam R. equi Vaccine
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Maternal Influence
All mares had detectable total and R. equi-specific immuno-

globulins of all classes in both mammary secretions and serum.

There was a significant (P,0.05) correlation between mammary

secretions and mare serum for total and R. equi-specific IgA, IgG1,

IgG4/7, IgG3/5, except for total concentrations of IgG1 and

IgG4/7; however, no differences among their respective foals

treatment group were observed (data not shown).

Because mammary secretions and mare serum concentrations

were correlated for most isotypes, and because we did not have

access to colostrum (produced in the first 24 h PP), we studied the

correlation of immunoglobulins in mammary secretions with that

of foal serum. There was a significant (P,0.05) positive association

for IgA and a tendency (0.05,P,0.11) for a positive association

for IgG4/7 and IgG3/5 between mammary secretions and foal

serum on day 2; there was no apparent association for IgG1 (Fig.

S7). No significant differences among vaccine/treatment groups

were observed. There was a significant (P,0.05) correlation

between mare’s mammary secretions concentration and foals NP

swab concentrations for both total and R. equi-specific IgA on day

2 of life (data not shown); however, there was no significant

difference among vaccine/treatment groups.

Discussion

The objectives of this study were to render R. equi non-

replicating with eBeam irradiation and to examine the immuno-

genicity of the eBeam irradiated R. equi administered intragastri-

cally to foals. Replicability of R. equi was inversely related to

eBeam irradiation dose (Fig. 1), as previously reported for other

microorganisms including Escherichia coli K-12 [42], Bacillus
atrophaeus [43], and avian influenza virus [29]. As expected, a

higher dose of irradiation was required to completely inhibit

replication of a higher concentration of R. equi. Thus, the dose of

irradiation for a vaccine preparation would need to be empirically

established for the target bacterial concentration. Depending on

the bacterial growth phase, a higher dose may be needed for

complete inhibition of bacterial replication because bacterial cells

in logarithmic growth phase can have multiple copies of their

genomes per cell [44].

At the doses selected, outer cell wall integrity appeared to be

conserved (Fig S1 and S2). We observed similar fluorescence ratios

for both concentrations of irradiated bacteria tested and live

samples for all time-points (day 1, weeks 1, 2, and 4), whereas the

heat-inactivated samples were considered damaged at all time-

points (Fig S1). This finding was anticipated because eBeam

irradiation was expected to damage the bacterial DNA [44], but

damage to the cell wall might be dose-dependent and conse-

quently titratable. For example, eBeam irradiation of spores of

Bacillus spp. caused membrane disruption with cytoplasm leakage

when high doses (i.e., $10.4 kGy) were used but not at lower doses

[45]. We did not, however, evaluate bacterial structure in samples

irradiated with . 5 kGy in our study. Using TEM (Fig S2), all

control and irradiated samples preserved the overall structural

Figure 3. Mean Ratio of R. equi-specific IgA and IgG isotypes on serum samples from foals. OD on day 32 relative to day 2 (log10-
transformed) from 34 foals in 4 treatment groups as described in Fig. 2. Bars with differing letters indicate significant (P,0.05) differences among
groups. A) R. equi-specific IgA; B) R. equi-specific IgG1; C) R. equi-specific IgG4/7; D) R. equi-specific IgG3/5.
doi:10.1371/journal.pone.0105367.g003
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integrity of the cell wall [46], meaning that changes in the cell wall

indicative of destruction or perforation of the bacterial cell wall

were not observed. However, morphologic changes affecting

ultrastructural components of the cell wall (e.g., the layered cell

wall) and internal structures (e.g., nuclear area and glycogen-like

deposits) were observed. Although variation in severity of changes

involving the ultrastructural components of the cell wall was found

between the irradiated and heat-inactivated groups, morphologic

changes in internal structures only were detected in the heat-

inactivated bacteria. Preservation of the cell wall integrity after

eBeam irradiation has also been shown for Paracoccidioides
brasiliensis [47], and membrane damage of Bacillus spp. spores

was observed only at high doses of eBeam irradiation [45].

Although the evaluation of the ultrastructure in our study did not

reveal changes in the cell wall indicative of perforation or

destruction of the cell in any of the treatment groups, data from

the fluorescence assay, coupled with the presence of more severe

ultrastructural changes affecting the layered cell wall of heat-

inactivated bacteria, indicate that the cell wall of heat-inactivated

bacteria were more severely compromised relative to the other

treatment groups. For this study, we used a heat-inactivation

protocol of 85uC for 30 min. Other heat-killing protocols using

more prolonged exposure, higher temperatures, or both likely

would have caused more pronounced changes in the R. equi
ultrastructure. Overall, we observed that eBeam inactivation

resulted in better maintenance of normal membrane integrity and

structure than heat inactivation.

We observed that these structurally intact but non-replicating

bacteria were immunogenic in neonatal foals. We chose to

evaluate immune responses during the first month of life on the

basis of evidence that natural infection with R. equi generally

occurs early in life [48,49]. We elected to use ratios (day 32 values

relative to day 2) because of considerable variation in absolute

values among individual foals and between ages (e.g., declining

total antibody concentrations or increasing IFN-c production with

age).

Cell-mediated immune responses are of irrefutable importance

to immunity to intracellular pathogens, including R. equi [50].

Neonatal foals, however, are known to have age-related impaired

ability to produce IFN-c [51,52], which is essential for activating

macrophages to kill intracellular R. equi [53]. Consistent with

previous findings, we observed that IFN-c expression by PBMCs

Figure 4. Mean ratios of total and R. equi-specific IgA in naso-pharyngeal samples. Relative quantities on day 32 relative to day 2 (log10-
transformed) of IgA from 34 foals in 4 treatment groups as described in Fig. 2. Bars with differing letters indicate significant (P,0.05) differences
among groups. A) Mean ratio (95% confidence interval) concentration total IgA; B) Mean ratio OD R. equi-specific IgA; C) Proportion of foals with
increase in total IgA from day 32 relative to day 2; D) Proportion of foals with increase in R. equi-specific IgA from day 32 relative to day 2.
doi:10.1371/journal.pone.0105367.g004
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increased with age (both basal and stimulated expression; Fig 2).

More importantly, neonatal foals vaccinated with either dose of

eBeam irradiated R. equi produced significantly greater IFN-c in

response to stimulation with R. equi antigens (lysate) than did

controls, and this indicator of CMI responses was similar to that

generated by the LVRE group (the positive control group; Fig 2

and Fig S3). These results indicate that enteral mucosal

vaccination with irradiated bacteria can stimulate systemic CMI

responses in neonatal foals in the face of maternal transfer of

antibody (including antibodies against R. equi) and natural

exposure to environmental R. equi similar to those induced by

enterally-administered live R. equi. Thus, even immunologically

naı̈ve newborn foals can be primed to fight intracellular pathogens

such as R. equi at an early age. The results from the LVRE group

are further important because they extend our knowledge of CMI

responses to enteral administration of live, virulent R. equi, the

only approach repeatedly demonstrated to protect foals against

subsequent experimental intrabronchial challenge with virulent R.
equi. Alternatively, a non-specific immune response could be

occurring in vitro, through stimulation of innate immune cells

(such as monocytes or macrophages). Nonetheless, vaccination of

foals with the eBeam inactivated R. equi vaccine induced an

immune response that was significantly different from foals

receiving saline plus adjuvant, but similar to that of the LVRE

group, demonstrating the immunomodulatory effect of this

vaccine in newborn foals, regardless of the cell source of the

IFN-c produced.

The concentration of total immunoglobulins of all isotypes in

foal serum decreased with age but there was no significant

difference among vaccine/treatment groups (Fig. 3 and Fig S4).

Age-related decline in maternal antibody has been demonstrated

in foals [54,55], and was expected as a result of consumption and

catabolization of maternally-derived immunoglobulin [55]. Foals

from the LVRE group had significantly higher day 32-to-day 2

ratios of serum R. equi-specific IgG1 and IgG4/7 compared to

other groups, and of IgG3/5 compared to both groups of

vaccinates (but not saline control foals). The importance of these

findings remains to be determined. Reported associations of

specific IgG isotypes with protection against R. equi are

inconclusive and conflicting. Initially, it was suggested that IgG1

was expected to be protective because it represented a Th1

isotype, whereas and IgG3/5 and IgG4/7 were Th2 isotypes [56],

while both IgG1 and IgG4/7 interact with Fc receptors on effector

cells and activate complement [57]. Subsequent studies, however,

have indicated that IgG isotype dominance is not indicative of

protection against R. equi in foals [17]. The magnitude of

observed increase was modest for IgG3/5 and IgG4/7, with neither

isotype for the ratio of day 32-to-day 2 being significantly greater

than 1. Nonetheless, enteral administration of eBeam inactivated

bacteria did not result in similar systemic antibody responses as

enteral administration of live R. equi. The relevance of our results

for increased ratios for R. equi-specific IgG1 and IgG4/7 induced

in the LVRE group to protection against infection is an important

consideration that remains to be determined.

Nasal mucosal R. equi-specific IgA appeared to be increased

among foals in the higher-dose vaccine group (EBRE 2) than

saline controls; the increase for the EBRE 2 foals was most similar

to the LVRE group (positive controls) in magnitude of the ratio

and proportion of foals whose ratio increased between days 2 and

32 (Fig 4). IgA is an important immunoglobulin at mucosal

surfaces that functions primarily as a neutralizing antibody, but

can also opsonize and activate complement [58]. Infection with R.
equi in foals is thought to occur by inhalation of the bacterium

[50], so IgA in nasal secretions may be an important barrier to R.

equi infections in nasal passages by either neutralizing inhaled

bacteria or by opsonizing them for subsequent phagocytosis and

killing by neutrophils in the lungs. Although CTB is an adjuvant

known to induce IgA responses at mucosal surfaces [59], we

nonetheless observed a significantly higher proportion of foals

from the EBRE2 group with increased R. equi-specific nasal IgA

compared to the saline control group. We observed that both total

and R. equi-specific nasal IgA amounts increased significantly with

age, consistent with what has been reported previously for total

IgA [49]; to our knowledge, this is the first such report for R. equi-
specific nasal IgA. These findings indicate nasal mucosal immunity

against R. equi may be relatively diminished in newborn foals,

possibly rendering them more susceptible infection. Our findings

differ from a study of Streptococcus equi subspecies equi, in which

an adequate passive transfer of S. equi-specific antibodies was

observed soon after colostrum intake [60]. The reasons for this

discrepancy between studies is unclear, but might be attributable

to differences in the host-agent interaction of the 2 organisms,

differences in background exposure and vaccination of mares, and

differences between studies in methods for evaluating antibody

concentrations.

Because R. equi primarily causes pneumonia in foals, we

evaluated immunoglobulin concentrations in BAL fluid of study

foals (Fig S5 and S6). Similar to IgA from NP samples, we

observed age-related increases (i.e., day 32-to-day 2 ratios

significantly . 1) in BAL fluid concentrations of total and R.
equi-specific IgA, IgG1, IgG3/5, and IgG4/7; however, no

significant differences were observed among vaccine/treatment

groups for any isotypes. As was observed in the foals of this study,

IgG and not IgA is the most abundant antibody in human BAL

fluid [61]. The concentrations of R. equi-specific immunoglobulins

of all isotypes in BAL fluid were very low, and in some instances

undetectable, especially on day 2. We thus repeated analyses after

concentrating the BAL fluid but results were essentially identical to

those presented for the original analysis (data not shown). It is

unclear to what extent our BAL technique affected our results. We

chose to use a low-volume BAL (30 ml) on the basis of previous

research in sheep, in an attempt to yield more concentrated BAL

fluid [62–64]. Larger volumes (such as 180 ml [65] or 500 ml [14])

are used to obtain BAL samples from foals. Conceivably, a larger

lavage volume might have provided greater contact with lung

tissue or yielded more immunoglobulins following concentration of

a larger volume.

Both total and R. equi-specific antibodies of all isotypes were

identified in both mammary secretions and serum from mares. It

has been shown in mares that the concentration of IgG antibodies

in mammary secretion decrease rapidly postpartum [66], and we

recognize that mammary secretion samples from day 2 PP are

likely different than colostrum ingested during the first 24 hours

PP; nevertheless, there were positive associations between all

immunoglobulin isotypes in the dams’ mammary secretions day 2

PP and foals serum and NP swab samples (Fig S7). One frequent

concern regarding vaccination of newborns is the presence and

interference of maternal antibodies that could neutralize the

vaccine, impairing the newborn’s response to the vaccine. We did

not observe this in the present study; in fact, we observed the

generation of a CMI response in spite of the presumed presence of

maternal antibodies. This situation has also been demonstrated

with vaccination against measles in 6-month-old infants [67],

where there was significant generation of IFN-c producing CD4+

T cells in spite of the presence of maternal antibodies,

demonstrating that mucosal vaccination in neonates can be

efficacious in priming the immune system.
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Our study has a number of limitations. First, intra-gastric

administration of 4 doses of vaccine is impractical for large-scale

use at farms. Arguably, it might be considered less cumbersome,

labor-intensive, and risky for foals than the accepted and

widespread use of transfusion of hyperimmune plasma to foals to

reduce the incidence of R. equi pneumonia [5]. A second

limitation is that we determined the IFN-c concentration using

supernatant of cultured PBMCs stimulated in vitro with either

ConA or eBeam inactivated R. equi. We are aware that different

populations of cultured cells could be producing IFN-c; neverthe-

less, we were able to demonstrate that vaccinated foals responded

better than saline control foals to eBeam inactivated R. equi,
irrespective of the cell source, and in a similar way to foals

receiving LVRE, known for inducing protective immune responses

against R. equi challenge. Another limitation is that we did not

evaluate efficacy of the vaccine. We also need to point out that we

have not optimized the vaccine dose nor have we optimized the

choice and the concentration of adjuvants. We recognize that no

vaccine is proven efficacious until protecting foals against disease

from the pathogen of interest. On the basis of our evidence that

the vaccine is indeed immunogenic, we have initiated challenge

studies of this candidate vaccine.

In summary, we demonstrate that eBeam can safely inactivate

R. equi, without compromising the cell wall integrity, for potential

use in vaccines. We also demonstrate that R. equi inactivated with

eBeam doses of either 4 or 5 kGy can be immunogenic in foals

when administered enterally with CTB as adjuvant.

Supporting Information

Figure S1 Ratio of green/red fluorescence using the
fluorescence-based LIVE/DEAD BacLight bacterial via-
bility kit for Concentration 1 (approximately 16108

colony-forming CFU/ml; square) and Concentration 2
(approximately 16109 CFU/ml; triangle) eBeam irradi-
ated, live (diamond shape) and heat-inactivated samples
(circle). A) Day 1, B) Week 1, C) Week 2, and D) Week 4 of

storage at 4uC.

(TIF)

Figure S2 Ultrastructure of live, heat-inactivated, and
eBeam irradiated R. equi. a) Live group, week 4. Normal

morphologic appearance of the nuclear area (NA). b) Concentra-

tion 2 eBeam irradiated, week 4. Similar morphologic appearance

of the NA compared to the live bacterium of image ‘‘a’’. The

arrows are indicating invaginations of the layered cell wall. c)

Heat-inactivated group, day 1. Nuclear area (NA) markedly

vacuolated and has increased electron lucency. d) Live group, day

1. Closer magnification of a live bacterium depicting the

localization of the layered cell wall (black arrows) and of

glycogen-like material (white arrowheads). e) Concentration 2

eBeam irradiated with 5 kGy, day 1. Closer view of radiated

bacteria demonstrating intact layered cell walls (black arrowheads),

invaginations of the layered wall (arrow), and preservation of

glycogen-like material (white arrowheads). f) Heat-inactivated, day

1. Closer magnification of a heat-killed bacterium that presents

large areas where the layered cell wall is either not present (arrows)

or presents marked invagination/coiling (arrowheads). Note the

vacuolated nuclear area (*), and inconspicuous glycogen-like

material. Concentration 2 (b) and Live bacteria (a) remains intact

after 4 weeks of refrigeration, whereas heat-inactivated (c) bacteria

denote changes after 12 h of refrigeration.

(TIF)

Figure S3 Effects of stimulus (ConA, Concavalin A 5 ug/
ml; Control, saline [unstimulated control]; and, eBeam
irradiated R. equi [MOI 1:10]) on concentration of IFN- c
in cell culture supernatant of foals at ages 2 days (panel
A) or 32 days (panel B), from all treatment groups
combined. At both ages, concavalin A stimulated a significant

increase in IFN- c concentration (pg/ml). Within a panel, differing

letters indicate significant differences stimuli. Between panels,

different numbers indicate differences between ages.

(TIF)

Figure S4 Mean Ratio of total IgA and IgG isotypes
concentration from foal serum. Concentration on day 32

relative to day 2 (log10-transformed) from 34 foals in 4 treatment

groups: 1) Saline: enteral adjuvant only controls (N = 9); 2) EBRE

1: foals receiving 161011 R. equi eBeam irradiated with 4 kGy

enterally (N = 10); 3) EBRE 2: foals receiving 261010 R. equi
eBeam irradiated with 5 kGy enterally (N = 9); and, 4) LVRE:

foals receiving 161010 live, virulent R. equi enterally (N = 6); Bars

with differing letters indicate significant (P,0.05) differences

among groups. A) Total IgA; B) Total IgG1; C) Total IgG4/7;

D) Total IgG3/5.

(TIF)

Figure S5 Mean Ratio of total and R. equi-specific IgA
and IgG isotypes on BAL fluid from foals. Relative

quantities concentrations (total) and OD (R. equi-specific) on day

32 relative to day 2 (log10-transformed) from 34 foals in 4

treatment groups as described in Fig. S4. Bars with differing letters

indicate significant (P,0.05) differences among groups. A) Total

IgA; B) Total IgG1; C) Total IgG3/5; D) Total IgG4/7. E) R. equi-
specific IgA; F) R. equi-specific IgG1; G) R. equi-specific IgG3/5;

H) R. equi-specific IgG4/7.

(TIF)

Figure S6 Association between Mean Ratio R. equi-
specific IgA concentration from foal NP swab eluates
and BAL fluid. Relative quantities on day 32 relative to day 2

(log10-transformed) from 34 foals in 4 treatment groups as

described in Fig. S4. There was no significant association

(P = 0.5907; Pearson’s correlation coefficient = 0.0956) between

the BALF R. equi-specific IgA and the nasal R. equi-specific IgA

values for foals.

(TIF)

Figure S7 Association between mammary secretions
and foal serum samples on day 2 for R. equi-specific
immunoglobulins. A) IgA; the association was weak but

statistically significant (P,0.0001); B) IgG1; the association was

weak and not statistically significant (P = 0.1345); C) IgG4/7; the

association was weak but statistically significant (P,0.0001); D)

IgG3/5; the association was weak but statistically significant (P,

0.0001).

(TIF)
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