
STRUCTURAL DIAGNOSIS OF WIRING NETWORKS: FINDING
CONNECTED COMPONENTS OF UNKNOWN SUBGRAPHS∗

WEIPING SHI† AND DOUGLAS B. WEST‡

Abstract. Given a graph G = (V, E), we want to find the vertex sets of the components of an
unknown subgraph F = (V,E) of G, such that E ⊆ E. We learn about F by sending an oracle a
query set S ⊆ V , and the oracle tells us the vertices connected to S in F . The objective is to use
the minimum number of queries to partition the vertex set V into components of F . In electronic
circuit design, the problem is also known as structural diagnosis of wiring networks.

Key words. graph theory, lower bound, testing, diagnosis, component.

AMS subject classifications. 68Q25, 68R10, 05C85, 05C40, 94C12

1. Introduction.

1.1. Problem Formulation. Diagnosis of wiring networks is an important
problem in the design and production of very large scale integration (VLSI), multi-
chip module (MCM) and printed circuit board (PCB) systems [1, 4, 5, 7, 8, 12]. A
wiring network consists of a set of nets. Each net contains a driver, a set of receivers
and electric conductors that connect the driver and the receivers. The logic value (1
or 0) of a good net is set by its driver and observed by its receivers. When two or
more nets are involved in a short fault, their receivers all receive the logical OR of the
values of their drivers. To diagnose a wiring network, we send test vectors of 0’s and
1’s from the drivers, and observe the outputs from the receivers, to find all the short
faults.

In this paper, we study structural diagnosis, that is the detection and location of
all short faults between nets using the information regarding the particular routing
of the nets. In contrast, behavioral diagnosis does not use any structural information
and assumes all faults are possible. From the circuit layout information, we can find
all places where a direct short fault may occur and represent the information as an
undirected graph G = (V, E), which we call the adjacency graph. Each vertex v ∈ V
represents a net and each edge vivj ∈ E represents a potential direct short fault
between nets vi and vj . Note that although G records only potential direct short
faults between pairs of nets, we may have multiple-net short faults through sequences
of direct shorts involving two nets each.

In any graph G, vertices vi and vj are connected if G contains a path from vi to
vj . The components of a graph G are its maximal connected subgraphs. The vertex
sets of the components are the equivalence classes of the connection relation, which
we call the connection classes of G.

The actual presence of direct short faults among the nets can be viewed as a fault
graph F = (V,E), which is a subgraph of G. The vertex set of F is the same as the
vertex set of G, the edge set of F is a subset of the edge set of G, but is not given
to us. Each edge vivj of F represents the presence of an actual direct short fault

∗ Research of the first author was supported in part by NSF grant MIP-9309120. Research of the
second author was supported in part by NSA/MSP grant MDA904-93-H-3040.
†Department of Electrical Engineering, Texas A&M University, College Station, Texas 77843

(wshi@ee.tamu.edu).
‡Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

(west@math.uiuc.edu).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/231869452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 W. SHI AND D. B. WEST

between nets vi and vj . Fig. 1.1 shows an adjacency graph G, a fault graph F , and
the connection classes of F . In general, it is not possible to uniquely determine F .
For example in Fig. 1.1, we cannot distinguish whether F has two edges or three edges
among {v1, v2, v3}.

G

c
c
c
c

�
�
�
�@

@
@
@

v1 v2

v3v4

F

c
c
c
c

@
@
@
@

v1 v2

v3v4

Connection
Classes

{v1, v2, v3}

{v4}

Fig. 1.1. Adjacency graph G, fault graph F , and connection classes of F .

Formally, the problem of structural diagnosis can be described as follows. Given
an adjacency graph G, we want to find the connection classes of the unknown fault
graph F ⊆ G. We obtain information about F only through queries to an oracle.
For any query set S ⊆ V , the oracle tells us Q(S), the set of vertices connected
to vertices of S in the fault graph F . In other words, Q(S) is the union of the
connection classes that intersect S. In the example of Fig. 1.1, Q({v1}) = {v1, v2, v3}
and Q({v2, v4}) = {v1, v2, v3, v4}. The objective is to find the connection classes of F
using the minimum number of queries. Diagnosing a wiring network corresponds to
finding the connection classes of the fault graph F , and applying tests corresponds to
querying the oracle.

1.2. Previous Results. Diagnosis algorithms may be adaptive or non-adaptive
[1]. In an adaptive algorithm, each query is computed using the responses to previous
queries. In a non-adaptive algorithm, all query inputs are decided before asking any
queries. Adaptive algorithms can be used in applications where test vectors and
results are sent and received though a external device. Non-adaptive diagnosis can
be used in applications where tests are hardwired inside of the system.

There are three levels of diagnostic resolution. The highest level is full diagnosis:
finding all the connection classes. The second level is faulty net identification: identi-
fying all the nets involved in short faults. The lowest level is fault detection, detecting
whether there is any fault at all. Faulty net identification and fault detection have
been well understood [4, 8, 12]. In this paper, we study full diagnosis.

Table 1.1 and 1.2 summarize the previous best results. In the table, lg denotes
the base 2 logarithm, n is the number of nets, G is the adjacency graph, and χ(G) is
the chromatic number of G.

For behavioral diagnosis of n nets, which is the special case of structural diagnosis
where G = Kn, Kautz [8] showed that dlg ne tests are necessary and sufficient to detect
whether some short exists. He used the so-called counting sequence method, which is
optimal for fault detection but does not provide faulty net identification. To identify
all the nets involved in short faults, Cheng, Lewandowski, and Wu [4] proposed the
maximum anti-chain method that uses lg n+ 1

2 lg lg n+O(1) tests. In this method, the
bit strings sent by the nets all contain an equal number of 0’s and 1’s. The maximum

DIAGNOSIS OF WIRING NETWORKS 3

Table 1.1

Best algorithms for behavioral diagnosis (G = Kn).

diagnostic adaptive best algorithm number of optimal
resolution tests

fault
detection no counting seq [8] dlg ne yes
faulty net

identification no max anti-chain [4] (1 + o(1)) lg n almost
full no walking 1 skip 1 [12] n− 1 yes

diagnosis yes divide conquer [12] dlg ne yes

Table 1.2

Best algorithms for structural diagnosis (arbitrary G).

diagnostic adaptive best algorithm number of optimal
resolution tests

fault
detection no graph coloring [4, 7] dlgχ(G)e yes
faulty net (1 + o(1))·

identification no max anti-chain [4] lgχ(G) almost
full no decomposition [5] ? ?

diagnosis yes ? ? ?

anti-chain algorithm is proved to be optimal, or within 1 from optimal, under various
restrictions on how the results are analyzed [4, 12]. For non-adaptive full diagnosis, a
number of researchers proposed the walking ones method. In this method, each query
contains a single vertex. After n queries, we can look at each output Q({vi}) to tell
which vertices are shorted to vi. Shi and Fuchs [12] proved that if we skip any one
test from the walking ones algorithm, then it is optimal. For adaptive full diagnosis,
Shi and Fuchs [12] presented a divide-and-conquer algorithm that uses dlg ne tests,
which is optimal. Shi and West [13] also gave an optimal randomized algorithm that
uses expected lg lg n+ lg k queries, where k is the number of connection classes.

For structural diagnosis, where the adjacency graph G is an arbitrary graph, sev-
eral researchers [4, 7] observed that dlgχ(G)e tests are sufficient for fault detection,
where χ(G) is the chromatic number of G. It can be shown that dlgχ(G)e tests
are also necessary: Consider an adversary that responds Q(S) = S while potential
edges remain, this result is equivalent to showing that the minimum number of bi-
partite subgraphs needed to cover G is dlgχ(G)e. Although these observations imply
that finding the minimum of tests for fault detection is NP-hard, it relates the fault
detection problem to the well-known graph theory problem where approximation algo-
rithms are available. The maximum anti-chain algorithm is also applied to structural
diagnosis [4], using lgχ(G) + 1

2 lg lgχ(G) + O(1) tests for faulty net identification.
For full diagnosis, Feng, Huang, and Lombardi [5] proposed a graph decomposition
algorithm.

1.3. Our Results. We present a variety of results for full diagnosis using graph
theoretic techniques. In Section 2, we propose adaptive algorithms for structural di-
agnosis. Theorem 2.7 leads to a method of approximating the minimum number of

4 W. SHI AND D. B. WEST

adaptive tests for arbitrary adjacency graphs. In Section 3, we consider the non-
adaptive problem. We prove that deciding whether a set of queries can perform full
diagnosis is NP-hard, even if G = Kn. Theorem 3.7 gives a method of approxi-
mating the minimum number of non-adaptive queries for arbitrary adjacency graphs.
In Section 2 and Section 3, we also present optimal or near optimal adaptive and
non-adaptive algorithms when the adjacency graphs are complete graphs, complete
bipartite graphs, paths, trees, planar graphs, or random graphs.

2. Adaptive Algorithms. In this section we study adaptive algorithms for
finding the connection classes of an unknown subgraph F of an arbitrary graph G. An
adaptive algorithm A implicitly defines a decision tree. At each node of the decision
tree, the algorithm selects a set of vertices S and makes a query. Upon receiving the
set Q(S) from the oracle, the algorithm selects a subtree. Each leaf of the decision
tree corresponds to a partition of the vertex set V (G) into connection classes. The
decision tree cannot be represented explicitly because the number of leaves is at least
the number of ways to partition V (G), which is exponential.

Definition 2.1. Let AG be the set of all adaptive algorithms that find the con-
nection classes of an unknown subgraph of G. Let q(A,F) be the number of queries
used by algorithm A when the unknown subgraph is F . We define q(G), the adaptive
test number of a graph G, to be:

q(G) = min
A∈AG

max
F⊆G

q(A,F).

In other words, q(G) is the minimum number of tests necessary and sufficient for
adaptive full diagnosis when the adjacency graph is G.

Graph G1 is a minor of graph G2 if G1 can be obtained from G2 by a sequence of
edge deletions and edge contractions. For example, Fig. 2.1 shows that the complete
graph K4 is a minor of the complete bipartite graph K3,3.

d
d
d

d
d
d

�
�
�

�
�
�
�
��

�
�
�

@
@
@

@
@
@

A
A
A
A
AA d
d
d
d
d

�
�
�

�
�
�
�
��

@
@
@

�
�
�

C
C
C
C
CC
A
A
A

d d
d
d

�
�
�
�
�
�

B
B
B
B
B
B

J
J
J

⇒ ⇒

Fig. 2.1. K4 is a minor of K3,3.

Lemma 2.2. If G1 is a minor of G2, then q(G1) ≤ q(G2).
Proof. If G1 is obtained from G2 by deleting (or contracting) an edge e, then

the problem of finding connection classes for an unknown subgraph F1 of G1 is the
problem of finding the connection classes of an unknown subgraph F2 of G2 with the
additional information that F2 does not contain (or does contain) edge e. With more
information about F2 within G2, we cannot need more queries.

To see how to construct an algorithm for G1 given an algorithm for G2, assume
G1 is obtained from G2 by contracting an edge vivj to v′i, where vi, vj ∈ V2 and

DIAGNOSIS OF WIRING NETWORKS 5

v′i ∈ V1. Any algorithm A2 that finds the connection classes for G2 can be modified to
become an algorithm A1 for G1 as follows. Whenever A2 makes a query S, A1 makes
a query S′, where

S′ =
{
S if vi /∈ S and vj /∈ S,
S ∪ {v′i} − {vi, vj} otherwise.

Lemma 2.3. If the vertex sets of graphs G1 and G2 are disjoint, and G1 + G2

denotes the disjoint union of G1 and G2, then q(G1 +G2) = max{q(G1), q(G2)}.
Proof. Let V1, V2 be the vertex sets for G1, G2, and let A1, A2 be optimal al-

gorithms for finding connection classes on these graphs. We define an algorithm on
G1 +G2. Whenever A1 wants to query S1 ⊆ V1 and A2 wants to query S2 ⊆ V2, we
query S1 ∪S2. Since Q(S1) = Q(S1 ∪S2)∩ V1 and Q(S2) = Q(S1 ∪S2)∩ V2, both A1

and A2 can proceed.
Definition 2.4. For any graph G = (V, E) and S ⊆ V , the S-connection graph

GS of G is the graph with vertex set S and edge set consisting of all pairs vivj, such
that vi, vj ∈ S and G has a path from vi to vj that intersects S only at its endpoints.

For example, Fig. 2.2 shows a graph G and its S-connection graph GS . The
concept of S-connection graph allows us to concentrate on the set of vertices S and
simplify the rest of the graph to keep only the connection information.

G

d
d d d d d
d d
d

J
J

J
Jv2

v1

v3

v5

v4

GS

d
d
d
d
d

v2

v1

v3

v4

v5
�
��

@
@@

@
@@

�
��

Fig. 2.2. GS is an S-connection graph of G for S = {v1, v2, v3, v4, v5}.

Definition 2.5. For any adjacency graph G = (V, E) and S ⊆ V , the restricted
connection class problem (G,S) is the problem of finding the connection classes of an
unknown subgraph F of G, where F is restricted to subgraphs of G such that Q(S) = V .
The number of queries required to solve this problem is

q′(G,S) = min
A

max
F

q(A,F),

where F satisfies the restriction described above, A has the knowledge that F is re-
stricted, and q(A,F) is the number of queries used by A when the fault graph is F .

For example, consider the adjacency graph G in Fig. 1.1 and the restricted con-
nection class problem (G, {v2, v4}). Since the restriction requires that Q({v2, v4}) =
{v1, v2, v3, v4}, we know the fault graph F must contain at least two edges among
{v1, v2, v3}. Therefore the restricted problem can be solved using only one query:
Q({v2}).

Arguing as in the proof of Lemma 2.2, it follows that if G1 is a minor of G2 and
both contain the vertex set S, then q′(G1, S) ≤ q′(G2, S).

6 W. SHI AND D. B. WEST

Lemma 2.6. For any graph G = (V, E) and a set of vertices S ⊆ V , q′(G,S) ≤
q(GS).

Proof. We first show for every fault graph F of G, there exists a fault graph H of
GS , such that the connection classes of H is the intersection of the connection classes
of F with S. H consists of edges vivj such that F has a path from vi to vj intersecting
S only at its endpoints. The graph H incorporates the information of which pairs of
vertices in F are in the same connection classes.

Let A be an optimal algorithm that solves the connection class problem for GS .
We use A to solve the restricted connection class problem (G,S). At each step, if A
wants to make a query R on GS , we make a query R on G and use Q(R) ∩ S as a
simulated response on GS . This is the correct response for an actual subgraph H of
GS whose connection classes are the intersections with S of the connection classes of
the unknown subgraph F of G. Algorithm A uses the response Q(R)∩S to choose the
next query to make on GS . When A completes its work, it declares the connection
classes for H. We claim that this partition of S permits us to determine the connection
classes of F without further queries. If this claim is true, then we have used at most
q(GS) queries to solve the restricted connection class problem.

Let Ci, Cj be any two connection class of F . Since Q(S) = V , Ci ∩ S 6= ∅ and
Cj ∩ S 6= ∅. Also, Ci ∩ S and Cj ∩ S are connection classes in H. Thus we know the
correct distribution of S among connection classes of F . Since A determines that Ci
and Cj are distinct classes, some response contains one of them but not the other.
Therefore, we learn that each vertex v ∈ Ci is not connected to any vertex in Cj , for
any j 6= i.

For any graph G = (V, E) and set S ⊆ V , the induced subgraph of G by S is the
graph G[S] whose vertex set is S and edge set is {vivj : vivj ∈ E and vi, vj ∈ S}. The
graph obtained by deleting the vertices in S is G− S; thus G[V − S] = G− S.

Theorem 2.7. For any graph G with vertex set V ,

q(G) ≤ 1 + min
S⊆V

max{q(GS), q(G− S)}.

Proof. For any algorithm that solves the connection class problem on G, let S
be the set of vertices chosen by the algorithm to make the first query. The response
Q(S) partitions G into disjoint subgraphs G[Q(S)] and G−Q(S), such that the fault
graph F has no edge between Q(S) and G−Q(S). Therefore,

q(G) ≤ 1 + min
S⊆V

max
Q(S)

max{q′(G[Q(S)], S), q(G−Q(S))}

= 1 + min
S⊆V

max{max
Q(S)

q′(G[Q(S)], S),max
Q(S)

q(G−Q(S))}

≤ 1 + min
S⊆V

max{q′(G,S), q(G− S)}.

In the last step, we used the fact that G[Q(S)] is a minor of G, and that G−Q(S) is
a minor of G− S. From Lemma 2.6, the Theorem is proved.

Corollary 2.8. Let G be a graph with vertex set V . For any S ⊆ V , if
G1, . . . , Gk are components of G−S, then q(G) ≤ 1+max{dlg |S|e, q(G1), . . . , q(Gk)}.

Proof. Since every S-connection graph is a minor of K|S|, q(GS) ≤ q(K|S|) =
dlg |S|e. From Lemma 2.3, q(G− S) = max{q(G1), q(G2), . . . , q(Gk)}.

Theorem 2.9. For any graph G with vertex set V , if for every S ⊆ V , GS is
obtained by deleting or contracting each edge not in G[S], then

q(G) = 1 + min
S⊆V

max{q(GS), q(G− S)}.

DIAGNOSIS OF WIRING NETWORKS 7

Proof. Every optimal algorithm begins by making a query on some set S, after
which it must solve the restricted problem (G[Q(S)], S) and the usual connection class
problem on G−Q(S). It chooses S to minimize the worst-case subsequent number of
queries. This yields the first equality below.

q(G) = 1 + min
S⊆V

max
Q(S)
{max{q′(G[Q(S)], S), q(G−Q(S))}}

= 1 + min
S⊆V

max{max
Q(S)

q′(G[Q(S)], S),max
Q(S)

q(G−Q(S))}

≥ 1 + min
S⊆V

max{q′(G,S), q(G− S)}.

In the last step, we choose Q(S) = V for the first term, and we choose Q(S) = S
for the second term. Then, since GS is a minor of G, we have q′(G,S) ≥ q′(GS , S).
Finally, we observe q′(GS , S) = q(GS) since the restricted problem (GS , S) is actually
the unrestricted problem on GS . Therefore,

q(G) ≥ 1 + min
S⊆V

max{q(GS), q(G− S)}.

The other direction of the inequality is Theorem 2.7.
Theorem 2.7 and Corollary 2.8 can be used to design approximation algorithm for

general graphs, such as the one at the end of this section. Theorem 2.9 can be used
to obtain exact expressions for the adaptive test number on some classes of graphs.

Corollary 2.10. For the complete graph Kn on n vertices, q(Kn) = dlg ne.
Proof. This was first proved by Shi and Fuchs [12]. Here we obtain it from

Theorem 2.9. Each S-connection graph of Kn is K|S|, which is a minor of Kn. Also
Kn − S = Kn−|S|. Therefore q(Kn) = 1 + q(Kdn/2e) = dlg ne.

Corollary 2.11. For the n-vertex path Pn, q(Pn) = dlg lg(n+ 1)e.
Proof. Each S-connection graph is P|S|, which is a minor of Pn. The graph G−S

has n− |S| vertices. From the pigeonhole principle, at least one component of G− S
is a path of at least (n− |S|)/(|S|+ 1) vertices. On the other hand, if the vertices of
S are evenly spaced among the n vertices, then every component in G − S contains
at most (n− |S|)/(|S|+ 1) vertices. Therefore

q(Pn) = 1 + min
S⊆V

max{q(P|S|), q(Pd(n−|S|)/(|S|+1)e)}.

Solving the equation |S| = (n − |S|)/(|S| + 1) gives |S| =
√
n+ 1 − 1. Therefore,

q(Pn) = 1 + q(Pd√n+1−1e) which yields q(Pn) = dlg lg(n+ 1)e.
Theorem 2.12. If G is a tree of n vertices, then q(G) ≤ lg lg n + 3, and the

queries can be constructed in polynomial time.
Proof. By removing a single vertex, an n-vertex tree can be partitioned into

components having at most n/2 vertices each. (Pick any vertex v in the tree, if some
component in G− {v} has more than n/2 vertices, move to the neighbor of v in that
component, and repeat until all components have size at most n/2.)

We iteratively place such splitting vertices into S until each remaining component
has at most 2

√
n vertices. This process is modeled by a decomposition tree T . The

parents of leaves in T correspond to connected subgraphs of G with at least 2
√
n

vertices, so there are at most
√
n/2 of them. When the leaves of T are deleted,

we have a tree with at most
√
n/2 leaves and thus fewer than

√
n vertices, each

corresponding to a vertex of S.

8 W. SHI AND D. B. WEST

If GS at this point is not a tree, as in Fig. 2.2, we add additional vertices of G to
S. Let G′ denote the subgraph of G that is the union of all paths in G joining vertices
of G. We add to S all vertices that have degree at least 3 in G′ (in Fig. 2.2, one vertex
is added). Since G′ has fewer than

√
n leaves, we add fewer than

√
n vertices to S.

The final set S has fewer than 2
√
n vertices. The graph GS is the graph obtained

from G′ by contracting an edge incident to a vertex of degree 2 (unless both endpoints
are in S) until no further such operations are available.

Let f(n) = max q(G), where the maximum is taken over all n-vertex trees. By
Theorem 2.7, f(n) ≤ 1 + f(2

√
n). This recurrence yields f(n) ≤ lg lg n + f(8) =

lg lg n+ 3.
Theorem 2.12 is essentially best possible, because the test number of the path is

within three of this bound.
Theorem 2.13. If G is the complete bipartite graph Km,n, then

q(G) = dlg(min{m,n}+ 1)e.

Proof. Assume without loss of generality that m ≤ n. If we pick any dm/2e
vertices in the partite set of size m to use as S in Theorem 2.7, then

q(Km,n) ≤ 1 + max{q(Kdm/2e), q(Kbm/2,n)}
≤ 1 + q(Kbm/2cc,n).

With q(K1,n) = 1, the recurrence yields q(Km,n) ≤ dlg(m+ 1)e.
On the other hand, contracting m − 1 edges of a matching in Km,n yields a

minor Km+1, as illustrated in Fig. 2.1. From Lemma 2.2, q(Km,n) ≥ q(Km+1) =
dlg(m+ 1)e.

Next consider G is a planar graph. Planar graphs arise naturally when the routing
is planar and direct short faults occur only between wires that are close together [7].

Theorem 2.14. (Planar Separator Theorem, Lipton-Tarjan [10]) Let G be an n-
vertex planar graph. In O(n) time we can partition V (G) into three sets A,B,C such
that 1) no edge has one endpoint in A and the other endpoint in B, 2) |A|, |B| ≤ 2n/3,
and 3) |C| ≤

√
8n.

Corollary 2.15. Let G be an n-vertex planar graph. In O(n) time we can find
a set S ⊂ V (G) such that |S| ≤ (12 + 6

√
2)
√
n and each component of G − S has at

most n/4 vertices.
Proof. From Theorem 2.14, V (G) can be partitioned into A, B and C such that

there is no edge between A and B, |A|, |B| ≤ 2n/3, and |C| ≤
√

8n. We call such a
set C a separator. The sizes of A and B are bounded by αn and (1 − αn) for some
1/3 ≤ α ≤ 2/3. Recursively find separators CA for G[A] and CB for G[B], we have
|CA ∪ CB | ≤

√
8αn +

√
8(1− α)n <

√
8n
√

2. We apply Theorem 2.14 recursively
for 4 levels, reducing all components among the remaining vertices to order at most
(2/3)4n = 16n/81 < n/4. Let S be the union of all the separators found in this tree
of separations. We have

|S| ≤
√

8n(1 + 21/2 + 22/2 + 23/2) =
√
n(12 + 6

√
2).

Since each C can be found in time linear in the number of vertices, the total time to
find S is O(n).

Theorem 2.16. If G is a planar graph of n vertices, then q(G) ≤ 1
2 lg n+O(1),

and each query can be constructed in O(n) time.

DIAGNOSIS OF WIRING NETWORKS 9

Proof. Let f(n) = max q(G), where the maximum is taken over all n-vertex planar
graphs. By Corollaries 2.8 and 2.15,

f(n) ≤ 1 + max{lg(
√
n(12 + 6

√
2)), f(n/4)}.

By induction it can be shown f(n) ≤ 1
2 lg n+ c+ 1, where c = lg(12 + 6

√
2).

We do not know whether Theorem 2.16 is best possible. The best lower bound is
lg lg n when G is a path of n vertices. Note that the S-connection graph of a planar
graph need not be planar. We leave as an open problem to close the gap. Please note
that since no planar graph contains K5 or K3,3 as a minor, it is not possible to prove
any nontrivial lower bound using Lemma 2.2.

Random graphs [2] are generated by letting each edge occur with probability 1/2.
When we say almost every graph has property X, it means the probability for a
random graph on n vertices to have property X intends to 1 as n goes to infinity. We
show next that solving the connection class problem for random graphs is almost as
hard as that for complete graphs.

Theorem 2.17. For almost every graph G, q(G) ≥ lg n− 1
2 lg lg n+ O(1). This

bound also holds for every graph with at least n2/4 edges.
Proof. Bollobás, Catlin and Erdős [3] proved that almost every n-vertex graph

has Km as a minor, where m = (1 + o(1))n/
√

lg n. Lemma 2.2 then yields q(G) ≥
lgm = lg n − 1

2 lg lg n + O(1) almost always. In fact every graph of n vertices and
about n2/4 edges has Km as a minor, where m = (1 + o(1))n/

√
lg n (see Bollobás [2],

page 279).
In general, computing q(G) appears to be NP-hard, but we have not proved

this. Observe that the minimum number of queries to determine whether F = Kn

equals dlgχ(G)e. Thus q(G) ≥ dlgχ(G)e, but it is still possible that q(G) is easier to
compute.

It is important to clarify that the arguments of all Theorems in this section give
procedures for generating the first query for the algorithms whose number of queries
satisfies the resulting bounds, but the arguments are not recursive algorithms for
finding the connection classes. For example in the proof of Theorem 2.7, we assumed
the worst-case that Q(S) = V and Q(S) = G − S, but the actual response is not
necessarily the worst-case. Thus we must take Q(S) into account to decide each
query to solve a particular instance.

The proof in Theorem 2.7 can be used to design a heuristics for general graphs:
Find a vertex separator S, construct GS and the components in G − S, then re-
curse for GS and G − S in parallel. The key is to find a vertex separator S so that
max{q(GS), q(G − S)} is minimized. In general, when S is small (large), q(GS) is
small (large) while q(G − S) is large (small). Therefore, we may experiment on the
size of S until we balance q(GS) and q(G− S).

Algorithm 1 is the adaptive diagnosis algorithm. It iteratively maintains a compo-
nent structure P = {(Gi, Ri) : i = 1, 2, . . . , t}, where {G1, G2, . . . , Gt} is a collection
of adjacency graphs whose vertex sets form a partition of V , and {R1, R2, . . . , Rt}
is a collection of “representative” subsets of vertices such that Ri ⊆ V (Gi) and
Q(Ri) = V (Gi). In other words, each (Gi, Ri) is a restricted connection class prob-
lem. This property of Ri’s implies that each Gi is a union of components. Algorithm
1 initializes with the component structure P = {(G,V (G))}, and then refines the
partition to reduce the size of each Ri. When the algorithm terminates, every Ri is
reduced to a single vertex, and therefore every V (Gi) is one connection class. The
hardest step is step 4, where we have to use the Theorems in this section to find the
set Si.

10 W. SHI AND D. B. WEST

Algorithm 1. Adaptive full diagnosis.
Input: Adjacency graph G.
Output: All connection classes.
1: P ← {(G,V (G))}.
2: Repeat
3: For each (Gi, Ri) ∈ P do
4: Find Si ⊂ Ri.
5: Query ∪Si, with result Q← Q(∪Si).
6: P ′ ← ∅.
7: For each (Gi, Ri) ∈ P do
8: Ui ← Q ∩ V (Gi).
9: For each component C of Gi[Ui] do
10: P ′ ← P ′ ∪ {(C,Si ∩ V (C))}
11: For each component C of Gi − Ui do
12: P ′ ← P ′ ∪ {(C,Ri ∩ V (C))}.
13: P ← P ′.
14: Until |Ri| = 1 for all (Gi, Ri) ∈ P .
14: Report each V (Gi) as one connection class.

c c c c c c c c c c c c c c c× × × × × × ×
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

Q({v4, v8, v12}) = {v3, v4, v5, v6, v7, v8, v9, v12}s s s

c c c c c c c c c c c c c c c× × × × × × ×
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

s s s sQ({v2, v8, v10, v14}) = {v2, v6, v7, v8, v9, v10, v11, v14, v15}

c c c c c c c c c c c c c c c× × × × × × ×
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

final result

Fig. 2.3. Find connection classes of F ⊂ P15 in 2 queries.

For example, Fig. 2.3 considers G = P15, and uses Corollary 2.11 to generate
the queries. The edges in the adjacency graph G are shown, and the edges in the
fault graph F are marked with “×”. The dark vertices are vertices in the query set
S. After the first query, we have five subgraphs containing potential components,
including two in G[Q(S)] and three in G − Q(S). Each subgraph is a path. We use
Corollary 2.11 to generate the next query for each subgraph. Because the 7-vertex
component in G[Q(S)] was generated by two vertices of S, we know that all but one
of its edges are faults, and one additional query at v8 finishes the restricted problem.
After the second query, we have all the connection classes of F .

3. Non-Adaptive Algorithms. In this section we study non-adaptive algo-
rithms for solving the connection class problem. A non-adaptive algorithm T is

DIAGNOSIS OF WIRING NETWORKS 11

a sequence of queries S1, S2, . . . , St, and a subroutine that analyzes the responses
Q(S1), Q(S2), . . . , Q(St) to derive the connection classes. The query sets S1, S2, . . . , St
are decided before asking any queries. We say that a non-adaptive algorithm T solves
the connection class problem for G if, for every F ⊆ G, T finds the connection classes
of F .

Definition 3.1. Let TG be the set of all non-adaptive algorithms that solve the
connection class problem for G. Let the number of queries used by an algorithm T
be t(T). The non-adaptive test number t(G) of a graph G is the minimum number of
non-adaptive queries that always suffices to solve the connection class problem of G:

t(G) = min
T∈TG

t(T).

A sequence of queries S1, S2, . . . , St defines a sequential test vector X(vi) for each
vertex vi. X(vi) is a t-bit binary vector xi1xi2 · · ·xit where xij = 1 if vi ∈ Sj ,
and xij = 0 otherwise. Conversely, sequential test vectors X(v1), . . . , X(vn), where
X(vi) = xi1xi2 · · ·xit, define a set of queries S1, S2, . . . , St by Sj = {vi : xij = 1}. We
will also use sequential test vectors to describe the queries in this section, because the
vector language underscores the history of queries on each vertex. In Fig. 3.1, each
row is a sequential test vector, and each column corresponds to one query.

test vectors queries
X(v1) 0 0 1 1 S1 = {v2, v5}
X(v2) 1 0 0 1 S2 = {v3}
X(v3) 0 1 1 0 S3 = {v1, v3, v5}
X(v4) 0 0 0 0 S4 = {v1, v2}
X(v5) 1 0 1 0

Fig. 3.1. Sequential test vectors and queries.

It is well known that the sequence of queries S1, S2, . . . , Sn, where Si = {vi}, (so
called the walking ones sequence) is sufficient to solve the connection class problem.
It is also known that a sequence of queries is sufficient if it contains the walking ones
sequence as a subsequence or is diagonally independent. It is less obvious that the
queries in Fig. 3.1 can also perform full diagnosis for K5.

Lemma 3.2. (Shi-Fuchs [12]) A necessary and sufficient condition for sequential
test vectors X(v1), . . . , X(vn) to solve the connection class problem on Kn is that for
any disjoint nonempty vertex sets U, V , ∨u∈UX(u) 6= ∨v∈VX(v), where the operation
∨ is the bit-wise Boolean OR.

Lemma 3.2 does not give an efficient method to check whether the set of queries
can can perform full diagnosis, because the number of such V1 and V2 subsets is
exponential in terms of n. Next we prove that it is unlikely that there exists any
polynomial time verifiable characterization.

Theorem 3.3. It is NP-hard to tell whether a set of sequential test vectors can
solve the connection class problem for G, even if G = Kn.

Proof. By Lemma 3.2, it is sufficient to show the following problem is NP-hard.
Problem Π: Given a set of t-bit binary vectors T = {X1, . . . , Xn},

are there disjoint non-empty subsets of indices I and J such that
∨i∈IXi = ∨j∈JXj?

12 W. SHI AND D. B. WEST

We use a reduction from Not-All-Equal 3SAT problem, which is a known NP-
complete problem [6], to prove Π is NP-hard. Due to the page limit, the details of
the reduction are omitted and can be found in [11].

Theorem 3.4. A necessary and sufficient condition for sequential test vectors
X(v1), . . . , X(vn) to perform full diagnosis for G is that ∨v∈UX(v) 6= ∨v∈WX(v)
whenever U,W are disjoint nonempty subsets of V (G) such that G[U], G[W], and
G[U ∪W] are connected graphs.

Proof. If the condition fails and there are U and W as described, then consider
fault graphs F1 and F2 of G. Graph F1 has components G[U], G[W], and the rest
are isolated vertices. Graph F2 has component G[U ∪W], and the rest are isolated
vertices. Clearly, F1 and F2 have different connection classes. However the responses
from the oracle for F1 and F2 are the same.

Conversely, suppose that the condition holds. First partition the set of vertices
into disjoint subsets according the response of each query as follows. Before the ith
step, suppose that we have partitioned V (G) into V1, . . . , Vm. The response of the
next query Q(Si) further partitions each Vj into Vj ∩Q(Si) and Vj−Q(Si). When we
finish all the queries, report each maximal vertex set inducing a connected subgraph
of G that lies in a single Vi as one connection class of the fault graph F . We show
that this algorithm works correctly.

If C is a connection class of F , then C ⊆ Q(S) or C ∩ Q(S) = ∅ for every
S ⊆ V (G). Thus all of C remains in the same Vk, and all of C will be reported to be
in the same connection class.

If connection classes C1, . . . , Ck of F are reported as being a single connection class
D, then G[D] is connected, because each set reported as a connection class induces a
connected subgraph of G. Also, at each iteration the algorithm leaves the entire set D
unpartitioned. Thus each Q(Si) contains all or none of D. Thus Si contains a vertex
of some Cj if and only if it contains a vertex of each Cj . In particular, ∨v∈CjX(v) is
the same for all j. Letting U = C1 and W = C2 ∪ . . . ∪ Ck yields a violation of the
condition.

Ideas like those of Section 2 allow us to compute non-adaptive test numbers of
some graphs.

Lemma 3.5. If G1 is a minor of G2, then t(G1) ≤ t(G2).
Proof. Similar to Lemma 2.2.
Lemma 3.6. If graphs G1 and G2 are disjoint, then

t(G1 +G2) = max{t(G1), t(G2)}.

Proof. Similar to Lemma 2.3.
Theorem 3.7. For a graph G with vertex set V ,

t(G) ≤ 1 + min
S⊆V
{t(GS) + t(G− S)}.

Proof. For the set S achieving the minimum, we make the queries consisting of
S, a minimum set of queries for GS , and a minimum set of queries for G − S. Each
resulting sequential test vector X(v) is the concatenation of one truth bit for v ∈ S,
the sequential test vector for v in the query set for GS , and the sequential test vector
for v in the query set for G− S.

Let U,W be disjoint nonempty subsets of V (G) such that G[U], G[W], and G[U ∪
W] are connected. It suffices to show that ∨v∈UX(v) 6= ∨v∈WX(v).

DIAGNOSIS OF WIRING NETWORKS 13

If U,W both lie outside S, then U , W and U ∪W induce connected subgraphs
in G− S. Thus the last t(G− S) bits of the sequential test vectors yield the desired
non-equality.

If exactly one of U,W intersects S, then query S yields the desired non-equality,
since ∨v∈UX(v) and ∨v∈WX(v) differ in the first bit.

Finally, suppose that both U and W intersect S. Let U ′ = U∩S and W ′ = W ∩S.
By construction, U ′,W ′, U ′ ∪W ′ all induce connected subgraphs of GS . Thus the
t(GS) bits of the sequential test vectors corresponding to GS yield the desired non-
equality.

The algorithm of Feng, et al [5] is a special case of Theorem 3.7, by letting GS to
be K|S|.

Shi and Fuchs [12] proved t(Kn) = n−1, using general consequences of Lindström
[9] and Tverberg [14]. We now consider other families of graphs.

Theorem 3.8. If G is the complete bipartite graph Km,n, then t(G) = min{m,n}.

Proof. Similar to Theorem 2.13.
Theorem 3.9. For the n-vertex path Pn, t(Pn) = dlog ne.
Proof. For the upper bound, pick the center vertex as S in Theorem 3.7. Then

t(Pn) ≤ 1 + t(Pbn/2c). Solving the recurrence relation with t(P1) = 0 gives t(Pn) ≤
blg nc.

For the lower bound. let U be the set of dn/2e vertices closest to one end of
the path, and let W be the set of the remaining bn/2c vertices closest to the other
end. Note that U,W, and U ∪W all induce connected subgraphs. For sequential test
vectors solving the connection class problem, we must have ∨v∈UX(v) 6= ∨v∈WX(v).
Let j be a coordinate where they differ. Then elements of U (or W) have test vectors
that all are 0 in coordinate j. That means we can solve the connection class problem
for U (or W) without using query Sj . Therefore t(Pbn/2c) ≤ t(Pn)− 1 and t(P1) = 0.
Solving the recurrence relation yields t(Pn) ≥ blg nc.

Theorem 3.10. If G is a tree of n vertices, then t(G) ≤ blg nc, and the queries
can be constructed in O(n log n) time.

Proof. As in Theorem 2.12, each n-vertex tree can be divided into subtrees of order
at most bn/2c by removing one vertex. Let f(n) = max t(G), where the maximum
is taken over all n-vertex trees. From Theorem 3.7, f(n) ≤ 1 + f(bn/2c). Solving
the recurrence relation with f(1) = 0 yields f(n) ≤ blg nc. The time to find each
separator is linear in the number of vertices. The depth of the recursion is O(log n).
Therefore the total time to generate the queries is O(n log n).

The upper bound in Theorem 3.10 holds with equality for paths, by Theorem 3.9.
Theorem 3.11. If G is an n-vertex planar graph, then t(G) = O(

√
n), and the

set of queries can be computed in polynomial time.
Proof. Let f(n) = max t(G), where the maximum is taken over all n-vertex

planar graphs G. From Theorem 2.14 and Theorem 3.7, f(n) ≤
√

8n + f(2n/3),
which yields f(n) = O(

√
n). The time to find each separator is O(n). The time to

find all separators is O(n log n) since the depth of the recursion is O(log n).
Theorem 3.12. For almost every graph G, t(G) ≥ (1 + o(1))n/

√
lg n.

Proof. Similar to Theorem 2.17.
Let χ(G) be the chromatic number of G. Since lgχ(G) queries are necessary to

tell whether F = Kn, at least this many queries are needed in the worst case to find
all the connection classes. Therefore t(G) ≥ lgχ(G). If the conjecture of Hadwiger
[3] is true, then t(G) ≥ χ(G)− 1. Hadwiger’s conjecture states that each graph G has

14 W. SHI AND D. B. WEST

Kχ(G) as a minor.

4. Discussion. We presented new adaptive and nonadaptive algorithms for in-
terconnect diagnosis. The adaptive algorithms reduce the number of tests exponen-
tially compared with traditional non-adaptive algorithms. We also show that struc-
tural information can further reduce the number of tests drastically, for certain sparse
graphs such as planar graphs. For dense graphs, there is not much gain using struc-
tural diagnosis.

Table 4.1

Number of tests for full diagnosis of special families of adjacency graphs.

adap- Km,n path tree planar random
tive Kn m ≤ n graph graph

lower lg n−
yes bound lg n lg(m+ 1) lg lg(n+ 1) lg lg(n+ 1) lg lg(n+ 1) 1

2 lg lg n
upper
bound lg n lg(m+ 1) lg lg(n+ 1) lg lg n+ 3 1

2 lg n lg n
lower

no bound n− 1 m blg nc blg nc blg nc n/
√

lg n
upper
bound n− 1 m blg nc blg nc O(

√
n) n− 1

Our results for special families of graphs are summarized in Table 4.1. In the
table, n is the number of vertices of G except for Km,n, and all fractions are rounded
to the ceiling unless otherwise specified. The lower bound for a family is the maximum
number of tests necessary for any graph in that family. The upper bound for a family
is the number of tests sufficient for all graphs in that family. The computation time
for generating the queries is low-order polynomial for all the algorithms in Table 4.1.
The results for Kn were first given by Shi and Fuchs [12], but we include here for
completeness.

To use Theorem 2.7 and 3.7 for general graphs, it is crucial that we find good
multi-way vertex separators. Unfortunately, there are few practical algorithms for
finding good vertex separators of general graphs.

REFERENCES

[1] M. Abramovic, M. A. Breuer and A. D. Friedman. Digital System Testing and Testable Design.
Computer Science Press, 1990.

[2] B. Bollobás. Random Graphs. Academic Press, New York 1985.
[3] B. Bollobás, P. Catlin and P. Erdős. Hadwiger’s conjecture is true for almost every graph.

Europ. J. Combinatorics, Vol. 1, 1980, 195-199.
[4] W.-T. Cheng, J. L. Lewandowski and E. Wu. Optimal diagnostic methods for wiring intercon-

nects. IEEE Trans. Computer-Aided Design, Vol. 11, No. 9, Sept. 1992, 1161–1166.
[5] C. Feng, W. Hang and F. Lombardi. A new diagnosis approach for short faults in interconnects,

Proc. 1995 Fault Tolerant Computing Symp., 331–339.
[6] M. R. Garey and D. S. Johnson, Computers and Intractability – A Guide to the Theory of

NP-Completeness, Freeman, New York, 1979.
[7] M. Garey, D. Johnson, and H. So. An application of graph coloring to printed circuit testing.

IEEE Trans. Circuits and Systems, Vol. CAS-23, No. 10, Oct. 1976, 591–599.
[8] W. H. Kautz. Testing for faults in wiring networks. IEEE Trans. Computers, Vol. C-23, No. 4,

April 1973, 358–363.

DIAGNOSIS OF WIRING NETWORKS 15

[9] B. Lindström. A theorem on families of sets. J. Combinatorial Theory (A), Vol. 13, pp. 274–277,
1972.

[10] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Computing,
Vol. 36, No. 2, April 1979, 177–189.

[11] W. Shi. Complexity of finding two disjoint subsets that have the same unions. Technical Report
TAMU-ECE-2001-03, Department of Electrical Engineering, Texas A&M University, April
2001.

[12] W. Shi and W. K. Fuchs. Optimal interconnect diagnosis of wiring networks. IEEE Trans. on
VLSI, Vol. 3, No. 3, Sept. 1995, 430–436.

[13] W. Shi and D. B. West. Diagnosis of wiring networks: An optimal randomized algorithm for
finding connected components of an unknown graph. SIAM J. Computing, Vol. 28, No. 5,
1999, 1541-1551.

[14] H. Tverberg. On equal unions of sets. Studies in Pure Mathematics, edited by L. Mirsky,
Academic Press, 249–250, 1971.

