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ABSTRACT

Extensions of Einstein gravity with quadratic curvature terms in the action arise in

most effective theories of quantised gravity, including string theory. This article explores

the set of static, spherically symmetric and asymptotically flat solutions of this class of the-

ories. An important element in the analysis is the careful treatment of a Lichnerowicz-type

‘no-hair’ theorem. From a Frobenius analysis of the asymptotic small-radius behaviour,

the solution space is found to split into three asymptotic families, one of which contains

the classic Schwarzschild solution. These three families are carefully analysed to determine

the corresponding numbers of free parameters in each. One solution family is capable of

arising from coupling to a distributional shell of matter near the origin; this family can

then match on to an asymptotically flat solution at spatial infinity without encountering

a horizon. Another family, with horizons, contains the Schwarzschild solution but includes

also non-Schwarzschild black holes. The third family of solutions obtained from the Frobe-

nius analysis is nonsingular and corresponds to ‘vacuum’ solutions. In addition to the three

families identified from near-origin behaviour, there are solutions that may be identified

as ‘wormholes’, which can match symmetrically on to another sheet of spacetime at finite

radius.
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1 Introduction: Second plus fourth-order gravity

The inclusion of quadratic curvature terms into the gravitational action is principally moti-

vated by the form of one-loop quantum corrections [1]. In 4D spacetime there are effectively

only two independent quadratic-curvature integrated invariants, owing to the existence of

the Gauss-Bonnet topological invariant. Starting from the correspondingly general second-

plus-fourth-order action 1

I =

∫
d4x
√
−g
(
γR− αCµνρσCµνρσ + βR2

)
, (1.1)

(in which Cµνρσ is the Weyl tensor, i.e. the traceless part of the curvature tensor Rµνρσ), one

obtains 2 a renormalisable system [2]. The spectrum of this theory contains [3] a massless

graviton, a massive spin-two ghost excitation with (m2)
2 = γ

2α , and a massive non-ghost

spin-zero excitation with (m0)
2 = γ

6β . The canonical value of γ is 1
16πG = 2

κ2
, where G is

the 4D Newton constant.

The renormalisable quantum system (1.1) is also asymptotically free [4, 5] in the sense

that if one writes the coefficients of the quadratic-curvature terms in Yang-Mills style as

1/g22 and 1/g20, then both couplings g2 and g0 tend to zero at large energies. This raises

the question as to whether the high-energy regime of the model (1.1) might avoid the

problems associated with the spin-two ghost in the spectrum by effectively decoupling that

excitation at high energies. Such issues have recently been discussed in the context of the

asymptotic safety program for quantum gravity [6], but to date there does not appear to

be a consensus on this point. A key problem in this approach is to obtain robust results

that are not renormalization-scheme dependent. A related question, already at the classical

level, is whether the interaction structure of the theory might even be such as to avoid the

destabilisation of the vacuum by ghost-driven instabilities [7].

Gravitational theories including quadratic curvature terms arise generically in all ap-

proaches to quantum gravity. In particular, the Gauss-Bonnet combination

IGB =

∫ √
−g(RµνρσR

µνρσ − 4RµνR
µν +R2) (1.2)

1 Using the 4D Gauss-Bonnet theorem (1.2), the action may also be written as∫
d4
√
−g(γR− 2αRµνR

µν + (β +
2α

3
)R2) .

2 Strictly speaking, for renormalisability one should also include a cosmological constant in (1.1). Note that

the parametrisation of the higher-derivative terms in the action (1.1) differs from that used in Refs [2, 3].

Specifically, αhere = 1
2
αRef. [2] and βhere = βRef. [2] −

1
3
αRef. [2].
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is a topological invariant in four spacetime dimensions, but not in higher dimensions, where

it falls into the class of Lovelock terms [8]. It occurs in the quantum effective action of

heterotic string theory in 10 spacetime dimensions [9]. Various styles of dimensional com-

pactification of (1.2) can then yield the quadratic terms of (1.1) in a variety of combina-

tions.3 In dimensions D > 4, the Lovelock-Gauss-Bonnet combination (1.2) also allows for

cosmological solutions [10]. However, in order to keep our considerations clearly focused,

we shall restrict our attention in this paper purely to four-dimensional spacetime gravity

derived from (1.1) without a cosmological constant.

In this paper, we will not be concerned with difficult questions of the full physical

acceptability of the theory (1.1) at the quantum level. Instead, we shall adopt a working

assumption that, in whatever emerges as an acceptable quantum theory of gravity, the

system (1.1) may be a dominant part of the effective action at least for some ultraviolet

scale of energies. This might have, for example, cosmological implications, which could in

turn indicate a scale for the quadratic-curvature term coefficients. It might also be the case

that the effects of the quadratic-curvature terms in (1.1) are also characteristic of those of yet

higher-order terms. Whatever the fate of the negative-energy massive spin-two excitation,

we shall adopt the point of view that its effect on static classical solutions should nonetheless

be considered. Accordingly, we shall adopt the action (1.1) as is, and shall consider the

implications of its field equations for spherically-symmetric static solutions. We shall thus

treat the fourth-order terms on an equal footing with the second-order terms, and not just

as perturbations to the Einstein theory.

Some aspects of the classical solutions to the second-plus-fourth-order gravity theory

are well-known. In Ref. [3], an analysis was given of spherically-symmetric solutions in the

linearised limit of the theory (1.1) when coupled to point and extended sources. As one can

expect from a theory whose dynamical spectrum involves massive spin-two and spin-zero

modes as well as the massless spin-two Einstein mode, the static solutions to the linearised

theory involve both a 1
r potential arising from massless spin-two virtual particle exchange

and e−mr

r Yukawa potentials arising from m = m2 massive spin-two and from m = m0

massive spin-zero virtual exchanges. Moreover, by writing the spherically-symmetric and

3 In the process of dimensional reduction, various massless scalar fields are generated which combine with

the D = 10 dilaton. When the dimensionally reduced D = 4 theory is written in Einstein frame, scalar

field prefactors appear in front of the curvature-squared terms in the effective action. The study of string-

generated higher-derivative gravity models accordingly requires consideration of such scalars together with

the quadratic curvature terms. In this paper, however, we shall restrict attention to purely geometric terms

in the action.
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static spacetime metric in Schwarzschild form

ds2 = −B(r) dt2 +A(r) dr2 + r2dθ2 + r2 sin2 θ dφ2 , (1.3)

assuming a Laurent expansion of A(r) and B(r), and carrying out a Frobenius-method

analysis of the indicial equations for the leading asymptotic behaviour as r → 0 in the radial

coordinate r, it was found in Ref. [3] that the leading asymptotic behaviours 4 A(r) ∼ rs and

B(r) ∼ rt can arise in three distinct solution families: (s, t) = (2, 2), (1,−1) or (0, 0). At

the time, an initial analysis of the number of free parameters characterising these indicial

families was made, but in a pre-computer-algebra era, the full picture of such parametric

dependences was not easily to be found.

In this paper, we return to a detailed study of the spherically-symmetric solutions to the

field equations following from the action (1.1). Although the classic Schwarzschild solution

of Einstein’s theory (which belongs to the (1,−1) family) clearly remains a solution to

the higher-derivative theory derived from the action (1.1), we shall find that this is not a

solution that arises from normal minimal coupling to ordinary ghost-free matter. Instead,

we find that solutions that can arise from such ghost-free matter coupling belong to the (2, 2)

indicial family of solutions. Subject to the additional assumption of asymptotic flatness as

r → ∞ at spatial infinity, we find that such solutions do not have a horizon, but have a

naked singularity as r → 0. This agrees fully, moreover, with numerical calculations of such

solutions made in the case m2 = m0 in Ref. [11].

If one overlooks the issue of source coupling, which in any case has been a delicate

subject in general relativity for decades [12, 13], then the ‘black hole’ solution family in-

cluding a horizon can be investigated in its own right. Assuming in addition asymptotic

flatness at spatial infinity, the analysis is made much simpler by a Lichnerowicz-style ’no-

hair’ theorem [14] for the trace of the higher-derivative field equations, which implies that

the existence of a horizon together with the assumption of asymptotic flatness leads to the

requirement that the Ricci scalar must vanish: R = 0. Analysis of the remaining traceless

components of the field equations is more subtle. In an earlier paper [15], we reported our

disagreement with the traceless-equation analysis of Ref. [14], which would have consider-

ably simplified the study of the black-hole family. In the absence of a traceless-equation

Lichnerowicz theorem, an alternative option is to make a perturbative analysis of the black-

hole family of solutions starting from the classic Schwarzschild solution. We obtain in this

4 In context, there should be no confusion between the indicial exponents t and s here and the coordinate t

and interval s in (1.3).
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way a result that the Schwarzschild solution is at least generally isolated, in the sense that,

for spherically-symmetric static solutions possessing a horizon, solutions perturbatively dif-

ferent from Schwarzschild necessarily must violate the condition of asymptotic flatness at

spatial infinity.

The general perturbative isolation of the Schwarzschild solution within the indicial

(1,−1) solution family does not exclude the possibility of other asymptotically-flat and

spherically-symmetric solutions with horizons that differ from Schwarzschild by a non-

infinitesimal amount in the (1,−1) family parameter governing the ‘non-Schwarzschild’

structure of the solutions. Indeed, in Ref. [15] we demonstrated that this possibility is in-

deed realised: there exists a range of values for the black-hole horizon radius r0, bounded

below by a certain multiple of the 1/m2 =
√

2α/γ length scale, for which one obtains a sin-

gle static black-hole solution in addition to the Schwarzschild solution. The corresponding

existence of a minimum value for r0 in comparison to the
√
α/γ scale size in the perturba-

tive no-hair theorem dovetails with the numerically found existence of a branch point for

black-hole solution phases. As one approaches this branch point, clearly the perturbative

isolation of the Schwarzschild solution must break down.

We begin in Section 2 with a review of the structure of the gravitational field equations

following from the action (1.1) when restricted to the case of spherically-symmetric and

static solutions, initially without considering contributions from sources. In particular, we

discuss the reduction of the differential order of these ‘almost vacuum’ equations to get

a better fix on the maximum number of integration-constant parameters determining a

particular solution family. We shall find that such ‘almost vacuum’ equations reduce to a

pair of third-order ordinary but coupled and quite nonlinear differential equations for A(r)

and B(r). The full details of these equations are given in Appendix A. Next, in Section

3, we complete the analysis of the parametric dependence of the various indicial solution

families begun in Ref. [3]; the advent of Mathematica now makes this much more tractable.

Given that one is principally interested in solutions that are asymptotically flat as

r →∞, in which limit a linearised analysis of the solution families becomes appropriate, in

Section 4 we next consider the spherically-symmetric static solutions to the field equations

when linearised in A(r) and B(r). In part, this reviews the linearised solutions found already

in Ref. [3], but with a key addition: we now consider in some detail the matching between

an interior vacuum and the exterior solution when matching across a shell delta-function

source.

Coupling to shell delta-function sources in the full nonlinear theory is next taken up
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in Section 5. This discussion begins with a review, in our Schwarzschild-form variables, of

the classic analyses of delta-function sources of Refs [12, 13]. In the full nonlinear higher-

derivative theory, exact solutions are not known and so one must use perturbative ex-

pansions within the various Frobenius indicial families in order to analyse coupling to a

delta-function shell source. Identifying the ‘vacuum’ with the non-singular (0, 0) indicial

family and requiring this to be the solution type occurring inside a shell source, we find

that only the (2, 2) indicial family has the correct number of free parameters required to

match the various continuity and jump conditions needed across the delta-function source.

Linking what happens near the origin to the behaviour of solutions near spatial infinity

becomes the next issue to be considered. In Section 6, we generalise the result of Ref.

[14] to show that the Ricci scalar in a portion of spacetime with Minkowski signature must

vanish for any asymptotically-flat solution in the (0, 0) or (1,−1) indicial families. For these

indicial families, this result obtains regardless of whether one considers a solution with a

horizon at some intermediate radius r0, as in Ref. [14], or considers a solution without a

horizon. Requiring R = 0 correspondingly reduces the number of free parameters by one in

each of these (0, 0) or (1,−1) indicial cases.

For the traceless part of the higher-derivative field equation, the situation is complicated

by errors made in the analysis of Ref. [14], as reported previously in Ref. [15]. Details of

the corrected calculation are given here in Appendix C. One consequently does not have a

straightforward way to prove a complete no-hair theorem setting the full Ricci tensor to zero

in the (0, 0) or (1,−1) cases. However, for asymptotically-flat solutions with a horizon, one

can still use linearised perturbation theory starting from the Schwarzschild solution. First,

in Section 7, we use a Frobenius analysis about the horizon to show that such solutions,

subject also to the requirement of a vanishing Ricci scalar as found in Section 6, have

just three free parameters. This parameter count identifies the corresponding solution

family with the indicial (1,−1) family near the origin, subject also to the requirement

of asymptotic flatness as r → ∞ and hence requiring also a vanishing Ricci scalar. The

classic Schwarzschild solution is of course itself a member of this family, with just two free

parameters (corresponding to the horizon radius and to a trivial time-rescaling parameter).

Accordingly, the higher-derivative theory admits just one ‘non-Schwarzschild’ parameter

controlling deviations from the Schwarzschild solution.

Deriving a perturbative no-hair theorem for solutions expanded to linear order in the

non-Schwarzschild parameter is then carried out in Section 8. For a given horizon radius

r0, and for asymptotically-flat solutions treated to linear order in the non-Schwarzschild
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parameter, one finds that there is a range of small values of α/(γr20) for which the only

asymptotically-flat solution with a horizon is the Schwarzschild solution itself. The precise

range of such values depends on optimisation details of the linearised no-hair theorem,

but the range boundary turns out to be quite near the phase bifurcation point for non-

Schwarzschild black hole solutions found numerically in Ref. [15]. It may turn out that

the range boundary for the linearised no-hair theorem and the black-hole phase bifurcation

point actually coincide.

In Section 9, we consider the more difficult question of what happens more generally in

between the origin and spatial infinity. Owing to the complexity of the field equations, this

can only be approached by numerical methods. One family of solutions at the origin that

can mesh with the structures found at spatial infinity is the (2, 2) family. This agrees with

numerical results found in Ref. [11] for the specific theory with m2 = m0 (i.e. the theory

with α = 3β). Generically, such (2, 2) solutions have six free parameters at the origin, and

six parameters at infinity, of which two combinations in each set must be adjusted in order

to kill rising exponential behaviour from the spin-two and spin-zero sectors of the theory,

thus leaving a four free-parameter set at the origin corresponding to the four parameters

occurring at asymptotically-flat spatial infinity. We give another illustration of such a

solution for the γR − αC2 theory (i.e. with β = 0), in which the equations simplify owing

to the absence of the spin-zero mode, then displaying a restricted match between a three-

parameter set at the origin and a three-parameter set at asymptotically-flat spatial infinity.

These (2, 2) solutions cannot have horizons, since we have established in Sections 6 and 7

that asymptotically-flat solutions with horizons must belong to the (1,−1) family. Instead,

asymptotically-flat solutions displaying Yukawa massive corrections at spatial infinity track

closely to the Schwarzschild solution far out from the radius where the Schwarzschild horizon

would have been, but they then begin to differ strongly from Schwarzschild as one comes in

toward smaller radii, failing to have a horizon but matching instead onto the (2, 2) indicial

family of solutions near the origin, and displaying a naked singularity.

Section 9 also considers the structure of the (1,−1) solution family. The conclusion

one draws from the linearised no-hair theorem of Section 8 is that the Schwarzschild solu-

tion is generally isolated within the family of (1,−1) asymptotically-free solutions with a

horizon, except for values of ζ = α/(γr20) located above a certain value ζmax, which presum-

ably may be identified with the black-hole phase bifurcation point. Below this bifurcation

point, perturbation in the single non-Schwarzschild parameter away from the Schwarzschild

solution within the (1,−1) family initially can only lead to non-asymptotically-flat solu-
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tions. The linearised no-hair theorem is thus in full agreement with the conclusions found

numerically in Ref. [15]. The (1,−1) family naturally contains the Schwarzschild solution

itself, with non-asymptotically-flat solutions generally occurring nearby as one adjusts the

non-Schwarzschild parameter. As found in Ref. [15], however, there do exist additional

asymptotically-flat (1,−1) solutions with a horizon that in general must be distinctly sep-

arated from the Schwarzschild solution in the value of the non-Schwarzschild parameter.

Such non-Schwarzschild solutions occur in the ζ < ζmax range for which the perturbative

no-hair theorem is applicable. This other branch of asymptotically-flat black-hole solutions

accordingly exists for horizon radii r0 greater than a certain value rmin
0 . At spatial infin-

ity, such non-Schwarzschild black holes have a 1
re
−m2r Yukawa correction to the g00 metric

component in addition to the 2M/r Newtonian term, where M > 0 is the ADM mass.

Numerical study using the shooting method for the horizonless (2, 2) solutions and for

the non-Schwarzschild black-hole solutions reveals another feature of the overall spherically-

symmetric and asymptotically-flat solution space. Such solutions, with well-understood

behaviours in each (small r and large r) asymptotic region of the radial coordinate r,

appear to lie on separatrices between numerically found solutions with differing kinds of

divergent behaviour. The implications of this separatrix structure for the overall solution

space remain to be more fully understood.

Another type of asymptotically-flat solution that emerges from numerical study may

be described as a ‘wormhole’. In such a solution, which we also discuss in Section 9 for

the β = 0 theory, the inverse of the A = grr component of the metric goes to zero but

the −B = gtt component does not. General Z2 symmetric solutions of this type are highly

constrained, with only two free parameters: the trivial time-rescaling parameter and the

radius r0 at which 1/A vanishes. Numerical results show that such solutions can achieve

asymptotic flatness at spatial infinity only for a particular value of r0, which is presumably

related to the
√

2α/γ length scale. The Z2 symmetric wormhole solution is also found to

lie on a separatrix lying between less regular solutions.

In the Conclusion (Section 10) we give a brief discussion of some possible physical

implications of our results. Clearly, the physical relevance of the present analysis depends

upon fully accepting the implications of the higher-derivative terms in the field equations

for the theory’s solutions, instead of simply considering their effects as perturbations on

the second-order Einstein theory. It is equally important that there be at least some range

of energy/length scales at which the fourth-order terms dominate, without their being

swamped by the effects of yet higher-order terms. Given such assumptions, we comment

7



on stability questions for the various spherically-symmetric solutions, and on the possibility

of phases in which the classic Schwarzschild solution might itself turn out to be the most

stable.

2 Fourth-order equations of motion

The equations of motion derived from the action (1.1) are

Hµν :=
1√
−g

δI

δgµν
(2.1a)

= γ

(
Rµν −

1

2
gµνR

)
+

2

3
(α− 3β)∇µ∇νR− 2α�Rµν +

1

3
(α+ 6β) gµν�R

−4αRηλRµηνλ + 2

(
β +

2

3
α

)
RRµν +

1

2
gµν

(
2αRηλRηλ −

(
β +

2

3
α

)
R2

)
=

1

2
Tµν , (2.1b)

satisfying a generalised Bianchi identity

∇νHµν ≡ 0 (2.2)

and with trace

H µ
µ = 6β�R− γR =

1

2
T µ
µ , (2.3)

which is of fourth-order in derivatives of the metric for β 6= 0 and of second-order for β = 0.

In fact the β = 0 (Einstein-Weyl) theory will turn out to be of particular interest to us. Note

that in the Einstein-Weyl theory we can identify the more desirable sign of α by linearising

around a Minkowski background. Writing gµν = ηµν + hµν , we find

− 1
3α�(�− γ

α
)hµν = 0 . (2.4)

And so α > 0 is required for the absence of tachyonic instabilities.

From the study of the linearised limit of (2.1) about flat spacetime in [3], one knows

that there are massive spin-two and spin-zero excitations with masses

m 2
2 :=

γ

2α
, (2.5a)

m 2
0 :=

γ

6β
, (2.5b)

so one notes that

H µ
µ = 6β

(
�−m 2

0

)
R . (2.6)
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When considering spherically-symmetric static solutions, we may take the metric to

have the Schwarzschild form

ds2 = −B(r) dt2 +A(r) dr2 + r2dθ2 + r2 sin2 θ dφ2 , (2.7)

and we shall look for source-free solutions with Tµν = 0 in the bulk of spacetime.5 With

this ansatz there are only two independent equations of motion, for A(r) and B(r). The H

field equation tensor takes the form

Hµν =


Htt(r) 0 0 0

0 Hrr(r) 0 0

0 0 Hθθ(r) 0

0 0 0 Hθθ(r) sin2 θ

 , (2.8)

the components of which are related (for θ = π
2 ) by the r component of the Bianchi identity

(2.2): (
Hrr

A

)′
+

2Hrr

Ar
+
B′Hrr

2AB
− 2Hθθ

r3
+
B′Htt

2B2
≡ 0 . (2.9)

Accordingly, when provided with a Tµν stress-tensor source, the system is described by just

two independent equations

Htt =
1

2
Ttt , (2.10a)

Hrr =
1

2
Trr . (2.10b)

If the metric (1.3) is substituted into the Lagrangian before performing the variation, the

resulting equations of motion are found to be equivalent to the set (2.10), i.e. the truncation

to the static spherically-symmetric case is a consistent truncation:

δI

δA
= −

√
−g
A2

Hrr , (2.11a)

δI

δB
= −

√
−g
B2

Htt . (2.11b)

Consistency of truncation to the metric form (1.3) is guaranteed in the usual fashion because

one is truncating to the invariant sector under a group action – in this case spatial rotations

[16]. It should be emphasised at this point that in this paper we are not making any

additional simplifying truncations such as setting AB = constant. Imposing such additional

5 We shall address the issue of delta-function sources for solutions in Sections 4 and 5.
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conditions certainly makes solution of the equations greatly simpler, but it also severely

restricts the corresponding solution set.6

From here onwards, unless otherwise stated, we will be solving the source-free equations

for r > 0

Htt = 0 , (2.12a)

Hrr = 0 . (2.12b)

2.1 Differential order

2.1.1 β 6= 0

To find the differential order of these coupled equations, note that Htt is a function of

A(3)(r), B(3)(r), B(4)(r) and lower-order derivatives,7 andHrr is a function ofA′′(r), B′′(r), B(3)(r)

and lower-order derivatives. Let us now analyse the differential order of these equations.

Note that α = 0 and β = 0 are special cases of different differential order, so we shall first

look at the generic case α 6= 0, α 6= 3β, β 6= 0. We define

X(r) =
1

A2 (r(α− 3β)B′ − 2(α+ 6β)B)2

×
(

(α− 3β)B
(
2rBA′

(
r(α− 3β)B′ − 2(α+ 6β)B

)
+A

(
−r2(α− 3β)B′2 − 4r(α− 3β)BB′ + 12(α+ 6β)B2

) )
, (2.13a)

Y (r) =
2r(α− 3β)B2

A (2(α+ 6β)B − r(α− 3β)B′)
. (2.13b)

It is clear that the equations of motion are equivalent to the pair

0 = Hrr , (2.14a)

0 = Htt −X(r)Hrr − Y (r)∂rHrr , (2.14b)

the first of which is of third order in B and of second order in A, and the second of which

is of third order in A and of second order in B. Details are given in Appendix A. This

reduction in order leads us to expect a total of six free parameters in the solution. This can

be more clearly seen by eliminating B(r) to get an equation of sixth order in A(r) alone;

the detailed procedure is sketched in Appendix A.

6 Indeed, in [16], among other cases, the pure CµνρσC
µνρσ theory was considered subject to such a restricted

ansatz, with the result that the only solution without conical singularities is just the classic Schwarzschild

solution. The same simplifying restriction has been made recently in the analysis of spherically symmetric

solutions for the pure R2 theory in Ref. [17]. Our aim in the present paper is to explore the full set of

spherically symmetric solutions without such a restriction.
7 We denote derivatives of order ≥ 3 by superscripts such as A(3).
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2.1.2 β = 0

In this special case, the massive scalar is absent. In the trace of the sourceless equations of

motion (2.3) with Tµν = 0, two derivatives disappear and the equation simply states that

R = 0. As this suggests, the total differential order in this case is reduced by two with

respect to the β 6= 0 case. The equations of motion are then equivalent to the pair

0 = H µ
µ , (2.15a)

0 =
Hrr

α
+H µ

µ

3rBA′ − 2A (rB′ +B) + 2A2B

3γr2AB
− (H µ

µ )2
A

6γ2
− ∂r(H µ

µ )
2B − rB′

3γrB
, (2.15b)

the first of which is of second order in B and of first order in A, and the second of which is

of second order in A and of first order in B.

These two second-order equations imply that there are four free parameters in the

solution for the β = 0 case.

3 Solutions near the origin and Frobenius analysis

Previously in Ref. [3], the asymptotic behaviour of solutions to the equations of motion

was analysed near the origin, working to leading orders in r. Here we will solve expansions

to several higher orders in r in order to improve our understanding of the parametric

dependences of solutions.

The two undetermined functions in the metric are expanded in Frobenius series in r as

A(r) = asr
s + as+1r

s+1 + as+2r
s+2 + . . . ,

B(r) = bt
(
rt + bt+1r

t+1 + bt+2r
t+2 + . . .

)
,

(3.1)

where as, bt 6= 0 are nonvanishing coefficients and s, t are indices yet to be determined.

Substituting the series (3.1) into the equations of motion (2.12) and analysing the con-

sistent possibilities for the (s, t) indices leads exclusively to three solution families [3] for
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generic 8 α 6= 0, β 6= 0:

• (s, t) = (0, 0)

• (s, t) = (1,−1) (3.2)

• (s, t) = (2, 2)

In each of these families, the equations can be solved order-by-order for the coefficients

an, bn. Some coefficients will be left undetermined in this process, corresponding to the free

parameters of the system in each solution family. There will always be one free parameter

in B(r) corresponding to a trivial scaling of the time coordinate.

Of course, in performing asymptotic analysis of this sort, an assumption is being made

that Frobenius type expansions such as those of Eqs. (3.1) with integral steps in powers of

r following the leading (rs, rt) terms is adequate to capture all possible types of asymptotic

behaviour for solutions to nonlinear equations such as (2.12). One might worry about the

inclusion of terms such as exp(c/rp) times a Frobenius series, or of terms involving powers

of logarithms. In the case of linear systems of differential equations, one can deal with

such possibilities on the basis of general theorems about equation systems with regular or

irregular singular points of various ranks, but a suspicion could remain that this might not

capture the full complexity of solutions to systems such as (2.12) (written out in full detail

in Appendix A). All we can say to dispel such concerns is that we have explicitly tried many

such exotic possibilities and the only consistent leading asymptotic behaviours that we have

found are those shown in (3.2).

3.1 Free-parameter counts in each of the near-origin solution families

We have expanded and solved the equations of motion (2.12) to at least twelve orders in r.

In each family, all free parameters have appeared by the fourth order at the latest, and after

that each new order brings two new parameters and two new constraints. The resulting

free-parameter counts are given in Table 1:

8 We neglect here families of solutions appearing only at special values of α > 3β > 0:

t− 2

3
= s ∈ Z+ , α =

(s2 + 2s+ 2)2

s4
3β

and two families of solutions for α = 0:

4 + 2t+ t2

4 + t
= s ∈ Z+ or (s, t) = (0, 1) (with 1 free parameter) .
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Table 1: Free parameter counts for the indicial solution families.

(s, t) solution family number of free parameters a choice of free parameters

(0, 0) 3 b0, a2, b2

(1,−1) 4 a1, b−1, a4, b2

(2, 2) 6 a2, b2, b3, b4, a5, b5

3.1.1 The (0, 0) family

The first few terms in the (0, 0) family are:

A(r) = 1 + a2r
2

+r4
a2b0 (b0γ(2α+ 3β)− 36αβb2) + 18a22βb

2
0(10α+ 3β)− 2b2 (b0γ(α− 3β) + 9βb2(2α+ 3β))

180αβb20
+O(r6) , (3.3a)

B(r)

b0
= 1 + b2r

2

+
r4
(
54a22β

2 + a2 (−αγ + 108αβb2 + 3βγ) + b2 (γ(α+ 6β) + 54βb2(2α− β))
)

360αβ

+O(r6) . (3.3b)

The three-parameter (0, 0) solution is the natural ‘vacuum’ solution family of the higher-

derivative theory, comparable to the two-parameter spatially homogeneous flat space solu-

tion in Einstein theory. The Riemann curvature tensor Rabcd referred to an orthonormal

frame is nonsingular as r → 0 for this solution.

3.1.2 The (1,−1) family

The first few terms in the (1,−1) family are:

A(r) = a1r − a21r2 + a31r
3 + a4r

4 − 1

16
r5
(
a1
(
3a1b2 + 19a41 + 35a4

))
+

1

40
a21r

6
(
21a1b2 + 101a41 + 141a4

)
+O(r7) , (3.4a)

B(r)

b−1
=

1

r
+ a1 + b2r

2 +
1

16
r3
(
a1b2 + a41 + a4

)
− 1

40
3r4
(
a1
(
a1b2 + a41 + a4

))
+O(r5) . (3.4b)

The (1,−1) family is clearly the family that contains the classic Schwarzschild solution of

Einstein theory. The Schwarzschild solution is obviously a solution of the higher-derivative

theory’s field equations because every term in (2.1) contains Rµν or R. At the origin, the
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(1,−1) indicial structure gives rise to a curvature singularity, with RµνρσR
µνρσ going like

r−6 as r → 0 [3].

3.1.3 The (2, 2) family

The first few terms in the (2, 2) family are:

A(r) = a2r
2 + a2b3r

3 − a2r
4

6

(
2a2 + b23 − 8b4

)
+ a5r

5

+
r6

1296αβ

(
− 12α2a32 − 2a22

(
b23
(
α2 − 603αβ − 252β2

)
+ 27α (20βb4 + γ)

)
+a2

(
b43
(
−16α2 + 1413αβ − 72β2

)
+ 2b4b

2
3

(
19α2 − 2223αβ + 180β2

)
−36b5b3

(
α2 + 45β2

)
+ 12αb24(α+ 162β)

)
+ 324a5βb3(7α+ 3β)

)
+O(r7) , (3.5a)

B(r)

b2
= r2 + b3r

3 + b4r
4 + b5r

5

+
r6

216αa2

(
− 12αa32 + a22

(
14b23(2α+ 3β)− 24αb4

)
+a2

(
2b43(67α− 3β) + 2b4b

2
3(15β − 227α) + 45b5b3(7α− 3β) + 180αb24

)
+ 27a5b3(α+ 3β)

)
+O(r7) . (3.5b)

The (2, 2) indicial structure at the origin gives rise to a curvature singularity for this

solution family, with RµνρσR
µνρσ going like r−8 as r → 0 [3].

4 Coupling to sources in the linearised theory

For asymptotically-flat solutions, the weakening fields as r → ∞ can reliably be analysed

using the linearised limit of the field equations (2.1). We now set the stage for our later

discussion of source coupling in the full nonlinear theory by studying coupling to sources in

the linearised theory, expanding somewhat the discussion given in Ref. [3]. We first need to

identify the vacuum solutions that can occur inside a shell source.

4.1 Source-free solutions

In [3], the linearised equations were solved for

A = 1 +W (r) +O(W 2) , (4.1a)

B = 1 + V (r) +O(V 2) . (4.1b)
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Solving the linearised source-free equations (2.12) for r > 0 in this limit yields the general

solution

V = C +
C2,0

r
+
C0−e

−m0r

r
+
C0+e

m0r

r
+
C2−e

−m2r

r
+
C2+e

m2r

r
(4.2a)

W = −C2,0

r
+ C0−

e−m0r

r
(1 +m0r) + C0+

em0r

r
(1−m0r)

−1

2
C2−

e−m2r

r
(1 +m2r)−

1

2
C2+

em2r

r
(1−m2r) . (4.2b)

Note here that for α < 0 or β < 0 one has pure imaginary m2 or pure imaginary m0, respec-

tively. For pure imaginary masses mi = iµi the solution has, instead of real exponentials,

suppressed oscillating terms like Ci,s
1
r sin(µir) and Ci,c

1
r cos(µir) in V and W . However,

W also has non-suppressed oscillations behaving like Ci,s sin(µir) and Ci,c cos(µir). This

precludes asymptotic flatness at spatial infinity unless both of the constants Ci vanish, i.e.

unless the corresponding metric solution is strictly flat. Accordingly, we limit our consider-

ation to cases where m2 ≥ 0 and m0 ≥ 0.

The linearised solution (4.2) clearly shows the existence in general of six free parameters,

noting that the free parameter C corresponds to a trivial rescaling of the time coordinate.

As one approaches the origin in the linearised solution (4.2) for generic values of the free

parameters, the Cartesian-coordinate form of the linearised curvature tensor Rlin
abcd has lead-

ing r−3 singular terms in the r → 0 limit. The linearised Ricci scalar for the solution (4.2)

is

R = −3C0−m
2
0e
−m0r

r
− 3C0+m

2
0e
m0r

r
(4.3)

and so has leading r−1 behaviour for generic values of the free parameters.

Note that α = 0 or β = 0 or α = 3β are special cases in which m2 or m0 vanish or

coincide. In the following, we shall proceed for the generic case α 6= 0, β 6= 0, α 6= 3β.

4.2 True linearised vacuum

When the general linearised solution (4.2) is extended all the way to the origin at r = 0, Hµν

must in general involve δ3(~r) sources. The true vacuum solution without such delta-function

sources is the restricted three-parameter solution family satisfying the vacuum constraints

C2,0 = C2− + C2+ = C0− + C0+ = 0 . (4.4)
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Subject to these constraints, one finds the true linearised vacuum family

Vvac = C + C0+
2 sinh (m0r)

r
+ C2+

2 sinh (m2r)

r
(4.5a)

Wvac = 2C0+

(
sinh(m0r)

r
−m0 cosh(m0r)

)
− C2+

(
sinh(m2r)

r
−m2 cosh(m2r)

)
.

(4.5b)

A consequence of the vacuum constraints (4.4) is that the metric (4.1) for the true linearised

vacuum family (4.5) is nonsingular at the r = 0 origin. This nonsingularity extends as well

to all components of the linearised curvature tensor Rlin
abcd and in particular one can see

from (4.3) using (4.4) that the linearised Ricci scalar is nonsingular at the origin for the

true vacuum solution (4.5).

It is appropriate to distinguish the true vacuum solution (4.5), with its nonsingular

curvature, from other members of the general solution family (4.2) that happen to have a

nonsingular metric as r → 0. Unlike the situation in linearised Einstein theory, where the

only spherically symmetric solution with a nonsingular metric at r = 0 is simply flat space,

with correspondingly vanishing curvature, in the linearised version of the higher-derivative

theory (1.1) the family of nonsingular-metric solutions turns out to be wider than just the

vacuum solution (4.5). This wider class of nonsingular-metric solutions includes also the

solution for a point delta-function source, which we consider next.

4.3 Source examples for the linearised theory

4.3.1 Point source

In [3] the stress-tensor of a static point mass at the origin was considered:

Tµν = δ0µδ
0
νMδ3(~x) . (4.6)

With this source, the solution to the linearised equations of motion is the vacuum solution

plus an asymptotically-flat matter part:

V (r) = C − M

24πγr

(
e−m0r − 4e−m2r + 3

)
, (4.7a)

W (r) = − M

24πγr

(
(1 +m0r) e

−m0r + 2 (1 +m2r) e
−m2r − 3

)
, (4.7b)

indicating that one needs γ = 1
16πG = 2

κ2
in order to agree with the Schwarzschild solution

in the limit where m0 and m2 tend to infinity.

As one can see from (4.7), V and W are actually nonsingular as r → 0. As is clear

from the need for the source (4.6), however, (4.7) cannot be considered a true vacuum
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solution. This conclusion is reinforced by consideration of the curvature Rlin
abcd as r → 0,

whose components have leading r−1 singularity, and for which the Ricci scalar is given by

R =
M

8πγr
m2

0 e
−m0r , (4.8)

which has r−1 behaviour as r → 0. Note also that in the weak-field regime with m0 finite

(i.e. for β 6= 0) a solution with a point source at r = 0 always has R 6= 0 at any nonzero

value of r.

4.3.2 Shell source

To illustrate the effects of extended sources in this theory with no Birkhoff theorem, let

us now solve again in the linearised theory for the fields produced by various sources of

nonzero size.

First take as source a thin spherical shell of radius `

Ttt =
M

4π`2
δ(r − `) , (4.9a)

Trr = 0 . (4.9b)

From the linearised ∇µTµν = 0 condition, we have

Tθθ = 0 +O((W,V )2) . (4.10)

For r < ` we use the vacuum solution (4.5):

Vin = D − 2D0− sinh(m0r)

r
− 2D2− sinh(m2r)

r
, (4.11a)

Win = −2D0−

(
sinh(m0r)

r
−m0 cosh(m0r)

)
+D2−

(
sinh(m2r)

r
−m2 cosh(m2r)

)
,

(4.11b)

and for r > ` we use the source-free solution (4.2a) for Vout and (4.2b) for Wout with the

rising exponentials suppressed in order to achieve asymptotic flatness.

For α 6= 0 and β 6= 0, one finds that V ′′′(r) and W ′′(r) are discontinuous at the location

of the shell, and the solution is

Vout = D +
M

8πγ

(
1

`
− 1

r

)
+
e−m2r

r

M

6πγ

sinh(m2`)

m2`
− e−m0r

r

M

24πγ

sinh(m0`)

m0`
, (4.12a)

Wout = − M

24πγr

(
(1 +m0r) e

−m0r sinh(m0`)

m0`
+ 2 (1 +m2r) e

−m2r sinh(m2`)

m2`
− 3

)
,

(4.12b)
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for which the Ricci scalar is

Rout =
M

8πγr
m2

0 e
−m0r sinh(m0`)

m0`
. (4.13)

Thus, just as for the point source, we find in the weak-field regime with m0 finite (i.e. for

β 6= 0) that the solution with a shell source always has R 6= 0 at any nonzero value of r.

Note that in the limit `→ 0 of the shell-source solution, the expressions for Vout, Wout

and R correctly tend to those of the point source.

4.3.3 Balloon source

Now let us take as source a stress tensor with internal pressure, again expanding upon

results given in [3]:

Tµν =


3M
4π`3

Θ(`− r) 0 0 0

0 PΘ(`− r) 0 0

0 0 Tθθ 0

0 0 0 Tθθ sin2 θ

 , (4.14)

where Θ(r) is a Heaviside theta function.9 In order to satisfy the linearised conservation

condition for Tµν , we need to have

Tθθ = Pr2Θ(l − r)− 1

2
Pr3δ(l − r) . (4.15)

Solving the system with this source, we find the interior r < ` solution

Vin(r) = −2D0− sinh (m0r)

r
− 2D2− sinh (m2r)

r
+D +

r2
(
4πl3P +M

)
16πγ`3

, (4.16a)

Win(r) = D0−

(
2m0 cosh (m0r)−

2 sinh (m0r)

r

)
+D2−

(
sinh (m2r)

r
−m2 cosh (m2r)

)
+

Mr2

8πγ`3
, (4.16b)

where the three vacuum constraints 0 = D2,0 = D2− +D2+ = D0− +D0+ have again been

used to ensure a pure-vacuum r < ` internal solution without source. (Note that the M,P

source terms are proportional to r2 and do not affect these constraint requirements.) At

r = l there are 5 continuity conditions, for V, V ′, V ′′,W,W ′, and two step conditions

V ′′′out(`+) =V ′′′in (`−) +
`P (α+ 6β)

36αβ
(4.17a)

W ′′out(`+) =W ′′in(`−)− `2P (α− 3β)

36αβ
. (4.17b)

9 Θ(r) is capitalised in order not to be confused with the angular coordinate θ.
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Note, however, that of these seven continuity and step conditions, only six are independent

(c.f. the six free parameters expected from the differential order analysis in Section 2.1).

This is a general situation, and will be important for us when we consider such source

couplings in the full nonlinear theory.

Implementing the continuity and step conditions, we obtain the asymptotically flat

solution with a balloon source:

Vin =D +
1

48πγl

(
3MP

r2

l2
+ 2

[
3 (1 +m0l)M0 − 4πl3P

] sinh(m0r)

m0r
e−m0l

− 8
[
3 (1 +m2l)M2 + 2πl3P

] sinh(m2r)

m2r
e−m2l

)
(4.18a)

Win =
1

24πγl

(
3M

r2

l2
+
[
3 (1 +m0l)M0 − 4πl3P

] [sinh(m0r)

m0r
− cosh(m0r)

]
e−m0l

+ 2
[
3 (1 +m2l)M2 + 2πl3P

] [sinh(m2r)

m2r
− cosh(m2r)

]
e−m2l

)
(4.18b)

Vout =D +
1

16πγl

(
2M0 − 8M2 + 3M + 4πl3P

)
− M

8πγr

+
e−m0r

24πγr

(
3M0

[
sinh(m0l)

m0l
− cosh(m0l)

]
− 4πl3P

sinh(m0l)

m0l

)
− e−m2r

6πγr

(
3M2

[
sinh(m2l)

m2l
− cosh(m2l)

]
+ 2πl3P

sinh(m2l)

m2l

)
(4.18c)

Wout =
M

8πγr

+
e−m0r(1 +m0r)

24πγr

(
3M0

[
sinh(m0l)

m0l
− cosh(m0l)

]
− 4πl3P

sinh(m0l)

m0l

)
+
e−m2r(1 +m2r)

12πγr

(
3M2

[
sinh(m2l)

m2l
− cosh(m2l)

]
+ 2πl3P

sinh(m2l)

m2l

)
(4.18d)

where we have used the following notation for source-parameter combinations

MP := M + 4πl3P

M0 :=
M − 4πl3P

l2m2
0

(4.19)

M2 :=
M + 2πl3P

l2m2
2

.

The main point to take away from this analysis of the linearised solutions is that the

general six-parameter solution, constrained by two requirements of vanishing coefficients

for the rising-exponential Yukawa terms as r → ∞, has a remaining essential dependence

on four parameters. One of these is adjustable by rescaling of the time coordinate t (cor-

responding to the additive parameter D above), and will be fixed by the requirement of
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having an asymptotic Minkowski metric as r →∞. The other three parameters will be fixed

by details of the source, as displayed in the balloon-source solution by the dependence on

`, M and P . This multi-parameter dependence clearly illustrates the absence of a Birkhoff

theorem for the higher-derivative gravity theory. One needs to start with the full six-

parameter generic solution in order to arrange a successful coupling of the higher-derivative

theory to a standard matter source, exemplified here by these various delta-function source

constructions.

5 Shell sources in the full nonlinear theory

We now progress to studying matter coupling in the full nonlinear theory. Unlike the

situation in general relativity, where the Schwarzschild solution is known in closed form, we

have no such luxury in the higher-derivative gravity theory. So we need to be careful in

handling the continuity and step matching conditions for solutions known only from series

expansions such as those given in Section 3. What we wish to establish is which of the

three families (s, t) = (0, 0), (1,−1) or (2, 2) can couple acceptably to an ordinary matter

stress-tensor source. The key to this will be the parameter counts that we found in Section

3.

For simple models of matter coupling, we again consider distributional sources. As has

long been clear [13] in general relativity, however, the only sensible delta-function sources in

generally covariant theories are sources of spatial codimension one. So we do not consider a

point source as in the linearised theory. Instead, the simplest source that we can consider in

the full nonlinear theory is a thin spherical shell of radius `, which can be compared to the

discussion given for the linearised theory in Section 4.3.2. This shell source has a conserved

stress tensor

Tµν =


Ttt 0 0 0

0 Trr 0 0

0 0 Tθθ 0

0 0 0 Tθθ sin2(θ)

 , (5.1)

where, as in (4.9),

Ttt =
M

4π`2
δ(r − `) , (5.2a)

Trr = 0 . (5.2b)
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The condition ∇µTµν = (0,∇µTµr, 0, 0) = 0 requires

Tθθ =
r3B′Ttt

4B2
. (5.3)

The equations of motion (2.1) expand schematically as

Htt = ∼ B(4)+ ∼ A(3)+ ∼ B(3) + . . . , (5.4a)

Hrr = ∼ B(3)+ ∼ A′′+ ∼ B′′ + . . . , (5.4b)

Hθθ = ∼ B(4)+ ∼ A(3)+ ∼ B(3) + . . . , (5.4c)

suggesting that we should consider

B(4) ∼ δ + Θ , (5.5a)

A(3) ∼ δ + Θ , (5.5b)

B(3) ∼ Θ , (5.5c)

A′′ ∼ Θ . (5.5d)

Then A,A′, B,B′, B′′ will be continuous at r = `, while A′′ has a step of size

A′′out(`+)−A′′in(`−) =
M

8π`
A3 `(α− 3β)B′ − 2(α+ 6β)B

36αβ

∣∣∣∣
r=`

. (5.6)

We leave to Appendix B a detailed discussion of how to arrange a satisfactory series so-

lution of these matching conditions in the higher-derivative theory. However, the important

part of the result is easily seen by a parameter-counting argument as follows. The region

interior to the shell is described by the vacuum solution of the nonlinear theory, which is

the (0, 0) family as discussed in Section 3.1.1. The (0, 0) vacuum solutions of the nonlinear

theory admit three free parameters, as shown in Table 1 given in Section 3. The coupling

to the source constitutes six continuity and matching conditions. The region exterior to the

shell is also source-free, so will be described by one of the source-free solutions of Section 3.

Finally there are also two conditions at infinity that need to be imposed in order to ensure

asymptotic flatness, analogous to the elimination of the rising-exponential Yukawa terms in

the linearised theory. After applying all these constraints we expect one final free parameter

to be the adjustable parameter in the B function, corresponding to the asymptotic value of

g00, which needs to equal −1 in order to have asymptotic Minkowski space as r →∞. The

remaining structure of the solution will be determined by the details of the source, deter-

mined by the two parameters M and ` in the case of the simple shell delta-function source,

and determined by the three parameters M , ` and P in the case of a balloon-type source
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as in Section 4.3.3. This is a total of 6+2+1=9 conditions for asymptotically Minkowski

shell-coupled solutions, with 3 free parameters from the (0, 0) solution inside the shell, so

the solution outside the shell must have 6 (or more) free parameters in order to be able to

satisfy the constraints. Thus the exterior solution to a matter shell must be of the (2, 2)

family, which has precisely 6 free parameters. This is similar to the linearised source cou-

plings where the exterior solutions had all of their 6 free parameters fixed by the parameters

of the source, i.e. the generic 6-parameter solution can be placed outside the source and

can satisfy the necessary constraints, but a constrained exterior solution could not. Note

that we assume that the 9 continuity, matching and asymptotic flatness conditions are all

independent. In the linearised theory, one can verify that the conditions are indeed inde-

pendent, but strictly speaking only a closed-form solution could confirm that the same is

true in the full nonlinear theory.

On the other hand, trying to arrange the coupling of a delta-function shell source to

an exterior (0, 0) or (1,−1) family solution will not work, for the simple reason that their

numbers of exterior free parameters (three or four, respectively) are not sufficient to satisfy

all the nine continuity, step, asymptotic flatness and asymptotic Minkowskian requirements.

Thus, an asymptotically-flat and asymptotically-Minkowskian solution coupled to a shell

delta-function source can only be of the (2, 2) family.

This contrasts with general relativity, where the (0, 0) vacuum family has 1 free param-

eter, the (1,−1) family has two free parameters, and the (2, 2) family does not exist. The

shell coupling gives two conditions, g00(r → ∞) = −1 gives one condition, and there are

no conditions needed to remove asymptotically non-flat terms. The solution exterior to a

shell source is the Schwarzschild (1,−1) family, with structure determined by M and the

asymptotic Minkowskian condition, but is independent of `.

6 Trace-equation no-hair theorem

Having established that the solution that couples correctly to an ordinary stress-tensor

source is of the (2, 2) family, we now proceed to investigate the consequences of the field

equations in the (0, 0), (1,−1) and (2, 2) solution families without regard to sources. We

will be particularly interested in the consequences of boundary conditions at a putative

horizon or at spatial infinity. Useful tools to this end are a set of Lichnerowicz-type ‘no-

hair’ theorems forcing the solution to share properties with the standard Schwarzschild

solution under certain conditions. This topic was broached in Ref. [14]. As noted in Ref.
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[15], we agree in part with conclusions of that reference, namely the trace part of the no-

hair theorem, as will be discussed in the following. Unfortunately, we do not agree with the

contentions of [14] regarding the traceless part the higher-derivative equations of motion,

which would have significantly simplified the analysis. We present in Appendix C our

analysis of the general no-hair theorem, including an extension to include a cosmological

constant. Despite our disagreement with Ref. [14], we still can obtain important constraints

on the solution families of the higher-derivative theory (1.1) using no-hair type arguments.

In this section, we review the trace no-hair theorem of [14]. In Section 7, a careful analysis

of the parametric structure of solutions containing a horizon will be given, and in Section 8

these elements will be put together with a no-hair theorem for linearised deviations from the

classic Schwarzschild solution. In Section 9, solutions with a horizon that discretely differ

from the Schwarzschild solution will be discussed. The only family of static spherically-

symmetric and asymptotically-flat solutions that couples properly to ordinary stress-tensor

sources, i.e. the (2, 2) family, cannot have a horizon.

We now proceed to review the trace-equation no-hair theorem. We do this in a different

style from that of Ref. [14] in that we present the no-hair trace-equation argument for static

solutions in terms of a timelike dimensional reduction from four to three dimensions.10

The static four-dimensional metric can be written in the form

ds2 = −λ2 dt2 + hab dx
adxb , (6.1)

where the spatial metric hab is positive definite for flat space, and therefore, assuming

asymptotic flatness, it is positive definite everywhere between infinity and a horizon at

finite r (should one exist). Both hab and λ are assumed to be functions only of the three

spatial coordinates xa. Let ∇µ be the covariant derivative for the 4-metric gµν , and let Da

be the covariant derivative for the 3-metric hab. It follows that

�R := gµν∇µ∇νR = DaDaR+
1

λ
(Daλ) (DaR) , (6.2)

so the trace of the source-free equations of motion (2.3) can be written as

0 = H µ
µ = 6β

(
DaDaR+

1

λ
(Daλ) (DaR)−m 2

0 R

)
. (6.3)

For the theory with β = 0, one has R = 0 directly from the trace of the field equations

(2.3), while for β 6= 0 the bracketed quantity in (6.3) is required to vanish. Subject to

10Such timelike dimensional reductions have proven to be powerful tools in classifying black-hole solutions

in a variety of supersymmetric and non-supersymmetric contexts [18].
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certain assumptions, this will still imply that R = 0. To see this, multiply the bracketed

quantity in (6.3) by λR and integrate over the whole spatial 3-section

0 =

∫
S

√
h d3x

[
λR (DaDaR) + λR (Daλ) (DaR)−m 2

0 λR2
]
. (6.4)

Preparing for an integration by parts, we rewrite this as

0 =

∫
S

√
h d3x

[
Da (λR DaR)− λ (DaR) (DaR)−m 2

0 λR2
]
. (6.5)

The first term turns into a 2-dimensional integral over two boundaries: one at spatial

infinity, and the other at some finite radius. The contribution from the boundary at spatial

infinity vanishes subject to the assumption of asymptotic flatness. A sufficient (though not

necessary) condition for the inner boundary term to vanish is satisfied if that boundary is a

horizon. If we take the inner integration boundary to be such a horizon, then the boundary

integral will be proportional to λ|horizon, which vanishes, by definition. Therefore, for a

solution with a horizon, (6.5) reduces to a 3-dimensional spatial integral over the sum of

two negative semi-definite terms.11 Requiring this to vanish therefore implies that R and

DaR separately vanish throughout the integration region, thus implying that R = 0.

In a region where R = 0, the equations of motion become

0 = Hµν |R=0 = −2α

(
�Rµν + 2RρµRνρ − 2∇ρ∇µRρν −

1

2
gµνR

ρσRρσ

)
+ γRµν , (6.6)

which notably no longer have any dependence on β. In the β = 0 case without sources, one

automatically has H µ
µ = γR = 0, and therefore (6.6) obtains everywhere.

We have accordingly shown using (6.5) that if the boundary terms vanish on the bound-

aries of a given spatial region, then the field equations in that region reduce to the β = 0

case (corresponding to the Lagrangian density L ∼ γR − αCµνρσCµνρσ). It will be com-

putationally advantageous in such situations to use the two independent β = 0 equations

of motion, rather than the two β 6= 0 equations of motion together with R = 0 as a third

condition.

6.1 Implications for the three near-origin solution families

We have anticipated above a main conclusion that the asymptotically-flat solutions to the

higher-derivative theory (1.1) with normal matter coupling do not have a horizon. For a

spacetime without horizon it is natural to extend the integration region in Equation (6.5)

down to near the origin, r → 0, where hab remains positive but we do not yet know the

11Recall that we are requiring throughout β > 0, so m2
0 > 0.
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behaviour of the boundary term at the inner boundary. An analysis of the equations of

motion at small r can, however, tell us how this boundary term behaves.

We now look again at (6.5) but now with the integration region taken to have an inner

boundary located at r → 0. We can use this discussion together with the small r behaviour

of the boundary term to study the various implications of (6.5) for the structure of the

(0, 0), (1,−1) and (2, 2) solution families. Accordingly, we calculate the boundary term in

(6.5) simply taken as the dominant part

R∂rR

(where the other components of the boundary term vanish in all cases as r → 0). To

be precise about the boundary-term contribution, recall that the boundary term actually

appears in (6.5) in the form∫
S

√
h
[
Da

(√
B (boundary term)a

)]
d3x (6.7)

which for a boundary term with vanishing θ,φ components is equal to∫
S
∂r

[√
h
√
B (boundary term)r

]
d3x =

∫
S
∂r

[√
AB r2 sin(θ) (boundary term)r

]
drdθdφ

(6.8)

We now analyse the consequences of (6.5) in the three near-origin solution families.

Family R∂rR
√
h B R∂rR

(0, 0) 2γ
β (a2 − b2)2 r +O(r3) ∼ O(r3)

(1,−1) − 3γ
8a41β

(
5
3a1b2 − a

4
1 − a4

)2
r +O(r3) ∼ O(r3)

(2, 2) −(a2(14a2b3−2b33+10b4b3−45b5)+27a5)2

9a52
r−5 +O(r−4) ∼ O(r−1)

For a spacetime with no horizon, we choose the integration region of (6.5) to extend from

the origin to infinity. The boundary at infinity gives zero by the assumption of asymptotic

flatness. For the (0, 0) and (1,−1) families, as the inner integration boundary is taken

towards the origin, r → 0, the inner boundary terms also tend to zero, and we consequently

learn that if there is no source between the origin and infinity then one must have R = 0

throughout spacetime. The (0, 0) family contains an R = 0 solution, as does the (1,−1)

family. For the (2, 2) family, the boundary term blows up as r → 0 and one can make
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no conclusion about the necessary vanishing of R. Note, however, that the (2, 2) family

also does contain an R = 0 solution, obtained by applying two constraints to its six free

parameters. Compare this to the expression for the Ricci scalar in the linearised theory

(4.3) and to the analysis of the full theory given in Section 2.1.2, where we found that the

β = 0 theory has four free parameters, in order to see that the R = 0 condition imposes

two parametric constraints on generic static spherically symmetric solutions.

The R = 0 solution for the (0, 0) family is obtained if and only if b2 = a2:

A(r) = 1 + a2

(
r2 + r4

12αa2 + γ

20α
+ r6

320α2a22 + 100αa2γ + γ2

1120α2
+O(r8)

)
(6.9)

B(r)

b0
= 1 + a2

(
r2 + r4

24αa2 + γ

40α
+ r6

960α2a22 + 144αa2γ + γ2

3360α2
+O(r8)

)
(6.10)

and Rµν = 0 is obtained if and only if a2 = 0. Since A(r → 0) → 1 for all of (0, 0) this

solution must have an even number of horizons.

The R = 0 solution for the (1,−1) family is obtained if and only if a4 = 5
3a1b2 − a

4
1:

A(r) = a1r − a21r2 + a31r
3 + r4

(
5

3
a1b2 − a41

)
+ r5

(
a51 −

23

6
a21b2

)
+O(r6) (6.11)

B(r)

b−1
=

1

r
+ a1 + b2r

2 +
1

6
a1b2r

3 − 1

5
r4a21b2 +O(r5) . (6.12)

The free parameter a1 corresponds to the Schwarzschild mass and the free parameter b2 con-

trols the deviation from the Schwarzschild solution. Specifically, one has pure Schwarzschild,

i.e. Rµν = 0, if and only if b2 = 0, and inspection of the solution then shows that

a1 = −1
2(MSchwarzschild)−1, so we expect the solution to have a horizon for a1 < 0 and

to have no horizon for a1 > 0.

The (2, 2) family (which does not appear in general relativity) has a four-parameter

family of R = 0 solutions but cannot have Rµν = 0 for all r, because, e.g., in the (2, 2)

family one has Rrr = 3r−2 +O(r−1).

A summary of boundary structure and parameter counts for the three near-origin solu-

tion families is given in Table 2.
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Table 2: Trace no-hair boundary structure and solution parameter counts

(including the trivial time-rescaling parameter)

(s, t) solution family
√
AB r2R∂rR number of free parameters

generic theory β = 0 theory

(0, 0) O(r3) 3 2

(1,−1) O(r3) 4 3

(2, 2) O(r−1) 6 4

7 Expansion around a nonzero radius r0

We can refine our understanding of the various forms of solutions by expanding now around

an arbitrary radius r0. This will be easier to do in a slightly different set of variables:

ds2 = −B(r) dt2 +
dr2

f(r)
+ r2dΩ2

2 , (7.1)

related to the usual Schwarzschild variables (1.3) by A(r) = 1/f(r).

We can use a Frobenius ansatz for the expansion about r0 similar to our expansion (3.1)

about r = 0:

f =fw(r − r0)w + fw+1(r − r0)w+1 + . . . (7.2a)

B

bt
=(r − r0)t + bt+1(r − r0)t+1 + . . . (7.2b)

for some exponents w and t, not confusing these undetermined (w, t) exponents with the

undetermined (s, t) exponents used earlier in the expansion (3.1) around r = 0. We shall

find various Frobenius solution families and also some non-Frobenius families of solutions.

However, detailed discussion of all of these is beyond the scope of this paper. In Section

7.2 we shall present a summary and discussion of all the solutions that we have found. For

the purposes of the main thread of our discussion the situation where the space-time has a

horizon will be of most interest to us and we turn to it now.

7.1 Solution family around a horizon

We now focus on the properties of spherically-symmetric solutions with horizons. We saw in

Section 6 that in a static asymptotically flat spacetime the presence of a horizon implies that
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the Ricci scalar must vanish and consequently the system becomes equivalent to Einstein-

Weyl gravity, with Lagrangian

e−1L = γ R− αCµνρσCµνρσ . (7.3)

Using the metric (7.1) the equations of motion then imply

0 =r2
(
B
(
2fB′′ +B′f ′

)
− fB′2

)
+ 4B

(
rfB′ +B

(
rf ′ + f − 1

))
(7.4a)

0 =α

(
r3fB′

[
−BB′f ′ + fB′2 − 2B2f ′′

]
− 2B2f

(
r2B′f ′ − 2B

(
r2f ′′ − rf ′ + 2

))
−Bf2

(
3r2B′2 + 8B2

)
− rB3f ′

(
3rf ′ − 4

))
+ 2γr2B2

(
rfB′ +B(f − 1)

)
. (7.4b)

The Schwarzschild metric itself is of course still a solution to Equations (7.4), with

B(r) = f(r) = 1− r0
r
. (7.5)

In the higher-derivative theory we do not have a general solution in closed form but a

Frobenius analysis performed around the horizon can reveal its relation to the Schwarzschild

solution. We consider solutions in the neighbourhood of a horizon, assumed to be at r = r0.

By definition, the metric function B(r) vanishes at a horizon so we look for solutions of the

form12 (7.2) with t > 0. Using the expansions of B and f as given in (7.4b) shows that

w ≤ 3
2 . In (7.4a), for w < 3

2 it is the terms in the first line that contribute the leading-order

term in (r− r0), and the reader can easily check that these vanish only if t = 2−w. Using

t = 2 − w in (7.4b) then shows that the first line contributes the leading order term in

(r − r0) and this then vanishes only if w = t = 1. Thus both B and f must be linear in

(r − r0) at the horizon, as in the Schwarzschild case.

The solution to the equations of motion then is found to have three free parameters:

b1, f1, r0. The other coefficients bn, fm can be solved for in terms of these:

f =f1(r − r0) +

(
3γ

8α
− 3γ

8αf1r0
+
−2f1
r0

+
1

r20

)
(r − r0)2 +O

(
(r − r0)3

)
, (7.6a)

B

b1
=(r − r0) +

(
− γ

8αf1
+

γ

8αf21 r0
+

1

f1r20
− 2

r0

)
(r − r0)2 +O

(
(r − r0)3

)
, (7.6b)

12Note that an expansion of the form (7.7) for an asymptotically flat solution with a horizon, i.e. a(
3
2
, 1
2

)
√
r−r0

expansion in the notation of Table 3 is not possible, as one must have vanishing Ricci scalar

for asymptotically flat solutions and such an expansion does not then exist.
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and so on. The parameter b1 is trivial, as we have seen, in the sense that it can be absorbed

into a rescaling of the time coordinate. Note that the Schwarzschild solution corresponds

to the case where f1 = 1/r0, with the same time coordinate as for Schwarzschild if one also

chooses b1 = 1/r0.

This count of the free parameters tells us which of the three families near the origin

corresponds to asymptotically flat solutions with horizons. Consider the (s, t) = (1,−1)

family of Table 2. As we have seen in Section 6, for asymptotically-flat solutions this family

must have R = 0 and its equations of motion accordingly must become equivalent to the

β = 0 theory as considered in this section. In the β = 0 theory, one accordingly has three free

parameters as shown in Table 2. The theory thus contains the two-parameter Schwarzschild

solution, together with a one-parameter family of deviations from Schwarzschild. Nearby

the Schwarzschild solution within this one-parameter family of deviated solutions, we would

certainly expect the horizon still to be present. So we expect the (1,−1) family to be a

three-parameter family, in which a three-dimensional volume of that parameter space has

a horizon. Therefore in the β = 0 theory we identify the (s, t) = (1,−1) indicial solution

family obtained from expansion near the origin with the solution family containing horizons.

One needs to be careful with the logic here. Although we say that asymptotic flatness

implies R = 0 for the (s, t) = (1,−1) solution family, and therefore its equivalence to

solutions of the Einstein-Weyl theory, the converse is not necessarily true. It is likely that

not all (1,−1) solutions of Einstein-Weyl gravity are asymptotically flat, and in fact the

loss of asymptotic flatness is a natural guess for the consequence of turning on the ‘non-

Schwarzschild’ parameter measuring the deviation from Schwarzschild. In Section 8, we

will further explore such deviations from general relativity in Einstein-Weyl gravity and

the implications for their asymptotic behaviour through a linearised expansion in the non-

Schwarzschild parameter.

7.2 Summary of expansion behaviours around a non-zero radius r0

The Frobenius ansatz (7.2) has three solution families. The first is simply the (0, 0) family,

corresponding to no special radius. Its main value is reinforcing our conclusions about the

generic number of free parameters of the theory. The second is the (1, 1) family already

discussed, describing a horizon. The third is the (1, 0) family, which we shall describe as a

wormhole in Section 9.

As mentioned in our Section 3 discussion of expansions around the origin, a natural

concern is that there might be other solution behaviours not captured by the integral-step
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Frobenius expansion. We cannot check all alternative expansions exhaustively, but we have

tried a variety of non-Frobenius expansions and have found two other solution families. Both

of these non-Frobenius families involve half-integer as well as integer powers of (r− r0). As

before, we denote Frobenius families by bracketed pairs of indices (w, t), and we shall denote

the new series similarly but with a subscript: (w, t)√r−r0 , where they go as

f =f0(r − r0)w + f1(r − r0)w+
1
2 + f2(r − r0)w+1 + . . . (7.7a)

B

b0
=(r − r0)t + b1(r − r0)t+

1
2 + b2(r − r0)t+1 + . . . (7.7b)

We shall not give a detailed analysis of all five solution families in this paper, but we

summarise our findings in in Table 3.

Table 3: General expansion behaviours around a nonzero radius r0

(w, t) solution family
√
AB r2R∂rR number of free parameters

generic theory β = 0 theory

(0, 0) O(1) 6 4

(1, 1) O(r − r0) 4 3

(1, 0) O(
√
r − r0) 3 2

(1, 0)√r−r0 O(1) 6 4(
3
2 ,

1
2

)
√
r−r0 O(

√
r − r0) 3 N/A

Note that the
(
3
2 ,

1
2

)
√
r−r0 solution family does not occur in the β = 0 theory. The (1, 0)

solution family is a subset of the (1, 0)√r−r0 family, obtained by setting the coefficient of

odd powers of
√
r − r0 to zero while holding the coefficients of even powers at finite values.

8 No-hair theorem for a linearised deviation from Schwarzschild

We saw in Section 6 that by considering the trace of the field equations for gravity with

general quadratic curvature terms added, one can derive a no-hair theorem that shows that

the Ricci scalar must vanish in any asymptotically-flat black hole solution. Unfortunately,

similar arguments applied to the full set of field equations fail to establish a more powerful

result that one might have hoped to demonstrate, namely the vanishing of the full Ricci

tensor for all asymptotically-flat spherically-symmetric solutions with horizons. Had one

been able to obtain such a result, this would have shown the Schwarzschild solution to be
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the unique static spherically-symmetric asymptotically-flat black-hole solution in theories

of gravity with curvature-squared corrections.

Indeed, as we found in Ref. [15], there are non-Schwarzschild black-hole solutions to be

found numerically, so the failure of a full Lichnerowicz-type no-hair theorem including the

traceless components of the field equations (2.1) is now seen to have been quite indicative.

Nonetheless, one may still obtain useful information about the set of solutions with horizons

from a no-hair theorem analysis carried out to linearised order in the non-Schwarzschild

parameter discussed in the last section. As we shall see, the upshot from this analysis is

that, provided the curvature-squared terms have sufficiently small coefficients in comparison

to the scale size of the black hole, then there can be no well-behaved static and spherically-

symmetric black holes that are perturbatively close to the Schwarzschild solution. So in

this restricted sense, one can show that the Schwarzschild solution is generally an isolated

solution, discretely separated from other asymptotically-flat solutions with horizons.

We may consider solutions of the equations (7.4) that are infinitesimally close to Schwarzschild

by writing

B(r) = 1− r0
r (1 + εZB(r))

1

A(r)
= f(r) = 1− r0

r(1 + εZA(r))
, (8.1)

and keeping only terms of order ε. From the two coupled equations of motion in ZA and

ZB, a single 3rd-order ordinary differential equation purely for ZA(r) can be obtained by

eliminating ZB(r):

ZB(r)− (r − r0)Z ′B(r) = ZA(r) +
α
(
−8r2 + 16rr0 − 9r20

)
(r − r0)

2γr4 − 2γr3r0 − 4αrr0 + 5αr20
Z ′A(r)

+
2αr(2r − 3r0)(r − r0)2

2γr4 − 2γr3r0 − 4αrr0 + 5αr20
Z ′′A(r) . (8.2)

In fact, the resulting equation in ZA involves only Z ′A, Z ′′A and Z ′′′A terms, and consequently

we have a 2nd-order ordinary differential equation for Z ′A. It is useful to introduce a new

variable Y (r), defined by

ZA(r) =

∫ r

r0

Y (r̃)ω(r̃)dr̃ , (8.3)

where ω(r) = 1 for now but this will be revised later. The lower limit in (8.3) is chosen to

be r0 in order to ensure that ZA(r) vanishes on the horizon.13 Using the abbreviation

ζ = α(γr20)−1 , (8.4)

13The third linearly independent solution of the 3rd-order ordinary differential equation for ZA(r) itself is

ZA(r) = const., which, as can be seen from (8.1), just describes a perturbation that shifts the mass of the

Schwarzschild solution by an infinitesimal constant.
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the second-order ordinary differential equation for Y (r) is then

h0 Y + h1 Y
′ + h2 Y

′′ = 0 , (8.5)

where one has

h0 = 2r7 − 2r0r
6 − 8r20r

5ζ + 16r30r
4ζ − 5r40r

3ζ − 32r50r
2ζ2 + 44r60rζ

2 − 20r70ζ
2 ,

h1 = 4r2 (2r − 3r0) r
2
0ζ
(
r3 − r0r2 + r30ζ

)
,

h2 = − 2r2 (r − r0) r20ζ
(
2 (r − r0) r3 + r30 (5r0 − 4r) ζ

)
. (8.6)

One can easily see from (8.5) that at large r the two solutions to the field equations go

like

Y ∼ a1 (1 +m2r) e
−m2r + a2 (1−m2r) e

m2r (8.7)

where m2 =
√
γ/2α as before. For r close to the horizon at r = r0, one can once again

use the Frobenius method to find the r → r0 asymptotic behaviour of the two independent

solutions Y1 and Y2. We find that they take the asymptotic forms

Y1 = 1 + c1 (r − r0) + c2 (r − r0)2 + c3 (r − r0)3 · · · , ci = ci(α, r0) for i ≥ 1 ,

Y2 = Y1 log(r − r0) +
b−1
r − r0

+ b1 (r − r0) + b2 (r − r0)2 + b3 (r − r0)3 + · · · ,

with b−1 = − α
r0
, bi = bi(α, r0) for i ≥ 1 . (8.8)

Thus, in order for the metric perturbation ZA(r) to be non-singular at large r we must

have a2 = 0, while for non-singular behaviour near r = r0 the overall coefficient of the

Y2 solution must be zero. We shall now attempt to show that no such solution Y that

interpolates between these limiting forms can exist.

To do this, we take the Y equation (8.5), multiply it by u(r)Y (r) for some chosen u(r)

and then integrate the result from r = r0 (the horizon) out to infinity. Firstly, we note that

0 = (h0 Y +h1 Y
′+h2 Y

′′)uY = uh0Y
2−uh2Y ′2+(uh1−u′h2−uh′2)Y Y ′+(uh2Y Y

′)′ . (8.9)

We now choose u(r) so that the coefficient of Y Y ′ vanishes, by solving

uh1 − u′h2 − uh′2 = 0 . (8.10)

This gives, up to a constant factor that we may take to be 1,

u(r) =
(r − r0)(

2 (r − r0) r4 + r30 (5r0 − 4r) rζ
)2 . (8.11)
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Integrating (8.9) from r0 out to infinity, we thus obtain∫ ∞
r0

dr
(
uh0 Y

2 − uh2 Y ′2
)

= 0 . (8.12)

Note that we can drop the total derivative term, since we have established that an acceptable

solution for Y must satisfy Y ∼ const. near r = r0 and Y ∼ e−mr near infinity. If we can

show that uh0 and −uh2 are both non-negative in the interval r0 ≤ r ≤ ∞, then we will

have shown that no acceptable solution Y can exist.

The function u(r) obtained in (8.11) is manifestly non-negative in the range r0 ≤ r ≤ ∞.

It is then evident from (8.6) that showing the non-negativity of uh0 and −uh2 is equivalent

to showing that h0 and H2, given by

h0 = 2r7 − 2r0r
6 − 8r20r

5ζ + 16r30r
4ζ − 5r40r

3ζ − 32r50r
2ζ2 + 44r60rζ

2 − 20r70ζ
2 ,

H2 =
h2

−2r2 (r − r0) r20ζ
= 2 (r − r0) r3 + r30 (5r0 − 4r) ζ (8.13)

are non-negative in the interval r0 ≤ r ≤ ∞, for some range of ζ ≥ 0.

It is easy to see that H2 is non-negative in the whole interval if and only if

0 ≤ ζ ≤ 27

8
. (8.14)

The non-negativity of h0 provides a stronger condition on ζ. Setting r = r0, we see that

h0(r0) = r70 (3− 8ζ) ζ, and so we must certainly have 0 ≤ ζ ≤ 3
8 . An easy way to investigate

the bound on ζ under which h0(r) is non-negative in the entire range r0 ≤ r ≤ ∞ is to write

r = r0 (1 + x) , ζ =
ζmax

1 + y
, (8.15)

since then the ranges r0 ≤ r ≤ ∞ and 0 ≤ ζ ≤ ζmax are mapped into the positive quadrant

0 ≤ x ≤ ∞, 0 ≤ y ≤ ∞. We then bring the expression for h0 over a common denominator

(which is the manifestly positive quantity (1 + y)2), and examine the numerator, which is

a multinomial in x and y i.e. it is of the form

N∑
n

M∑
m

Cn,m xn ym (8.16)

where the Cn,m are functions of r0 and ζmax. The condition Cn,m ≥ 0 for all n,m is clearly

sufficient (but may not be necessary) for non-negativity of h0 in r0 ≤ r ≤ ∞. This condition

easily yields the bound

0 ≤ ζ ≤ 3

8
. (8.17)

Conversely, as we have seen, if ζ exceeds this bound then h0 will be negative at r = r0.
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The upshot from this discussion is that, provided ζ is bounded from above by (8.17),

then there cannot exist a regular infinitesimal perturbation of the metric away from the

Schwarzschild solution. For ζ exceeding this bound, we can gain no information from this

discussion.

One can actually improve the upper bound on ζ by making a different choice of ω(r)

in (8.3), and by repeating the previous steps. For example, if we take ω(r) = (cr0 + r)−1,

where c > −1 is a constant to be chosen, the optimal bound ζmax is the largest positive

root of the sextic

9600 ζ6max + 8624 ζ5max − 9360 ζ4max − 4461 ζ3max + 1216 ζ2max + 1116 ζmax − 48 , (8.18)

which is approximately given by ζmax ∼ 0.617292. This is achieved by choosing the constant

c to be given by

c =
−36 ζ2max + 19 ζmax + 2

20 ζ2max − 9 ζmax − 2
∼ 0.164789 . (8.19)

A slight improvement on this can be achieved by taking instead ω(r) = (cr30 + r3)−1/3.

We then find 0 ≤ ζ ≤ ζmax with ζmax the largest positive root of

28160 ζ4max + 12176 ζ3max − 43374 ζ2max + 19179 ζmax − 2322 = 0 , (8.20)

which is ζmax ∼ 0.6262615, attained when the constant c is chosen to be given by

c =
3− 4 ζmax

8 ζmax − 3
∼ 0.2462346 . (8.21)

The condition of Cn,m ≥ 0 in (8.16) is a sufficient condition, and the necessary bound

on ζ may be better. Trying different functions ω(r) could presumably improve the bound

further. The best one could hope to achieve by this method is the bound (8.14) (valid for

any function ω(r)) arising from the need for H2 to be non-negative also. In any case, we

have established that, provided ζ is sufficiently small, there is a linearised no-hair theorem

that rules out regular black holes that are close to the Schwarzschild solution.

The treatment of the traceless components of the field equation by such a linearised

perturbative approach establishes, for ζ appropriately bounded, that the Schwarzschild

solution is isolated: there can be no other nearby asymptotically-flat solutions with horizons.

The notion of ‘nearby’ solutions is made clear by our general analysis of the parametric

dependence of solutions with horizons. From the parameter count summarised in Section

??, we presented an argument in Section 7 for identifying the 3-parameter family of solutions

with horizons with the 3-parameter (1,−1) family of solutions around the origin. The classic

2-parameter Schwarzschild solution is clearly contained in this family. It is in terms of the
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single remaining parameter of the (1,−1) family that one can characterise the ‘distance’ of

other nearby solutions with horizons from the Schwarzschild solution.

The need to make such a cautious statement about the isolation of the Schwarzschild so-

lution, however, clearly raises questions as to whether there might exist other asymptotically-

flat solutions with horizons that are not ‘near’ to Schwarzschild. From Ref. [15], we know

this in fact to be the case. In the next section, we give a brief overview of what can be said

about such solutions from numerical studies.

9 Numerical analysis

The detailed nonlinear field equations (given in Appendix A) for our Schwarzschild-coordinate

spherically-symmetric system in the general α, β, γ theory (1.1) are clearly not very

amenable to a closed-form solution. Having studied the asymptotic behaviour of solu-

tions at the origin, at spatial infinity and at a horizon in Sections 3, 4 and 7, we now need

to consider what happens in between these various limiting regions. This is only approach-

able by numerical study. We do not purport to give an exhaustive treatment of numerical

solutions to the theory (1.1) here, but some review of what is already known and what can

be obtained by Mathematica experimentation is in order [19].

9.1 (2, 2) solutions

Firstly, let us consider solutions that could be obtained from coupling to a positive-energy

shell source as discussed in Section 5. Only the (2, 2) indicial family has the full count of

six parameters that are required to satisfy the six continuity and jump conditions across

a shell source. After such matching, two parameters must implicitly be used to guarantee

the absence of rising exponential behaviour at spatial infinity, corresponding to the rising

spin-two and spin-zero Yukawa terms of the linearised theory. It is not known, however,

which combinations of free parameters near the origin, given in Table 1, need to be tuned

so as to eliminate the rising behaviour at spatial infinity. In order to match a (2, 2) family

solution on to asymptotically-flat behaviour at infinity, one procedure is to start with a

series-expanded solution near the origin and integrate outwards numerically, and also to

start from an asymptotically-flat solution at spatial infinity and integrate inwards, then

to adjust parameters so as to make the two numerical solutions match at an intermediate

radius. Such a procedure was carried out in Ref. [11] for the theory with m2 = m0, which in

the notation of this paper means α = 3β. Owing to the trace no-hair theorem as presented
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in Section 6, any asymptotically-flat solution that has any amount of falling spin-zero e−m0r

r

Yukawa behaviour near spatial infinity cannot have a horizon; as one can see from Eq.

(4.8), such solutions necessarily have R 6= 0 in the r → ∞ asymptotic region. Indeed,

the asymptotically flat (2, 2) family solution found in Ref. [11] displays a dominant 1/r

Schwarzschild-type behaviour as r → ∞, but it also displays a falling Yukawa correction

and deviates strongly from Schwarzschild at smaller r. It does not encounter a horizon at

intermediate r values, but limits to (2, 2) family behaviour near the origin. The calculation of

Ref. [11] was made for a normal positive-sign mass M (given [20] by 8π times the coefficient

of 1/r in gtt as r →∞ for a theory with γ = 1).

A similar calculation can be made in the γR − αC2 theory with β = 0, in which a

vanishing Ricci scalar, R = 0, is naturally guaranteed. Accordingly, this theory benefits

from a further reduction of the set of third-order nonlinear field equations as given in

Appendix A down to a pair of second-order equations. These are equivalent to the system

(7.4) for the f = 1/A and B variables. This β = 0 theory also has asymptotically flat,

limiting to (2, 2) indicial, solutions without a horizon. A representative numerical solution

with positive mass M is shown in Figure 1.

Figure 1: Horizonless asymptotically-flat solution at spatial infinity limiting to a (2, 2)

indicial family solution at the origin. The right-hand plot for − lnA(r) and

lnB(r) shows the relation to the Schwarzschild solution.

The numerically obtained asymptotically flat (2, 2) solution shown in Figure 1 was ob-

tained for a positive ADM mass M but with a negative C2− falling asymptotic Yukawa

coefficient. Comparing to linearised theory solutions obtained with various sorts of distri-

butional matter coupling as discussed in Section 4, one sees that this relative sign between

M and C2− differs from that obtained for a point source in (4.7). Recall, however, that

for the higher-derivative theory (1.1) there is no Birkhoff theorem, and one does not have
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any expectation of a universal sign relation between M and C2−. Comparing instead to

the linearised theory with the ‘balloon’ source (4.18), one finds that C2− can have either

sign compared to M , so the sign found for C2− in the Figure 1 solution poses no particular

puzzle.

While in Ref. [11] the method was to combine a shooting-out calculation from the origin

with a shooting-in calculation from large radius, in order to find solutions like that of Figure

1 we employed a simpler method of just integrating inwards from a large radius using initial

conditions taken from an asymptotically flat solution of the linearised theory. In general,

this leads to divergent behaviour for A(r) or B(r) at small radii, but one should take care to

notice that there are two kinds of divergent behaviour that can occur. Holding the linearised-

theory’s coefficient C2,0 ∼ −M fixed in (4.2) while varying the falling Yukawa coefficient

C2−, one finds ranges of C2− values for which A(r) → ∞ while B(r) → 0 as r → 0, but

then one finds a different range of C2− values for which A(r) → 0 while B(r) → ∞. In

between these ranges one finds (subject to numerical accuracy) a value of C2− for which

both A(r)→ 0 and B(r)→ 0: this is a (2, 2) solution as shown in Figure 1.

This procedure for finding asymptotically flat (2, 2) solutions such as that of Figure 1

reveals another feature of the overall solution space that calls for further study. If the (2, 2)

indicial family solution lies on a separatrix in parameter space between two other kinds of

more generic solution, what are these other kinds of solution? One of these other kinds of

solution may be viewed as a ‘wormhole’, to which we turn our attention next.

9.2 Wormholes

Another type of solution that can be found numerically may be described as a ‘wormhole’.14

Such solutions are characterised by the existence of a zero for f(r) = 1/A(r) but with

B(r) = −gtt 6= 0. We have seen in Section 7 that solutions with B(r) vanishing at some

radius r0 must also have f(r) vanishing at r0 as well. However, the converse is not necessarily

true. Integrating inwards from an asymptotically flat solution at spatial infinity, one finds

such solutions starting from a linearised solution (4.2) with chosen values of C2,0 and C2−.

In this way, one finds solutions with either sign of M = −8πC2,0 and either sign of the large

r spin-two Yukawa coefficient C2−.

Another way to investigate such solutions with f(r0) = 0 but B(r0) 6= 0 is again to use

Frobenius asymptotic analysis to find the possible behaviour as r → r0 and then to integrate

outwards, looking for asymptotically flat solutions. Asymptotic analysis indeed shows, as

14Wormholes have also recently been considered in the pure R2 theory in Ref. [21].
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one can see from the existence of the (w, t) = (1, 0) and (w, t) = (1, 0)√r−r0 solution families

shown in Table 3, that there can be solutions for which f(r) vanishes at some radius r0

but where B(r) remains at some nonzero value. We have studied this in particular in the

γR− αC2 theory with β = 0.

As we have seen above in Section 7.2 and summarised in Table 3, asymptotic analysis as

r → r0 for f(r0) = 0 but with B(r0) 6= 0 turns up the following situation. The leading term

in f(r) is always linear in (r − r0) and the leading term in B(r) is always, by assumption,

a constant. Since we are also by assumption considering the first zero of f(r) as r comes in

from infinity, without B(r) having yet crossed zero (which would have constituted a horizon

as we saw in Section 7), the B(r0) = b0 constant must be positive. It is at this point that

the half-integral-step expansions of type (w, t) = (1, 0)√r−r0 from Table 3 become relevant.

If half-integral steps are allowed, then one finds an expansion with four free parameters,

which is the generic number of free parameters for spherically symmetric solutions in the

γR− αC2 theory, which has two second-order field equations (equivalent to those given in

(7.4)) for f(r) and B(r).15

Assuming instead integral steps in powers of (r − r0) after an initial zero at r0 leads

to a more constrained solution system with only two free parameters: the trivial rescaling

parameter affecting B = −gtt (which may be realised as b0) and r0 itself. Numerically

integrating outwards in r, one then generally finds rapidly divergent behaviour as r → ∞,

but this behaviour can be of two different types, similarly to the two types of divergent

behaviour surrounding the asymptotically flat (2, 2) solutions discussed in Section 9.1: one

type has f(r) → ∞ and B(r) → 0, and a different one has f(r) → 0 and B(r) → ∞. In

between these behaviours, by tuning r0 one can find a solution that becomes asymptotically

flat for a specific value r0 = r?. Such a solution is shown in Figure 2. Comparing the r →∞

asymptotic behaviour obtained by numerical calculation to the asymptotically-flat case of

the linearised theory solution (4.2) with β = 0, one finds such an integral-step solution

corresponding to M ∼ −C2,0 < 0 and C2− < 0.

15A confirmation of this analysis may be observed in numerical solutions shooting inwards from asymp-

totically flat spacetime. For f(r0) = 0 but B(r0) > 0, there is an apparent divergence in the gra-

dient of B as one approaches r0, where f has a zero, agreeing with an expansion structure f(r) =

f1(r − r0) + f3/2(r − r0)3/2 + . . . and B(r) = b0 + b1/2(r − r0)1/2 + . . ..
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Figure 2: Z2 symmetric wormhole solution with f(r)→ 0 as r → r0 (dashed line) and

B(r)→ const. (solid line). The left plot shows the small-scale structure near

r0 ' 0.57 and the right plot shows larger-scale structure.

To see why such a solution may be described as a wormhole, consider f(r0) = 0 and

B(r0) = b0 > 0 and expand in (r − r0):

f(r) = (r − r0)f ′(r0) + · · · , B(r) = b0 +B′(r0)(r − r0) + · · · .

As one can see from the left-hand calculated plot in Fig. 2, both B′(r0) and f ′(r0) are

positive. Now make a coordinate change in the radial coordinate according to

r − r0 = 1
4ρ

2 , (9.1)

after which one has the asymptotic form of the metric

ds2 = −(b0 + 1
4B
′(r0)ρ

2)dt2 +
dρ2

f ′(r0)
+ (r20 + 1

2r0ρ
2)dΩ2 + . . . . (9.2)

Since this solution is an even function of ρ, it is naturally Z2 symmetric in ρ and can be

extended to the full range −∞ < ρ < +∞. Geodesics in the ρ > 0 patch match smoothly

onto geodesics for ρ < 0 and so continue on naturally through to negative ρ without hitting

a singularity.

The interpretation as wormholes of the more general non-Z2-symmetric solutions with

f(r0) = 0, B(r0) = const. arising from asymptotic expansions with half-integral steps in

(r− r0), i.e. in the (w, t) = (1, 0)√r−r0 family, is less clear. As we have seen, such solutions

have four parameters in the expansion about r0, which is the generic number for spherically

symmetric solutions in the γR − αC2 theory. This could allow tuning of one parameter

combination so as to ensure asymptotic flatness at spatial infinity, even for an arbitrary

value of r0. The expansion in half-integral powers of (r− r0), however, leads to odd powers

of ρ after making the coordinate change (9.1). This destroys the Z2 symmetry of the r0-

tuned solution and invites the question whether one will then have B → 0, and consequently

39



a horizon, at some value rhor of the radius. Accordingly, the interpretation of such general

Z2-asymmetric solutions as wormholes is not so clear as for the Z2 symmetric solutions.

9.3 Schwarzschild and non-Schwarzschild black holes

Turning now to asymptotically-flat solutions including a horizon, we know from the trace

equation no-hair theorem of Section 6 that all such solutions must have vanishing Ricci

scalar, R = 0. Accordingly, the analysis of such solutions can be restricted to the γR−αC2

theory, since the field equations of the general γ, α, β theory (1.1) reduce to those of the

β = 0 theory when R = 0. Furthermore, the results of Sections 7 and 8 show that the

Schwarzschild solution is in general isolated in the sense that the linearised no-hair theorem

of Section 8 does not permit, for 0 < ζ = α(γr20)−1 < ζmax, where r0 is the horizon radius,

any solution infinitesimally deviating from Schwarzschild in the single non-Schwarzschild

parameter allowed by parametric analysis near the horizon, as explained in Section 7. As

presented in Ref. [15], however, the qualified nature of the linearised no-hair theorem led to

a suspicion that there might in fact be other asymptotically-flat solutions with horizons that

are in general distinctly separated from Schwarzschild in the value of their non-Schwarzschild

parameter. In the notation of Ref. [15], the non-Schwarzschild parameter may be taken to

be δ, defined by

f(r) =
1

A(r)
= f1 (r − r0) +O(r − r0)2

f1 =
1 + δ

r0
. (9.3)

The limiting value ζmax of the linearised no-hair theorem suggests the existence of a branch

point in the value of the horizon radius r0 = rmin
0 at which infinitesimal values of δ can

give rise to non-Schwarzschild asymptotically-flat solutions with horizons. As found in Ref.

[15], for r0 > rmin
0 such non-Schwarzschild solutions do exist, but they lie outside the linear

validity range of the δ parameter expansion. So, except at the rmin
0 branch point, the

Schwarzschild solution must be isolated.

Numerical calculations reveal the properties of the various black-hole phases. The phase

structure [15] in terms of black-hole mass GM (as above, given [20] by 1
2 the coefficient of

1/r in gtt as r →∞) is shown in Figure 3.

Joining the non-Schwarzschild r > r0 solution outside the horizon to the r < r0 interior

solution, one obtains the result shown in Figure 4. The deviation from a Schwarzschild

black hole is shown by the fact that f(r) = 1/A(r) 6= B(r); however, the approach as

r → 0 shows this solution can still fit naturally into the (1,−1) indicial family. Another
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Figure 3: Phase structure of the Schwarzschild (dashed line) and non-Schwarzschild (solid

line) black holes in a theory with α = 1
2 , sketched for a theory with

G = (16πγ)−1 = 1. The Schwarzschild mass is given by GM = 1
2r0.
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Figure 4: Non-Schwarzschild black hole for GM ∼ 16π 0.276 with a horizon at r = 1. The

dashed line denotes B(r) and the solid line denotes f(r) = 1/A(r).

piece of information obtained from the calculation producing Figure 4 is the sign of the

C2− coefficient of the falling e−m2r

r spin-two Yukawa term. Both for positive and negative

GM = −1
2C2,0, the sign of C2− appears to be negative for such solutions. For M > 0, this

sign is opposite to that which would have been expected from the linearised γR−αC2 theory

coupled to a positive-energy shell delta-function source, as shown in (4.7a) or (4.12a).

The numerical results presented in this section are clearly only an initial foray into the

perhaps rich phase structure of the solution space of theories derived from the action (1.1),

and this subject clearly requires more careful numerical analysis.

10 Conclusion

In this paper, we have carried out an analysis of the static spherically-symmetric solutions

of the field equations derived from the action (1.1). This extends older results [3] by a full

asymptotic analysis of the indicial (s, t) = (0, 0), (1,−1) and (2, 2) solution families near

the origin, together with a careful count of the parameters occurring in each family. The
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difficult question is then what happens in the intermediate 0 � r � ∞ region before one

reaches spatial infinity, near which the assumption of asymptotic flatness once again allows

for a closed-form study of solutions via the linearised version of the field equations derived

from (1.1).

In Section 6, we reviewed the no-hair theorem for the trace of the higher-derivative

theory’s field equations, agreeing with this part of the results of [14]. This implies that

asymptotically flat solutions containing a horizon must have R = 0 throughout the whole

extra-horizon spacetime. Consequently, one knows that asymptotically-flat solutions dis-

playing a spin-zero Yukawa term (i.e. with a non-zero coefficient C0−) cannot have a hori-

zon, since C0− 6= 0 =⇒ R 6= 0. Study of solutions with vanishing Ricci scalar R, and

hence without such a spin-zero Yukawa term, reduces to the somewhat simpler case of the

γR− αC2 theory with β = 0. In this restricted context, the field equations can be reduced

to a system of two coupled equations with at most second derivatives in ∂
∂r . Although there

is no general no-hair theorem for the trace-free components of the field equations, one still

does have a linearised no-hair theorem for the traceless field equations as derived in Section

8. This implies that the Schwarzschild solution is generally isolated within the family of

(1,−1) solutions, which is controlled by a single non-Schwarzschild parameter, provided the

horizon radius r0 is larger than a certain bound
√
α/(γζmax). As one moves away infinitesi-

mally from the Schwarzschild solution within the (s, t) = (1,−1) family, the only thing that

can generally happen for solutions with a horizon is that asymptotic flatness is lost.

What happens outside the domain of validity of the linearised no-hair analysis is an-

other matter, however, and in Ref. [15] asymptotically-flat non-Schwarzschild black-hole

solutions were indeed found. Except near the r0 &
√
α/(γζmax) horizon radius bound for

the linearised no-hair theorem, such non-Schwarzschild black holes can only exist owing to

nonlinear dependence on the (1,−1) family non-Schwarzschild parameter. Numerical evi-

dence points to the r0 ∼
√
α/(γζmax) horizon radius coinciding with a branch point in the

black-hole solution space, at which the non-Schwarzschild black holes first occur (c.f. Figure

3). This is clearly consistent with a breakdown of the linearised no-hair theorem for that

radius, because just above such a branch point the non-Schwarzschild black holes should

indeed be obtainable by linearised perturbation away from the Schwarzschild solution.

The general structure of the solution space for the higher-derivative (1.1) theory is still

not completely clear, but we have found evidence of a rather rich phase structure for the

static spherically symmetric and asymptotically flat solutions of this theory. We have seen

from analysis of shell continuity and jump conditions that only the (s, t) = (2, 2) solution
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family (without horizons) of Section 9.1 can couple to a standard distributional matter

shell, but this need not imply that the (2, 2) family is the only equilibrium endpoint of

gravitational collapse. In addition to the (2, 2) family, one has the Schwarzschild/non-

Schwarzschild black-hole solutions of Section 9.3 plus the ‘wormhole’ solutions of Section

9.2. When the latter are Z2 symmetric, they lead cleanly through to a second sheet of

spacetime, as in Eq. (9.2). The asymptotically flat (2, 2) solutions, both Schwarzschild and

non-Schwarzschild black holes, and also the Z2 wormhole solution all appear as separatrices

between more generic singular solutions found numerically. The nature and interpretation

of the latter remain to be better understood.

10.1 Stability issues for black holes

Going beyond the static spherically-symmetric ansatz (1.3) is outside the scope of the

present paper. But one can contemplate what could happen dynamically once time depen-

dence is allowed. A full stability analysis of the various phases of the static solution space

would be desired, but in the meantime one can extract some partial stability information

from various quasinormal mode studies of the stability of the Schwarzschild solution itself,

considered as a solution of the higher-derivative (1.1) theory. This has been studied, e.g.,

in Ref. [22]. It was found there that the Schwarzschild solution is stable in the γR + βR2

theory with α = 0. This is not surprising, because that theory is equivalent [3, 23] to

ordinary general relativity coupled to a positive-energy massive scalar field.

In Ref. [22] it was also suggested that the Schwarzschild solution could become unstable,

for nontachyonic values of (m2)
2 = γ

2α , for sufficiently small values of

µW =
Mm2

M2
Pl

, (10.1)

where MPl is the Planck mass. Ref. [22] then went on to claim, nonetheless, that detailed

analysis of the quasinormal modes of the theory (1.1) showed no such instability. This

conclusion has, however, been challenged more recently in Ref. [24], where it is claimed

that Ref. [22] erred in considering only a static S-wave potential instability. Instead, the

analysis of Ref. [24] does find Schwarzschild S-wave instabilities for µW . 1 by treating the

Ricci tensor Rµν as an effective massive field. This instability is compared to Schwarzschild

instabilities found in massive theories of gravity [25].

Instability of the Schwarzschild solution for small black holes (i.e. small µW ) raises

the question whether a stable sector of the static solution space exists, and whether one

or another of the non-Schwarzschild solutions we have discussed could then represent a
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stable final phase. Clearly, the relation between µW and the branch point in the black-

hole solution space could be an important issue in this regard. The analysis of time-

dependent gravitational collapse can, however, be quite involved, as indeed it is already for

the apparently simpler case of Brans-Dicke theory [26].
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Appendices

A Reduced nonlinear field equations

The reduced field equations of maximal third order (2.14) as derived in Section 2.1 for

spherically-symmetric solutions written in Schwarzschild coordinates are given in detail as

follows, where A(3) and B(3) are third derivatives. For equation (2.14a) we have

24r4A3B4Hrr = 8r3A2B2B(3)
(
r(α− 3β)B′ − 2(α+ 6β)B

)
− 4r2AB2A′′

(
r2(α− 3β)B′2 − 4r(α+ 6β)BB′ + 4(α− 12β)B2

)
− 4r4(α− 3β)A2B2B′′2

− 4r2ABB′′
(

2rBA′
(
r(α− 3β)B′ − 2(α+ 6β)B

)
+A

(
3r2(α− 3β)B′2 − 12r(α+ 3β)BB′ + 8(α+ 6β)B2

))
+ 7r2B2A′2

(
r2(α− 3β)B′2 − 4r(α+ 6β)BB′ + 4(α− 12β)B2

)
+ 2r2ABA′B′

(
3r2(α− 3β)B′2 − 4r(2α+ 3β)BB′ + 4(α+ 24β)B2

)
+ 24A3B3

(
γr3B′ +B

(
γr2 − 12β

))
+A2

(
7r4(α− 3β)B′4 − 4r3(5α+ 12β)BB′3

− 4r2(α− 48β)B2B′2 + 32r(α+ 6β)B3B′ − 16(α− 21β)B4

)
+ 8A4B4

(
2α− 6β − 3γr2

)
, (A.1)
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while for equation (2.14b), using the definitions of X(r) and Y (r) as given in (2.13), we

have

2r4A5B2
(
αrB′ − 3βrB′ − 2αB − 12βB

)2 (
Htt −X(r)Hrr − Y (r)∂rHrr

)
=

72αβr3A2A(3)B4
(
r(α− 3β)B′ − 2(α+ 6β)B

)
+ 36αβr2AB3A′′

(
13rBA′

(
2(α+ 6β)B − r(α− 3β)B′

)
− 2A(−r2(α− 3β)B′2 + r(α+ 6β)BB′ + 2(α+ 6β)B2)

)
+ 12βr4(α− 3β)A3B2B′′2

(
(α+ 6β)B − r(α− 3β)B′

)
+ 4r3A2BB′′

(
3βBA′

(
r2(α− 3β)2B′2 + r

(
α2 − 15αβ + 36β2

)
BB′ − 6α(α+ 6β)B2

)
− 3βAB′

(
−r2(α− 3β)2B′2 − 6αr(α− 3β)BB′ + 2

(
7α2 + 48αβ + 36β2

)
B2
)

+ γ(−r)(α− 3β)A2B2
(
2(α+ 6β)B − r(α− 3β)B′

))
+ 504αβr3B4A′3

(
r(α− 3β)B′ − 2(α+ 6β)B

)
− 3βr2AB2A′2

(
r3(α− 3β)2B′3 + 3r2

(
17α2 − 57αβ + 18β2

)
BB′2

− 60αr(α+ 6β)B2B′ − 4
(
23α2 + 150αβ + 72β2

)
B3

)
− 6βrA2BA′

(
r4(α− 3β)2B′4 + r3

(
11α2 − 39αβ + 18β2

)
BB′3 − 4r2

(
8α2 + 51αβ + 18β2

)
B2B′2

+ 4r
(
11α2 − 12αβ + 18β2

)
B3B′ − 16

(
4α2 + 21αβ − 18β2

)
B4

)
+A3

(
− 4r(α− 3β)B4B′

(
12β(5α+ 3β) + r(α− 3β)A′

(
γr2 − 12β

))
− 2r2B3B′2

(
6β
(
α2 + 66αβ + 36β2

)
+ γr3(α− 3β)2A′

)
− 8(α+ 6β)B5

(
−6β(5α+ 3β)− rA′

(
2α
(
γr2 − 6β

)
+ 3β

(
12β + γr2

)))
− 3βr5(α− 3β)2B′5 + 3βr4

(
−19α2 + 51αβ + 18β2

)
BB′4 + 12βr3

(
13α2 + 84αβ + 36β2

)
B2B′3

)
− 8A5B4

(
r(α− 3β)B′

(
α
(
γr2 − 6β

)
+ 6β

(
3β + γr2

))
+ (α+ 6β)B

(
α
(
6β − 2γr2

)
− 3β

(
6β + γr2

)))
− 2A4B2

(
γr5(α− 3β)2B′3 − 6r2(α− 3β)BB′2

(
α
(
γr2 − 4β

)
+ 3β

(
4β + γr2

))
+ 4r(α− 3β)B2B′

(
α
(
γr2 − 24β

)
+ 6β

(
γr2 − 6β

))
+ 4

(
2α2 + 15αβ + 18β2

)
B3
(
12β + γr2

))
.

(A.2)
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From these two coupled third-order differential equations, one anticipates that the so-

lution will depend in general on a total of six integration constants. For a pair of linear

differential equations, this can be demonstrated straightforwardly by reducing the system

to a single sixth-order differential equation for just one function, e.g. A(r), by repeatedly

differentiating and substituting between equations so as to eliminate B(r) and its deriva-

tives. In the present highly nonlinear equation system (A.1, A.2), this is not feasible to do

explicitly because this would involve the inversion of polynomials of order > 4. However,

the idea can be outlined as a sequence of operations on Equations (A.1, A.2) as follows:

(A.1) : 0 = f1(r,A,B,A
′, B′, A′′, B′′, B′′′)

(A.2) : 0 = g1(r,A,B,A
′, B′, A′′, B′′, A′′′)

∂r(A.2) : 0 = ∂rg1(r,A,B,A
′, B′, A′′, B′′, A′′′)

= g2(r,A,B,A
′, B′, A′′, B′′, A′′′, B′′′, A(4))

∴ B′′′ = g−12 (r,A,B,A′, B′, A′′, B′′, A′′′, A(4))

sub into (A.1) : 0 = f2(r,A,B,A
′, B′, A′′, B′′, A′′′, A(4))

∴ B′′ = f−12 (r,A,B,A′, B′, A′′, A′′′, A(4))

sub into (A.2) : 0 = g3(r,A,B,A
′, B′, A′′, A′′′, A(4))

∴ B′ = g−13 (r,A,B,A′, A′′, A′′′, A(4))

sub f−12 and g−13 into (A.2) : 0 = g4(r,A,B,A
′, A′′, A′′′, A(4))

∴ B = g−14 (r,A,A′, A′′, A′′′, A(4))

sub into (A.2) : 0 = g5(r,A,A
′, A′′, A′′′, A(4), A(5), A(6)) . (A.3)

B Coupling of a shell source to the higher-derivative theory

B.1 Coupling an (0, 0) vacuum inside the shell to a (2, 2) solution outside

One can carry out a successful coupling of a thin-shell delta-function stress-tensor source

to the full nonlinear higher-derivative theory in a fashion similar to the couplings in the

linearised theory as discussed in Section 4. As we saw in Section 5, it’s only with an

exterior (2, 2) family solution combined with an interior (0, 0) family vacuum solution that

the count of available interior plus exterior solution parameters is sufficient to satisfy the

nine continuity, step, asymptotic flatness and asymptotic Minkowskian requirements. In

this appendix, we discuss in more detail how these coupling requirements can be met.

Coupling a thin shell source to an external (2, 2) family solution faces a number of
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challenges. Principal among these is the lack of a closed-form expression for the (2, 2)

family of solutions, so one is limited to carrying out the coupling using series solutions as

given in Section 3. There is also an awkwardness arising from the choice of the Schwarzschild

form (1.3) for the metric. Such difficulties were already noted in the classic treatment of

delta-function couplings in general relativity given in Ref. [12]. Such difficulties might be

alleviated by working in other than Schwarzschild coordinates, but we have not explored

this possibility in detail. The difficulty with the in↔ out matching in the series-expanded

theory is a leading-term matching problem in A: the inner solution has A(0) = 1 and so we

would naively expect A(`−) ≈ 1 + O(`2) but the outer solution has A(`+) ≈ c2`
2 + O(`3),

while A is continuous so A(`−) and A(`+) need to be equal for arbitrary `. The ` → 0

limit is particularly interesting because this will give us the field of a point source in the

higher-derivative theory. In order to make this work for arbitrary small ` we need to elevate

the free parameters of the solution to functions of `.

Let us first illustrate the method with general relativity, where such dependence on the

shell size is well-known [12].

B.2 Shell coupling in general relativity

To set the stage for the more involved coupling problem in the higher-derivative theory, we

first review the analogous coupling problem for distributional sources in general relativity.

Some classic references for this are [12] and [13].

B.2.1 Shell-source coupling using the closed-form Schwarzschild solution

Consider general relativity with a thin-shell source as in (5.1–5.3), with Ttt = M
4π`2

δ(r − `).

It is convenient to define the length scale LM := 2GM = M(8πγ)−1. Coupling the source

to the equations of motion, one can show that B is continuous while A has a step:

Bout(`+) = Bin(`−) , Aout(`+)−Ain(`−) =
LMAin(`−)2

`B(`)− LMAin(`−)
. (B.1)

In terms of these parameters the field of a spherical shell is

Ain = 1 , (B.2a)

Bin = b , (B.2b)

Aout =
1

1− LM
b r

, (B.2c)

Bout =
b

1− LM
b `

(
1− LM

b r

)
, (B.2d)

48



where the exterior solution has the form of the Schwarzschild solution

Aout =
1

1− rs
r

, (B.3a)

Bout = k2
(

1− rs
r

)
, (B.3b)

provided the interior free parameter b scales and the Schwarzschild radius rs is related to

the source length LM via the `-dependent expressions

b = k2
(

1− rs
`

)
, (B.4a)

LM = k2
(

1− rs
`

)
rs . (B.4b)

Before proceeding with the core of our discussion, the signs here need a comment. For the

case 0 < ` < rs a horizon exists and M and b are negative. It is familiar fact that we

have −+ ++ signature outside the Schwarzschild horizon (r > rs), and signature +−++

inside the Schwarzschild horizon (` < r < rs). At the shell source (r = `), the function B

is continuous and non-vanishing so it is therefore positive inside and out. The function A,

however, has a step at r = `. Outside the source (for ` < r < rs), A is of course negative, but

inside the shell source (for r < `) the equations of motion in the Schwarzschild-coordinate

metric ansatz (where the angular part of the ds2 metric is just r2dΩ2) require A = 1. In

consequence, the signature inside the shell is + + ++. The fact that the source mass M

has opposite sign to that of the Schwarzschild radius rs is not unexpected – the source is

static in a region where t is spacelike, i.e. the source is of tachyonic sign. In the higher-

derivative case this peculiarity will not arise, because we shall find that there is no horizon

in the source-coupled solution, and the metric components A and B are continuous across

the shell source. We thus anticipate a − + ++ signature for all r in the higher-derivative

theory.

A key point in the above analysis is the fact that in general relativity the interior free

parameter b has to blow up as `−1 as the shell is shrunk down to a point. We shall find that

the higher-derivative case also requires poles at ` = 0 in the free parameters of the interior

solution.

B.2.2 The Schwarzschild solution from a series-solution point of view

To set the scene for analysis of coupling in the higher-derivative theory, where series solutions

will be all that we have available, let us now repeat the above coupling discussion for the

Einstein-theory Schwarzschild solution using only a series solution. The interior series
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vacuum solution is of (0, 0) structure:

A(0,0) = 1 + . . . (B.5a)

B(0,0) = b+ . . . (B.5b)

and the solution exterior to the source is of (1,−1) structure:

A(1,−1) = xr − x2r2 + x3r3 − x4r4 +O(r5) (B.6a)

B(1,−1) =
y

r
+ xy + . . . . (B.6b)

To implement the matching conditions, we need to elevate the free parameters (x, y, b) to

functions of `: (x(`), y(`), b(`)).

In order for the solution exterior to the source to be of the (1,−1) family, we let the

free parameters be expressed as Taylor series:

x(`) =x(0) + `x′(0) +
1

2
`2x′′(0) + . . . (B.7a)

y(`) = y(0) + `y′(0) +
1

2
`2y′′(0) + . . . . (B.7b)

For the interior free parameter b, however, we need to use a Laurent series – i.e. we allow

`−n poles:

b = `a
(
b0 + b1`+ b2`

2 + b3`
3 + . . .

)
. (B.8)

Then, in order for y(`) to remain finite in the ` → 0 limit, we find that we need to scale

LM (i.e. we scale the mass M) as well:

LM = `d
(
L0 + `L1 + `2L2 + `3L3 + . . .

)
. (B.9)

We find that the suitable poles have a = −1, d = −1.

The solution is:

y(`) = − LM (`)
(
`x(`)− `2x(`)2 +O

(
`3
))

= − L0x(0) + `
(
L0

(
x(0)2 − x′(0)

)
− L1x(0)

)
+O

(
`2
)

(B.10a)

b(`) = − LM (`)x(`) +O
(
`3
)

= − L0x(0)

`
+
(
−L0x

′(0)− L1x(0)
)

+
1

2
`
(
−L0x

′′(0)− 2L1x
′(0)− 2L2x(0)

)
+O

(
`2
)
, (B.10b)

which matches the analytic solution (where we hold rs fixed, something we don’t know how

to do in a series solution) for small ` upon renaming x(0) = − 1
rs

and LM (0) = −k2r2s ,

and which also can be solved by matching for all `, producing x(`) = − 1
rs

and LM (`) =

k2
(
1− rs

`

)
rs.
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B.3 Shell-source coupling in the higher-derivative theory

Now we consider the coupling of a thin-shell stress-tensor source of the form (5.1–5.3) to the

higher-derivative theory (1.1). Inside the shell source, we require a (0, 0) vacuum solution,

and outside the shell we consider a (2, 2) solution with the following notation:

A = r2w2 +
r3v3w2

v2
−
r4
(
w2

(
2v2 (v2w2 − 4v4) + v23

))
6v22

+ r5w5 +O(r6) , (B.11a)

B = r2v2 + r3v3 + r4v4 + r5v5 +O(r6) . (B.11b)

The form (for at least n ≤ 14) of the (0, 0) solution is

A = 1 + a2r
2 +

∑
n,p,q,m

Xn,p,m,q rn
(
γ

β

)n
2
−p
am2 b

p−m
2

(
β

α

)q
(B.12a)

B

b0
= 1 + b2r

2 +
∑

n,p,q,m

Yn,p,m,q rn
(
γ

β

)n
2
−p
am2 b

p−m
2

(
β

α

)q
(B.12b)

where the Xn,p,m,q and Yn,p,m,q are rational numbers and the n, p, q,m sums are taken over

n = 4, 6, 8, . . .; 1 ≤ p ≤ n
2 ; 0 ≤ q ≤ n

2 − 1 and 0 ≤ m ≤ p.

Similarly to the method used for general relativity, (B.7a), (B.7b), (B.8) and (B.9), we

elevate the free parameters to functions of ` in the following scheme

b0 = `2H0(`) , w2 =w2(`) ,

a2 = `−2G2(`) , v2 = v2(`) ,

b2 = `−2F2(`) , v3 = v3(`) ,

v4 = v4(`) ,

w5 =w5(`) ,

M = `dµ(`) , v5 = v5(`) ,

(B.13)

where we have factored out the poles so the remaining functions are Taylor series in `.

To carry out matching across the source shell, we need to have Ain(`−) = Aout(`+),

where

Ain(`−) = 1 +G2(`) +
∑

k,n,q,m

`k
(
γ

β

) 1
2
k

Xn,n−k
2
,m,q G2(`)

mF2(`)
n−k
2
−m
(
β

α

)q
, (B.14)

where the sum is taken over k = 0, 2, 4, 6, . . . ; k + 2 ≤ n = 4, 6, 8, . . . ; 0 ≤ q ≤ n
2 − 1

and 0 ≤ m ≤ n−k
2 . Gathering powers of `, we have Ain(`−) ∼ `0+ ∼ `1+ ∼ `2 + . . . and

Aout(`+) ∼ `2 + . . . , so the leading-term matching problem in A is now displayed in the

vanishing of the interior `0 term, where one has for A0 (the `0 term in Ain)

A0 = 1 +G2(0) +
∑
n,q,m

Xn,n
2
,m,q G2(0)mF2(0)

n
2
−m

(
β

α

)q
, (B.15)
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where the sum is taken for n = 4, 6, 8, . . . ; 0 ≤ q ≤ n
2 − 1 and 0 ≤ m ≤ n

2 . The higher terms

in (B.15) need to decrease in amplitude with n so that the sum converges, and its limiting

value as n → ∞ must vanish so as to match the structure of Aout. We have not carried

out an exhaustive analysis of the convergence properties of the resulting series, but we may

consider the structure in the simplifying limit β << α. In this limit, the q ≥ 1 terms are

suppressed and we need only consider Xn,n
2
,m,0. In this limit, the numbers Xn,n

2
,n
2
,0 are

equal to 1 for all n while the other Xn,n
2
,m≤n

2
−1,0 grow at most linearly with n (for at least

n ≤ 14). If we rename t = 1
2n, Xn,n

2
,m,0 = Xt,m and G2(0) = ζF2(0) and take the sum only

out to T terms, we have

A0 =
∑

t=1,2,3,4,...T
0≤m≤t

Xt,m ζmF2(0)t . (B.16)

Given the at most linear growth in t of Xt,m, one gets an estimate of the sum A0 by letting

Xt,m = a+ bt, for which an estimate sum Ã0 can be carried out:

Ã0 =
∑

t=1,2,3,4,...T

(a+ bt)
1− ζt+1

1− ζ
F2(0)t , (B.17)

for which the ratio of successive terms at large t is

a+ b+ bt

a+ bt

F2(0)t+1

F2(0)t
1− ζt+2

1− ζt+1
∼ F2(0) . (B.18)

Accordingly, convergence is obtained in the β << α limit. Convergence is expected when

the β << α limit is relaxed as well.

Once the `0 terms are matched inside and out, the matching of `N≥1 terms and the

matching of A′(`), B(`), B′(`), B′′(`), A′′(`) should follow suit with less difficulty. The final

result will describe the interior and exterior metrics in terms of α, β, γ, LM (`) and three

other free parameters p1(`), p2(`), p3(`).

C On higher-derivative no-hair theorems

In this appendix, we present a recalculation of the argument of Ref. [14] including a cos-

mological constant. Unfortunately, this corrects the calculation of [14] in a way that voids

its conclusion about the no-hair consequences of the non-trace part of the higher-derivative

gravity field equation.

The discussion of [14] can be generalised to the case with a cosmological constant. Take

as Lagrangian

I =

∫
d4x
√
−g
(
γ(R− 2Λ)− αCµνρσCµνρσ + βR2

)
. (C.1)
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The equation of motion (2.1) gains a term

Hµν → Hµν + γΛgµν , (C.2)

making the trace

H µ
µ = 6β

(
�R−m2

0(R− 4Λ)
)

(C.3)

= 6β
(
�S −m2

0S
)
, (C.4)

where we have defined

S = R− 4Λ . (C.5)

For the trace no-hair theorem, the discussion proceeds from this point on just as in the case

without a cosmological constant as reviewed in Section 6, obtaining finally

0 =

∫
S

√
h d3x

[
Da (λS DaS)− λ (DaS) (DaS)− λ m 2

0 S
2
]
. (C.6)

The outer boundary contribution vanishes if DaS = DaR falls off appropriately fast at

infinity. Consequently, we deduce that

S = 0 ⇔ R = 4Λ (C.7)

if the inner boundary term vanishes, which is ensured if the inner boundary is at a horizon.

The argument for the traceless part of the higher-derivative no-hair theorem runs into

trouble, however.

Define the shifted quantities

Sµν = Rµν − gµνΛ , S = gµνSµν = R− 4Λ . (C.8)

Letting (3)R denote the Ricci scalar of the spatial part of the metric hab, we also define the

shifted quantity

(3)S = (3)R − 2Λ (C.9)

and finally we define m2(Λ) such that m2(0) = m2

m2(Λ)2 :=
γ + 8

3Λ(3β − α)

2α
, (C.10)

thus obtaining the equations of motion

0 =
Hµν

−2α

∣∣∣∣
S=0

= �Sµν −m2(Λ)2Sµν + 2SρµSνρ − 2∇ρ∇µSρν −
1

2
gµνS

ρσSρσ , (C.11)
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which smoothly analytically continue from Λ = 0 to Λ finite. Note that the contracted

Bianchi identity in this case is

∇µRµν =
1

2
∇νR , (C.12)

∴ ∇µSµν = 0 for S = 0 , (C.13)

∇µSµi = 0 =DjSij +
1

λ
SijD

jλ+
(3)S

2λ
Diλ . (C.14)

At this point, we can contract (C.11) with λ Sµν , dimensionally reduce on the t coordinate,

and integrate over three-dimensional space while using (C.7) to obtain

0 =

∫
S

√
h d3x

[
λ Sµν

Hµν

−2α

∣∣∣∣
S=0

]
(C.15a)

=

∫
S

√
h d3x

[
Di

(
λ

4
(3)S Di (3)S + λ SklDiSkl − 2λ SklD

kSli − λ (3)S DjS
ji

)
(C.15b)

− λ

4
Di (3)S Di

(3)S + 2λ Di (3)S DjSji − λ DiSjk [DiSjk − 2DjSki] (C.15c)

− λ
(3)S 2

4

(
m2(Λ)2 + (3)S

)
− λ SijSij

(
m2(Λ)2 − 2S

) ]
. (C.15d)

Unfortunately, owing to the fact that the squared terms in the middle line (C.15c) of the

integrand are of non-uniform sign, it is not possible in the case of higher-derivative gravity

to say that the assumption of a horizon and suitable boundary conditions at infinity imply

that Sµν vanishes, even for large m2(Λ). This continues smoothly to Λ = 0, where (C.15)

with a horizon and asymptotic flatness unfortunately does not imply that Rµν vanishes,

even for large m2.
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