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Abstract. We develop an Eulerian–Lagrangian localized adjoint method (ELLAM) to solve
two-dimensional advection-diffusion equations with all combinations of inflow and outflow Dirichlet,
Neumann, and flux boundary conditions. The ELLAM formalism provides a systematic framework
for implementation of general boundary conditions, leading to mass-conservative numerical schemes.
The computational advantages of the ELLAM approximation have been demonstrated for a number
of one-dimensional transport systems; practical implementations of ELLAM schemes in multiple
spatial dimensions that require careful algorithm development are discussed in detail in this paper.
Extensive numerical results are presented to compare the ELLAM scheme with many widely used
numerical methods and to demonstrate the strength of the ELLAM scheme.
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1. Introduction. Many difficult problems arise in the numerical simulation of
advection-diffusion equations, which describe the transport of solutes in groundwater
and surface water, the displacement of oil by fluid injection in oil recovery, the move-
ment of aerosols and trace gases in the atmosphere, and miscible fluid flow processes
in many other applications. In industrial applications, these equations are commonly
discretized via finite difference methods (FDM) or finite element methods (FEM)
in large-scale simulators. Because of the enormous size of many field-scale applica-
tions, large grid-spacings must be used in the simulations. When physical diffusion
dominates the transport process, these methods perform fairly well. However, when
advection dominates the transport process, these methods suffer from serious numer-
ical difficulties. Centered FDM (in space or time) and corresponding FEM often
yield numerical solutions with excessive oscillations. The classical space-upwinded
(or backward-in-time) schemes can greatly suppress the oscillations, but they tend to
generate numerical solutions with severe damping or a combination of both. Recent
developments in effectively solving advection-diffusion equations have generally been
along one of two approaches: Eulerian or characteristic methods. Eulerian methods
use a fixed spatial grid such as the optimal test function methods of Christie et al. [16],
Barrett and Morton [5], Celia et al. [13], and Bank et al. [3]. These methods attempt
to minimize the error in approximating spatial derivatives and yield an upstream bias
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AN ELLAM SCHEME FOR 2D ADVECTION-DIFFUSION EQUATIONS 2161

in the resulting numerical schemes. Hence, they are susceptible to time truncation er-
rors that introduce numerical diffusion and the restrictions on the size of the Courant
number, and they tend to be ineffective for transient advection-dominated problems.
They generally require small time steps for reasons of accuracy, because the time
truncation error depends on high-order time derivatives of the solutions that are large
when a sharp front passes by. Other Eulerian methods, such as the Petrov–Galerkin
FEM [74, 9] and the total variation diminishing scheme [18], attempt to reduce the
overall truncation error by using negative temporal numerical diffusion to cancel pos-
itive spatial numerical diffusion. Therefore, they also suffer from the Courant number
restrictions. Also included in the class of Eulerian methods is the streamline diffusion
finite element method (SDM) [24, 44, 10, 45, 46, 38, 37, 47, 49, 50, 51, 52, 77, 78].
Via a framework of space-time FEM, the SDM uses piecewise polynomial trial/test
functions over a partition on a space-time domain (spatial domain × current time in-
terval). By defining the test functions delicately, the SDM adds a numerical diffusion
only in the direction of characteristics (streamline) to suppress the oscillation and
does not introduce any crosswind diffusion. Therefore, this method possesses many
physical and numerical advantages other Eulerian methods do not have. However,
this method contains an undetermined parameter in the test functions that needs to
be chosen very carefully to obtain accurate numerical results. If the parameter is
chosen too small, the numerical solutions will exhibit oscillations. But if it is too
large, the SDM will introduce excessive numerical diffusion and seriously smear the
numerical solutions. Unfortunately, an optimal choice of the parameter is not clear
and is heavily problem dependent. Moreover, the number of unknowns are doubled
compared to many standard Eulerian or characteristic methods.

Because of the hyperbolic nature of advective transport, characteristic analysis
is natural to aid in the solution of advection-diffusion equations and has led to many
related approximation techniques, including the method of characteristics of [36, 56, 6,
43]; the characteristic Galerkin method of [22, 66]; the Eulerian–Lagrangian method
of [55]; the transport-diffusion method of [57]; the modified method of characteristics
of [23, 28]; the operator-splitting method of [25, 75, 19]; and the Lagrangian–Galerkin
method of [54]. Characteristic methods effectively solve the advective component
by a characteristic tracking algorithm and treat the diffusive term separately. These
methods have significantly reduced the time truncation errors in the Eulerian methods,
have generated accurate numerical solutions even if large time steps are used, and
have eased the Courant number restrictions of Eulerian methods. Problems with
many characteristic methods arise in the areas of rigorously treating boundary fluxes
when characteristics intersect inflow or outflow boundaries and of maintaining mass
conservation.

The Eulerian–Lagrangian localized adjoint method (ELLAM) was first introduced
by Celia et al. [14], Russell [60], and Herrera et al. [42] for the solution of one-
dimensional (constant-coefficient) advection-diffusion equations. The ELLAM for-
malism provides a general characteristic solution procedure for advection-dominated
problems, and it presents a consistent framework for treating general boundary con-
ditions and maintaining mass conservation. Subsequently, Russell and Trujillo [61],
Wang [67], and Wang, Ewing, and Russell [70] derived different ELLAM schemes for
one-dimensional linear variable-coefficient advection-diffusion equations with general
inflow and outflow boundary conditions based on different (forward or backward)
techniques for the tracking of characteristics of the velocity field. Celia and Ferrand
[12] and Healy and Russell [40] extended ELLAM to a finite-volume setting for one-
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2162 WANG, DAHLE, EWING, ESPEDAL, SHARPLEY, AND MAN

dimensional advection-diffusion equations. Ewing [27] and Dahle, Ewing, and Rus-
sell [20] addressed the ELLAM techniques for one-dimensional nonlinear advection-
diffusion equations. Ewing and Wang [29, 30, 31] also developed ELLAM schemes for
the solution of one-dimensional advection-reaction equations with an initial condition
and inflow boundary condition. In addition, Celia and Zisman [15] and Ewing and
Wang [32, 33] generalized ELLAM schemes for one-dimensional advection-diffusion-
reaction transport equations. Others have applied ELLAM schemes to solve the sys-
tems of one-dimensional reactive transport problems from bioremediation and other
applications [70, 64].

While the computational advantages of ELLAM approximations have been demon-
strated for one-dimensional advection-dominated problems by the extensive research
mentioned above, practical implementation of ELLAM schemes in multiple spatial
dimensions requires careful algorithm development in which some research has been
carried out in this direction. Russell and Trujillo [61] addressed various issues in mul-
tidimensional ELLAM schemes. Wang [67] developed an ELLAM simulator to solve
two-dimensional linear advection-diffusion equations with general inflow and outflow
boundary conditions by combining forward- and backward-tracking algorithms. The-
oretically optimal-order error estimates for the derived scheme were also proved, and
various numerical experiments were performed. Some of these results were reported
in [30, 31, 72]. By using an explicit mapping of the finite elements at the current
time level to the spatial grids at the previous time, Binning [7] and Binning and Celia
[8] reported on a finite-volume ELLAM formulation for unsaturated transport in two
dimensions. Relations and differences between the two approaches are discussed in
some detail in section 4 of this paper. Healy and Russell developed a finite-volume EL-
LAM scheme for two-dimensional linear advection-diffusion equations [41]. Celia [11]
also explored the development of an ELLAM scheme for three-dimensional advection-
diffusion equations.

A different but related method is the “characteristic-mixed finite-element” method
[1, 76, 2], which uses piecewise-constant space-time test functions. As with the stan-
dard mixed method, a coupled system results for both the concentration and the
diffusive flux. The theoretically proven error estimate is (O(∆x)3/2) for grid size ∆x,
which is suboptimal by a factor O((∆x)1/2). For ELLAM schemes with piecewise lin-
ear trial/test functions for one-dimensional advection-diffusion equations, advection-
diffusion-reaction equations, and first-order advection-reaction equations, optimal-
order error estimates of O((∆x)2) have been proven by Ewing and Wang [29, 30, 34],
Wang, Ewing, and Russell [70], and Wang and Ewing [69].

Based on the approach presented in [67], an ELLAM scheme is developed in this
paper for the numerical solution of two-dimensional linear advection-diffusion equa-
tions with general inflow and outflow boundary conditions. We have organized this
paper as follows. We begin in section 2 by presenting a space-time variational formu-
lation of the model equations. In section 3 we derive a corresponding ELLAM scheme
for this formulation with implementational issues discussed in section 4. Section 5
provides a brief description of some well-studied and widely used methods, including
the Galerkin finite element method, the quadratic Petrov–Galerkin method, the cu-
bic Petrov–Galerkin method, and the streamline diffusion finite element method. In
section 6 we carry out numerical experiments and compare the performance of the
ELLAM scheme with the numerical methods described in section 5. In section 7 we
summarize our observations and results.
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AN ELLAM SCHEME FOR 2D ADVECTION-DIFFUSION EQUATIONS 2163

2. Variational formulation. A general linear, variable-coefficient advection-
diffusion partial differential equation in two dimensions can be written as follows:

(R(x, t)u)t +∇ · (V(x, t)u−D(x, t)∇u) = f(x, t),
(2.1)

(x, t) = (x, y, t) ∈ Σ = Ω× J,
where ut = ∂u

∂t , ∇u = (∂u∂x ,
∂u
∂y )T , Ω is a spatial domain, and J = [0, T ] is a time

interval. The nomenclature is such that R(x, t) is a retardation coefficient, V(x, t) =
(V1(x, t), V2(x, t)) is a fluid velocity field, D(x, t) = (Dij(x, t))

2
i,j=1 is a diffusion-

dispersion tensor, f(x, t) is a given forcing function, and u(x, t) is the solute con-
centration of a dissolved substance. Mathematically, R has positive lower and upper
bounds, D(x, t) is a symmetric and positive definite matrix with uniform lower and
upper bounds that are independent of (x, t).

Let the space-time boundary Γ = ∂Ω × J be decomposed as the union of an
inflow boundary Γ(I), an outflow boundary Γ(O), and a noflow boundary Γ(N) (i.e.,
Γ = Γ(I) ∪Γ(O) ∪Γ(N)). In general, an inflow boundary during one time period might
become an outflow or a noflow boundary in the next time period or vice versa. At
Γ(I) or Γ(O), one of Dirichlet, Neumann, or Robin (flux) boundary conditions may be
imposed by setting, respectively,

u(x, t) = g
(i)
1 (x, t), (x, t) ∈ Γ(i),

−D∇u(x, t) · n = g
(i)
2 (x, t), (x, t) ∈ Γ(i),(2.2)

(Vu−D∇u)(x, t) · n = g
(i)
3 (x, t), (x, t) ∈ Γ(i),

where n = n(x) is the outward unit normal, i = I or O represents the inflow or
outflow boundary, respectively. A noflow boundary condition is specified at Γ(N) by

(Vu−D∇u)(x, t) · n = 0, (x, t) ∈ Γ(N).(2.3)

In addition to the boundary conditions, an initial condition u(x, 0) = u0(x) is needed
to close (2.1).

The ELLAM formalism uses a time-marching algorithm. Let Nt be a positive
integer. We define a partition of time interval J = [0, T ] by

0 = t0 < t1 < t2 < · · · < tn < · · · < tNt−1 < tNt = T.

With space-time test functions w that vanish outside Σn ≡ Ω×Jn with Jn ≡ (tn−1, tn]
and are discontinuous in time at time tn−1, one can write a space-time variational
formulation for (2.1) as follows:∫

Ω
(R u w)(x, tn) dx +

∫
Σn
∇w · (D∇u) dxdt

+

∫
Γn

(Vu−D∇u) · n w dS −
∫

Σn
u (R wt + V · ∇w) dxdt(2.4)

=

∫
Ω

(R u w)(x, t+n−1) dx +

∫
Σn

f w dxdt,

where Γn = ∂Ω× Jn and w(x, t+n−1) = limt→t+
n−1

w(x, t).

In the ELLAM framework, one should define the test functions w to satisfy the
equation Rwt + V · ∇w ≡ 0 so the last term on the left-hand side of (2.4) vanishes.

D
ow

nl
oa

de
d 

12
/0

9/
13

 to
 1

29
.2

52
.8

6.
83

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



2164 WANG, DAHLE, EWING, ESPEDAL, SHARPLEY, AND MAN

However, in general one cannot track characteristics exactly for a variable-velocity
field. Nevertheless, this adjoint term should be small if one can track the charac-
teristics reasonably well, and the test functions are constant along the approximate
characteristics. In fact, we have proved an optimal-order convergence rate for the
derived ELLAM scheme even if a one-step Euler algorithm is used in the character-
istic tracking and this adjoint term is dropped [67, 34]. To conserve mass, the test
functions should sum to one [14]. The scheme developed in this paper satisfies this
condition. In this case dropping the last term on the left-hand side does not affect
mass conservation since that term vanishes if w ≡ 1 [61, 67].

We are now in a position to rewrite (2.4). Given a point (x̄, t̄) with t̄ ∈ [tn−1, tn],
we consider the initial-value problem for the ordinary differential equation

dx

dt
= VR(x, t) ≡ V(x, t)

R(x, t)
,

(2.5)
x(t̄) = x̄,

which tracks the characteristics from (x̄, t̄). We denote the solution of this equation
at time θ ∈ Jn by X(θ; x̄, t̄) [40]. This notation can refer to tracking either forward or
backward in time. In particular, we define

x∗ = X(tn−1; x, tn),
(2.6)

x̃ = X(tn; x, tn−1).

Thus, (x, tn) backtracks to (x∗, tn−1) and (x, tn−1) tracks forward to (x̃, tn). In the
numerical scheme, an exact tracking is preferred whenever possible. However, it is
impractical in most applications. In practice, one can use either a one-point Eu-
ler quadrature, a multiple micro-time step tracking within a global time step, or a
Runge–Kutta quadrature in the tracking of characteristics. Note that in many ap-
plications, (2.1) is usually coupled with an associated potential or pressure equation
whose solution is often obtained via the mixed finite element method. In this case,
a Raviart–Thomas space is often used for the velocity field, which is calculated at
each cell interface. Within each cell, V1(x, t) (or V2(x, t)) is piecewise linear (or con-
stant) in the x direction and piecewise constant (or linear) in the y direction. Under
the assumption that the velocity field is steady, a semianalytical technique has been
developed [58, 62, 40] to track the characteristics on a cell-by-cell basis. Recently, Lu
[53] extended this semianalytical approach to nonsteady velocity fields where velocity
is assumed to vary linearly in time within each time interval.

To accurately measure the time period taken for a particle to move along a char-
acteristic from the previous time level (or from the inflow boundary) to the current
time level (or the outflow boundary), we introduce space-time location-dependent
time steps. We use Figure 1(a) to illustrate how these are defined. In this figure, we
use letters A–D to denote points (i) at the future time step tn (points B and C) or (ii)
on the outflow boundary (points A and D), while A∗–D∗ denote the corresponding
feet of their characteristics. In our example, we have set the rear planes x = a and
y = c as the inflow boundaries with the frontmost planes x = b and y = d as the out-
flow boundaries. Time is represented in the vertical direction. For any x ∈ Ω at time
tn, we define a time step ∆t(I)(x) = ∆t ≡ tn − tn−1 if the characteristic X(θ; x, tn)
does not backtrack to the space-time boundary Γn during the time period Jn (this
case is illustrated by point B at time tn in Figure 1(a)), and ∆t(I)(x) = tn − t∗(x)
otherwise (see, for example, point C). In the latter case where the foot of the charac-
teristic (point C∗) lies on an inflow boundary, t∗(x) ∈ Jn is the time when X(θ; x, tn)
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(a) Characteristic tracking from the interior domain and inflow boundary.
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(b) Test functions: -. for GAL, - - and — for QPG with V = 1,
D = 0.3 and V = 1, D = 10−4.
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(c) Test functions: -. for GAL, - - and — for CPG with Cu = 0.5 and
Cu = 1.

Fig. 1. Illustration of characteristic tracking and test functions.
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intersects the boundary Γn (i.e., X(t∗(x); x, tn) ∈ Γn). Similarly, for any point on the

outflow boundary (x, t) ∈ Γ
(O)
n (e.g., points A or D), we define ∆t(O)(x, t) = t− tn−1

if the characteristic X(θ; x, t) does not intersect Γn during the time period [tn−1, t];
otherwise we set ∆t(O)(x, t) = t− t∗(x, t). The first case is illustrated by point A on
the space-time boundary x = b, while the second case is demonstrated by point D on
the space-time boundary y = d. Here we denote by t∗(x, t) ∈ [tn−1, t] the time when
X(θ; x, t) intersects Γn.

By enforcing the backward Euler quadrature at the current time tn and at the

outflow space-time boundary Γ
(O)
n , we approximate the space-time volume integral

of the source term (the second term on the right-hand side) in (2.4) by an integral

at time tn and one at Γ
(O)
n by following the characteristics. Here Γ

(i)
n = Γ(i) ∩ Jn

(i = I,O,N) represents the space-time inflow, outflow, and noflow boundaries during
the time interval Jn. To avoid confusion in the following derivation, we replace the
dummy variables x ∈ Ω and t ∈ Jn in this term by y ∈ Ω and θ ∈ Jn. Thus,∫
Σn

f w(x, t) dxdt =
∫
Σn

f w(y, θ) dydθ. Let Σ
(O)
n ⊂ Σn be the set of points in the

space-time strip Σn that will flow out of Σn during the time interval Jn. We decompose

Σn to be the union of Σ
(O)
n and Σn − Σ

(O)
n . For any (y, θ) ∈ Σn − Σ

(O)
n , there exists

a point x ∈ Ω such that x = X(tn; y, θ). Thus, we can invert this relation to obtain

y = X(θ; x, tn). Similarly, for any (y, θ) ∈ Σ
(O)
n , there exists a pair (x, t) ∈ Γ

(O)
n

such that y = X(θ; x, t). By splitting the space-time volume integral on Σn as one on

Σn − Σ
(O)
n and one on Σ

(O)
n and applying the backward Euler quadrature at time tn

for the first and at boundary Γ
(O)
n for the second, we obtain the following equation:∫

Σn
f(y, θ)w(y, θ) dydθ

=

∫
Σn−Σ

(O)
n

f(y, θ)w(y, θ) dydθ +

∫
Σ

(O)
n

f(y, θ)w(y, θ) dydθ

=

∫
Σn−Σ

(O)
n

f(X(θ; x, tn), θ) w(X(θ; x, tn), θ) dXdθ(2.7)

+

∫
Σ

(O)
n

f(X(θ; x, t), θ) w(X(θ; x, t), θ) dXdθ

=

∫
Ω

∆t(I)(x) fn wn(x) dx +

∫
Γ

(O)
n

∆t(O)(x, t) f w V · n dS + Ef (w).

Here fn(x) = f(x, tn), Ef is the truncation error from the application of the backward
Euler quadrature. In the derivation of (2.7), we have used the fact that the test
function w is constant along the characteristics.

Similarly, we can rewrite the diffusion-dispersion term as∫
Σn
∇w · (D∇u)(y, θ) dydθ

=

∫
Ω

∆t(I)(x) ∇wn · (Dn∇un)(x) dx(2.8)

+

∫
Γ

(O)
n

∆t(O)(x, t) ∇w · (D∇u) V · n dS + ED(u,w),

where ED(u,w) is the truncation error term.
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AN ELLAM SCHEME FOR 2D ADVECTION-DIFFUSION EQUATIONS 2167

Substituting (2.7) and (2.8) for the second terms on both the left- and right-hand
sides of (2.4), we obtain the following variational formulation:∫

Ω
Rnun wn dx +

∫
Ω

∆t(I)(x) ∇wn · (Dn∇un) dx

+

∫
Γ

(O)
n

∆t(O)(x, t) ∇w · (D∇u) V · n dS

+

∫
Γn

(Vu−D∇u) · n w dS −
∫

Σn
u (R wt + V · ∇w) dxdt(2.9)

=

∫
Ω
Rn−1un−1 w

+
n−1 dx +

∫
Ω

∆t(I)(x) fn wn dx

+

∫
Γ

(O)
n

∆t(O)(x, t) f w V · n dS + E(u,w),

where E(u,w) = −ED(u,w) + Ef (w).

3. An ELLAM scheme. While the numerical scheme can be derived for a
general domain Ω with a quasi-uniform triangular or rectangular partition, we assume
the domain Ω = (a, b)×(c, d) for simplicity to be a rectangular domain with a uniform
rectangular partition:

xi = a+ i∆x, i = 0, 1, . . . , Nx, ∆x =
b− a
Nx

,

yj = c+ j∆y, j = 0, 1, . . . , Ny, ∆y =
d− c
Ny

,

where Nx and Ny are two positive integers. We define the test functions wij to be
piecewise-linear “hat” functions at time tn (wij(xkl, tn) = δikδjl, where xkl = (xk, yl),
δik = 1 if i = k and 0 otherwise) and to be constant along the characteristics. At time
tn, we also use piecewise-linear trial functions U(x, tn).

3.1. Interior nodes and noflow boundary. In this subsection we develop the

scheme at the nodes inside Ω or on the noflow boundary Γ
(N)
n that are related to

neither the inflow boundary Γ
(I)
n nor the outflow boundary Γ

(O)
n . It is assumed that

the type of boundary (inflow, outflow, or noflow) will be kept unchanged during the
time interval Jn. Let

Γn(q) =
{

(x, t) ∈ Γn

∣∣∣ x = q
}
≡
{

(x, t)
∣∣∣ x = q, y ∈ [c, d], t ∈ Jn

}
, q = a, b,

(3.1)
Γn(q) =

{
(x, t) ∈ Γn

∣∣∣ y = q
}
≡
{

(x, t)
∣∣∣ x ∈ [a, b], y = q, t ∈ Jn

}
, q = c, d.

We define the Courant numbers

Cu(q)
x = max

(x,t)∈Γn(q)

|V1(x, t)|∆t
∆x

for q = a, b,

(3.2)

Cu(q)
y = max

(x,t)∈Γn(q)

|V2(x, t)|∆t
∆y

for q = c, d.

If Γn(q) (q = a, b) is an inflow or outflow boundary (which implies that Cu
(q)
x > 0),

we define IC
(q)
x to be IC

(q)
x = [Cu

(q)
x ] + 1, where [Cu

(q)
x ] is the integer part of Cu

(q)
x .
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2168 WANG, DAHLE, EWING, ESPEDAL, SHARPLEY, AND MAN

If Γn(q) is a noflow boundary (which indicates that Cu
(q)
x = 0), we define IC

(q)
x = 0.

IC
(q)
y is defined similarly. In addition, we define

Ω̂ = [a+ IC
(a)
x ∆x, b− IC(b)

x ∆x]× [c+ IC
(c)
y ∆y, d− IC(d)

y ∆y],
(3.3)

Ωij = [xi−1, xi+1]× [yj−1, yj+1].

Furthermore, let Σ∗nij be the prism obtained by backtracking Ωij along the charac-

teristics from tn to tn−1 and Σ̃nij be the prism obtained by tracing Ωij forward along
the characteristics from tn−1 to tn.

When Ωij ⊂ Ω̂, Σ∗nij or Σ̃nij does not intersect Γ
(I)
n or Γ

(O)
n during the time

period Jn. The third and fourth terms on the left-hand side and the third term on
the right-hand side of (2.9) vanish. Dropping the last terms on both sides of (2.9),
replacing the exact solution u and the general test function w by the piecewise-linear
trial function U and test function wij , we obtain the following equation:∫

Ω
RnUn wijn(x) dx +

∫
Ω

∆t ∇wijn · (Dn∇Un)(x) dx

(3.4)

=

∫
Ω
Rn−1Un−1 w

+
ij,n−1(x) dx +

∫
Ω

∆t fn wijn(x) dx

with wijn(x) = wij(x, tn). Note that in (3.4), the integrals at time tn are actually
defined on Ωij (with the obvious modification near the boundary ∂Ω), since Ωij is
the support of wijn. The first term on the right-hand side is actually defined on the
backtracked image (at time tn−1) of Ωij at time tn, which can be of a very complicated
shape and not aligned with any elements in Ω at time tn−1 due to the effect of the
velocity field, even though Ωij is rectangular. Consequently, the evaluation of this
term is tricky and, in fact, crucial to the accuracy and mass conservation property
of the scheme. This will be discussed in detail in section 4. At this point, one can
easily see that the scheme has a 9-banded, symmetric, and positive-definite coefficient
matrix.

3.2. Inflow boundary conditions. In contrast to many characteristic methods
that treat boundary conditions in an ad hoc manner, the ELLAM scheme naturally
incorporates boundary conditions into its formulation. Thus, one can approximate

boundary conditions accurately. In fact, if Σ∗nij intersects the inflow boundary Γ
(I)
n ,

the test function wij assumes nonzero values on portions of Γn. Thus, the fourth term
on the left-hand side of (2.9) does not vanish. For an inflow flux boundary condition,
the scheme becomes∫

Ω
RnUn wijn(x) dx +

∫
Ω

∆t(I)(x) ∇wijn · (Dn∇Un)(x) dx

=

∫
Ω
Rn−1Un−1 w

+
ij,n−1(x) dx +

∫
Ω

∆t(I)(x) fn wn(x) dx(3.5)

−
∫

Γ
(I)
n

g
(I)
3 wij(x, t) dS.

Keep in mind that the first term on the right-hand side of (3.5) is now defined
on the image (at time tn−1) of the portion of Ωij that is not taken to the boundary
Γn. The part of the integral that is missing from this term is picked up by the last
term on the right-hand side of (3.5), which is defined on the image of the portion of
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AN ELLAM SCHEME FOR 2D ADVECTION-DIFFUSION EQUATIONS 2169

Ωij which is taken to the boundary Γn. Notice that the factor ∆t(I)(x) at time tn
now depends on x, since X(θ; x, tn) can encounter the boundary Γn. ∆t(I)(x) reflects
the time period over which the diffusion-dispersion and source act. For an inflow flux
boundary condition the derived scheme still has a 9-banded, symmetric, and positive-
definite coefficient matrix.

Repeating the above derivation for an inflow Dirichlet boundary condition yields
the following equation:∫

Ω
RnUn wijn(x) dx +

∫
Ω

∆t(I)(x) ∇wijn · (Dn∇Un)(x) dx

−
∫

Γ
(I)
n

(D∇U) · n wij(x, t) dS(3.6)

=

∫
Ω
Rn−1Un−1 w

+
ij,n−1(x) dx +

∫
Ω

∆t(I)(x) fn wijn(x) dx

−
∫

Γ
(I)
n

V · n g
(I)
1 wij(x, t) dS.

While all other terms in (3.6) are similar to those in (3.5), the third term on the
left-hand side couples the unknown boundary diffusive flux with unknown interior
function values. If one simply represents ∇U as a discrete gradient dependent on
imposed boundary values of U, one might introduce strong temporal truncation errors.

To overcome this difficulty, we approximate ∇U(x, t) at the inflow boundary Γ
(I)
n

implicitly by ∇U(X(tn; x, t), tn) at time tn. This removes the difficulty of evaluating
an unknown diffusive boundary flux. The error introduced is small since it is along
the characteristics and, in fact, does not affect the convergence rate of the scheme
[70]. Note that this term introduces nonsymmetry to the coefficient matrix near the
inflow boundary.

As with the standard finite element methods, the Dirichlet boundary condition
is essential and is imposed directly on the solution u with no degrees of freedom on

the inflow boundary Γ
(I)
n . However, the test functions should sum to one to conserve

mass [14]. Thus, on each element Ωij = [xi−1, xi+1]× [yj−1, yj+1] that has at least one

vertex on the inflow boundary Γ
(I)
n , the test functions are chosen such that they sum

to one on this element. For example, suppose x = x0 ≡ a is an inflow boundary. Then
the interior nodes x1,j = (x1, yj) with x1 = a+∆x and 1 ≤ j ≤ Ny−1 are adjacent to
the inflow boundary x = a. In this case, the corresponding test functions must satisfy
w1j(x, y) = w1j(x1, y), i.e., they are constant in x direction over the interval [a, x1].

A derivation similar to that of (3.5) yields a scheme for (2.1) with an inflow

Neumann boundary condition. This differs from (3.5) in that g
(I)
3 is replaced by g

(I)
2

and an extra term
∫
Γ

(I)
n
U wij V ·n dS appears on the left-hand side of the equations.

Because V · n|
Γ

(I)
n

< 0, this term has a different sign from the first term on the

left-hand side of (3.5).

If Γ
(I)
n can be decomposed as Γ

(I)
n = Γ

(I)
n,1 ∪ Γ

(I)
n,2 ∪ Γ

(I)
n,3, where inflow Dirich-

let, Neumann, and Robin boundary conditions are imposed on Γ
(I)
n,1, Γ

(I)
n,2, and Γ

(I)
n,3,

respectively, one can write out the scheme accordingly.

3.3. Outflow boundary conditions. The situation at the outflow boundary

Γ
(O)
n is different from that at an inflow boundary Γ

(I)
n . The number of spatial degrees

of freedom crossing the outflow boundary Γ
(O)
n is essentially the Courant number in
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2170 WANG, DAHLE, EWING, ESPEDAL, SHARPLEY, AND MAN

the normal direction. To preserve the information, one should discretize in time at

the outflow boundary Γ
(O)
n with about the same number of degrees of freedom. More

precisely, we define

Cu(O) = max
(x,t)∈Γ(O)

n

{ |V1(x, t)|∆t
∆x

,
|V2(x, t)|∆t

∆y

}
(3.7)

and IC(O) = [Cu(O)] + 1. Then we define a uniform local refinement in time at the

outflow boundary Γ
(O)
n

tn,i = tn − i∆t

IC
for i = 0, 1, . . . , IC.

Of course, if one is not interested in accurate simulation near the outflow boundary

Γ
(O)
n , one need not refine in time at Γ

(O)
n . This corresponds to the choice of IC = 1. In

any case, we define the test functions wij to be the piecewise-linear hat functions at the

nodes at the outflow boundary Γ
(O)
n and to be constant along the characteristics. We

define the trial functions U(x, t) for (x, t) ∈ Γ
(O)
n to be the piecewise-linear functions

at Γ
(O)
n . Incorporating the outflow Neumann boundary condition into (2.9) yields a

scheme for (2.1) with the stated boundary condition as follows:∫
Ω
RnUn wijn(x) dx +

∫
Ω

∆t(I)(x) ∇wijn · (Dn∇Un)(x) dx

+

∫
Γ

(O)
n

∆t(O)(x, t) ∇wij · (D∇U) V · n(x, t) dS

+

∫
Γ

(O)
n

U wij V · n(x, t) dS(3.8)

=

∫
Ω
Rn−1Un−1 w

+
ij,n−1(x) dx +

∫
Ω

∆t(I)(x) fn wijn(x) dx

+

∫
Γ

(O)
n

∆t(O)(x, t) f wij V · n(x, t) dS −
∫

Γ
(O)
n

g
(O)
2 wij(x, t) dS.

Because U , not ∇U , is defined as unknowns at the outflow boundary Γ
(O)
n , it

is difficult to approximate ∇U · n|
Γ

(O)
n

numerically. To circumvent this difficulty, we

utilize the boundary condition (2.2) to express ∇U ·n|
Γ

(O)
n

in terms of U |
Γ

(O)
n

and the

tangential component of ∇U |
Γ

(O)
n

, which can be computed by differentiating U on

Γ
(O)
n . To demonstrate these ideas, we assume that Γn(b) (i.e., the “eastern” boundary
x = b) is an outflow boundary. The outflow Neumann boundary condition in (2.2)
now reads

−D∇u · n ≡ −D11ux −D12uy = g
(O)
2 ,

from which one can express ∇u ·n|
Γ

(b)
n

= ux in terms of the tangential component of

∇u (uy in this case) and u as follows:

ux = −D12uy + g
(O)
2

D11
.
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AN ELLAM SCHEME FOR 2D ADVECTION-DIFFUSION EQUATIONS 2171

This yields

D∇u =

(
−g(O)

2 ,
|D|uy −D21g

(O)
2

D11

)T
,

where |D| = D11D22 −D12D21 is the determinant of D.
Using the facts that the test functions wij satisfy the equation Rwt + V ·∇w = 0

and that V1|
Γ

(b)
n

> 0, since Γ
(b)
n is an outflow boundary, we can denote ∇wij · n|

Γ
(b)
n

in the third term on the left-hand side of (3.8) by wx = −(Rwt + V2wy)/V1. Then we
can rewrite the third term on the left-hand side of (3.8) as∫

Γ
(b)
n

∆t(O)(x, t) ∇wij · (D∇U) V · n(x, t) dS

=

∫
Γ

(b)
n

∆t(O)(x, t)
V1|D|
D11

wijyUy(x, t) dS(3.9)

+

∫
Γ

(b)
n

g
(O)
2

[
(Rwijt + V2wijy)− V1D21

D11
wijy

]
(x, t)dS.

Substituting this equation for the third term on the left-hand side of (3.8), we obtain a
numerical scheme for (2.1) with an outflow Neumann boundary condition. The derived
scheme has a symmetric and positive-definite coefficient matrix.

Since the numerical solution U is known at time tn−1 from the computation at

time tn−1, there are no degrees of freedom on the boundary Γ
(O)
n at time tn−1. To

conserve mass, the test functions on Γ
(O)
n that intersect Ω at time tn−1 are chosen

such that they sum to one; this was discussed following (3.6).
Incorporating the flux boundary condition into (2.9), one can derive a scheme

similar to (3.8), except that the last term on its left-hand side disappears and g
(O)
2 is

replaced by g
(O)
3 . Again, we need to express ∇u · n|

Γ
(O)
n

and ∇wij · n|
Γ

(O)
n

by their

tangential derivatives and functional values. If we still assume that Γ
(b)
n is an outflow

boundary, the outflow flux boundary condition in (2.2) now becomes

D11ux +D12uy = V1 u− g(O)
3 ,

which yields

ux = −D12

D11
uy +

V1 u− g(O)
3

D11
.

Combining these two equations gives

D ∇u =

(
V1u− g(O)

3 ,
|D|
D11

uy +
D21

D11

(
V1u− g(O)

3

))T
.

Similar derivation to (3.9) results in the following equation:∫
Γ

(b)
n

∆t(O)(x, t) ∇wij · (D∇U) V · n(x, t) dS

=

∫
Γ

(b)
n

∆t(O)(x, t)

[
V1|D|
D11

wijyUy
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2172 WANG, DAHLE, EWING, ESPEDAL, SHARPLEY, AND MAN

+
V 2

1 D21

D11
wijyU − V1(Rwijt + V2wijy)U

]
(x, t)dS(3.10)

+

∫
Γ

(b)
n

g
(O)
3

[
(Rwijt + V2wijy)− V1D21wijy

D11

]
(x, t)dS.

Substituting (3.10) for the third term on the left-hand side of (3.8), dropping the

last term on its left-hand side, and replacing g
(O)
2 by g

(O)
3 , we obtain a numerical

scheme for (2.1) with an outflow flux boundary condition.
For (2.1) with an outflow Dirichlet boundary condition, the equations at the

outflow boundary define the unknowns to be the normal derivatives of the solutions
and are decoupled from the equations at the interior domain given by (3.4). They are
omitted here since they are needed only for mass conservation.

If Γ
(O)
n can be decomposed as Γ

(I)
n = Γ

(O)
n,1 ∪ Γ

(O)
n,2 ∪ Γ

(O)
n,3 , where outflow Dirichlet,

Neumann, and Robin boundary conditions are imposed on Γ
(O)
n,1 , Γ

(O)
n,2 , and Γ

(O)
n,3 ,

respectively, one can write out the scheme accordingly.

4. Implementation. In this section we address some practical implementa-
tional issues, which arise due to the use of characteristic tracking.

4.1. Evaluation of integrals and tracking algorithms. Some integrals in
the numerical scheme derived in section 3 are standard in FEM and can be evaluated
fairly easily, while others can be difficult. In this subsection, we discuss the evaluation
of the integrals in (3.4), and we discuss the treatment of boundary terms in (3.5)–
(3.10) in the next subsection.

Note that the trial function U(x, tn) and test functions wij(x, tn) are defined as
standard tensor products of piecewise-linear functions at time tn; the integrals in (3.4)
are standard in finite element methods, except for the first term on the right-hand side.
In this term, the value of U(x, tn−1) is known from the solution at time tn−1. However,
keep in mind that the test functions w+

ij,n−1 = limt→t+
n−1

wij(x, t) = wij(x̃, tn), where

x̃ = X(tn; x, tn−1) is the point at the head corresponding to x at the foot. The
evaluation of this term becomes much more challenging in multiple dimensions due
to the multidimensional deformation of each finite element Ωij on which the test
functions are defined as the geometry is backtracked from time tn to time tn−1.

In modified method of characteristics and many other characteristic schemes, this
term has traditionally been rewritten as an integral at time tn with the standard value
of wij(x, tn) but backtracking to evaluate U(x∗, tn−1) where x∗ = X(tn−1; x, tn) is
the point at the foot corresponding to x at the head [19, 23, 25]. As a matter of fact,
it has been shown that in characteristic methods the backward-tracking algorithm
is critical in the evaluation of this term, which is in turn critical to the accuracy of
the scheme [4]. Because of this, the backward-tracking algorithm has been used in
many ELLAM works [7, 14, 19, 29, 30, 31, 33, 60, 68, 71]. However, for multidimen-
sional problems the evaluation of this term with a backtracking algorithm requires
significant effort, due to the need to define the geometry at time tn−1, which requires
mapping of points along the boundary of the element and subsequent interpolation
and mapping onto the fixed spatial grid at the previous time level tn−1. Binning [7]
and Binning and Celia [8] used such a mapping in two dimensions in a procedure that
was computationally very intensive, especially when part or all of the element being
mapped intersects a space-time boundary Γn. This approach is considered impractical
in two and three dimensions [7, 11]. For one-dimensional problems, the evaluation of
this term is relatively simple since the boundaries of the spatial elements are points
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AN ELLAM SCHEME FOR 2D ADVECTION-DIFFUSION EQUATIONS 2173

rather than lines or surfaces. In this case, these problems were overcome in the works
cited above.

The most practical approach for evaluating this term is to use a forward-tracking
algorithm, which was proposed by Russell and Trujillo [61] and was implemented by
Heally and Russell for a one-dimensional problem [40] and by Ewing and Wang [30, 31]
and Wang [67] for a two-dimensional problem. This would enforce the integration
quadrature at tn−1 with respect to a fixed spatial grid on which Rn−1 and Un−1 are
defined, the difficult evaluation is the test function w+

ij,n−1. Rather than backtracking
the geometry and estimating the test functions by mapping the deformed geometry
onto the fixed grid, discrete quadrature points chosen on the fixed grid at tn−1 in a
regular fashion (say, standard Gaussian points) can be forward-tracked to time tn,
where evaluation of wij is straight-forward. Algorithmically, this is implemented by
evaluating R and U at a quadrature point xp at time tn−1, then tracking the point
xp from tn−1 to x̃p = X(tn; xp, tn−1) at tn and determining which test functions are
nonzero at x̃p at tn, so that the amount of mass associated with xp can be added to
the corresponding position in the right-hand side vector in the global discrete linear
algebraic system. Notice that this forward-tracking has no effect on the solution grid
or the data structure of the discrete system. Therefore, the forward-tracking algorithm
used here does not suffer from the complication of distorted grids, which complicates
many forward tracking algorithms, and is a major attraction of the backtracking in
characteristic methods.

4.2. Inflow boundaries. If Ωij 6⊂ Ω̂, either Σ∗nij intersects the inflow boundary

Γ
(I)
n or Σ̃nij intersects the outflow boundary Γ

(O)
n . First, consider the former case

given by (3.5) or (3.6).

The first term on the left-hand side of (3.5) is standard in finite element methods.
The second terms on both sides are standard, except that the time step ∆t(I)(x)
defined below (2.6) depends on x. In the numerical implementation, we calculate
these integrals with quadrature points at time tn. Hence, we evaluate ∆t(I)(x) by
backtracking at these points. For each quadrature point xp ∈ Ωij at time tn, we
need to track the characteristic X(θ; xp, tn) for θ ∈ Jn to determine if it reaches the
boundary Γn or not. If so, we calculate the time t∗(xp) when the characteristic reaches
the boundary Γn and assign ∆t(I)(xp) = tn−t∗(xp); otherwise, ∆t(I)(xp) = ∆t. Notice
that the backtracking algorithm is used only to calculate ∆t(I)(x), which appears in
the diffusion-dispersion term, and does not affect mass conservation. The first term
on the right-hand side of (3.5) can still be evaluated by a forward-tracking algorithm
as in section 4.1.

Notice that in the last term on the right-hand side of (3.5), g
(I)
3 (x, t) is defined

at the space-time boundary Γ
(I)
n , but the test function wij(x, t) = wij(x̃, tn), where

x̃ = X(tn; x, t) is the point at the head at time tn, corresponds to the point x at the
foot at time t. Therefore, we use a forward-tracking algorithm to calculate this term.

This would enforce the integration quadrature at the space-time boundary Γ
(I)
n with

respect to a fixed spatial grid on which g
(I)
3 (x, t) is defined and track forward the

discrete quadrature points chosen on the fixed grid at the space-time boundary Γ
(I)
n

in a regular fashion to time tn, where one evaluates wij .

Except for the last term on its left-hand side, the terms in (3.6) are similar to
those in (3.5). The evaluation of this term is the same as that for the last term on
the right-hand side of (3.5), except that one needs to use forward tracking to evaluate
both ∇U and the test function wij .
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4.3. Outflow boundaries. Consider the case when Ωij 6⊂ Ω̂ and Σ̃nij intersects

the outflow boundary Γ
(O)
n . The numerical scheme is given by (3.8)–(3.10). We discuss

only the evaluation of the integrals in (3.8) and (3.9) since the evaluation of the
integrals in (3.10) is similar.

The first term on the left-hand side of (3.8) is standard. The second terms on both
sides of (3.8) can be calculated as in section 4. Keep in mind that the integrals are local,
even though they are expressed as the integrals on Ω at time tn. Hence, ∆t(I)(x) = ∆t,

except at the corner of Ω = (a, b)× (c, d) where Γ
(O)
n and Γ

(I)
n intersect. The fact that

inflow and outflow boundaries can intersect in multiple spatial dimensions makes
the implementation more complicated than that for one-dimensional problems where
inflow and outflow boundaries do not meet (as long as the one-dimensional velocity
field keeps a definite sign). As a result, in evaluating the second terms on both sides
of (3.8), we need to use a backward-tracking algorithm to calculate ∆t(I)(x) near the

corner of Ω where the inflow boundary Γ
(I)
n and outflow boundary Γ

(O)
n meet.

In (3.8), the four integrals defined on Γ
(O)
n (with the first Γ

(O)
n integral given by

(3.9)) are standard since both the trial function U and the test functions wij are

defined on Γ
(O)
n . We would enforce the integration quadrature on Γ

(O)
n . Recall that

the factor ∆t(O)(x, t) in some of these terms is defined by (below (2.6)) ∆t(O)(x, t) =

t−tn−1, except when the characteristic X(θ; x, t) meets Γ
(I)
n . In this case ∆t(O)(x, t) =

t − t∗(x, t), where t∗(x, t) ∈ Jn is the time when X(θ; x, t) intersects Γ
(I)
n . In the

numerical implementation, we simply let ∆t(O)(x, t) = t − tn−1, except near the

corner where the inflow boundary Γ
(I)
n and the outflow boundary Γ

(O)
n intersect. At

the corner region, we use a backward-tracking algorithm to locate t∗(x, t) and let
∆t(O)(x, t) = t − t∗(x, t). As mentioned in section 4, the use of backtracking in the
calculation of ∆t(I)(x) and ∆t(O)(x, t) does not effect mass conservation.

The first term on the right-hand side of (3.8) can be evaluated by a forward-
tracking algorithm as in sections 4.1–4.2. However, notice that at each quadrature

point xp ∈ Ωij at time tn−1, the characteristic X(θ; xp, tn−1) may intersect Γ
(O)
n . In

the current context, we need to use a forward tracking to determine if X(θ; xp, tn−1)

will or will not intersect Γ
(O)
n . In the latter case we evaluate wij(x̃p, tn) as in sections

4.1–4.2. In the former case, we need to locate the head of the characteristic at the

space-time boundary Γ
(O)
n and calculate the values of wij at Γ

(O)
n on which they are

defined.

5. Description of some other numerical methods. In this section we briefly
describe the Galerkin finite element method (GAL); the quadratic Petrov–Galerkin
method [16, 5, 13]; the cubic Petrov–Galerkin method [74, 7]; and the streamline
diffusion finite element method [44, 10, 45, 46, 38, 37, 47, 48, 49, 50, 51, 77, 78]. For
simplicity of representation, we assume that in (2.1), R(x, t) ≡ 1. The GAL, QPG,
and CPG schemes can be unified as follows:∫

Ω
Un wij dx + λ∆t

{∫
Ω
∇wij · (Dn∇Un) dx−

∫
Ω

VnUn · ∇wij dx
}

=

∫
Ω
Un−1 wij dx− (1− λ)∆t

{∫
Ω
∇wij · (Dn−1∇Un−1) dx

−
∫

Ω
VnUn · ∇wij dx

}
(5.1)
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+∆t

{
λ

∫
Ω
fn wij dx + (1− λ)

∫
Ω
fn−1 wij dx

}
+ boundary terms.

Here λ ∈ [0, 1] is the weighting parameter between the time levels tn−1 and tn. In
particular, λ = 1 and 0.5 yield the backward-Euler (BE-) and the Crank–Nicholson
(CN-) schemes, respectively. The trial function space consists of the standard con-
tinuous and piecewise-bilinear polynomials. The test functions are also in the tensor
product form wij(x, y) = wi(x)wj(y). In the GAL scheme, wi(x) and wj(y) are the
standard one-dimensional hat functions. In the QPG, wi(x) and wj(y) are constructed
by adding an asymmetric perturbation to the original piecewise-linear hat functions

wi(x) =


x− xi−1

∆x
+ ν

(x− xi−1)(xi − x)

(∆x)2
, x ∈ [xi−1, xi],

xi+1 − x
∆x

− ν (x− xi)(xi+1 − x)

(∆x)2
, x ∈ [xi, xi+1],

0 otherwise.

(5.2)

Here ν = 3[coth(V∆x
2D ) − 2D

V∆x ] for constant V and D. For variable V and D, one

replaces V
D by its mean on each element. A typical one-dimensional QPG test function

is sketched in Figure 1(b). As defined above, the two-dimensional QPG test function
wij(x, y) is just a tensor product of the two one-dimensional QPG test functions wi(x)
and wj(y). The CPG method was derived for the Crank–Nicholson time discretization.
In the CPG, wi(x) and wj(y) are defined as the original piecewise linear hat functions
with a symmetric cubic perturbation added to each nonzero piece

wi(x) =


x− xi−1

∆x
+ γ

(x− xi−1)(xi − x)(xi−1 + xi − 2x)

(∆x)3
, x ∈ [xi−1, xi],

xi+1 − x
∆x

− γ (x− xi)(xi+1 − x)(xi + xi+1 − 2x)

(∆x)3
, x ∈ [xi, xi+1],

0 otherwise.

(5.3)

Here γ = 5Cu2 with Cu = V∆t
∆x being the Courant number. For variable V one

replaces V by its arithmetic mean on each element. A typical one-dimensional CPG
test function is plotted in Figure 1(c).

The SDM is a type of discontinuous Galerkin FEM and applies to a nonconser-
vative analogue of (2.1). For the nonconservative advection-diffusion equation,

(2.1′)
ut + V(x, t) · ∇u−∇(D(x, t)∇u) = f(x, t), (x, t) ∈ Σ,

u(x, 0) = u0(x), x ∈ Ω,
u(x, t) = 0, (x, t) ∈ Γ,

the trilinear SDM reads as follows: find a piecewise-trilinear (linear in time) function
U(x, t) on the space-time slab Σn ≡ Ω × Jn, which is discontinuous in time at tn−1

and tn and satisfies the homogeneous Dirichlet boundary condition, such that∫
Σn

[
Ut + V · ∇U

][
W + δ(Wt + V · ∇W )

]
dxdt+

∫
Σn
∇W · (D∇U) dxdt

−δ
∫

Σn
∇ · (D∇U)(Wt + V · ∇W ) dxdt+

∫
Ω
U+
n−1W

+
n−1 dx(5.4)

=

∫
Σn

f
[
W + δ(Wt + V · ∇W )

]
dxdt+

∫
Ω
U−n−1 W

+
n−1 dx
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for any test function W with the same form as U . Here W+
n−1 = limt→t+

n−1
w(x, t)

and W−n−1 = limt→t−
n−1

w(x, t), U−0 = u0(x), and δ is typically chosen to be of O(h)

with h being the diameter of the space-time partition on the slab Σn. The third
term on the left-hand side is carried out elementwise, since it is not well defined for
piecewise-trilinear functions.

The choice of δ has significant effects on the accuracy of the numerical solutions.
If δ is chosen too small, the numerical solutions will exhibit oscillations. If δ is too
big, the SDM will seriously damp the numerical solutions. Unfortunately, an optimal
choice of δ is not clear and is heavily problem dependent. Extensive research has been
conducted on the SDM, including proper choices of δ [44, 10, 45, 46, 38, 37, 47, 48, 49,
50, 51, 77, 78]. Since the theme of this paper is not on the development of the SDM,
in our numerical experiments we use a generally accepted choice of δ which may not
be best possible for a given problem. According to [49, 50, 77], we set

δ =
Kh√

1 + |V|2(5.5)

if the mesh Peclet number |V|h > |D|, and δ = 0 otherwise. K is typically to be 1 or
0.5. In our numerical experiments, we will use these values along with several others to
indicate the general behavior. Moreover, the SDM generally increases the dimension
of the problem by one (although the measure in this dimension is small). For problem
(2.1), which is two dimensions in space, (5.4) are defined on three-dimensional space-
time domain Σn. Numerically, one has to partition the three-dimensional “thick slices”
into tetrahedra or prisms. Usually this will double the number of unknowns in GAL,
QPG, CPG, and ELLAM schemes.

While the SDM can capture a jump discontinuity of the exact solution in a thin
region, the numerical solution may develop over- and under-shoots about the exact
solution within this layer. A modified SDM with improved shock-capturing proper-
ties was proposed [45, 49, 50] which consists of adding a “shock-capturing” term to
the diffusion by introducing a crosswind control that is close to the steep fronts or
“shocks.” This modified SDM scheme performs much better in terms of catching the
steep fronts or the jump discontinuities of the exact solutions; however, it leads to a
nonlinear scheme even though the underlying governing partial differential equation
is linear and involves another undetermined parameter. Thus, we will not use this
scheme in our comparison and just remind the reader that in particular cases the
SDM may perform better than those shown in the examples here if the appropriate
modifications and optimization schemes are used.

6. Computational results. In this section we present one- and two-dimensional
numerical experiments to investigate the performance of the ELLAM scheme devel-
oped in this paper and to compare it with the numerical methods described in section
5. The numerical experiments contain both examples (with analytical solutions) that
are either smooth or have steep fronts.

6.1. The one-dimensional transport of a diffused square wave. To ob-
serve the performance of all the methods in section 5 and ELLAM scheme for problems
with analytical solutions that have a steep front, this example considers the transport
of a one-dimensional diffused square wave. The initial condition u0(x) is given by

u0(x) =

{
1 if x ∈ [xl, xr] ⊂ (a, b),
0 otherwise.

(6.1)
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We assume that the one-dimensional transport equation has constant coefficients so
that we can find the analytical solution in a closed form. Homogeneous inflow and
outflow Dirichlet boundary conditions are specified at x = a and x = b. As long
as the diffused square wave does not intersect the outflow boundary during the time
interval [0, T ], the analytical solution u(x, t) can be expressed as

u(x, t) =
1√

4πDt

∫ ∞
−∞

u0(x− V t− s) exp

(−s2

4Dt

)
ds

(6.2)

=
1

2

[
erf

(
x− V t− xl√

4Dt

)
− erf

(
x− V t− xr√

4Dt

)]
,

where erf(x) = 2√
π

∫ x
0

exp(−s2)ds is the error function.

In the numerical experiments the data are chosen as follows: The space domain
is (a, b) = (0, 2), the time interval [0, T ] = [0, 1], R = 1, V = 1, D = 10−4, and f = 0.
In (6.1) and (6.2), xl = 0.2 and xr = 0.7, so that the diffused square wave essentially
vanishes at the outflow boundary x = b during the time period of [0, T ]. The grid size
∆x = 1

100 is chosen so that the analytical solution can be represented properly. The
backward Euler–Galerkin linear finite element (BE-GAL), quadratic Petrov–Galerkin
finite element (BE-QPG), and cubic Petrov–Galerkin finite element (BE-CPG) so-
lutions are plotted against the analytical solution in Figures 2(a)–(c) for ∆t = 1

200 ,
1

800 , and 1
2000 , respectively. The ELLAM solution is also plotted in Figure 2(a) for

∆t = 1
10 , which gives a Courant number 10 and a Peclet number 100. The Crank–

Nicholson–Galerkin linear finite element (CN-GAL), quadratic Petrov–Galerkin finite
element (CN-QPG), and cubic Petrov–Galerkin finite element (CN-CPG) solutions
are plotted in Figures 3(a)–(c) for ∆t = 1

100 ,
1

200 , and 1
1000 , respectively. To view

the numerical solutions clearly, we do not plot the analytical solution in these figures.
One can compare the CN-GAL, CN-QPG, and CN-CPG numerical solutions with the
analytical ones in Figures 2(a)–(c). The SDM solutions are plotted in Figures 4(a)–
(b) for ∆t = 1

20 and ∆t = 1
100 . The SDM solution is also plotted in Figure 4(c) for

∆x = ∆t = 1
50 to further observe the effect of the choice of the parameter δ.

It is observed that the BE-GAL, BE-QPG, and BE-CPG schemes generate almost
identical numerical solutions. With a time step of ∆t = 1

200 , the backward Euler
schemes generate over-damped numerical solutions without any observable overshoot

or undershoot. As the time step ∆t is reduced to 1
800 and 1

2000 , the numerical diffusion
is reduced considerably and the numerical solutions are quite close to the analytical
solution. With a time step of ∆t = 1

100 , the CN-GAL and CN-QPG solutions display
overshoot and undershoot. The maximum and minimum values of CN-GAL and CN-
QPG solutions are 1.212, 1.153, −0.219, and −0.153, respectively. The CN-CPG
solution also has many wiggles but with a much smaller magnitude. (Its maximum
and minimum values are 1.035 and −0.031.) As the time step ∆t is reduced to 1

200 , the
undershoot and overshoot of the CN-GAL solution are reduced by about 40%. (The
maximum and minimum values are 1.132 and −0.134.) The undershoot and overshoot
of CN-QPG solution are reduced by 70% (the maximum and minimum values are 1.047
and −0.047) and are comparable to those of CN-CPG solution (whose maximum and
minimum values are 1.033 and −0.033). As the time step ∆t decreases to 1

1000 , the
undershoot and overshoot of CN-GAL solution are further reduced, but those of CN-
QPG and CN-CPG solutions do not change much. In essence, when the time step is
relatively large (the Courant number is up to one), the CN-CPG scheme yields better
solutions than the CN-GAL and CN-QPG schemes.
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(a) — for init. and anal.; + for ELLAM (∆t = 1
10 ); - -, o, and ...

for GAL, QPG, and CPG (∆t = 1
200 ).
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(b) — for anal.; - -, o, and ... for GAL, QPG, and CPG with ∆t = 1
800 .
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(c) — for anal.; - -, o, and ... for GAL, QPG, and CPG with ∆t = 1
2000 .

Fig. 2. ELLAM and backward Euler (BE-) GAL, QPG, and CPG methods, ∆x = 1
100

.

With a time step ∆t = 1
20 , the SDM solution starts to approximate the analytical

solution. As the K in δ decreases from 1 to 0.001, the smearing in the numerical
solutions is reduced considerably and the overshoot/undershoot is also reduced slightly
(from 1.0952 and −0.0577 to 1.0714 and −0.0721). Thus, the optimal value of K seems
to be 0.001 (the smallest of the three K values). As the time step ∆t decreases to 1

100 ,
the SDM solutions become more accurate and have much less damping. But in this
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(a) -., - -, and — for GAL, QPG, and CPG with ∆t = 1
100 .
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(b) -., - -, and — for GAL, QPG, and CPG with ∆t = 1
200 .
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(c) -., - -, and — for GAL, QPG, and CPG with ∆t = 1
1000 .

Fig. 3. Crank–Nicholson (CN-) GAL, QPG, and CPG methods, ∆x = 1
100

.

case some wiggles appear near the locations where the analytical solution has steep
fronts. Reducing K in δ from 1 to 0.001 gives a smaller L2 error in the SDM solution,
but increases the overshoot/undershoot slightly (from 1.0493 and −0.0493 to 1.0592
and −0.0592). In Figure 4(c), the magnitude of the overshoot and undershoot in SDM
solutions is almost doubled (from 1.0520 and −0.0548 to 1.0932 and −0.0952) when
K is reduced from 1 to 0.001. Unfortunately, there is no universal rule on the choice
of the K. As we mentioned above, the modified SDM with a shock capturing property
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(a) — for anal., -., ..., and · for SDM with K = 1, 0, 5, and 0.001,
∆x = 1

100 , ∆t = 1
20 .
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(b) — for anal., -., ..., and · for SDM with K = 1, 0, 5, and 0.001,
∆x = 1

100 , ∆t = 1
100 .
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(c) — for anal., -., ..., and · for SDM with K = 1, 0, 5, and 0.001,
∆x = 1

50 , ∆t = 1
50 .

Fig. 4. Streamline diffusion finite element method.

should generate better numerical solutions than those shown here. However, one has
to solve a nonlinear system even though the underlying partial differential equation
is a linear one and must face choosing an additional undetermined parameter. In
contrast, with a fairly large time step ∆t = 1

10 , the ELLAM scheme yields a very
accurate numerical solution that is better than any one of the GAL, QPG, CPG, or
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SDM solutions with even much finer time steps. Moreover, the ELLAM scheme uses
only half the number of unknowns as in the SDM and does not require optimization
of indefinite constants.

6.2. A two-dimensional rotating Gaussian pulse. This example considers
the transport of a two-dimensional rotating Gaussian pulse. The spatial domain is
Ω = (−0.5, 0.5) × (−0.5, 0.5), the rotating field is imposed as V1(x, y) = −4y, and
V2(x, y) = 4x. The time interval is [0, T ] = [0, π/2], which is the time period required
for one complete rotation. The initial condition u0(x, y) is given by

u0(x, y) = exp

(
− (x− xc)2 + (y − yc)2

2σ2

)
,(6.3)

where xc, yc, and σ are the centered and standard deviations, respectively. The corre-
sponding analytical solution for (2.1) with R = 1, a constant diffusion coefficient D,
and f = 0 is given by

u(x, y, t) =
2σ2

2σ2 + 4Dt
exp

(
− (x̄− xc)2 + (ȳ − yc)2

2σ2 + 4Dt

)
,(6.4)

where x̄ = x cos(4t) + y sin(4t) and ȳ = −x sin(4t) + y cos(4t).
In the numerical experiments, the data are chosen as follows: D = 10−4, xc =

−0.25, yc = 0, σ = 0.0447, which gives 2σ2 = 0.0040. A uniform spatial grid of
∆x = ∆y = 1

64 is used (in all the plots and most of the experiments in Table 1),
unless it is specified otherwise, in which case a uniform spatial grid of ∆x = ∆y = 1

96
is used. It is easy to see that the u0(x, y) defined by (6.3) is centered at (xc, yc) with a
minimum value 0 and a maximum value 1. Its surface and contour plots are presented
in Figures 5(a) and (b). Figures 5(c) and (d) are the surface and contour plots for
the analytical solution, which has a minimum value 0 and a maximum value 0.8642
(due to the effect of diffusion).

This problem provides an example for a homogeneous two-dimensional advection-
diffusion equation with a variable velocity field and a known analytical solution. More-
over, this problem changes from the advection dominance in most of the domain to
the diffusion dominance in the region that is close to the origin. These types of prob-
lems often arise in many important applications and are more difficult to simulate
compared with purely advection-dominated problems. This example has been used
widely to test for numerical artifacts of different schemes, such as numerical stability
and numerical diffusion, spurious oscillations, and phase errors.

In our experiments, we have systematically varied the time steps to examine the
performance of each method, using a uniform spatial grid of ∆x = ∆y = 1

64 in most
experiments. This is because the temporal errors dominate the numerical solutions
with all the methods other than the ELLAM schemes. In this case the maximum grid
Peclet number reaches 442. The grid Peclet number at the center of the Gaussian
pulse is about 156. We also perform some experiments with a finer spatial grid of
∆x = ∆y = 1

96 . In this case the maximum grid Peclet number reaches 295, and the
grid Peclet number at the center of the Gaussian pulse is about 104. All compara-
tive methods tested yield strongly nonsymmetric systems, while the ELLAM scheme
inherently symmetrizes its discrete algebraic system. We use a preconditioned con-
jugate gradient square algorithm (PCGS) to solve these systems, even though this
places ELLAM at a disadvantage. In Table 1 we present the minimum and maxi-
mum values of the numerical solutions with each method and the per time step CPU
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Table 1
Comparison of CPU time for different methods.

∆t ∆x = Max. Min. CPU (sec.) Overall Fig. #

∆y /time step CPU

Analytical N/A 1
64

0.8642 0 N/A N/A 5(c)–(d)

ELLAM-Er π
40

1
64

0.8302 0 17 5 min. 39 sec. 6(a)–(b)

ELLAM-RK π
30

1
64

0.8630 0 10.2 2 min. 33 sec. 6(c)–(d)

BE-GAL π
200

1
64

0.2546 0 15.4 25 min. 40 sec. -

π
800

1
64

0.4517 0 13.85 1 hr. 32 1
3

min. 7(a)–(b)

π
800

1
96

0.4523 0 31.75 3 hr. 31 2
3

min. -

π
2000

1
64

0.6006 0 13.65 3 hr. 47 1
2

min. -

π
2000

1
96

0.6015 0 30.85 8 hr. 34 1
6

min. -

π
4000

1
64

0.6964 0 13.6 7 hr. 33 1
3

min. -

π
6000

1
64

0.7401 0 13.55 11 hr. 17 1
2

min. 8(a)–(b)

BE-QPG π
200

1
64

0.2003 −0.0002 17.75 29 min. 35 sec. -

π
800

1
64

0.3486 −0.0003 17.9 1 hr. 59 1
3

min. 7(c)–(d)
π

800
1
96

0.3842 0 39.5 4 hr. 23 1
3

min. -

π
2000

1
64

0.4563 −0.0008 18.1 5 hr. 1 2
3

min. -

π
2000

1
96

0.5035 −0.0003 40.1 11 hr. 8 1
3

min. -

π
4000

1
64

0.5250 −0.0015 18.25 10 hr. 8 1
3

min. -

π
6000

1
64

0.5554 −0.0017 18.45 15 hr. 22 1
2

min. 8(c)–(d)

CN-GAL π
200

1
64

0.7861 −0.1564 15.05 25 min. 5 sec. 9(a)–(b)
π

400
1
64

0.8438 −0.0159 13.95 46 1
2

min. 10(a)–(b)

CN-QPG π
200

1
64

0.6197 −0.0978 17.95 29 min. 55 sec. 9(c)–(d)
π

400
1
64

0.6412 −0.0081 18 1 hr. 10(c)–(d)

CN-CPG π
200

1
64

N/A N/A N/A N/A -
π

400
1
64

0.8555 −0.0002 20 1 hr. 6 2
3

min. 11(a)–(b)

SDM

K=0.5 π
200

1
64

0.7089 −0.0147 96.9 2 hr. 41.5 min. 11(c)–(d)

K=0.01 π
200

1
64

0.8250 −0.0021 96.9 2 hr. 41.5 min. 12(a)–(b)

K=0.001 π
200

1
64

0.8281 −0.0019 96.9 2 hr. 41.5 min. 12(c)–(d)

and the overall CPU each method consumed, which was measured on a SGI Indigo
Workstation. We realize, of course, that some code optimization may be possible, but
feel that these timings are representative of each scheme’s efficiency on these model
problems. The surface and contour plots for selected runs of each method in Table 1
are presented in Figures 5–12.

6.2.1. The ELLAM simulation. The ELLAM-Er solution is obtained by using
a time step of ∆t = π

40 in solving the ELLAM scheme and using an Euler quadrature

with a micro-time step of ∆tf = ∆t
80 in tracking the characteristics. The maximum
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Fig. 5. The initial condition at t = 0, and the analytical solution at T = π
2

, ∆x = ∆y = 1
64

.

Courant number reaches 14, while the Courant number at the center of the Gaussian
pulse is 5. The ELLAM-Er solution has a minimum value 0 and a maximum value
0.8302, whose surface and contour plots are given in Figures 6(a)–(b). As one can
see from these plots and Table 1, a very accurate numerical solution is obtained in
about five and a half minutes. The ELLAM-RK solution is obtained by using a time
step of ∆t = π

30 in solving the ELLAM scheme and using a second-order Runge–

Kutta quadrature with a microtime step of ∆tf = ∆t
4 in tracking the characteristics.

In this case, the maximum Courant number reaches 19, while the Courant number
at the center of the Gaussian pulse is about 6.7. The ELLAM-RK solution has a
minimum value 0 and a maximum value 0.8630, whose plots are in Figures 6(c)–(d).
The use of a more accurate second-order Runge–Kutta tracking algorithm enables us
to significantly reduce the number of microtime steps (from 80 in an Euler tracking
to 4 in the Runge–Kutta tracking) in tracking characteristics, and so the CPU time
per global time step (from 17 seconds in ELLAM-Er to 10.2 seconds in ELLAM-RK).
Moreover, the number of global time steps is reduced from 20 in the ELLAM-Er
simulation to 15 in the ELLAM-RK simulation. Thus, the ELLAM-RK simulation
further reduces the overall CPU time to 2 minutes and 33 seconds.

6.2.2. The BE-GAL and BE-QPG simulation. Due to its unconditional
stability and simplicity in implementations, the fully implicit backward Euler tempo-
ral discretization still dominates most production codes in engineering applications.
Thus, we carry out extensive experiments to investigate the performance of this dis-
cretization. With a time step of ∆t = π

200 , which gives a maximum Courant number of
2.84 and a Courant number of 1 at the center of the Gaussian pulse, the BE-GAL and
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Fig. 6. The ELLAM-Euler and ELLAM-RK solutions at T = π
2

, ∆x = ∆y = 1
64

.

BE-QPG solutions have minimum values of 0 and −0.0002 and maximum values of
0.2546 and 0.2003, respectively. Recall that the exact solution has a maximum value
of 0.8642; the BE-GAL and BE-QPG solutions are excessively overdamped. More-
over, the BE-GAL and BE-QPG schemes require more iterations in the PCGS solver
than the ELLAM does, because they yield strongly nonsymmetric coefficient matri-
ces. The BE-GAL and BE-QPG solutions with a much finer time step of ∆t = π

800
are presented in Figure 7(a)–(d). The minimum values are 0 for the BE-GAL solution
and −0.0003 for the BE-QPG solution, while the maximum values are 0.4517 for the
BE-GAL solution and 0.3486 for BE-QPG solution. These solutions are still very dif-
fusive and are considerably deformed, especially for the BE-QPG solution. The more
severe deformation in the BE-QPG solution is due to the effect of grid orientation
incurred by the upwinding in the QPG method (see [26]). With the same time step
of ∆t = π

800 , we also reduce the spatial grid from ∆x = ∆y = 1
64 to ∆x = ∆y = 1

96
to observe the improvement of the numerical solutions. The BE-QPG solution has
a slight improvement, while the BE-GAL has essentially no improvement. However,
the CPU time has been significantly increased. With a comparable overall CPU time
we could use a much finer time step of ∆t = π

2000 and still use the coarse spatial
grid of ∆x = ∆y = 1

64 . In this case the numerical solutions have more visible im-
provement. This shows that even with a time step of ∆t = π

800 and a spatial grid of
∆x = ∆y = 1

64 , the temporal dominance still dominates the numerical solutions in
the backward temporal discretization. Note that for ∆x = ∆y = 1

64 and ∆t = π
800 ,

the corresponding maximum Courant number and the Courant number at the center
of the Gaussian pulse are 0.7 and 0.25, respectively.
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Fig. 7. The BE-GAL and BE-QPG solutions at T = π
2
,∆x = ∆y = 1

64
, and ∆t = π

800
.

To obtain BE-GAL and BE-QPG solutions with reasonable accuracy, we proceed
further. With a time step of ∆t = π

2000 , we reduce the spatial grid from ∆x = ∆y = 1
64

to ∆x = ∆y = 1
96 . Again one sees slight improvement in the BE-QPG solution and no

improvement in the BE-GAL solution, but a significant increase in the overall CPU
time. Using less overall CPU time, we could use the original coarse spatial grid of
∆x = ∆y = 1

64 , but a finer time step of ∆t = π
4000 . Note that for ∆x = ∆y = 1

64 and
∆t = π

2000 , the corresponding maximum Courant number and the Courant number
at the center of the Gaussian pulse are 0.28 and 0.1, respectively. This shows that
the temporal error still dominates the BE-GAL and BE-QPG solutions. Our last nu-
merical experiments with the backward Euler temporal discretization used a spatial
grid of ∆x = ∆y = 1

64 and a time step of ∆t = π
6000 . The minimum values are 0

for BE-GAL solution and −0.0017 for BE-QPG solution, while the maximum values
are 0.7401 for BE-GAL solution and 0.5554 for BE-QPG solution. Their surface and
contour plots are presented in Figure 8(a)–(d). Note that in this case the maximum
Courant number and the Courant number at the center of the Gaussian pulse are 0.09
and 0.03, respectively. However, the BE-GAL solution is still not comparable with the
two ELLAM solutions. The BE-QPG solution is even much worse. In fact, Figure 8(c)
and (d) show that the BE-QPG solution has severe deformation. However, the overall
CPU time is more than 11 hours for the BE-GAL solution and more than 15 hours
for the BE-QPG solution. This is in contrast to the 4 minutes and 39 seconds for the
ELLAM-Er solution and 2 minutes 33 seconds for the ELLAM-RK solution.

Therefore, even though the backward Euler temporal discretization is uncondi-
tionally stable and simple to implement, extremely small time steps have to be used
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Fig. 8. The BE-GAL and BE-QPG solutions at T = π
2
, ∆x = ∆y = 1

64
, and ∆t = π

6000
.

in these schemes, not for the purpose of stability, but for the purpose of compara-
tive accuracy (see [26]). Consequently, this significantly reduces the efficiency of the
simulation.

6.2.3. The CN-GAL, CN-QPG, and CN-CPG simulation. The CN-GAL
and CN-QPG solutions are presented in Figure 9(a)–(d) for a spatial grid of ∆x =
∆y = 1

64 and a time step of ∆t = π
200 . The CN-GAL solution has minimum and max-

imum values −0.1564 and 0.7861. Severe undershoot, deformation, and phase errors
are observed in the CN-GAL solution in Figure 9(a) and (b). The CN-QPG solution
has a minimum value −0.0978 and a maximum value 0.6197, respectively. Hence, the
CN-QPG solution has about 40% less undershoot than the CN-GAL solution, but it
also has serious damping, phase error, and deformation. The CN-CPG solution is not
available (unbounded) for the time step and spatial grid. Note that the maximum
Courant number is 2.84 and the Courant number is 1 at the center of the Gaussian
pulse in the current circumstances. Also, note that the Crank–Nicholson temporal
discretization yields more accurate numerical solutions than the backward Euler tem-
poral discretization due to its higher-order temporal accuracy. The overall CPU time
in this case is about 25 minutes for the CN-GAL solution and about 30 minutes for
the CN-QPG solution. The BE-GAL and BE-QPG solutions do not have undershoot,
but the CN-GAL and CN-QPG solutions do exhibit serious problems in this regard
and indicate a considerable disadvantage for the Crank–Nicholson discretization.

We further reduce the time step to ∆t = π
400 in the numerical simulation. In this

case, the CN-CPG solution is also available. We present the results in Table 1 and
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Fig. 9. The CN-GAL and CN-QPG solutions at T = π
2
, ∆x = ∆y = 1

64
, and ∆t = π

200
.

Figures 10(a)–(d) and 11(a) and (b). The maximum values are 0.8438 for the CN-
GAL solution, 0.6412 for the CN-QPG solution, and 0.8555 for the CN-CPG solution,
while the minimum values are −0.0159 for the CN-GAL solution, −0.0081 for the CN-
QPG solution, and −0.0002 for the CN-CPG solution. As one can see, the numerical
solutions have been improved considerably and the undershoot in the solutions has
been rapidly reduced. However, these solutions still have deformation, especially in
the case of the CN-QPG solution.

6.2.4. The SDM simulation. The surface and contour plots of SDM solutions
are plotted in Figures 11(c) and (d) and 12(a)–(d) for a time step of ∆t = π

200 and
∆x = ∆y = 1

64 . The undetermined parameter K in (5.5) equals 0.5, 0.1, and 0.001,
respectively. As K decreases from 0.5 to 0.1 and then to 0.001, the maximum and
minimum values of the corresponding SDM solutions change from 0.7089 and −0.0147
to 0.8250 and −0.0021 and then to 0.8281 and −0.0019. Namely, the SDM solutions
have eliminated almost all the damping and undershoot and become more accurate.
The numerical solutions will no longer improve as one further reduces the value of
K. The SDM solutions have no phase error or deformation but do require the most
CPU time per time step since they have double the number of unknowns as those for
the other methods. This in turn requires more iterations in solving the linear system.
Furthermore, on each (space-time) cell, the SDM has eight basis functions, which are
the tensor product of three univariate functions, while all other methods have four
basis functions on each (space) cell, which are the tensor product of two univariate
functions.
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Fig. 10. The CN-GAL and CN-QPG solutions at T = π
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, and ∆t = π
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In summary, one sees from Table 1 and Figures 5–12 that the ELLAM scheme
is the most (CPU) cost effective per time step and is much more cost effective over
all, since the ELLAM scheme outperforms the other methods tested with much fewer
time steps.

We refer readers to [29, 30, 34, 67, 69, 70] for the asymptotic convergence rates of
the ELLAM schemes in space and time, where numerical experiments were performed
and theoretical convergence error estimates were derived for the asymptotic conver-
gence rates of the ELLAM schemes for first-order linear hyperbolic equations and
advection-diffusion equations in one space dimension. A theoretical error estimate for
an ELLAM scheme for a two-dimensional advection-diffusion equation with constant
coefficients was also outlined in Wang [67].

7. Summary. In this paper we have developed an Eulerian–Lagrangian localized
adjoint method for two-dimensional linear advection-diffusion equations with general
inflow and outflow boundary conditions based on the approach presented in Wang [67].
The derived numerical scheme conserves mass and treats any combinations of inflow
and outflow Dirichlet, Neumann, and Robin boundary conditions in a systematic
manner.

Traditional forward-tracked characteristic methods or particle methods advance
the grids following the characteristics, which typically result in severely distorting the
evolving grids, even though the initial grids were uniform. This greatly complicates the
solution procedures. Many characteristic methods including certain ELLAM schemes
have been developed using a backtracking algorithm to avoid these problems [1, 2,
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Fig. 11. The CN-CPG and SDM solutions at T = π
2
, ∆x = ∆y = 1

64
.

7, 8, 14, 19, 23, 25, 26, 29, 30, 31, 33, 34, 60, 71]. However, for multidimensional
problems, backtracked characteristic methods require significant effort due to the
need to define the geometry at time tn−1, which requires the tracking of points along
the boundary of the element and subsequent interpolation and mapping onto the
fixed spatial grid at the previous time level tn−1. This approach is computationally
very intensive, especially when part or all of the element being mapped intersects a
space-time boundary [8, 11].

The ELLAM scheme in this paper uses a forward-tracking approach [20, 40, 61, 67]
to track quadrature points at time tn−1 in evaluating the storage terms and inflow
boundary terms on the right-hand side of (3.4), (3.5), (3.6), and (3.8). Thus, this
forward-tracking scheme has no effect on the underlying grid or the data structure of
the discrete system. Furthermore, the scheme uses a backtracking of characteristics
to evaluate the x-dependent time step ∆t(I)(x) in the diffusion-dispersion term.

In this paper we have performed one- and two-dimensional numerical experiments
to observe the performance of the ELLAM scheme and to compare it with many
intensely investigated and well-received methods such as the standard Galerkin finite
element method, quadratic Petrov–Galerkin finite element method, and cubic Petrov–
Galerkin method, which use either a backward Euler or a Crank–Nicholson temporal
discretization, as well as the streamline diffusion finite element method. The numerical
experiments show that the ELLAM scheme has generated very accurate numerical
solutions (compared with the other methods considered), even though a much larger
time step is used in the ELLAM scheme. Consequently, the ELLAM scheme has a
significantly enhanced efficiency. In the context of one-dimensional first-order linear
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hyperbolic equations, a more extensive comparison of the ELLAM schemes with many
other well-regarded methods, including the continuous and discontinuous Galerkin
finite element method [35, 49, 48, 59], the monotonic upstream-centered scheme for
conservation laws [17, 65], and the essentially nonoscillatory scheme [21, 39, 63], as
well as the methods described in section 5, can be found in the work of Wang, Al-
Lawatia, and Telyakovskiy [73].

Finally, we point out that the Eulerian methods are relatively easy to formulate
and to implement, in general. In contrast, due to the use of the Lagrangian coordi-
nates, characteristic methods (including the ELLAM scheme) typically require more
implementational work, especially for multidimensional problems.
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[54] K. W. Morton, A. Priestley, and E. Süli, Stability of the Lagrangian-Galerkin method with
nonexact integration, RAIRO M2AN, 22 (1988), pp. 123–151.

[55] S. P. Neuman, An Eulerian-Lagrangian numerical scheme for the dispersion-convection equa-
tion using conjugate space-time grids, J. Comp. Phys., 41 (1981), pp. 270–294.

[56] G. F. Pinder and H. H. Cooper, A numerical technique for calculating the transient position
of the saltwater front, Water Resources Res., (1970), pp. 875–882.

[57] O. Pironneau, On the transport-diffusion algorithm and its application to the Navier-Stokes
equations, Numer. Math., 38 (1982), pp. 309–332.

[58] D. W. Pollock, Semianalytical computation of path lines for finite-difference models, Ground
Water, 26 (1988), pp. 743–750.

[59] G. R. Richter, An optimal-order error estimate for the discontinuous Galerkin method, Math.
Comp., 50 (1988), pp. 75–88.

[60] T. F. Russell, Eulerian-Lagrangian localized adjoint methods for advection-dominated prob-
lems, in Proceedings of the 13th Dundee Conference on Numerical Analysis, D. Griffiths
and G. Watson, eds., Pitman Res. Notes Math. Ser. 228, Longman Scientific & Technical,
Harlow, UK, 1990, pp. 206–228.

[61] T. F. Russell and R. V. Trujillo, Eulerian-Lagrangian localized adjoint methods with vari-
able coefficients in multiple dimensions, in Computational Methods in Surface Hydrology,
G. Gambolati, ed., Springer-Verlag, Berlin, 1990, pp. 357–363.

[62] A. L. Schafer-Perini and J. L. Wilson, Efficient and accurate front tracking for two-
dimensional groundwater flow models, Water Resources Res., 27 (1991), pp. 1471–148.

[63] C. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing
schemes, J. Comput. Phys., 77 (1988), pp. 439–471.
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