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ABSTRACT

Simulation-based functional verification is a commonly used technique for hardware verifica-

tion, with the goal of exercising critical scenarios in the design, detecting and fixing bugs, and

achieving close to 100% of the coverage targets required for tape-out. As chip complexity contin-

ues to grow, functional verification is also becoming a bottleneck for the overall chip design cycle.

The primary goal is to shorten the time taken for functional coverage convergence in the volume

verification phase, which in return, accelerates the bug detection in the design. In this thesis, I have

investigated the application of machine learning towards this objective.

I accessed the machine learning-guided stimulus generation with two approaches: coarse-

grained test-level optimization and fine-grained transaction-level optimization. The effectiveness

of machine learning was first confirmed on test-level optimization, which rests on achieving full

coverage for a certain group of functional coverage metrics in reduced time with a minimal num-

ber of simulated tests. It was observed that test-level optimization was limited to some common

functional coverage metrics. This was the motivation to explore and implement transaction-level

optimization in two novel ways: transaction pruning and directed sequence generation for acceler-

ated functional coverage closure. These techniques were applied on FSM (Finite State Machine)

and Non-FSM based coverage metrics and compared the gains using different ML classifiers. Ex-

perimental results showed that the fine-grained implementation can potentially reduce the overall

CPU time for the verification coverage closure; thus, I propose that complementary application of

both the levels of stimulus optimization is the recommended path for efficiency improvements in

functional verification coverage convergence.
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1. INTRODUCTION

1.1 Digital IC Design

Modern day processors, memories and other digital ASICs are a few enormously complex Dig-

ital IC designs consisting of several billion transistors manufactured on a few millimeters silicon

die. Advances in the VLSI design flow and transistor scaling (currently 7/10nm) have permitted

us to bring up such revolutionary ICs. Two key components of any digital IC are the architecture

design and the fabrication process. The silicon industry is embarking noteworthy growth in both

these facet of digital IC design, putting an added pressure on the engineers to make groundbreak-

ing innovations and build more sophisticated software (EDA) for VLSI design. Based on these

components, a typical digital IC design flow is divided into two phases: Front-End and Back-End.

Figure 1.1: IC Design Flow
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Digital circuits are designed using the top-down approach as shown in Figure 1.1. The path-

breaking team explores and evaluates a product or a product family opportunity. The researchers

and the scientists design the product architecture and capture it as an abstract specification docu-

ment, also called HAS. These specifications are then translated to HDL code by the RTL designers,

based on the predetermined micro-architecture. There stands a high probability that a designer mis-

interprets these specifications or commits a mistake in the implementation, often referred to as a

hardware bug. Design verification is a process to detect and fix bugs in the design exhaustively.

This is also the least costly method to find/fix the bugs; later down in the IC-design flow, the cost

per bug increases exponentially.

The design-RTL is then synthesized into a netlist based on the technology-mapping and avail-

able standard cell library for the micro-architecture. The static timing analysis and power analysis

is performed to determine the best operating frequency and overall power consumption of the chip.

Here on, the transition is made from the front-end to the back-end design phase. Using powerful

EDA tools, cell placement and wire routing are performed. Later, the whole design is integrated

for the post-layout timing and logic verification. Once the design meets all the sign-off criteria, it

is sent to fab for manufacturing. Before shipping the product to customers, post-silicon validation

is performed comprehensively.

1.2 Functional Verification

Functional verification, also sometimes referred to as design verification (DV) or logic verifica-

tion, is a process to demonstrate the functional correctness of a design. Functional verification is a

universally acknowledged long pole in hardware design. It is also the costliest investment when it

comes to headcount and computing resources. For these reasons, it deserves and often receives the

most attention for efficiency improvement measures. The primary goal of functional verification is

to ensure that the design implementation matches the specification without the presence of bugs,

as shown in Figure 1.2. Thus, it is the responsibility of the verification engineer to flag if the HDL

didn’t express the correct functionality or if the designer missed considering critical corner-case

scenarios.
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Figure 1.2: Reconvergence Model

Larger functionality integration on a single chip leads to increasing chip complexity. Many

of these ICs are used in our daily lives, a few of them are mission/life critical areas such as au-

tonomous cars, airplanes, medical and more. Despite the additional functionality, the customers

have the highest quality expectation. Thus design verification proves out to be the most critical

stage in any chip design cycle.

There are two main challenges in verifying hundreds of thousands of lines of HDL code.

• Dealing with the enormous design state space

• Detecting incorrect behavior

Typically HDL contains thousands of latches, large arrays (RAM), and combinational logic

that control the behavior of a chip. To exhaustively verify that a chip is functionally correct, the

verification engineer has to check the enormous state space. For example, to verify a combinato-

rial circuit with 80 inputs, there are 280 input combinations possible. Thus, verifying the design

with each combination is a tedious and time-consuming task. Instead of focusing on each of the

possible states of the hardware, verification engineers validate logic at a higher level of abstrac-

tion. Traditionally, hardware verification is performed in two major ways to ensure the functional

correctness of the design.
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1. Simulation-Based Verification

2. Formal Verification

In simulation-based verification, the design is stimulated with a certain set of input vectors to

create meaningful scenarios and check the behavior of the design against the given specification.

Conceptually, simulating the design for an input vector is verifying a point in the input design

space. In a nutshell, simulation-based verification can be seen as verification through input space

sampling. Until all the points are sampled, there exists a possibility that a bug escapes verification.

Thus, it proves the presence of bugs in the design via simulation and not the absence of it.

The approach in simulation-based verification is to first generate set of input vectors and then

check the design behavior with the reference output. This evaluation process is reversed in the

formal verification approach. Formal verification is the way to prove or disprove the correctness of

a certain specification or property in the design mathematically. Formal verification exhaustively

checks for correctness of the property in the design, with no concern of input stimulus. It can be

performed in two ways: Equivalence Checking and Model Checking. Although formal verifica-

tion shows completeness, a problem which simulation-based verification suffers, it uses extensive

memory and has long runtimes before reaching a verification decision. Additionally, it is difficult

to map complex features of design to formal mathematical property.

A hardware design cycle is managed by balancing the triple constraints- quality, cost, and

schedule. Functional verification is the most critical phase, which affects all of these constraints.

The end goal of verification is to find the highest quality bugs in the design at the earliest in the

development phase and verify the design exhaustively in the least amount of time.

This research is focused on the simulation-based verification approach. Due to its scalabil-

ity, simulation-based verification is popularly used for functional verification of complex hard-

ware designs with the goal of exercising all critical scenarios in a design and achieving close to

100% coverage targets, required for the design tape-out. As chip complexity continues to grow,

simulation-based functional verification is becoming a bottleneck in the overall chip design cycle.

In this research, the proposition is to tackle this problem by applying machine learning-guided
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stimulus generation that attains verification coverage with a considerable reduction in the number

of simulation cycles. In the following chapter, simulation-based verification is discussed further.

5



2. SIMULATION-BASED VERIFICATION

2.1 Pillars of Verification

Design intent is initially captured at the Register Transfer Level, via a Hardware Description

Language like Verilog or VHDL. Simulation-based verification is the most widely accepted tech-

nique for verifying RTL designs. It is based on the principle of applying a set of carefully chosen

stimulus to exercise a particular area of the design and then checking if the design behaves as ex-

pected. The simulation process is continued until all the critical and interesting scenarios in the

design space are verified for correct functionality. Here onward, I shall refer to simulation-based

verification as verification.

Figure 2.1: Three Pillars of Verification

Stimulus, Checking and Coverage form the three most important pillars of the verification

process, as shown in Figure 2.1.

2.1.1 Stimulus

Stimulus is a set of meaningful input vectors applied to the design to verify the implementa-

tion (HDL code) against the intent (specification). Stimulus can be categorized into three levels -
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transaction, sequence and test as shown in Figure 2.2. A transaction can be thought of as the fun-

damental building block of stimulus. For example, a write issued to memory is a transaction with

two attributes associated with it: address and data. A sequence is a sequential set of transactions

that are usually applied to a port of a DUT (Design Under Test). For example, a write followed

by a read to the same address will be a sequence of a write and read transactions. Finally, a test is

usually a set of multiple sequences applied to different ports of a DUT, and is at the top-most level

of the stimulus categories. It is important to note that a DUT can be exercised in multiple fashion

with different categories of stimulus. A sequence of transactions may have interdependent effects

on the DUT. For example, a read issued after a write to the same address will now return the new

data written.

Figure 2.2: Levels of Stimulus

The manual stimulus generation at each level is generally very time-consuming since each of

them has to be handcrafted by the verification engineering team. Most of the input patterns to the

design are randomly generated along with some constraints. These constraints can be applied to
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the stimulus from test-level using test-knobs. In general, a separate test suite is developed for each

functionality described in the specification document. On applying a more contrasting stimulus,

various DUT functionality will be checked for correctness and heterogeneous design space will be

covered.

2.1.2 Coverage

During the design verification effort, coverage metrics are utilized to gauge the progress, assess

effectiveness, and help determine when the design is robust enough for tapeout. The coverage

results provide the guidance to make critical decisions on the next steps in the verification cycle. In

the “coverage-driven verification”, a methodology is built around coverage metrics as the primary

way to manage verification. Coverage is represented by a set of models, both simple and complex,

that capture the design intent. Functional coverage measures the extent to which all the important

features and functionality of any design are verified, and thus is of interest in most of the cases.

Coverage closure is the point of time at which nearly 100% of the design intent has been verified

(or covered).

Figure 2.3: System-Verilog Coverage

SystemVerilog is an HDL similar to Verilog but with additional constructs specific to func-

tional verification. One such construct is the implementation of user-defined coverage metrics for
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functional coverage. This can be evaluated through a “cover-point”, also referred to as “coverage

metric” in this thesis, where each cover-point represents a different feature or signal/variable of the

design. All possible legal values of that signal are defined through a set of bins. An example is

illustrated in Figure 2.3. When any value of a signal/variable is encountered (sampled), that bin is

marked as covered. To achieve coverage closure, all the legal bins for all the cover-points must be

covered. During volume regression, the coverage bins, which have not been exercised, constitute

the coverage holes.

2.1.3 Checking

Checking is a mechanism to monitor the design activity and flag for any erroneous behavior. It

is responsible for creating failing conditions, which would guide in finding bugs in the design. An

ideal checker would point directly to the bug, making debugging easy. One way to perform check-

ing is to code assertions in the designs. An assertion is an ‘if’ statement with an error condition

that indicates that the condition in the ‘if’ statement is false. System Verilog provides constructs

to write temporal and concurrent assertions. Such checking is done online, while the simulation is

running.

Another way for checking is using a scoreboard or reference model. Scoreboard/Reference

model is a golden model that maintains the correct functionality of one or more design features

from the specification. The scoreboard is provided the same set of input vectors as the DUT; the

scoreboard prediction and the DUT output are compared for any inconsistency. Here, the checking

is done offline, at the end of the simulation.

2.1.4 Simple Cache and Memory Example

Here, I shall elaborate more on stimulus and coverage metrics with an example of a simple

cache and memory design as shown in Figure 2.4. The total memory capacity is 32 bytes with

each word size and address size equal to 8 bits and 5 bits respectively. There is a direct-mapped

cache for this memory with capacity 4 bytes. Each cache line is mapped to 8 address spaces in

memory. There are two basic operations that can be performed on each address, i.e., read and
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write.

Figure 2.4: Simple Memory and Direct Mapped Cache Design

For simulation-based verification of this design, we provide varied stimulus to the design and

define coverage metrics for exhaustive verification effort. Typical transaction attributes would be

address, data, and request_type (read or write). A sequence, which is a group of transactions, could

be a read sequence-all read transactions, write sequence-all write transactions or random sequence -

all transaction attributes take random values. At top level, a test can initiate multiple sequences and

thus can be a fully-directed test (pre-decided transactions), random test (all random transactions)

or somewhere in between. Various coverage metrics, to gauge the verification process, could be,

read on each address, write on each address, cache hit/miss on each address, write followed by a

read on each address, and many others.

2.2 Verification Cycle

The verification cycle is divided into two broad stages: directed and volume verification. In the

first stage, exact values of the stimulus are known before applying them to the design. This helps in

detecting expected bugs and to ensure that the basic functionality of the design is correct. Volume

verification, on the other hand, exercises a large combination of random and constrained-random
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stimulus to expose corner-case bugs that are harder to detect. The majority of the verification

cycle time is spent on volume verification, owing to the huge amount of stimulus getting applied.

Coverage is a measure of the success of the volume verification phase. Robustness of functional

verification is associated with attainment of near 100% coverage and is one of the critical metrics

used in the final tape-out decision.

Figure 2.5: Coverage and Bug-rate in the Verification Cycle

Over the verification cycle, coverage typically rises with time up to a point of saturation, where

it approaches 100%. On the other hand, the bug rate (number of bugs identified per week) sees

a sharp increase initially, and then decreases and eventually approaches close to zero. When the

coverage converges to 100% and bug rate drops down to 0, the design becomes ready for tape-

out. Figure 2.5 depicts a general trend in coverage closure and bug rate over time. Efforts at

improving efficiency in functional verification are aimed at compressing the curve towards the left,

thus leading to faster coverage closure, while also detecting bugs sooner. It is worth noting here

that coverage aims at verifying every imaginable scenario in the design, which consequently has

the potential to uncover more bugs.
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2.3 Verification Environment and UVM

A verification environment, also called the testbench, is created around the three pillars of

verification. It is the framework to verify the functional correctness of DUT by generating and

driving stimulus to design and compare the design output with the expected golden output. A lot

of the engineering effort is invested in setting up a verification environment for simulation-based

verification; testbench can account for up to 80% of the overall lines of code written in the design

process. A typical verification environment is created by assembling several components, each

designed to perform a certain operation. Most of the verification testbench are coded in System-

Verilog or Specman-e language, as they provide essential constructs to code testbench components.

As creating a verification environment is a time-consuming task, verification reuse improves

the productivity and efficiency of the verification process and thus it is highly desired. UVM is a

standardized methodology, which is created using System-Verilog to build modular and reusable

verification components and testbench. Figure 2.6 displays various verification components in

UVM and their interconnections.

Figure 2.6: Typical UVM Testbench

12



2.3.1 UVM Components

• Transactions and Sequences - A Transaction is a primitive level unit that contains the in-

formation to simulate the DUT. It contains the data-members and constraints on them. A

Sequence is a collection of transactions. It is responsible for constraint random generation

of the transactions by adjusting constraints on its data-members as per the test requirement.

• Sequencer - It controls the flow of request and response sequence items between sequences

and the driver.

• Driver - It requests and receives the stimulus in form of transactions via the sequencer and

drivers it to DUT by converting the transaction level information into the pin level through

the interface.

• Monitor - It observes pin level activity on interface signals and converts into a packet, which

is sent to the components such as a scoreboard.

• Scoreboard - It receives data items from monitors and compares with expected values. Ex-

pected values can be either golden reference values or generated from the reference model.

• Agent - It is a container that groups Sequencer, Driver, and Monitor, all specific to an inter-

face or protocol.

• Environment - It is a container for grouping higher level components like agents and score-

board.

• Test - It is a program responsible for testbench configuration, testbench component construc-

tion and initiating stimulus driving.

• Interface - It encapsulates a bundle of wires to enable the communication between stimulus

driver in testbench and the DUT. Also, checkers pertaining to interface protocols are coded

in it.

• Top Module - It connects the DUT and the Testbench via the Interface.
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2.3.2 Advantages of using UVM-based Testbench

The UVM architecture has been designed to promote modularity and resuablity of various ver-

ification components across different environments. Low-level components as a driver, a monitor

or an agent as a whole can be reused for the verification of multiple designs. Also, the whole

verification environment can be reused by multiple tests and configured top-down by those tests.

UVM verification components can be configured in a very flexible way without modification to

their source code. Additionally, UVM provides a straightforward mechanism to replace any com-

ponent with a new one without making changes in the testbench. Thus, UVM based testbench

are widely used in industry because of the these features - Modularity, Scalability, Reusability &

Configurability.

2.4 Verification Challenges

Figure 2.7: Challenges Faced in Simulation Based Verification

Simulation-based verification is most commonly practiced in the industry for verifying com-

plex digital designs. The most critical challenge in verifying such large designs is the longer

simulation time. This is complimented by lack of stimulus optimization to remove redundancy in

random test vector generation. To counter it, large volume regressions are kicked-off periodically
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for the coverage closure. In the whole verification flow, a lot of human decision-making is involved

that can be biased, error-prone and cause delays in the project cycle.
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3. MACHINE LEARNING

3.1 Machine Learning Terminologies

• Dataset : Data is the most essential part of Machine Learning. Any Machine Learning

system would require the user to either get the data (e.g. from some public resource) or

collect it on its own. All the data that is used for either building or testing the ML model is

called a dataset. Basically, datasets are divided into three separate groups:

Training data: Training data is used to train a model. ML model learns to detect patterns

from the data and determine which features are most important during prediction.

Validation data: Validation data is used for tuning model parameters and comparing

different models in order to determine the best ones. The validation data should be different

from the training data, and should not be used in the training phase. Otherwise, the model

would overfit, and make poor predictions for the new (unseen) data.

Test data : Test data is completely unseen data, used once the final model is trained to

simulate the model’s behaviour.

• Input Attribute : Features extracted from training dataset and used for output prediction

• Target Label : Output values/labels to be predicted

• ML Algorithm : Program that provides a model for prediction suitable for the training

dataset

• ML Model : The artifact created by applying the algorithm on training dataset

3.2 Machine Learning Algorithms

Machine Learning, a sub-field of Artificial Intelligence, aims to provide computers or compu-

tational machines the ability to learn without being explicitly programmed. The algorithm learns

the patterns from the presented problem and makes a smart prediction by constructing a decision
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model. There are three broad categories of ML algorithms: Supervised Learning, Unsupervised

Learning and Reinforcement Learning algorithms as shown in Figure 3.1. Machine Learning is an

advanced step towards exploiting the computational capabilities of computers and can be applied

in various applications, especially in the domain where data is available in abundance.

Figure 3.1: Flavors of Machine Learning Algorithms

In Supervised Learning, the model is trained with labeled training dataset to predict the output

of unseen example. Here, the learning phase includes the training on known inputs and corre-

sponding correct output or class. It then tries to deduce a function to map inputs to outputs by

iteratively making a prediction on the training dataset and correcting it. Once trained, the learning

system is then expected to predict the output for unseen examples following the pattern learned on

the training set. To sum up, for input variables(x) and the output variable(Y ), a Supervised Ma-

chine Learning model will create a robust mapping for a new input data(x) such that it can predict

the output variable(Y ) with high accuracy, i.e., Y = f(x).
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Supervised learning problems can be further grouped into classification and regression prob-

lems.

• Classification: A classification problem is when the output variable is a category, such as

“dog”, “cat” and “horse”

• Regression: A regression problem is when the output variable is a real value, such as “price”

or “weight”.

In Unsupervised Learning, the system is only given a set of an unlabeled dataset, i.e., data

without a class or predicted output assigned to them. The goal is to create a model to structure

or distribute the data for better inference. It is called unsupervised learning as there is no correct

answer or feedback. The only guidance for learning here is the structure of the received input. A

simple example is the clustering problem where data points are grouped based on their inherent

behavior. Semi-supervised learning is a mix of both Supervised and Unsupervised learning and

applied when from large input data(x) only some of the data is labeled(Y ).

There is a third genre of machine learning approach - Reinforcement Learning, where the

guidance to learning is provided by reward-based feedback. Here, an agent performs actions in

an environment and the agent receives various rewards depending on what state it is in when it

performs the action. The overall aim is to predict the best next action to earn the biggest final

cumulative reward. Hence, the system is guided towards the correct decision model to be learned

without training with an explicit dataset.

Growth of new computing technologies has completely changed the outlook of machine learn-

ing application today. We have more sophisticated data preparation capabilities and advance ma-

chine learning algorithms which aid in developing scalable smart automation techniques.

3.3 Supervised Machine Learning Algorithms

3.3.1 Deep Neural Network

Deep Neural Network (DNN) is a machine learning technique that is very much inspired by

structure and working of our brain. The basic fundamental unit of a neural network is the neuron.
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As shown in Figure 3.2, each neuron is fed with a set of inputs, each multiplied with an associated

weight. The neuron calculates a function on these weighted inputs. Based on the type of regression:

linear or logistic, it calculates the final output value. A sigmoid function returns a value between 0

and 1.

Figure 3.2: Schematic of a Neuron

A node layer is a row of such neurons. Figure 3.3 [1] shows an example of a neural network

where each neuron is well connected with neurons in the higher layer. The input layer receives

the data and outputs to next hidden layer. Thus, each layer’s output becomes the input for the

subsequent layer. All the layers between input and output layers are call hidden layers. The

number of hidden layers is also the depth of the neural network and if there are more than 3 hidden

layers, it is called a deep neural network.

Using the labeled input and output data, a model is trained where essentially, the weights of the

neurons are re-adjusted iteratively to create a dependable mapping from input values to the output

label(s).
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Figure 3.3: Deep Neural Network

3.3.2 Random Forest

Figure 3.4: Random Forest
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The basic building block of Random Forest is a decision tree [2]. The training algorithm seeks

the best feature-value pair from the input training data set to create nodes and branches. The value

is the decision outcome at each node in the tree. After each split, this task is performed recursively

until the maximum depth of the tree is reached or an optimal tree is found. At every branch or

node, a conditional statement based on a fixed threshold in a specific variable classifies the data

point, therefore splitting the data. For prediction, a new input data-point starts in the root node

(top of the tree) and moves along the branches until it reaches a leaf node (decision) and no further

branching is possible.

A Random Forest consists of multiple instances of the decision trees. Each decision tree in the

forest considers a random subset of features when forming decisions and accesses only a random

set of the training data points. This increases the diversity in the forest and thus overall predictions

are more robust. The final prediction of the random forest is done by either taking average or

majority votes of all individual decision trees.

3.3.3 Recurrent Neural Network

Figure 3.5: LSTM Unit

RNN (Recurrent Neural Network) is a deep learning model, widely used for training time series

data and voice recognition. Unlike feedforward networks like DNN, RNNs have an internal state
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memory element for processing sequence of inputs. LSTM (Long Short Term Memory) Network

is an RNN architecture and its building block LSTM unit shown in Figure 3.5 [3].

The LSTM unit’s repeating module has a very simple structure, such as a single tanh layer.

Instead of having a single neural network layer, LSTM has four interacting nodes in a very special

way. LSTM regulates the addition or removal of information to its state with a structure called

gates. Gates are designed to optionally let information through. They are composed out of a

sigmoid neural net layer and a pointwise multiplication operation. The gate output value controls

the flow of data through each component; a value zero means “let through nothing” while a value

one would mean “let through everything”. There are three such gates in the LSTM unit: an input

gate, an output gate and a forget gate.
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4. PREVIOUS RELATED WORK

Recent years have seen an uptick of effort in the exploration of ML in functional verification

to varying degrees. Stan Sokorac [4] proposed a methodology where toggle coverage metrics and

ML algorithms are utilized to create tests with higher potential of exposing previously uncovered

regions in the design. To maximize the probability of capturing non-trivial bugs, toggle pair cov-

erage metric is considered to form clusters of the test group. Unfortunately, toggle coverage is not

a very effective metric to capture design functionality. In another work [5], clustering and neural

network techniques are implemented to reduce the time taken to collect and evaluate coverage. It

recommends collecting the coverage only on a subset of structural coverage metric and predicts

coverage for the rest of the design. However, this work does not take stimulus optimization into

consideration and also isn’t focused on reducing the number of simulation cycles for coverage

closure.

Coverage-Directed Test Generation (CDTG) is a popular SBV methodology designed to close

the loop between coverage analysis and test generation with the help of ML or other techniques. A

review of various CDTG techniques is provided in [6]. This closure is achieved by learning from

the simulated tests and the achieved coverage, the cause and effect relationships between tests,

or test generation constraints, and the resulting coverage. These relationships are then utilized to

construct new tests or to create new constraints for a test generator in such a way that coverage

closure is achieved faster and more reliably.

The authors in [7, 8] proposed stimulus optimization through test pruning using support vector

analysis (SVA). In [7], a graph-based kernal function k() is defined that measures the similarity

between a pair of tests. Only selective tests are simulated based on relative similarity measures

and clustering. Contrarily, [8] recommends using coverage-based kernel function to estimate the

coverage of un-simulated tests. Only tests hitting the uncovered area are then simulated. This idea

is very similar to the test-level optimization discussed in section 6. Both these researches were

carried out on a confined logic of a commercial processor.
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A Bayesian network based CDTG model is proposed by Shah and Avi [9]. Their methodology

provides directives to test generation mechanism for expeditious depth and breath design coverage.

A neural network-based CDTG method is introduced in [10]. Here an ANN (Artificial Neural

Network) module is introduced into the CDTG loop with the goal of increasing the probability of

selecting high coverage test cases and assertions coverage is the main metric of coverage.

All the previous work is focused on test level optimization. Our work, on the other hand,

proposes transaction level optimization, which is at a lower abstraction level and hence more fine-

grained. The experiments carried out and results obtained as part of this research presents such

finer optimization proves more effective in many scenarios.
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5. DESIGN AND EXISTING TESTBENCH

5.1 The DUT - Multicore Cache Design

The research is targeted at developing smart stimulus optimization mechanism in the functional

verification environment with the DUT comprising of L1 and L2 cache systems. The design con-

tains 4 processor stubs for each L1 cache, a bus system to carry out transactions among L1 caches

and also between L1 & L2, an arbiter to determine bus access, and a stub for main memory. DUT

implements functional aspects of L1 cache coherency protocols. The basic block representation of

the system is as shown in Figure 5.1. The design is very modular with the option available to set

parameters for the number of cores, address width, data width, cache line size, and cache size.

Figure 5.1: Multicore MESI Based Cache Design

The key design specifications of the DUT are the following:

1. 32 bit 4 core processor system
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2. L1 cache for each processor with Shared L2 memory

3. Communication between L1 & L2 and among L1s happens through system bus and the

grant of the bus is decided by an Arbiter

4. 4-way associativity in L1 and 8-way associativity in L2

5. MESI based coherency protocol in L1

6. Pseudo LRU replacement policy

7. Data and instruction caches are separated in L1, L2 is a unified cache

5.2 UVM Testbench

As mentioned in section 2.3, UVM is a commonly used methodology to develop a simulation-

based verification environment for any design. For this research, we modified the currently existing

UVM based testbench for the DUT mentioned in the previous section. Figure 5.2 represents the

overall structure of this testbench.

Figure 5.2: UVM Verification Testbench
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The UVM components in the testbench include CPU agent, virtual sequencer, test cases, score-

board, and the system bus monitor. The CPU agent mimics the role of a CPU core and commu-

nicates with L1 cache in the design. The Driver receives the transaction from the sequencer and

drives packet information to DUT using the interface signals. The Sequencer receives transactions

from the testcases (stimulus generator) via virtual sequencer and forwards it to driver sequentially.

The Monitor passively observes the activity on the CPU-L1 interface, packages the information

into a monitor packet and is sent to the scoreboard for high-level checks. Coverage collection is

also realized in this component. The System Bus Monitor is another passive device that records

the activity on system bus interface and bundles it in SBUS packet. It is also sent to the scoreboard

for checking. Coverage is logged in this module as well.

The Scoreboard is primarily responsible for checking the DUT functionality by ensuring the

correctness in the DUT output behavior. It compares the incoming/outgoing transaction values

with the golden expected values and flags any mismatch. It contains a cache reference model and

high-level checkers. The baseline here is the reference mimics the correct functionality of the DUT.

It is coded using the associative array structures for an efficient implementation in SystemVerilog.

The Virtual Sequencer enables us to have fine-grained temporal control of the transactions on

each of the CPU agents. We can send transactions in parallel to each of the CPU agents. It receives

a sequence from the test class and forwards transactions to the agents as specified in the virtual

sequence.

The DUT in the testbench environment is bug-free, i.e., functionally correct.

5.3 Test-Suite

The present test suite contains tests to verify the cache system at the microarchitecture level.

The microarchitecture verification refers to check the implementation of the processor/SOC. This

includes the verification of subsystems for pipelining, in-order or out of order execution, branch

prediction, caches and coherency, system bus and many more. The tests comprise of various

sequences of transactions as explained in section 2.1.1.

On contrary, the verification at processor/SOC level is done using tests that are assembly pro-
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grams or traces of huge programs comprising of various instructions. These tests are coded to

check the architecture correctness and system performance analysis. A simple example of ar-

chitectural functionality is the instruction set architecture. In this study, as we are considering a

sub-system of the processor, only micro-architecture level verification is considered.

The existing test suite consists of a total of 23 random and directed tests targeted to cover

various design functionalities. Several coverage metrics are defined in the testbench pertaining to

the design features and specification. Beyond 99% coverage is obtained when running all the tests

with multiple random seeds as a part of dynamic regression.

A fully random test is the most simple and trivial test to code that requires very little knowledge

about the design functionality. As the transactions are generated in the most random fashion, there

is a higher chance of repetitive patterns in the stimulus. Therefore, random regressions suffer from

poor performance in terms of covering newer design space after a few tests simulation. This issue

is complemented by adding constraints in the test template to create directed-random and directed

tests to target the uncovered design scenarios. This reverse engineering exercise requires extensive

knowledge of the design where a hand-coded test template is simulated to maneuver the design to

explore new space. Also, generating a specific sequence of transactions for coverage closure is the

last resort and least preferred in the whole verification process.

Alternatively, here I explore the use of machine learning in the grand scheme of functional

verification where only selective tests and transactions are simulated from the random stimulus

generation templates. This requires very little modification to the existing verification environment;

a Python-based machine learning model is created for training and prediction surrounding it.
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6. TEST-LEVEL STIMULUS OPTIMIZATION

This research is mainly undertaken with an outlook of exploring different avenues where Ma-

chine Learning can be applied for stimulus optimization in the functional verification. The first-half

of this work focuses on coarse-grained test-level stimulus optimization technique. The goal here

was to predict the performance of a test in terms of its coverage in the design without simulating

the test.

6.1 Methodology Overview

Figure 6.1: Test-level Stimulus Optimization Methodology

Test-level stimulus can be controlled through knobs (or test constraints), which can help steer

the stimulus towards a particular design functionality. Here, I introduce test-level optimization

to predict functional coverage based on these knob values. This technique is applied to prune

redundant tests and direct the stimulus towards uncovered areas of the design. A machine learning-

guided test level optimization flow is illustrated in Figure 6.1. The flow begins with the simulation

of random tests, where the test knobs are fully randomized. The simulation data in the form of

coverage database and log files serve as training data for the Machine Learning (ML) model. The

input features to the ML model are extracted from the test knobs and the prediction output specifies
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whether certain bins are covered by these test knob settings. Once the ML model is sufficiently

trained, it is used to predict the coverage for a set of random input knob values. The decision for

pruning is then made accordingly. The model is re-trained in batches with simulation data from

the newly simulated tests. This is done until coverage closure is attained. These steps are further

described in the following sections.

6.2 Test Knobs

A fully random test performs random sequence generation where transaction attributes are

assigned completely random values by random number generation mechanism in the environment.

These values are not purely random but based on pseudo-random number generation algorithm,

which takes in a parameter (the initial value) called a seed value. Most of the times, based on

the design specification, the transaction attributes can only be assigned a value within a specific

range and cannot take a complete random number. To avoid the illegal transaction generation,

constraints are applied on these attributes that are defined as random variables in the code. The

constraint solver starts with a random seed and creates a test that satisfies the constraints. Then it

takes another seed and does the same again for another test. The testbench provides us the freedom

to specify the stimulus generation constraints at the transaction, sequence, and test-level with slight

modifications in the environment.

The CPU-L1 transaction packet has 4 attributes- request_type, access_cache_type, data and

address. The request_type attribute specifies whether the incoming transaction is of type read or

write whereas access_cache_type describes the target I-Cache or D-Cache. Attributes address and

data would contain the target address and the data of the transaction, which are constraint within a

specified range in the specification. A sample system-verilog constraint is shown below.

Specification : Any address less than 32’h4000_000 is for instruction cache and the rest is for

the data cache.

constraint c_address_type { address[’TAG_MSB_LV1:(‘TAG_MSB_LV1-1)] == 2’b0 ->

access_cache_type == ICACHE_ACC; address[‘TAG_MSB_LV1:

(‘TAG_MSB_LV1-1)] != 2’b0 -> access_cache_type == DCACHE_ACC; }

30



Test Parameter No. of bits Description
No. of Transactions 1 Controls number of transactions in a sequence
Fix Address 1 1-all transaction has same target address, 0-otherwise
Is Parallel/Sequential 1 1-all sequences are executed in parallel, 0- in sequential
Seed 1 Seed for randomization, between 50-100
Core Selection 4 1-execute a seqeuence, 0-otherwise; 1 bit per core
I-Cache or D-Cache 8 10- icache, 01-dcache; 2 bits per core
Read or Write 8 10- read, 01-write; 2 bits per core
Total 24

Table 6.1: Test Knobs

A sequence is a collection of transactions, thus all the transaction attribute constraints can

be overwritten at the sequence-level. Another parameter available at sequence level is no. of

transactions in a given sequence. Using a virtual sequence in a test, multiple sequences can be

kicked off on separate CPU agents in parallel (using fork..join construct) or sequentially. Thus,

there are a total of 24 test parameters, also called test knobs, as shown in Table 6.1, to control the

random behaviour of a given test. These parameters are passed as switches in the command-line

while kicking off the simulations. More details on how to simulate the parametric test can found

in Appendix A.1

6.3 Coverage Metrics

Coverage is the most important metric to measure the quality of stimulus and progress of the

verification cycle. Coverage-driven verification is performed where the overall coverage in the

design is the measure to sign-off for the verification phase. The existing testbench had certain

coverage metrics defined based on the specification and features of the design. Coverage metrics

are user-defined and are based on the human judgment of the extent to design is verified to prove

the absence of bugs in the design. Few more metrics were added to make the verification effort

more rigorous and prove that stimulus optimization technique helps to reach the target goal in few

simulation cycles.

The coverage metrics, usually called coverpoints, are based out of the design specification.
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Coverage Metric No. of Bins Description
address_X_req_type 448 address cross request type
data_bin_cov_out 256 data value range is divided in 256 bins

fsm_cov_out 76
19 per core (proc_cur+snoop_cur
+proc_tran+snoop_tran)

proc_X_req_cov_out 16 processor cross request type
proc_X_snoop_cov_out 16 processor cross snoop state
snoop_request_bin_cov_out 15 snoop request state
design_mesi_fsm_transition 143 transition of design mesi state
cache_hit 768 cache hits on each address for each processor
Total 1738

Table 6.2: Coverage Metrics

Each feature/event is captured in one or more coverpoints. Cross and transition coverages are de-

fined to increase the verification effort. Transition coverages are very useful for covering DUT

state machines. Cross coverage is the cross product of two or more previously declared cover-

points, i.e., overlap of two or more events, thus defining rare and critical corner scenarios in the

design. Table 6.2 shows all the coverage metrics used to attain the coverage closure in the context

of this research.

Coverage collection for each simulated test and further data processing is explained in Ap-

pendix A.2

6.4 Machine Learning Model Training

For test level optimization, a random test has 24 test knobs (integers) and these are translated

to 24 input features to the ML model. Using Python based randomization script, a database for

random testcases is created and stored in form of a table. Each entry in this table has 24 values,

each corresponding to a test knob, and can be translated for test simulation. For the coverage

prediction, eight coverage metrics in the design are considered with a total of 1738 bins. Each

metric has an individual ML-model for prediction, as the coverage for any two different metrics is

mutually exclusive. The initial ML model training was performed with the data-set collected from

the first 50 randomly simulated tests, achieving the training error < 10%.
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The previous works on test-level stimulus optimization are mostly based on SVM (Support

Vector Machine) and neural network. In this work, random forest (RF) [11] is also investigated,

which is a decision tree-based machine learning approach and shows pretty good results. Two types

of ML classification errors are considered to avoid the over-fitting on training data-set, which are

validation set and 5-fold cross validation. A lower validation-set error conveys model perform well

for data-set not used in training, while 5-fold CV will make sure the model is not biased towards

the training data-set. The training to validation dataset split in input dataset is 80-20. On simulating

more new tests, the input and coverage data is appended to the existing dataset and the model is

re-trained periodically. Figure 6.2 represent the model training and validation process.

Figure 6.2: Test-level Stimulus Optimization Flow-diagram

6.5 Coverage Prediction and Test Pruning

Once the model is well-trained, i.e., the validation error is less than 10%, the next step is to

predict the coverage on test parameters of new incoming test. One noteworthy improvement in this

work is the ternary classification on coverage of a bin instead of binary classification in previous
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works. I take the classification output of the ML model as the probability of a bin being covered.

If the probability is greater (smaller) than a higher (lower) threshold α ∈ (0, 1) (β ∈ (0, α)), the

corresponding test is classified as (not) covering the bin. Otherwise, the probability is between α

and β, and the coverage is undecided. If a test leads to a high percentage of bins with decided

coverage, either “yes” or “no”, it is (not) performed for simulation when it would (not) cover bins

that have not been covered yet. This is depicted in Figure 6.2.

When the value of α is set close to 1 (pessimistic) with moderate training data, a high percent-

age coverage predictions were undecided. The model requires intensive training and more training

data for the coverage prediction to lie in the interval (α, 1). Both these propositions hurt our ap-

proach as prior will lead to model overfitting and later requires more simulation, which defeats the

overall purpose. Similarly setting the value of α further to 1 (optimistic) will lead to prediction in

decided bin, i.e., “yes” even though there is a higher chance that the test may actually not hit that

coverage bin. To determine a balanced value for α, a set of training experiments were performed

with varying value of alpha and the training error is determined using a validation set with 80-20

(training and validation) input data breakage. Similar experiments were performed to determine a

fair value of β. Going further, α is set to 0.9 and β is set to 0.1.

If the ML prediction on a test can decide the coverage for over 90% of bins, then this test

is simulated or pruned out depending on its improvement to the overall coverage. Otherwise, if

ML finds it difficult to predict the coverage then the test is sent for simulation. After the initial

training, the ML model re-training is performed according to another 50 newly simulated tests. In

this methodology, the two major timing overheads, apart from simulation time, are training and

prediction time. As training time is much greater than prediction time, the ML model is re-trained

after simulating sufficient new tests. The whole framework is coded in Python. The coverage per

test is extracted from the coverage reports and unified into a database using Python scripts. More

details can be found in Appendix A.

Overall, only the concept of test pruning based on coverage prediction coincides with the ap-

proach proposed by LC.Wang [8]. The implementation is altogether new and different from any
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of the previous work undertaken in this domain. Based on the ternary classification, i.e., covered,

uncovered, and undecided, for a group of bins in a coverpoint, the decision to prune a test or not

is taken. More number of undecided bins suggest a disparate test than the ones simulated earlier,

thus pushed through simulation. Also, the model training and calculation of training error is very

unique.
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7. TRANSACTION-LEVEL STIMULUS OPTIMIZATION

The test-level constraints impart low controllability on the transaction generation in any se-

quence. Using the 24 test knobs described in the previous section, one can control over the cores,

on which a sequence of transactions is executed in a parallel or sequential manner. Moreover, I

can set the number of transactions in any sequence and their request and access type. Finer control

over the attributes like address, data, and the order of the transactions are difficult at test-level.

Moreover, certain events in the design are triggered only when certain type of transactions are

exercised with a specific order in the design. Thus, the prediction of these event occurrences in

the design using test-level features proved very difficult and requires feature extraction at fine-

grained transaction-level. The work shown in this section is exclusive to all the efforts undertaken

previously.

7.1 Methodology Overview

Figure 7.1: Transaction-level Stimulus Optimization Methodology

Empirically, it takes about 20% of overall simulation time to reach 80% design functional cov-

erage and then extensive efforts are put in generating directed-random stimulus to cover the rest of

the design. The aim of this experiment was to observe and record the transactional-level activity

36



during the random simulations for easy to achieve initial coverage and utilize this information to

accelerate the rest of the verification activity. Transaction-level stimulus optimization is proposed

that can recognize the impact of individual transactions on coverage and thereby determine trans-

actions for the speedup of coverage closure. The general flow is depicted in Figure 7.1. Random

simulations are initiated at the beginning to collect the training data for learning. The scoreboard

in the existing environment is modified to record and display the per transaction activity in the

simulation log. The training set is created by processing the simulation logs from initial random

regressions.

The ML model is trained to classify/predict the coverage for a transaction or set of transactions.

The initial regression proceeds until the model attain the training error below a certain threshold

value. The trained model is saved and used for further stimulus optimization. Two optimization

templates are devised as follows.

1. Online transaction pruning: This is an online approach where transactions are processed

in the middle of simulating a sequence. If some transactions are classified by the ML model

as not helpful on improving coverage, they are pruned out without being simulated.

2. Offline directed sequence generation: Based on ML predictions, a sequence composed

of transactions improving the overall coverage is generated offline for simulation. This is

similar to writing a directed test to target all the coverage holes, but instead of writing the

test manually, the ML algorithm generates such directed sequence test.

These two templates are customized for two different types of coverage metrics for DUTs with and

without FSMs mentioned in section 7.3 and 7.4 respectively.

7.2 Per-Transaction Coverage

The literature survey undertaken for this research depicts a heavy amount of efforts has been put

in stimulus optimization was by closing the feedback loop from coverage to testcase generation.

Thus, I was motivated to explore the scope of optimization at a finer level, a territory unexplored.

The primary challenge faced was coverage collection for each transaction. The currently existing
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industry tools provide us with the total coverage per test at the end of the simulation with no

information about individual transaction’s impact on the design state. Thus, it is difficult to create

a labeled dataset of transaction activity using these coverage logs.

Scoreboard/Reference-model is a component of the testbench that contains checkers and ver-

ifies the functionality of a design. It receives the transaction information repacked in form of the

monitor packet via TLM (Transaction Level Modeling) analysis port. The scoreboard/reference-

model implements a correct transaction-level model of the DUT and thus an ideal setting to extract

the transaction-level activity. The verification environment has a fully functional scoreboard logic

having the accurate behavior of L1 and L2 cache systems as per the design specification. I modified

the scoreboard logic to capture FSM and Non-FSM based per transaction coverage and display the

relevant information.

7.3 FSM Transition Coverage

In a design with FSMs, one popular metric is the coverage of state transitions. A state transition

depends on the current state and the new transaction, which can be characterized by its attributes.

The general idea is shown in Figure 7.2. The ML model takes transaction attributes and current

state as its input features and outputs the prediction of the next state. By examining the current

state and the predicted next state, one can tell if transition coverage is improved. Initially, pilot

random tests are performed and the results are applied to train the ML model. Once the model is

well trained, it can be employed for either transaction pruning or directed sequence generation.

Figure 7.2: FSM Coverage Model
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7.3.1 Data Extraction and Model Training

The FSM transition coverage metric evaluated in this study is MESI design state-transitions. In

this design, cache coherency is implemented using MESI protocol, i.e., a particular entry in each

L1 cache should be either in Modified, Exclusive, Shared or Invalid state. Overall, MESI state for

cache entry is defined as combined MESI state for the corresponding cache entry in all of the four

cores, e.g., {I,M, I, I}, represents that the cache entry in core 1 is in Modified state and Invalid

for other cores.

To extract the design MESI state information, a new function is added in the scoreboard logic

- “get_mesi_state”. This function takes two input arguments: monitor packet and the CPU core.

From the packet address field, tag and index values are extracted. Using these values the current

MESI state for that cache line is extracted corresponding to all four cores. The design MESI state

is recorded before and after each packet activity. The previous MESI state and packet attributes

form the inputs and next MESI state become the output label. Based on the MESI protocol, not all

states and transitions are valid. For example, {M,M, I, I} is not a valid design MESI state for a

cache line. Thus, the coverage metric consists of a total of 143 valid state transitions.

An overall state is represented by 16-bit binary label, 4 for each core. Hence, there are 22 input

features bits to the ML model and 16 output labels to classify. The 22 input feature bits include

16-previous state, 4-core and 2-request type bits. The transaction address (can be included) and

data attributes are not included. Different supervised machine learning algorithms are used to train

the model using above dataset to compare its accuracy.

7.3.2 Coverage Prediction, Transaction Pruning, and Data Modeling

The coverage prediction and closure is further obtained by two strategies. In online transaction

pruning, the application of the ML model is relatively straightforward. Before transactions of a

sequence is fed to simulation, they are examined by the ML model to tell if they help improve

transition coverage. Only those helpful transactions are fed to simulation while the others are

pruned out.
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Figure 7.3: Transaction Attribute Graph

The application of ML for offline directed sequence generation is more sophisticated. I con-

struct a TA (Transaction Attribute) transition graph to help here as shown in Figure 7.3. It is

similar to state transition diagrams for FSMs, except that its edges represent transitions associated

with transaction attributes instead of FSM input (or transactions themselves). Usually, the FSM

state space in a DUT is quite large and the dependence of transitions on transaction attributes is

not known a priori. Therefore, the TA transition graph has to be constructed during transaction

simulations. Suppose current state is si, by simulating a transaction with attribute aj , the next

state si+1 is reached. Then, an edge (si, si+1) with condition aj is found and added to the TA

transition graph. Figure 7.4 shows a TA graph on the training data set with 17 design states and 78

state-transitions.

After the ML model is trained, it can be used to predict transitions for state-TA (si, aj) pairs

that have not yet been simulated. Figure 7.5 shows a TA graph obtained after transaction predic-

tion with 18 design states and 106 state-transitions. All the coverage holes are registered in a list

with information of the required design FSM state (source node) and type of incoming transaction

(transaction attributes) for each coverage holes in the design. Thus, this list contains all the unde-

cided and unvisited edges from the predicted graph. On such predicted TA transition graph, large

(small) weights are assigned to edges for transitions that have (not) been covered. Then, Dijkstra’s

shortest path algorithm is performed on the weighted predicted TA transition graph to reach from
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Figure 7.4: TA Trained Graph

current state to required state for exercise next coverage hole from the list. Normally, such paths

contain many lower weight edges associated with transitions that have not been covered, hence fill-

ing the coverage on the move. Then, the attributes on these edges are utilized to find transactions

that form a sequence for simulation.

The weights can be assigned in two manners. First way is to associate each edge with a prob-

ability value p ε(0, 1) where a lower value would mean the model is indecisive and thus needs to

be addressed for coverage closure with more importance. All the visited and unvisited edges are

assigned weights 1 and 0 respectively. Thus, during the graph traversal, the algorithm will pick

path with more weights which corresponds to the coverage holes. But in a larger context,all mis-

predicted and unvisited edges are categorized with weight 0 and rest with 1 as the aim is to fill all

the holes and reach coverage closure.
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Figure 7.5: TA Predicted Graph

An example is shown in Figure 7.6 where currently the design is in INIT state. To reach the

source node (S) of the next coverage hole, i.e., the source of the directed edge to be visited, there are

two possible paths: I-A-B-S or I-C-D-E-S. If weights are assigned based on prediction confidence

of model, the recommended path with lowest sum of weights is I-A-B-S with total 2.3 against 2.8

for I-C-D-E-S. Contrarily, assigning same weight to all coverage holes will result in I-C-D-E-S as

the recommended path. Such graph traversal technique is employed till the coverage closure.

7.4 Non-FSM Event Coverage

In certain designs without FSM, it is of interest to verify the DUT under some events, e.g., cache

hit. The occurrence of such events often depends on a sequence of transactions in a specific order.

It is very difficult, if not impossible, for test level constraints or knobs to deterministically generate

such ordered sequences. Therefore, I suggest to make use of machine learning for transaction

level control on such sequences. As the coverage metric is non-FSM, there are no circuit states

for tracking the history dependence in transactions. Hence, the history dependence needs to be
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Figure 7.6: Shortest Path Traversal Example

Figure 7.7: Non-FSM Coverage Model

explicitly captured by the ML model. In this approach, the LSTM (Long Short-Term Memory) [12]

model is adopted, which is a popular recurrent neural network (RNN) model famous for handling

time series and history dependence as shown in Figure 7.7. This methodology can be applied

for sequence classification problem in hardware verification where task is to predict category of a

sequence of inputs which span over time or space.

7.4.1 Data Extraction and Model Training

For transaction level optimization on non-FSM event coverage, the events of interests are L1

cache hits on each address bin in each core. A cache hit occurs when an address line requested by

a transaction is present in L1 cache of the core. The event occurrence depends on the last access

of the same address and type of transactions simulated in the past. The cache hit coverage metric

consists of a total of 768 bins, i.e., each core of the four cores has 192 address space.
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For a given test, the information of the sequence of transactions and functional coverage metric

for each transaction is extracted using the simulation log. The information on the cache hit/miss

per transaction is fetched by revising the scoreboard logic. During the cache update for each

transaction, a flag “miss” is set to 1 in case there is no cache hit condition, which is checked by

the function “get_way_hit” in the scoreboard. The data-points such as CPU core, index, and cache

hit/miss for each transaction are printed in the simulation log. The input features for the LSTM

are the attributes of an ordered sequence of w transactions and the output predicts if the event

of interest is covered or not. The input features for the LSTM are the attributes of an ordered

sequence of w transactions and the output predicts if the event of interest is covered or not. For

each transaction, 3 main attributes are considered and their values are made one-hot coded, which

forms the input feature set 22-bits wide per transaction: 4-core, 2-request type, and 16 address.

The output label is one bit, 1-cache hit and 0-cache miss.

Intuitively, the w value controls the depth of simulated transactions history considered for

making the prediction on the coverage metric. In the results section, the impact of varying w on

training accuracy is shown. The live coverage database, created using Python, stores the current

coverage and is updated on every new coverage bin hit. The training error is calculated similarly

by taking the mean of the validation set error and 5-fold cross validation (CV) error. The initial

random regression is paused when the classification error drops below a threshold value (10%).

7.4.2 Coverage Prediction and Transaction Pruning

Similar strategies are applied for filling the Non-FSM event coverage holes in the design. Fig-

ure 7.8 shows the step involved in each strategies.

For online transaction pruning, the next w transactions to be simulated according to a test

are examined by the LSTM model. In the driver code, the next w transactions are requested

from sequencer but not simulated yet. The attribute values for these w transactions are passed

for coverage prediction using a Python script. If the LSTM predicts that they will not trigger the

events that have not been covered, then the first transaction is pruned out without being simulated

and new transaction is requested from sequencer and appended at the end of sequence for the
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Figure 7.8: Non FSM Coverage: Online Pruning vs Offline Generation

coverage prediction. In other case, if the coverage prediction targets a coverage hole in the design,

these w transaction are simulated in the same order. The LSTM model is re-trained periodically as

more sequence of transactions are simulated.

In offline directed sequence generation, the constraints and knobs for a sequence are iteratively

tuned till it would cover events of interests according to the LSTM model, and then the sequence

is sent for simulation.
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8. EXPERIMENTAL RESULTS

8.1 Test-Level Stimulus Optimization

In test-level stimulus optimization, the coverage for a new test is predicted using the coverage

information collected from previously simulated tests. Then, using the coverage forecast, a deci-

sion is taken whether to stimulate the test or to prune it. The testcases which are not rewarding are

barred from simulation, thus saving on total simulation time. This optimization technique comes

with a cost of added machine learning model training and coverage prediction time. In this thesis,

I have categories the results into two savings: simulation time and CPU-time. The simulation time

is the sum total of the number of clock cycles each test ran for in a regression until the coverage

closure is achieved. The information on the number of clock cycles for which the test is simulated

is extracted from the simulation log. The CPU-time is the actual wall-clock time required for the

whole regression to run with stimulus optimization until the coverage closure.

For the evaluation of this research, it is assumed that the stimulus/test generation time is small

as compared to its simulation time. The input constraint matrix generation is performed by only

once using Python script as shown in Appendix A.1. For each test, the sequence generation and

driving of the transactions through the interface is done instantaneously by the testbench. The

majority of time is taken for simulation of the transaction through DUT. Thus, this assumption is

valid for the moderate size design used in this research and the skew between stimulus generation

and simulation exponentially rises with increasing scope of design.

Three popular supervised machine learning classification algorithms are picked for compari-

son: deep neural network (DNN), Support Vector Machine (SVM), and Random Forest (RF). A

DNN is an artificial neural network (ANN) with multiple layers of neurons between the input and

output layers and finds the correct mathematical manipulation to turn the input into the output,

whether it be a linear relationship or a non-linear relationship by re-accessing the weight on each

neuron during the learning phase. SVM learns the correlation between input and output using
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kernel functions. RF classifies the output by constructing a multitude of binary decision trees at

training time and outputting the class by mean prediction of the individual trees. The training

time, accuracy and memory footprint for all the three algorithms varies. The model parameters

are fine-tuned for each algorithm to gain the best performance in terms of coverage prediction

accuracy.

Figure 8.1: Coverage Closure for Cover-Group A with Test-Level Optimization

The eight metrics discussed in the section 6.3 were divided into two cover-groups based corre-

lation with test knobs: cover-group A consisting of six coverage metrics (827 bins) and cover-group

B containing two metrics (911 bins). The results for cover-group A are plotted in Figure 8.1. With-

out using machine learning, it took a total of 598 tests, which were simulated as part of random

regression, to obtain 100% coverage for cover-group A as shown by the curve labeled “no learn-

ing” in blue. Although, it is quite evident that the 90% coverage mark is reached with 157 tests

only. Thus, there is a high amount of redundancy in coverage hits once the coverage crosses the

80-90% mark when the curve begins to saturate.

On the other hand, the proposed stimulus optimization technique can help prune out the redun-
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dant tests and only stimulate tests that target achieving coverage further. The training classification

error for cover-group A was observed below 10% with simulation data from the initial 50 test,

which shows a high correlation with test knobs. Once the machine learning model is ready for

accurate coverage prediction, later only selected tests are simulated as shown in the plot. The fig-

ure depicts that coverage beyond the prediction mark is achieved with approximately at the same

rate. The numbers of tests simulated for reaching 100% coverage for cover-group A by different

methods are listed in Table 8.1.

ML Algorithm No. of Tests
No Learning 587
DNN 137 (77% ↓)
SVM 185 (68.5% ↓)
RF 129 (78% ↓)

Table 8.1: No. of Tests for Coverage Closure of Cover-Group A

These results show 68−78% reduction on the number of tests with RF producing the best result.

RF classifier has better coverage prediction accuracy and overall coverage closure requires simula-

tion of only 129 tests which is a mighty 78% reduction in the number of simulated tests. Table 8.2

shows the comparison of no. of tests simulated to achieve 100% coverage per each coverpoint.

“snoop_request_bin_cov_out_mat” is the most difficult to exercise coverpoint in the design. DNN

performs with a close prediction accuracy and requires a total of 137 tests for coverage closure.

SVM has a higher misprediction rate and thus requires more number of tests to simulate for 100%

coverage.

The results on cover-group B in Figure 8.2 show little benefit of using machine learning. I

observed that the ML training for cover-group B is difficult to converge. Even after intensive

training, due to high classification error on training data-set, the ML models still have a hard

time in deciding coverage. This tells that cover-group B has a low correlation with test knobs for

coverage prediction. The results reveal limitation of test level optimization and confirms the need
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Coverpoints
No. of Tests to
reach 100% coverage
(w/o learning)

Random Tests to
reach 100% coverage
(with learning, RF model)

address_X_req_type 200 125
data_bin_cov_out_mat 100 72
fsm_cov_out_mat 100 78
proc_X_req_cov_out_mat 100 87
proc_X_snoop_cov_out_mat 100 71
snoop_request_bin_cov_out_mat 600 129

Table 8.2: Comparison of No. of Tests with and without Machine Learning (RF Model)

Figure 8.2: Coverage Closure for Cover-Group B with Test-Level Optimization

for transaction level optimization for coverage metrics in cover-group B.

8.2 Transaction-Level Stimulus Optimization

Transaction-level stimulus optimization is applied in two variants for two different coverage

metrics in cover-group B shown earlier, which showed no significant improvement with test-level

stimulus optimization.
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8.2.1 FSM Based Coverage Metric

The FSM based transaction-level optimization is applied for MESI transition coverage. The

next MESI state depends on the previous MESI state and the incoming transaction attributes. Thus,

using the 22 input features the machine learning model was trained till a classification error got

below the threshold value (10%). Two supervised ML algorithms are picked for performance com-

parison: DNN and RF. The model parameters were fine-tuned to obtain better prediction accuracy.

In fully random regression run, random tests were simulated till all 143 state transitions got

covered to obtain the baseline result. The total simulation time required for coverage closure is the

accumulated sum of number of clock cycles for which each test was simulated. Next, the similar

coverage closure activity was driven using the two flavors of stimulus optimization: transaction

pruning and sequence generation.

Figure 8.3: FSM Transition Coverage Closure using DNN Classifier

Figure 8.3 plot the simulation cycles required for coverage closure with fully random, test level

optimization, transaction pruning and directed sequence generation using DNN classifier. With

fully random regression, 80% coverage is reached in about 50K simulation cycles while it takes
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Figure 8.4: FSM Transition Coverage Closure using RF Classifier

an additional 65K cycles to reach 100% coverage. This implies that the coverage hits without ML

have high redundancy. One can also see that the help from test level optimization is quite small.

The fully random tests regression and test level optimization shows almost the same saturation be-

havior where rate of covering new MESI state transition diminishes as the regression progresses.

In contrast, transaction level optimization achieves much more significant simulation cycle reduc-

tion. The transaction pruning technique and directed sequence generation technique can reduce

simulation cycles by about 48% and 55%, respectively. On the predicted graph, applying shortest

path strategy as described in the methodology is the more directed way to fill coverage holes and

thus proves better results. However, applying weights on uncovered edges as a probability p or

singular value 1 resulted in almost same number of transactions simulated for coverage closure;

hence I adopted the later technique. Also, from Figure 8.4 it is evident that the reductions from

DNN and RF are about the same.

The reduction in simulation cycles comes with a cost of the time taken by the ML model train-

ing and prediction. The data pre-processing consumes negligible time and hence can be ignored. I

observed that the training time of random forest model is usually less than a half of DNN. There-

fore, I advocate a random forest-based approach. The total CPU time and breakdown for the MESI
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design are shown in Figure 8.5. One can see that the overall training and prediction time are much

smaller than simulation time. The results show reductions in total CPU time of about 57% and

69% with transaction pruning and directed sequence generation, respectively.

Figure 8.5: CPU Runtime comparison: RF based FSM Transition Coverage

8.2.2 Non-FSM Based Coverage Metric

In Non-FSM based coverage, the event of interest in the design depends on an order of group

of transactions. The features for machine learning model are extracted from attributes of w-

consecutive transactions as mentioned in the section 7.4. The RNN based machine learning algo-

rithm applied for training such series data is the LSTM. Besides LSTM, Random Forest classifier

is also implemented for comparison. The transaction info and transaction level coverage data are

extracted from simulation logs and further processed using Python scripts for training.

Figure 8.6 shows the classification error on the training set by varying the length of transaction

windoww for feature extraction. Small window size w results in inaccurate prediction and too large

w values cause over-fitting, thus higher error. Apparently, the LSTM-model has a higher accuracy

compared to Random Forest and thus, LSTM with w=20 is only used for non-FSM event coverage
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Figure 8.6: Classification Error with varying w for LSTM and RF Classifier

where the classification error is about 8%. In a separate experiment,the transaction attributes of all

w transaction were collated as input attributes to train the DNN model. The model was unable to

perform feature extraction and thus the training error never got below 40%. The primary reason

for this nonperformance was that all the transactions were given equal value but that should not be

the case.
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Figure 8.7: Non-FSM Coverage Closure using LSTM Classifier

Figure 8.7 shows the results achieved by applying LSTM-based transaction level optimization

on non-FSM event coverage, also the part of cover-group B. The random regression and test level

optimization take approximately same number of simulation cycles to reach 100% coverage, thus

it is incompetent. Using the trained LSTM model, the coverage prediction is performed over a

sequence of transactions for which least classification error was obtained, i.e.,w=20. The LSTM

model training error dropped below 10% when total coverage was 60%. The remaining 40%

coverage was achieved with transaction pruning and directed sequence generation, which resulted

in reduction of 55% and 61% of simulation cycles, respectively, compared to random regression.

Figure 8.8 shows the total CPU runtime and its breakdown for evaluating the LSTM-based

transaction level optimziation on non-FSM event coverage. Again, the LSTM training and predic-

tion time are much less than simulation time. Compared to the random regression without machine

learning, coverage closure with transaction pruning and directed sequence generation can reduce

65% and 72% of the total CPU runtime, respectively.
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Figure 8.8: CPU Runtime comparison: LSTM based Non-FSM Event Coverage

8.3 Online Pruning vs Offline Generation

As discussed earlier, the coverage closure, i.e., hitting the coverage holes in the design, is

conducted by two complementary approaches: online transaction(s) pruning and offline sequence

generation. The former approach is easy to integrate with the testbench as the stimulus genera-

tion is done internally and only the decision about the effectiveness is performed using prediction

scripts integrated into the driver. Although, this method is not the most optimized as there is

low controllability in the transaction generation process. For example, to make a prediction on

transaction-window size 20, information of 20 transaction attributes are fetched and used to pre-

dict the coverage. If the predicted coverage is non-useful then all these transactions are dropped

and next 20 transactions are fetched. There is no control to permute only specific set of transac-

tions in the window. Thus, the coverage closure obtained with online pruning is farther than the

ideal transactions generation method to hit only the coverage holes.

On the other hand, offline sequence generation includes some more sophisticated methods

like the generation of TA-graph. Such methodology requires more engineering efforts than just

modifying the driver logic. For instance, for the FSM-based coverage metric, the information

of TA-graph is utilized to sweep the uncovered transition in the predicted graph with least edge-
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path traveled. If such a path exists in the graph, then generating and simulating the translated

transactions sequence is the most optimal way to hit all the coverage holes in the design. Also

for event-based coverage metric, transaction attributes can be re-arranged in Python to generate

combinations for accelerated coverage closure. Hence, with offline sequence generation method,

it is likely to reach coverage closure sooner but the trade-off is the time and labor to develop the

methodology.

Figures 8.3, 8.4, and 8.7 show very marginal improvement for the transaction pruning over

the directed sequence generation in terms simulation time-reduction when compared to the total

simulation time when no learning is applied. Also, the total CPU time for both these methodologies

is very comparable. Ergo, online pruning gives a remarkable run-time reduction with very few

modifications to the framework while the coverage closure can be further compressed left with

a more intelligent methodology like offline sequence generation at the cost of more engineering

investment.
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9. CONCLUSION

Machine learning is aptly suited for efficiency improvement in the area of simulation-based

functional verification. The primary aim of this research is to exploit machine-learning capabilities

to bring in more automation in test generation, obtain quicker coverage closure, and at the same

time gain reduction of engineering effort as well as simulation time and test size. This attempts

to accelerate bug detection in the design and reduce the overall time for verification in the chip

design cycle. The factors that decide the feasibility for introducing such a learning-based stimulus

optimization approach in practical use are the extent to which knowledge about DUT is required

and how technically demanding it would be to construct and finetune the machine-learning based

framework around the existing verification testbench.

Recently published work shows growing interest in the industry and academia in this area. In

this research, I explored and suggest stimulus optimization as a favored avenue for the application

of machine learning to accelerate coverage convergence. Simulation of hand-coded directed tests

is the usual norm for covering complex and hard to hit design space which is a time extensive task

and requires a thorough understanding of the design. Moreover, it is very difficult to generate a

test with a sequence of custom-made transactions aimed to hit coverage holes. Thus, I explored

machine learning based coarse- and fine-grained stimulus refinement via test level and transaction

level exercise, respectively as an alternative approach for coverage closure.

The design used to conduct this research is quad-core mesi-based cache system. I modified

the testbench to record transaction-level activity in logs and modified the driver for pruning deci-

sion and the rest of the framework is coded in Python. Thus, a feedback system from coverage

to stimulus generation is implemented in the existing testbench with a minimum modification.

This optimization strategy is completely automated, scalable to bigger design and requires little to

moderate knowledge about the design.

Total eight functional coverage metrics were considered for coverage closure which covers im-

portant features in the design. Test-level optimization proved effective for six coverage metrics
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with a 78% reduction in the number of simulated tests. However, test-level optimization failed to

provide significant gains for the other two cases. I demonstrate the effectiveness of transaction-

level optimization on the remaining coverage metrics and obtained coverage closure by two unique

methods: online transaction pruning and offline sequence generation, resulting in a notable cutback

of total simulation time by about 48% and 55% respectively. The overall methodology proved ef-

fective with around 70% reduction in total CPU time required for verification coverage closure.

This work leads us to conclude that the complementary application of both of these optimization

techniques is the recommended path for efficiency improvements in functional verification cover-

age convergence.

58



REFERENCES

[1] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” arXiv preprint

arXiv:1511.08458, 2015.

[2] L. Breiman, “Random forest,” Statistics Department, University of California Berkeley, Jan-

uary 2001.

[3] Hasim, Andrew, and Francoise, “Long short-term memory recurrent neural network architec-

tures for large scale acoustic modeling,” Google USA.

[4] S. Sokorac, “Optimizing random test constraints using machine learning algorithms,” Design

Verification Conference, 2017.

[5] R. Roy, C. Duvedi, S. Godil, and M. Williams, “Deep predictive coverage collection,” Design

Verification Conference, 2018.

[6] C. Ioannides and K. Eder, “Coverage-directed test generation automated by machine learning

- a review,” ACM Transactions on Design Automation of Electronics and Systems, vol. 17-1,

p. 17, 2012.

[7] O. Guzeya, L.-C. Wang, J. R. Levitt, H. Foster, J. Bhadra, X. Feng, and M. S. Abadir,

“Increasing the efficiency of simulation-based functional verification through unsupervised

support vector analysis,” Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactionson, vol. 29, pp. 138–148, January 2010.

[8] W. Chen, N. Sumikawa, L.-C. Wang, J. Bhadra, X. Feng, and M. S. Abadir, “Novel test

detection to improve simulation efficiency - a commercial experiment,” Proceedings of the

International Conference on Computer-Aided Design, vol. 29, pp. 101–108, 2012.

[9] S. Fine and A. Ziv, “Coverage directed test generation for functional verification using

bayesian networks,” Design Automation Conference, pp. 286–291, 2003.

59



[10] F. Wang, H. Zhu, P. Popli, Y. Xiao, P. Bodgan, and S. Nazarian, “Accelerating coverage

directed test generation for functional verification: a neural network-based framework,” Great

Lake Symposium on VLSI, pp. 207–212, 2018.

[11] A. Liaw and M. Wiener, “Classification and regression by random forest,” R News, vol. 2/3,

pp. 18–22, December 2002.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9,

pp. 1735–1780, 1997.

[13] Chollet, François, et al., “Keras,” https://keras.io, 2015.

60



APPENDIX A

IMPLEMENTATION CODE

A.1 Random Parametric Test Simulation

Figure A.1 represents the bash script that is sourced to simulate a random test. The existing

test generation code in the environment was modified such that all the possible randomization

parameters/constraints at test level can be passed as input arguments. These are also referred

to as “Test Knobs”. There are 24 such input parameters that forms input features for test-level

optimization mentioned in chapter 6.

Figure A.1: Bash Script for Test Simulation

The setup.bash sets all the required Unix environment variables required to invoke Cadence

Incisive package for design simulation. First step is to compile and elaborate the design. In this

step all the testbench files are compiled and all UVM components are built in top-down approach

and then they are connected in bottom-up fashion. Now, the testbench is ready for simulation.

Simulation is kicked off with all the test constraints declared as input arguments. For example,

‘+NUM_TRAN=8’ means constraint NUM_TRAN is assigned thes value 8. Each test can kick off

at most 4 sequences sequentially or in parallel, based on values of constraint SEL_CORE[0-3] and
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IS_PARALLEL. Constraints REQ_TYPE and CACHE_TYPE controls the nature of transactions

in each of these sequences.

I created Python-based random script that creates an input matrix, as shown in Figure A.2, with

multiple rows and 24 columns. Each column corresponds to a test constraint and each row in that

matrix forms set of input constraints for a test simulation. This matrix forms the input matrix in

test-level stimulus optimization technique.

Figure A.2: Input Matrix - Test Constraints
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A.2 Coverage Collection per Test

Incisive Metric Center is the coverage collection and analysis tool from Cadence. The imc

command in the bash file records the coverage of the test and dumps it in as coverage report (.txt

format) with the file name specified in the command. This report contains the coverage information

for each bin in every coverpoints and covergroups. Figure A.3 shows a snippet of the coverage

report. For each coverpoint, its coverage is capture in range of 0-100% and for each bin the

coverage is either 0 or 100%.

Figure A.3: Coverage Report for a Simulated Test

Each coverage bin is the output label for coverage prediction. For each test and each coverpoint,

I store the coverage as an array of bits, where each bit corresponds to a bin in that coverpoint

and a value 0 or 1 is assigned based on the values in the corresponding coverage report. This

array becomes the output matrix for coverage prediction and stimulus optimization as show in

Figure A.4. Each row entry is the per bin coverage for a particular test.

Also, the coverage reports from all the simulated tests are processed by a Python script to
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Figure A.4: Output Matrix - Coverage

evaluate the current overall design coverage.

A.3 Training Deep Neural Network Model

A Deep Neural Network is series of layers of well connected neurons used to supervised ma-

chine learning. The weights on each neurons are adjusted as we train the model using the labeled

training data-set for accurate prediction. I have used ‘Keras’ [13] library to create such instance of

deep neural network model. From Keras, I imported modules such as Sequential, Dense, Dropout,

Activation, and SDG. In Figure A.5 I have shown how to instantiate and train a DNN model.

Figure A.5: Instance of DNN model
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X_train and Y_train are the training data-set where each row in X_train consists of all input

attributes and the same row in Y_train has the values to the output labels. The first layer of DNN

is the input layer and the size is determined by the number of the inputs attributes. Next, I define

two hidden layers with 160 and 80 neurons respectively, which are followed by the output layer.

The size of the output layer is decided by the total number of output labels to be predicted. I have

assigned a dropout value to each layer to avoid over-fitting i.e to reduce the model bias towards the

training data. ‘Relu’ is a linear function, used for activation in each layer except the output layer.

The model for logistic regression, so the prediction value needs to be between 0 and 1, and thus

‘sigmoid’ function is used for the output activation.

Once the model architecture is ready, we compile it and set the ’binary cross-entropy’ as the

loss function. This is used for back-propagation i.e. adjusting weights on the neurons. Then I train

the model in many epochs. In each epoch, a batch (a subset of the training set) of given batch-size

is created for training. I train the model in batches to avoid over-fitting. During training, the model

prints the loss function error after each epoch. The value of epoch is decided to have the model

training error just below a threshold value. Once the model is trained, it ready for the prediction

on input data-set with unknown outputs.

A.4 Training Random-Forest Model

Random forest is a disjoint set of multiple decision trees used for supervised machine learning

application. To create the model, I have used the ‘RandomForestClassifier’ module from the pow-

erful ‘sklearn’ library. Below is how I created a Random Forest model instance and trained it using

labeled dataset.

model = RandomForestClassifier(n_estimators = 1000,

criterion = ‘entropy′, random_state = 42)

model.fit(X_train, Y _train)

The value of n_estimators decides the number of decision trees in the forest. Other arguments

are kept as default. From experiments I noticed that having a fewer number of decision trees

will produce an inaccurate model while more trees increase model bias towards the training data-
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set. Thus, its value was set using trial and error to have least training error calculated using the

validation set and 5-fold cross-validation.

A.5 Training LSTM Model

LSTM model is used to predictions on the series data. LSTM has an inbuilt memory, which

stores information from previous input data. Here the input matrix is 3-dimensional where the

depth is the transaction window size w. I used keras library to build the LSTM network as shown

in Figure A.6.

Figure A.6: Instance of LSTM model

The trained model is then saved into JSON format. The weights corresponding to each LSTM

nodes is saved in a separate file with extension h5. The saved model is then loaded for prediction.
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