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Abstract We consider a path planning problem where a 
team of Unmanned Vehicles (UVs) is required to visit a 
given set of targets. The UVs are assumed to carry 
different sensors, and as a result, there are vehicle-target 
constraints that require each UV to visit a distinct subset 
of targets. The objective of the path planning problem is 
to find a path for each UV such that each target is visited 
at least once by some vehicle, the vehicle-target 
constraints are satisfied and the total distance travelled by 
the vehicles is a minimum. This path planning problem is 
a generalization of the Hamiltonian path problem and is 
NP-Hard. We develop a primal-dual heuristic and 
incorporate the heuristic in a Lagrangian relaxation 
procedure to find good, feasible solutions and lower 
bounds for the path planning problem. Computational 
results show that solutions whose costs are on an average 
within 14% of the optimum can be obtained relatively 
quickly for the path planning problem involving five UVs 
and 40 targets. 
 
Keywords Unmanned Vehicle, Hamiltonian Path 
Problem, Primal-Dual Method, Lagrangian Relaxation, 
Subgradient Algorithm 

1. Introduction 

Surveillance applications involving Unmanned Vehicles 
(UVs) require UVs with different capabilities to gather 
information about a set of targets [3]. Information is often 
gathered using the sensors on-board the UVs while 
visiting the targets. In these missions, it is possible that 
UVs carry different sensors due to resource constraints. 
As a result, there may be vehicle-target constraints that 
require a specific vehicle to visit a subset of targets. We 
consider a basic path planning problem that commonly 
arises in these surveillance applications: Given a set of 
vehicles and targets, the objective of this problem is to 
find a path for each vehicle such that each target is visited 
at least once by some vehicle, the vehicle-target 
constraints are satisfied and the sum of the distances 
travelled by all the vehicles is a minimum.  
 
The difficulty with solving this path planning problem 
for the UVs is mainly combinatorial. While the motion 
constraints of the UV complicate the problem, they are 
not a source of difficulty as long as the trajectory of least 
distance to go from an origin to a destination can be 
efficiently computed; it does not matter whether the 
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vehicle is modelled as a double integrator or a Dubins [9] 
or a Reeds-Shepp [17] vehicle. To illustrate this point 
about the combinatorial nature of the problem, consider 
the path planning problem for just one UV modelled as a 
Dubins vehicle [9]. If the “optimal” heading angles were 
to be specified at each and every target, the problem of 
finding the optimal sequence of targets to be visited 
reduces to the notoriously hard Hamiltonian Path 
Problem (HPP), which is known to be NP-Hard in the 
literature [1]. However, if the “optimal” sequence were to 
be given, the “optimal” heading angles can be found 
using dynamic programming and can be determined 
arbitrarily accurately as a shortest path problem in a 
network [21], a problem for which efficient algorithms 
exist [7].  
 
For the above reasons, we assume that the heading angle 
at which a vehicle must visit each target is known. We 
also assume that the cost of travelling for a UV from 
target A at an initial heading angle (ψA) to target B at a 
final heading angle (ψB) can be computed and is known. 
Therefore, finding a sequence of targets to visit for a 
vehicle is equivalent to specifying the path for the vehicle. 
Using these assumptions, our problem can be viewed as a 
multiple depot, multiple vehicle, asymmetric1 HPP with 
additional vehicle-target constraints. In the context of 
UVs, we are not aware of algorithms that directly address 
this problem in the literature. However, there are 
approximation algorithms and heuristics for similar 
problems. For example, Doshi et al. [8] present heuristics 
and an approximation algorithm for a 2-depot, symmetric 
HPP. Approximation algorithms are presented for a 
multiple depot, symmetric HPP in [20]. A heuristic based 
on a transformation method is also presented for a 
multiple depot, asymmetric, heterogeneous TSP by 
Oberlin et al. in [15]. The combinatorial problem 
considered in this article is a special case of more difficult 
vehicle routing problems for which heuristics are 
presented in [4],[6],[5],[16]. In this article, we develop a 
primal-dual heuristic and incorporate the heuristic in a 
Lagrangian relaxation procedure to find good, feasible 
solutions and lower bounds for the path planning 
problem. Computational results show that solutions 
whose costs are within 14% of the optimum can be 
obtained relatively quickly for the path planning problem 
involving five UVs and 40 targets.  

2. Problem Statement  

Let there be n vehicles initially located at distinct depots 
denoted by 1 2 nd ,d , ,d and let { }1 nD : d , ,d=  (Refer to 
figure 1). Let T denote the set of targets that needs to be 

                                                                 
1 The cost of travelling for a UV from target A at an initial 
heading angle (ψA) to target B at a final heading angle (ψB) may 
be different than the cost of travelling from target B at ψB to 
target A at ψA. 

visited by the vehicles. Let kF T⊆ represent the subset of 
targets that must be visited by the vehicle initially located 
at depot kd . n

i 1 kC : T\ F==  denotes the subset of all the 
targets that can be visited by any vehicle. We assume 
Fk∩Fk’ = /0  for all { }k,k 1, ,n ,k k .′ ′∈ ≠

 The Multiple 
Vehicle Problem (MVP) is formulated on the complete 
directed graph ( )G V, E ,=

 where V D T= ∪  and E
represents the set of all the edges between any two 
distinct vertices in V. For any two distinct vertices i and j,
the edge directed from vertex i to vertex j is denoted by
( )i, j . Let ijc represent the cost of travelling from vertex i to 
vertex j for any vehicle. The objective of the problem is to 
find a path for each vehicle such that  
 
• the paths for the vehicles start at their respective 

depots,  
• each target in kF is visited at least once by the vehicle 

located at depot kd ,   
• each common target is visited at least once by some 

vehicle, and,  
• the total cost of travelling the edges in all the paths is 

a minimum.  
 
An illustration of a feasible solution to this MVP is shown 
in figure 1.  
 

 
Figure 1. A solution to the path planning problem. 1 2F ,F and 3F
denote the subsets of targets that need to be visited by the 
vehicles at depots 1 2d ,d and 3d respectively.  

3. Problem Formulation  

In this section, we formulate the problem as an integer 
program. Let ijx be the binary decision variable that 
represents the presence of edge ( )i, j in the solution; that 
is, ijx is equal to 1 if a vehicle is travelling from vertex i to 
vertex j and is equal to 0 otherwise. For any S V,⊂ let

( )S Eδ − ⊆ denote the set of all the edges directed into S,
i.e, for any (i, j) (S),i V\Sδ −∈ ∈ and j S.∈ Similarly, let

( )Sδ + represent the set of all the edges directed out of S,
that is, for any ( ) ( )i, j S ,i Sδ +∈ ∈  and j V\S.∈ The MVP is 
formulated as an integer program as follows:  

( )
ij ij

i , j E
f min c x∗

∈
=   
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subject to  

 ij
i V,i j

x 1 j V,
∈ ≠

≤ ∀ ∈                             (1)  

 
ij

j V,i j
x 1 i V,

∈ ≠
≤ ∀ ∈

                            
(2)  

 ( ) ( )
ij

i , j S

x 1 S C,
δ −∈

≥ ∀ ⊆                          (3)  

 
( ) ( )

{ }k k

k
ij

ki , j S
i C F d

S C F ,
x 1 k 1, ,n ,

S F 1,δ −∈
∈ ∪ ∪

 ⊆ ∪≥ ∀ = ∩ ≥
       (4)  

 { } ( )ijx 0,1 i, j E.= ∀ ∈                           (5)  

Equations (1) and (2) require that the in-degree and 
out-degree of each vertex be at most equal to one. 
Constraints (3), (4) ensure that each common target is 
connected to at least one depot and each functionally 
heterogeneous target is connected to its respective 
depot. Specifically, equation (3) requires that there 
must be at least one incoming edge to every subset of 
common targets. Similarly, equation (4), requires that 
there must be at least one suitable edge directed into 
every subset consisting of common targets and at least 
one target from kF for any k. For example, if the subset
S consists of a target from 1F and some common 
targets, then a suitable incoming edge into S can be 
directed either from the depot 1d , or from a common 
target, or from a target in 1F but not in S.   

4. Lagrangian Relaxation of the MVP  

A Lagrangian relaxation for the MVP can be obtained by 
removing the constraints that complicate the formulation 
in (1)-(4), and penalizing them in the objective if they are 
violated. This idea was first successfully applied to a 
single vehicle routing problem by Held and Karp in [13]. 
Suppose the degree constraints in (1) and (2) are relaxed, 
and let iλ and iμ be the penalty variables corresponding to 
the degree constraint of vertex i in (1) and (2) respectively. 
Let λ  denote the vector ( )1 V, , ,λ λ  and μ  represent
( )1 Vµ , ,µ .  Then, for an λ, μ ≥ 0, we obtain a Lagrangian 
relaxation as follows:  

 
( ) ( )

λ

φ λ μ

μ

∈ ∈ ≠∈∗

∈ ∈ ≠

  
  + −

    =  
  
 + −     

  

 

ij ij j ij
j V i V,i ji, j E

x

i ij
i V j V,i j

c x x 1

, min

x 1

    (6)  

subject to 

 ( ) ( )
ij

i , j S

x 1 S C,
δ −∈

≥ ∀ ⊆                          (7) 

 
( ) ( )

{ }k k

k
ij

ki , j S
i C F d

S C F ,
x 1 k 1, ,n ,

S F 1,δ −∈
∈ ∪ ∪

 ⊆ ∪≥ ∀ = ∩ ≥
       (8) 

 { } ( )ijx 0,1 i, j E.∈ ∀ ∈                           (9) 

The objective of the above relaxation can be re-written as 
follows: 

( )
( )

( )
( )

( )
( )

ij ij j ij i ij
j V i V,i j i V j V,i ji , j E

ij j i ij j i
j V i Vi, j E

ij ij
i , j E

, ,x c x x 1 x 1 ,

c x

ĉ x K , ,

φ λ μ λ μ

λ μ λ μ

λ μ

∈ ∈ ≠ ∈ ∈ ≠∈

∈ ∈∈

∈

   
   = + − + −
   
   

= + + − −

= −

    

  



 

where the modified cost λ= + +ĉ c µ ,ij ij j i  and

j V j i V iK( ,µ) µ .λ λ∈ ∈=  +   
 
It is well known in the literature [11] that the optimal cost 
of a Lagrangian relaxation always provides a lower 
bound for the corresponding integer programming 
problem. In relation to the MVP, this result implies that

( ,µ) fφ λ∗ ∗≤ for any ,µ 0λ ≥ where f∗ denotes the optimal 
cost of the MVP. One can then obtain the best or the 
tightest lower bound for the MVP by solving the 
following problem: *

,µ 0max ( ,µ).λ φ λ≥ This problem of 
maximizing the lower bound will be referred to as the 
Lagrangian dual problem in this article.  
 
SupposeF denotes the set of all the solutions (a solution 
consists of a forest of edges; refer to figure 2 for an 
illustration) that satisfy the constraints in (7)-(9). Then, 
the Lagrangian dual problem can be stated as 

,µ 0 ,µ 0 x

(i , j) x ij j i ij j V j i V i

max ( ,µ)  max min

( (c µ )x µ ).
λ λφ λ

λ λ

∗
≥ ≥ ∈

∈ ∈ ∈

=

 + + −  − 
F  

Even though the Lagrangian dual problem is a non-
smooth optimization problem, note that the objective

( ,µ)φ λ∗ is a concave function of the penalty variables in λ
and .μ Therefore, one can use a subgradient algorithm as 
in [13],[18] to solve the Lagrangian dual problem.  
 
A crucial part of solving the Lagrangian dual problem 
involves solving the minimization problem in (6)-(9). This 
minimization problem aims to find a forest of edges such 
that  
• there is a directed path from a depot to each of the 

common targets,  
• there is a directed path from the depot kd to each of 

the targets in kF for k 1, ,n,=  and,  
• the sum of the cost of the edges in this forest is a 

minimum.  
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If there is only one vehicle and there are no vehicle-target 
constraints, this minimization problem reduces to solving 
a directed spanning tree which can be computed in 
polynomial time. If there are multiple vehicles with 
additional vehicle-target constraints, it is not yet known if 
this minimization problem can be solved in polynomial 
time. However, we circumvent this difficulty by 
developing a primal-dual heuristic which provides a 
good lower bound and a feasible solution to the 
minimization problem. We use this feasible solution (a 
forest) to partition the common targets such that each 
common target is assigned to some vehicle. Once a subset 
of targets is assigned to a vehicle, we use the Lin-
Kernighan Heuristic (LKH) to find a path for the vehicle. 
Using the above procedure, given the penalty variables in
λ and ,μ one can find a lower bound and a feasible 
solution for the MVP. In the next section, we discuss the 
primal-dual heuristic. Later, we present the subgradient 
algorithm that uses this primal-dual heuristic to solve the 
Lagrangian dual problem.  
 

 
Figure 2. Feasible solutions for the Lagrangian relaxation. Notice 
that in (a) some common targets are connected to depots d1 and 
d2, whereas each common target is connected to exactly one 
depot in (b).  

5. Primal Dual Heuristic for solving 
the Lagrangian Relaxation  

Given the penalty variables in λ and ,μ consider the basic 
minimization problem in the Lagrangian relaxation:  

( )
ij ij

i , j E
ˆmin c x

∈
  

 ( ) ( )
ij

i , j S

x 1 S C,
δ −∈

≥ ∀ ⊆                       (10) 

 
( ) ( )

{ }k k

k
ij

ki , j S
i C F d

S C F ,
x 1 k 1, ,n,

S F 1,δ −∈
∈ ∪ ∪

 ⊆ ∪≥ ∀ = ∩ ≥
      (11) 

 { } ( )ijx 0,1 i, j E.∈ ∀ ∈                      (12) 

Henceforth, the above forest problem will be referred to 
as the primal problem, and will be used to find a lower 
bound and partition the targets. A dual corresponding to 
a linear programming relaxation (only equation (12) is 

relaxed to ( )≥ ∀ ∈ijx 0  i, j E)
 
of the primal problem can be 

stated as follows:  

k
k

n

S S
S C k 1 S C F

S F 1

max y y
⊆ = ⊆ ∪

∩ ≥

 
 

+  
  
 

    

subject to  

 

( ) ( ) ( ) ( )
{ }

( )
k k

k k

n

S S ij
k 1S: i , j S S: i , j S

S C i C F d
S C F , S F 1

ˆy y c , i, j E,
δ δ− −=∈ ∈

⊆ ∈ ∪ ∪
⊆ ∪ ∩ ≥

+ ≤ ∀ ∈    (13)  

 Sy 0 S C,≥ ∀ ⊆                                (14)  

 

k
S

k

S C F ,
y 0 k 1, ,n.

S F 1,
 ⊆ ∪≥ ∀ = ∩ ≥

              (15)  

The primal-dual heuristic follows the greedy procedure 
outlined by Goemans and Williamson in [12]. The basic 
structure of this heuristic involves maintaining a forest of 
edges and a feasible solution to the dual problem. The 
edges in this forest are candidates for the set of edges that 
finally appear in the output of the algorithm. Initially, the 
forest is empty and all the dual variables are set to zero. 
As the forest is empty, there may be several constraints 
that are violated in the primal problem initially. The 
primal-dual heuristic is an iterative algorithm where in 
each iteration, the subset of vertices S corresponding to 
one such violated constraint in the primal problem is 
chosen and the dual variable Sy is increased until one of 
the constraints corresponding to say edge ( )i, j in (13) 
becomes tight. A constraint corresponding to edge ( )i, j
becomes tight if  

( ) ( ) ( ) ( )
{ }

δ δ− −=∈ ∈
⊆ ∈ ∪ ∪

⊆ ∪ ∩ ≥

+ =  
k k

k k

n

S S ij
k 1S: i , j S S: i, j S

S C i C F d
S C F , S F 1

ˆy y c .  

The algorithm then adds the edge ( )i, j to the forest, and 
proceeds to the next iteration until the forest contains a 
feasible solution to the primal problem.  
 
Once the forest becomes feasible to the primal problem, it 
is possible that there is more than one path from a depot 
to some of the targets. Therefore, in the last step of the 
heuristic, we eliminate some unnecessary edges in the 
forest while ensuring that the pruned solution is still 
feasible. We do this by sorting the edges in the reverse of 
the order in which they were added to the forest and 
removing them if the pruned solution is feasible to the 
primal problem. This pruning procedure is referred to as 
the reverse delete step in the literature [12], [19] and is 
usually used for developing good approximation 
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algorithms for NP-Hard problems. The pseudo code of 
the primal-dual heuristic is presented in Algorithm 1. The 
key step of this primal-dual heuristic requires one to find 
a violated constraint (if any) in the primal problem given 
a forest of edges. This step is explained in the following 
subsection.  

5.1 Identifying Violated Constraints  

A forest is infeasible to the primal problem if there is no 
directed path from any of the depots to a common target 
or if there is no directed path from the depot kd to any of 
the targets in kF for some k {1, ,n}.∈  If S C⊆ and there is 
no incoming edge into S, then the constraint associated 
with S in (10) will be violated. If k kS C F ,  |S F | 1⊆ ∪ ∩ ≥
for some k {1, ,n}∈  and there is no incoming edge into S
from a vertex in k kC F {d },∪ ∪  then the constraint 
associated with S in (11) will be violated. Henceforth, 
given a forest, we will refer to a set as a violated set if the 
forest does not satisfy the constraint associated with the 
set in the primal problem.  
 
1 : All the dual variables are initially set to zero.  

2 : Dual cost LB 0←  

3 : Forest T 0← /  

4 : count 0←  

5 : while T is not feasible to the primal problem do 
6 : count count 1← +  

7 : Find the set S corresponding to a violated constraint in 
the primal problem  

8 : Increase Sy until one of the constraints corresponding 
to an edge ( )counte :  i, j=  gets tight in the dual 
problem  

9 : SLB LB y← +  

10 : Add edge counte to the forestT 
11 : end while  

12 :  for k count← down to 1 do 
13 : if kT\e is feasible then  

14 : kT T\e←  

15 : end if  

16 :    end for  

17 : Output T as a feasible solution and the dual cost ( )LB as a 
lower bound to the primal problem  

Algorithm 1. Primal-Dual Heuristic 

Given a forest which is infeasible, one can use an 
algorithm similar to the Edmonds’ algorithm [10] for 
the directed minimum spanning tree problem to find a 
violated constraint (or a violated set). Our algorithm 
works as follows: first, find a strongly connected 
component S such that kS C F⊆ ∪ for some k. Contract 
all the arcs in this strongly connected component so 
that S is replaced with a single pseudo node as shown 

in figures 3,4. For example, in figure 3-b, { }1,7,6 is a 
strongly connected component and is replaced with a 
pseudo node in figure 3-c. Repeat this procedure until 
all such strongly connected components are replaced 
with their corresponding pseudo nodes. Let this 
contracted network be denoted by c c cG (V ,E )= where

cV and cE represent the set of all the vertices and edges 
in the contracted network respectively. Mark each 
vertex v in the contracted network with a label 

 if ∩ ≥k{v} F 1.kF Similarly, mark each vertex v in the 
contracted network with a label C  if v  is a common 
target or if v is a pseudo node such that v C.⊆ All other 
vertices in cV are unmarked. For example, in figure 3-c, 

( ) =label {1,7,6} ,1F  ( ) =label 2 ,2F  ( ) =label 8 .C  Any 
graph ( )V ,E′ ′ is a subgraph of this contracted network 
if cV V′ ⊆ and cE E .′ ⊆   
 
Next, we repeat the following procedure for each marked 
vertex v in this contracted network until we find a violated 
set. Let ( )G v′ represent the largest possible subgraph of cG
such that all the vertices in ( )G v′ are marked, for each 
vertex ( )u v≠ in ( ) ( ) ( ){ }G v ,label u label v ,′ ∈ C and there is 
a directed path in ( )G v′ from u to v. This subgraph can be 
computed using a depth first search algorithm. For 
example, in figure 3-d, ( )G {1,7,6}′ consists of just the 
pseudo node{ }1,7,6 , whereas ( )G 5′ consists of the entire 
path from node 14 to node 5. Similarly, in figure 4-d, 

( )G {2,13}′ is a forest consisting of edges ( )10,11 ,
( )11,{2,13}  and ( )12,{2,13} .   
 
Expand each of the pseudo nodes in ( )G v′ and let S
denote all the vertices in the expanded graph obtained 
from ( )G v .′  As we ensure that the label of each of the 
vertices in G’(v) is either C or has the same label as

kv,S C F⊆ ∪  for some k. Again, referring to figure 3, S
obtained from expanding ( )G {1,7,6}′ is equal to{ }1,7,6 ,
and S obtained from expanding ( )G 5′ is equal to
{ },14,15,16,17 5 .   
 

 
Figure 3. An example showing the procedure for finding the 
violated sets.  
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We output S as a violated set for the forest if ( )label v = C
and there is no edge directed into S. This violated set 
implies that its corresponding constraint in (10) is not 
satisfied. Similarly, we output S as a violated set for the 
forest if ( ) =label v kF

 for some k and there is no edge ( )i, j
directed into S such that k ki C F {d }.∈ ∪ ∪ This violated set 
implies that its corresponding constraint in (11) is not 
satisfied. Given a forest which is infeasible to the primal 
problem, one can verify that the above procedure always 
finds a violated cut.  

6. Subgradient algorithm for addressing  
the Lagrangian dual problem  

Given the penalty variables in λ and ,μ the primal-dual 
heuristic presented in the previous section can be used to 
find a lower bound and a good, feasible solution for the 
Lagrangian relaxation problem in (6)-(9). In this section, 
we provide a subgradient algorithm for solving the 
Lagrangian dual problem.  
 
The subgradient algorithm is an iterative procedure 
where the penalty variables are updated in each iteration 
based on an improving direction of the objective of the 
Lagrangian dual problem. Let kλ   and kμ   indicate the 
values of λ and μ during the thk iteration respectively. 
During the thk iteration, we compute a new set of penalty 
vectors, k 1λ +

   and k 1 ,μ +
   using an update scheme that 

aims to change kλ   and kμ   along an improving 
direction defined by the subgradient as follows: let

iλg
and

iμg denote the subgradient corresponding to the 
penalty variables iλ and iμ for i 1, , V=   where 
 

 ∈
= − ji

j V
1 x ,

iλ
g                              (16)  

 

 
Figure 4. Another example showing the procedure for finding 
the violated sets.  

 
μ

∈
= − 1 x .ij

j Vi
g                                (17)  

 

Let
1 1V Vµ µ( , , , , , )λ λ=  g g g g g  represent the vector of 

all the subgradients, and let k
  g represent this vector 

during the thk iteration. The new update k 1,λ μ +
   is 

computed as follows:  

 
k 1 k kk, ,λ μ λ μ α+

     = +     g                    (18)  

where kα is the step size defined by  

 

( )φ λ μ
α γ

∗    −    
=

  

k k

k k
k

f ,
.

g
                       (19)  

In the above equation, kγ is a parameter in the interval 
(0,2], f∗ denotes the optimal cost of the MVP and k

  g
denotes the 2l –norm of k .  g As f∗ may not be known, 
during the thk iteration, we use the cost of the best 
solution found for the MVP during the first k iterations as 
a proxy for f .∗ The expression (19) is referred to as the 
Polyak’s Rule II. A common practice is to start with a value 
of (0 0,2γ ∈  and reduce its value by a constant factor if 
the dual objective does not increase in a specified number 
of iterations [18]. The overall procedure for solving the 
Lagrangian dual problem is given in Algorithm 2.  
 
1: Choose the initial penalty variables in 0 0,µ .λ Let k 0.=  
2: Solve the Lagrangian relaxation for k[ ,µ] .λ  This step 

would provide a lower bound kLB  to k k( ,µ )φ λ∗  and a 
forest kT for the primal problem. 

3:  Use the forest kT to assign each target to one of the vehicles. 
Break the ties arbitrarily if a common target is connected 
to more than one depot. Once the targets have been 
partitioned among the vehicles, use the LKH [14] to find a 
corresponding path for each of the vehicles. Let the sum 
of the cost of travelling all the paths be denoted by kf .  

4:  Terminate the algorithm if the duality gap

( )= =−k i k i
i 1 i 1min f max LB is less than a constant ε , or if 

the number of iterations, k, has reached a maximum 
value; otherwise, continue to the next step. 

5: Compute k 1[ ,µ]λ + using equation (18), i.e., 
λ λ α α+
     = +     

k 1 k kk k,µ ,µ g . is the step size given 
by Polyak’s Rule II as follows: 

( )k i k
i 1k k

k

min f LB
.α γ = −

=
  g

 

 In the above rule, 0γ is chosen to be in the interval (0,2]. 

For
k 1

kk 1, :
2

γγ
−

≥ = if the dual objective ( )kLB does not 

increase in a specified number of iterations. 
6: Let k k 1← + and go to step 2. 

Algorithm 2. Subgradient algorithm for the Lagrangian dual 
problem 
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7. Computational Results  

The objective of this section is to compute the quality of 
the solutions produced by the proposed algorithms for 
the MVP. In that pursuit, we conducted two sets of 
simulations for the MVP - in the first set, we fixed the 
number of vehicles and varied the number of targets; in 
the second set, we fixed the number of targets and varied 
the number of vehicles. All the simulations were run on a 
Dell Precision T5500 workstation (Intel Xeon E5630 
processor @ 2.53 GHz, 12GB RAM).  
 
For a given number of vehicles and targets, 50 test 
instances were generated. The coordinates of the targets 
and depots were generated randomly in a square of size 
5000 m using a uniform distribution. For the simulations, 
we model the UV as a Dubins car that travels at a 
constant velocity and has a lower bound on turning 
radius. The minimum turning radius of all the vehicles 
was chosen to be equal to 250 m. For each generated 
target, a heading angle was selected randomly in the 
interval [0,2 ].π The Dubins’ result [9] was used to 
calculate the minimum distance required for a vehicle to 
travel between any two targets. Each vehicle was also 
assigned a subset containing three targets which the 
vehicle must visit. An upper bound on the deviation of the 
cost of the suboptimal solutions found by the subgradient 
algorithm from the optimum is defined as  

 

I I

I
f LB100 ,

LB

 −
  
 

                                (20)  

where If is the cost of the best solution and ILB is the best 
lower bound obtained for an instance I by the subgradient 
algorithm. The LKH program by Helsgaun [14] available 
at http://www.akira.ruc.dk/ keld/research/LKH/ was used 
to solve the HPP in the subgradient algorithm. The LKH 
program was run without changing any of its default 
settings.  
 
While applying the subgradient algorithm to solve the 
Lagrangian dual problem, all the penalty variables were 
initially set to zero. 

0γ was initially assigned a value of 
0.001 in Equation (19), and its value was reduced by a 
factor of 2 whenever ( )k k,φ λ μ        failed to increase in 
two iterations. As the iterations progresses, we can 
expect the best lower bound produced by the 
subgradient algorithm to continue to increase until it 
converges to a fixed value. Similarly, the cost (upper 
bound) of the best solution obtained by the subgradient 
algorithm may continue to decrease as the iterations 
progress. For each instance, the subgradient algorithm 
was allowed to run for at most 50 iterations. Figure 5 
illustrates the way in which the best upper bound and 
the lower bound change with the number of iterations 
for a 30 target instance.  

 
Figure 5. Variation of the best upper bound and the best lower 
bound obtained by the subgradient algorithm as a function of the 
number of iterations for an instance.  

In the first set of simulations, the number of vehicles was 
fixed to be equal to five, and the number of targets was 
allowed to vary from 15 to 40. The first plot in figure 6 shows 
the average deviation of the cost of the suboptimal solutions 
produced by the algorithm from the optimum. This figure 
also shows the average computation time required to 
implement the subgradient algorithm. For the test instances 
considered in the first set of simulations, the proposed 
algorithms were able to find solutions whose cost, on an 
average, is at most 12% away from the optimum.  

 
Figure 6. Computational results for the MVP: number of vehicles 
fixed.  

In the second set of simulations, the number of targets 
was fixed at 35 and the number of vehicles was varied 
from 2 to 7. The first plot in figure 7 shows the average 
deviation of the cost of the suboptimal solutions 
produced by the algorithm from the optimum. 
Specifically, for the test instances considered in the 
second set of simulations, the proposed algorithms were 
able to find solutions whose cost, on an average, is at 
most 14% away from the optimum. In addition, the 
average computation time required for implementing the 
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proposed algorithms was at most equal to a minute. 
Considering that the MVP with additional vehicle-target 
constraints is a difficult problem to solve, these results 
indicate that the approach proposed in this article is 
promising. Figures 8 and 9 show the Dubins’ paths found 
by the proposed algorithms for a couple of test instances.  

 
Figure 7. Computational results for the MVP: number of targets 
fixed.  

8. Conclusion  

A primal-dual heuristic was combined with the 
Lagrangian relaxation technique to find good solutions 
for a heterogeneous vehicle routing problem. Future 
work related to this problem can focus on two research 
areas. Firstly, the feasible solutions and the bounds found 
by the developed heuristics can be used in branch and 
bound solvers in order to obtain optimal solutions for the 
related heterogeneous vehicle routing problems. 
Secondly, one can aim to develop primal-dual 
approximation algorithms for heterogeneous travelling 
salesman problems where there are additional vehicle-
target constraints. A result in this direction has already 
been reached with regard to a special case of a 
heterogeneous travelling salesman problem in [2].  

 
Figure 8. An example showing the Dubins’ paths found by the 
algorithms for an instance with two vehicles.  

 
Figure 9. An example showing the Dubins’ paths found by the 
algorithms for an instance with three vehicles.  
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