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Angular momentum transfer in optically induced photonic lattices
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The transfer of orbital angular momentum from vortex beams to optically induced photonic lattices is
demonstrated. It is found that the sum of the angular momenta of interacting incoherent counterpropagating
(CP) beams is not conserved, whereas their difference is. The sum of angular momenta of copropagating (CO)
interacting beams is strictly conserved. It is also found that the transfer of angular momentum in CP interacting
beams is minimal, amounting to a few percent, whereas the transfer in CO interacting beams is substantial,
amounting to tens of percent. In fixed lattices, for both CP and CO beams, angular momentum is never

conserved.
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I. INTRODUCTION

A surge of interest in light displaying angular momentum
(AM) while propagating in nonlinear (NL) media has been
noted recently [1,2]. It was spurred by the interesting appli-
cations of beams carrying optical AM, such as for driving
micromachines [3], optical tweezers [4], or quantum cryp-
tography [5]. It has also been a controversial topic, in the
sense that AM turned out not to be conserved in certain situ-
ations involving the propagation of multicomponent light
fields in NL media; see, for example, the contrasting points
of view on the spiraling of solitons in photorefractive (PR)
crystals [6], or on the spontaneous parametric down-
conversion in barium borate crystals [5,7].

We discuss here a few additional examples where the total
AM is not a conserved quantity. The motivation comes from
an interesting paper [8] by Chen et al., in which the interac-
tion between propagating laser beams and optically induced
photonic lattices in PR crystals [9] was investigated experi-
mentally. At one point the authors posed an intriguing ques-
tion: Can the angular momentum carried by a vortex beam
be transferred to a nonlinear lattice? In this paper, we answer
the question in the affirmative and analyze various possibili-
ties for the momentum transfer. In the analysis it transpired
that the behavior of interacting copropagating (CO) and
counterpropgating (CP) beams is fundamentally different:
the sum of the AMs of CO beams is conserved, whereas in
the CP case the conserved quantity is the difference of AMs.
The conservation of AM is prevented if we artificially fix the
lattices. The fixed lattice approximation can be justified if the
maximum lattice intensity is much greater than the maxi-
mum beam intensity, which is often the case in experiments.

We utilize a model that describes the NL propagation of
mutually incoherent CP beams and optically induced photo-
nic lattices in PR crystals, and allow for the existence of
defects in the lattice [10]. Although the experiment [8] is
done in a CO geometry, we extend the analysis to the more
general CP geometry, so as to obtain more general answers.
Our results can be extended to other interesting systems,
such as lattices and beams in Bose-Einstein condensates [11],
microwave solitons in magnetic films [12], and even con-
fined beam structures in left-handed metamaterials [13].
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We find that the transfer of orbital AM is minimal in
interacting CP lattices, while it can be substantial in fixed
lattices. Denoting by F and B the envelopes of the
forward and backward propagating beams, and by Gy
and G, the envelopes of the lattice beams, we establish that
the total AM—meaning the sum Lz(F)+Lz(Gy)+Lz(B)
+Lz(G)) of all momenta along the propagation z axis—is not
conserved in the case of CP interacting beams. More pre-
cisely, the difference of the AMs of CP beams Lz(F)
+Lz(Gy)—-Lz(B)-Lz(G,) is conserved, whereas their sum is
not. The sum is conserved only in the pure CO case. In
addition, in the fixed lattices there is always a considerable
loss of AM. The standard definition for the (normalized)
z component of the orbital AM is adopted, Lz(F)
=—(i/2) [ [dx dy F"(x,y)(xd,—yd,)F(x,y)+c.c., and simi-
larly for other components [14].

II. NUMERICAL RESULTS AND DISCUSSION

We utilize a well-known [15,16] local model for the gen-
eration of a space charge field in PR crystals, and consider
beam propagation in the paraxial approximation. The follow-
ing model equations for the interacting incoherent beams in
the computational domain are used:

iof=—AF+TEF, —idB=—AB+TEB, (la)

i0.G;=~AG+TEG;, —id.G,=-AG,+TEG,,

(1b)
I+1
TﬁtE+E=—4, (2)
1+I+Ig

where A is the transverse Laplacian and I" the beam coupling
constant. E is the space charge field built in the crystal, nor-
malized to the applied external field, and 7=|F|*+|B|* and
1,=|G/|>+|G,|* are the corresponding beam intensities, mea-
sured in units of the dark or background intensity /,. 7 is the
relaxation time of the crystal. Time derivatives do not appear
in Egs. (1) because the fast optical fields are slaved to the
slow E field, and spatial derivatives are absent from Eq. (2)
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because a local isotropic interaction is assumed. These as-
sumptions are reasonable for slow PR media. The same
model describes the pure CO case, when B and G, fields are
absent. Similarly, the case of fixed lattices, an approximation
often used, is obtained by eliminating Egs. (1b) and incorpo-
rating the fixed lattice intensity distribution into Eq. (2).
Throughout, we are concerned only with the steady state.

The propagation equations (1) are solved numerically,
concurrently with the temporal equation (2) for the space
charge field, in the manner described in Ref. [15] and for
typical values of parameters mostly used in experiments. The
numerical procedure here is modified, in that the CP lattice
beams are turned on first, to allow lattices to establish them-
selves, and then the forward and backward beams are turned
on. The forward and backward lattices are matched in posi-
tion, spacing, and intensity, and build a stable structure in the
crystal. Head-on CP Gaussian beam arrays are used for the
lattices, with a finite trigonal/hexagonal arrangement of
beams, and with or without a central defect. Head-on CP
vortices with opposite topological charges (1) are launched
in the center of each lattice. In such a system with preserved
rotational symmetry of the model equations, the difference of
AMs of CP beams is conserved.

A restriction in the form of a two-dimensional periodic
potential of a fixed photonic lattice breaks the rotational
symmetry of the system, leading to AM nonconservation. In
the case of CP beams in a fixed lattice, Eq. (1b) is eliminated,
while the fixed lattice intensity distribution is incorporated
into Eq. (2), so the symmetry of the remaining model equa-
tions is broken, and the sum or difference of AMs is not
conserved. When one vortex beam and one lattice beam
propagate in the same direction (CO interacting beams),
beams B and G, are zero, the rotational symmetry of such
reduced model equations is unbroken, and the sum of AMs is
conserved. Further reduction of the previous model equa-
tions (also the CO case, but with a fixed lattice), leads to
their symmetry breaking, and there is no conservation of
AM. Typical examples are depicted in Figs. 1-4. All the
figures are produced in the same setup and scale, and only
with minor differences in parameters, as noted along the
way.

Figure 1 depicts the situation with interacting CP lattices
and beams. As a result of the interaction, the sum of all AMs
remains nearly constant. However, when the difference is
calculated, it is found exactly constant. The presence of a
defect in the center of the lattice (the second column in Fig.
1) does not change our findings appreciably, the reason being
that the CP lattice beams quickly regenerate the missing cen-
tral beam.

The situation changes drastically for CP beams in a fixed
lattice (Fig. 2), where one finds a much larger AM drop than
in the case of interacting CP lattices. The fixed lattice is
“heavy” and it does not interact with the CP vortices, so the
transfer of AM is then precluded, and the law of AM conser-
vation is no longer valid. The propagation of CP vortices
proceeds in a discrete periodic potential, in this case of Cg,
symmetry, and the O(2) symmetry is gone. AM is no longer
a good “quantum number.” A new conserved quantity must
be introduced, the Bloch or pseudo-AM [17]. The situation is
akin to the propagation of CP vortices in photonic crystals
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FIG. 1. (Color online) Transfer of AM for interacting CP lattices
and beams. The first column presents the lattice without defects, the
second column presents the lattice with a defect in the center. The
first row presents the input forward lattice intensity, the second and
third rows show the intensity distributions of the lattice and the
vortex at the output. The remaining five rows present various AMs.
Parameters: I'=4, L=2.5L,=10 mm, lattice spacing 28 um, full
width at half maximum (FWHM) of input vortices 28 um, FWHM
of input lattice beams 9 wm, maximum input intensity |Fy|>=|B,|?
=51,, and maximum input lattice intensity |G,|2_y=|G,[>_, =201,.

with dielectric rods. The presence of a transverse point-
symmetry group changes the propagation behavior consider-
ably [16]. One notes discrete diffraction, with strong pinning
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FIG. 2. (Color online) Loss of AM of CP beams in fixed lattices.
The layout is as in Fig. 1. The first row depicts the lattices, the
second row presents the intensity distribution of the forward vortex
within the lattice at its output. The other three rows present different
AMs. Parameters are as in Fig. 1, except for the maximum lattice

input intensity of 40/, which was chosen in order to keep the same
total lattice intensity /, as for Fig. 1.

of vortex filaments to the lattice sites. Neither the sum nor
the difference of AM is conserved. The inclusion of a defect
in the lattice again does not change our conclusions appre-
ciably.

The behavior noted in the interacting and fixed lattices
can be rigorously explained. According to [14], the deriva-
tive of the difference of AM along the z axis for the model at
hand and for the assumed CP geometry of propagation in the
steady state is given by

dLz(F) +aLz(Gf) dLz(B) dLz(G,)
oz Jz oz az

o 2 2 2 2 P
I|\F|*+|GH“+ |B|”"+ |G
=fpdpff dcpE(H |GA*+ [B|* +|G,[")
0 0 e

=f pdp T [In(1 +1+1,)-1-1][5", 3)
0

where p and ¢ are the cylindrical coordinates. The difference
of AM is conserved in the case of interacting CP lattices,
because the space charge field E is then an explicit function

of I +1,, the integration in ¢ is over a perfect derivative,
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FIG. 3. (Color online) AM transfer in CO interacting beams.
The setup is as in Fig. 1. The only parameter different from those of
Fig. 1 is I'=16.

and the integral in Eq. (3) is 0. However, for fixed lattices
the terms involving G, and G, are absent, while E
still contains I+1,, and the integration in Eq. (3) is not
over a perfect derivative, so the integral does not vanish
(Fig. 2); the additional term, which is equivalent to
GFIBCpdpfg/3(1+1g)/(l+1+1g)((91g/(9<p)d(p, is not equal to
zero [due to the fact that I(p, ¢,z) # I(p, 7/3—¢,z)]. There-
fore, the difference in AM is then not conserved.

The same Eq. (3) leads to the nonconservation of the sum
of AM in the general CP case, for both the interacting and
fixed lattices. The integral then contains the difference of
intensities, while E still contains the sum, so it cannot be
equal to 0.

The CO case offers qualitatively and quantitatively differ-
ent results from the CP case. The numerical procedure in the
CO case is considerably simpler, owing to the basic differ-
ence between the CO and CP processes: the first one is an
initial-value problem, whereas the second one is a two-point
boundary-value problem. The parameters in both cases are
chosen the same, the only difference being the size of the
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FIG. 4. (Color online) AM loss of a vortex propagating in fixed
lattices. The parameters are as in Fig. 3, the setup as in Fig. 2.

coupling parameter I': the CO case requires a larger value of
I', to build a stable solitonic lattice. Our results are presented
in Figs. 3 and 4.

It is seen in Fig. 3 that the transfer of AM is more con-
siderable in the CO case with interacting beams. The total
AM is conserved. One also notes much stronger finite-size
effects at the lattice edge, because of the larger I coupling.
The CO case with a fixed lattice (Fig. 4) mimics the behavior
of the CP case with a fixed lattice. Its AM is not conserved,
and the loss of AM is relatively large. The influence of de-
fects in both cases is presented by the second columns of
Figs. 3 and 4. All our numerical results (Figs. 1-4) hold for
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all (physically reasonable) control parameters.

In the CO case, a simplified Eq. (3) with the terms B and
G, absent, according to the same arguments as above, leads
to the conclusions that the total AM is conserved in the case
of an interacting lattice (Fig. 3), while AM is not conserved
in the case of a fixed lattice (Fig. 4).

III. CONCLUSIONS

We stress the essential difference between the CO and CP
cases. The transfer of AM in CP interacting beams is mini-
mal, while the transfer in CO interacting beams is substan-
tial. For CO interacting incoherent beams, the sum of the
AM is always constant. However, for CP interacting incoher-
ent beams, owing to the opposite propagation directions, the
difference of AM is constant, but the total AM is not. These
conclusions should not be so surprising: they are consistent,
for example, with the Manley-Rowe relations for the degen-
erate two-wave mixing in PR media, in the transmission and
reflection geometries. In the case of fixed lattices, for both
CP and CO beams, the conservation of AM is no longer
valid, because this restriction breaks the rotational symmetry
of the model equations. Fixed lattices are not an ideal physi-
cal approximation, and nonconservation of AM as well as
different outputs (comparing to the corresponding cases of
interacting lattices) are its consequences. Our results suggest
that the difference of AM is conserved in all physical sys-
tems where interaction occurs between CP incoherent beams.
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