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Abstract

The planar cell polarity effector gene Fuz regulates ciliogenesis and Fuz loss of function studies reveal an array of embryonic
phenotypes. However, cilia defects can affect many signaling pathways and, in humans, cilia defects underlie several
craniofacial anomalies. To address this, we analyzed the craniofacial phenotype and signaling responses of the Fuz2/2 mice.
We demonstrate a unique role for Fuz in regulating both Hedgehog (Hh) and Wnt/b-catenin signaling during craniofacial
development. Fuz expression first appears in the dorsal tissues and later in ventral tissues and craniofacial regions during
embryonic development coincident with cilia development. The Fuz2/2 mice exhibit severe craniofacial deformities
including anophthalmia, agenesis of the tongue and incisors, a hypoplastic mandible, cleft palate, ossification/skeletal
defects and hyperplastic malformed Meckel’s cartilage. Hh signaling is down-regulated in the Fuz null mice, while canonical
Wnt signaling is up-regulated revealing the antagonistic relationship of these two pathways. Meckel’s cartilage is expanded
in the Fuz2/2 mice due to increased cell proliferation associated with the up-regulation of Wnt canonical target genes and
decreased non-canonical pathway genes. Interestingly, cilia development was decreased in the mandible mesenchyme of
Fuz null mice, suggesting that cilia may antagonize Wnt signaling in this tissue. Furthermore, expression of Fuz decreased
expression of Wnt pathway genes as well as a Wnt-dependent reporter. Finally, chromatin IP experiments demonstrate that
b-catenin/TCF-binding directly regulates Fuz expression. These data demonstrate a new model for coordination of Hh and
Wnt signaling and reveal a Fuz-dependent negative feedback loop controlling Wnt/b-catenin signaling.
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Introduction

Vertebrate craniofacial development is a complicated process

requiring the coordination of multiple signaling pathways and

tissue interactions among the three germ layers and neural crest

cells in three dimensions. A number of signaling pathways have

been implicated in craniofacial development including Hedgehog

(Hh), Wnt/b-catenin, TGF-b, Fibroblast Growth Factor (Fgf),

Notch, and Planar Cell Polarity (PCP) signaling [1,2,3,4,5].

However, the interactions and components shared among

different signaling pathways are not well understood. The recent

identification of the PCP effector gene Fuzzy (Fuz) as an important

regulator of Hedgehog (Hh) signaling suggests that there may

be substantial crosstalk between the different molecular cues.

Furthermore, Fuz can coordinate ciliogenesis and secretion, two

processes that affect a variety of signaling pathways [6,7]. Our

data suggest Fuz plays a pivotal role in the Wnt and Hedgehog

pathways [6,7,8]. Furthermore, loss of Fuz leads to dramatic

defects in craniofacial development.

PCP signaling, initially discovered in Drosophila, controls a

diverse range of polarized cellular behaviors [9]. Recent studies

have shown that PCP signaling is also important in regulating cell

interactions and tissue movements [10,11,12]. In mice, loss of PCP

genes leads to disruption of polarized structures such as the

stereociliary bundles in the cochlea [13,14,15,16]. In addition,

mutants in PCP genes display an array of morphogenetic defects

affecting the neural tube, heart, kidney and other tissues [1]. Thus,

the PCP pathway affects a wide range of cell-cell interactions via

coordination of morphogenesis, tissue polarity, and potentially

growth.

The PCP pathway makes use of the Wnt signaling components

Frizzled and Dishevelled, but is b-catenin-independent [17].

Studies of vertebrate planar cell polarity have primarily focused

on the ‘‘core PCP’’ pathway. Thus, the function of vertebrate PCP

‘‘effectors’’, which act downstream of Dishevelled, is unclear. This

report focuses on one of the PCP effector proteins, Fuzzy or Fuz,

which encodes a transmembrane protein required for tissue

polarity. Elegant genetic studies in Drosophila have shown that

fuzzy, along with inturned, plays a role in maintaining cytoskeletal

integrity in the wing hairs; this role is genetically downstream of

dishevelled and frizzled [18,19,20,21].

Recent studies suggest that mutations affecting ciliogenesis lead

to congenital human anomalies. Cilia appear to act as mechanical

and chemical sensors that interpret extracellular cues via signaling

pathways such as Hh, PDGF and Wnt [22]. Because there is no

protein synthesis in the cilium, assembly and maintenance of the
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cilium requires intraflagellar transport (IFT). Thus, loss of IFT

proteins leads to catastrophic effects on ciliogenesis and cilia

function. Human conditions resulting from defects in ciliogenesis

or IFT include situs inversus, polycystic kidney disease, ear defects

and craniofacial anomalies [23,24].

Several proteins involved in PCP signaling, including Dishev-

elled, localize to the base of cilia [25,26,27,28]. This suggests that

PCP signaling may be important for cilia function and possibly for

coordination of other signaling pathways. In this context, we were

particularly interested in the canonical Wnt/b-catenin pathway,

as the absence of cilia results in enhanced b-catenin nuclear

localization and downstream gene transcription [29,30,31].

In this study, we analyzed the expression, regulation and

functional requirements of Fuz during vertebrate craniofacial

development. We found that Fuz2/2 mice display massive

craniofacial defects including anophthalmia, agenesis of the tongue

and incisors and a hypoplastic mandible leading to cleft palate. In

contrast, we found that Meckel’s cartilage, an embryonic structure

that develops into the mandible and portions of the inner ear, was

hyperplastic and malformed. Some aspects of the craniofacial

phenotype, such as missing teeth and cleft palate, could be

attributed to decreased Hh signaling. However, the increased

growth of Meckel’s cartilage was associated with increased Wnt

signaling.

To further examine the molecular consequences of Fuz loss of

function, we analyzed expression of Wnt target genes in Fuz2/2

mice. We found that a number of b-catenin/TCF target genes

were up-regulated in our mutants, suggesting that Fuz plays a dual

role in Wnt signaling, in both the canonical and non-canonical

pathways. Furthermore, we found that the Fuz protein could

repress expression of Wnt pathway genes as well as a Wnt-

dependent reporter, suggesting a direct role within the canonical

pathway. Finally, most interesting, we identified b-catenin/TCF-

binding sites in the Fuz gene, which we confirmed by chromatin

immunoprecipitation. Together, these data imply that Fuz may be

a critical factor linking the Hh, PCP and Wnt/b-catenin signaling

pathways and may function as a switch to balance the activities of

these pathways during craniofacial development.

Results

Fuz expression pattern during mouse development
X-gal staining of E9.5 FuzLacZ/+ mouse embryos revealed

FuzLacZ expression was restricted to the dorsal tissue and brain

(Fig. 1A). At E11.5, FuzLacZ expression was concentrated in the

brain, spinal cord and eyes. However, relatively weak expression

was also detected in the heart, limbs and craniofacial region

(Fig. 1B). At E12.5, FuzLacZ expression in the craniofacial region

began to expand from dorsal to the ventral regions (Fig. 1C).

At E14.5, FuzLacZ expression became stronger and widespread

throughout the craniofacial region (Fig. 1C). Fuz expression at

E12.5 in the oral epithelium, mesenchyme and Meckel’s Cartilage

is shown in sagittal sections (Fig. 1D). FuzLacZ expression at E14.5

in the oral epithelium, mesenchyme, palate (PL), and tongue (TE)

has increased from E12.5 (Fig. 1E). Fuz expression in Meckel’s

cartilage (MC) and the perichondrium (PC) are shown in high

magnification sections (Fig. 1F). In addition, we assessed Fuz

expression in different cell lines by RT-PCR. Fuz is highly

expressed in LS-8 cells (mouse oral epithelium), C3H10T1/2 cells

(mouse embryonic fibroblast), HEK 293 FT cells (human

embryonic kidney fibroblast) and SW1353 cells (human chondro-

cyte). It had relatively weak expression in MDPC-23 cells (mouse

dental mesenchyme), and no expression in CHO cells (hamster

ovary) (Fig. 1G).

Severe craniofacial defects in the Fuz2/2 mice
To study Fuz function during craniofacial development, we used

the Fuz null mouse created with a gene trap cassette inserted in the

second exon of the Fuz gene [7]. The lack of both copies of the Fuz

gene in homozygotes (Fuz2/2) was lethal for mice immediately

after birth. At E18.5, all null embryos have a hypoplastic mandible

and maxilla, and anophthalmia (Fig. 2A). An abnormal bulge in

the mandible and a secondary cleft palate are observed in mutant

embryos (Fig. 2A,B). Histological analysis on E18.5 embryos

revealed further craniofacial defects including a malformed tongue

and missing incisors. The ventral bulge of the mutant mandible

is due to a hyperplastic and malformed Meckel’s cartilage

(Fig. 2C,D). The Fuz2/2 mice do not form incisor tooth buds

and lower and upper incisor tooth initiation did not begin and the

tongue muscles appear to be fused with the mandible. The

hyperplastic and malformed Meckel’s cartilage suggested an

increased proliferation of Meckel’s cartilage cells.

To examine the developmental progress of craniofacial

formation, embryos were harvested at different developmental

time points and analyzed. At E12.5, the mandible of the Fuz2/2

embryos appeared normal compared with those of their

heterozygous littermates. Meckel’s cartilage of the Fuz2/2

embryos had a normal shape and similar size with heterozygous

embryos (Fig. 3A). The normal mouse craniofacial structures such

as the choroid plexus (CP) differentiating from the roof of fourth

ventricle, the choroid plexus extending into the lateral ventricle

(CPL), the corpus striatum mediale (STM), the optic recess of the

diencephalon (OR) and the cochlea (CO) are present in the E12.5

Fuz+/2 heterozygous mouse (Fig. 3A). These structures are lost in

the Fuz null mice at this stage, only the cochlea and corpus

striatum are observed and these structures are abnormal (Fig. 3A).

In contrast, at E14.5 the Fuz2/2 entire mandible is thickened in

the dorsal-ventral axis and shortened in the anterior-posterior axis

compared with those of heterozygous littermates (Fig. 3B). The

trigeminal nerve (TG) appears to replace the pituitary primordium

or Rathke’s pouch (RP) and many of the brain structures are not

developed (Fig. 3B). Meckel’s cartilage has begun to elongate in

the dorsal-ventral direction instead of the anterior-posterior

direction (Fig. 3B). The upper and lower incisor buds have not

developed while the tongue had a rudimentary root structure and

failed to elongate in the anterior-posterior axis (Fig. 3B). The

malformed Meckel’s Cartilage not only elongated dorsoventrally

but also the dorsal end expanded in the median-lateral axis. An

abnormal growth of the palate tissue (PLT) or palate shelf was

observed in the E14.5 Fuz null mice compared to the normal

palate (PL) seen in the heterozygous mice (Fig. 3B). Coronal

sections of E16.5 Fuz2/2 mice revealed descending palate shelves

(PL) suggesting a delay of elevation, a lack of eyes, however the

upper and lower molar (ML) tooth buds have formed (Fig. 3C).

Meckel’s cartilage has developed in the midline and extends

dorsally (Fig. 3C). There were many other defects observed in the

nasal cavity, facial bones, cartilage and brain that will not be

examined in this report. However, the loss of Fuz affects patterning

of much of the craniofacial region with a loss of some structures

(incisors, tongue, eyes and bone) and an expansion of other

structures (Meckel’s cartilage).

Defective craniofacial bone development in Fuz null mice
To determine if bone formation was affected in the Fuz null

mice, E16.0 embryos were stained with Alcian Blue/Alizarin Red

and compared to their heterozygous littermates (Fig. 4A–D). The

blue cartilage stain revealed defective Meckel’s cartilage in the

Fuz2/2 mice and malformed cartilage of the craniofacial region

(Fig. 4B,D). The anterior Meckel’s cartilage is deformed with an

Fuz Regulates Signaling Pathways
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ascending branch and reduced ossification (red stain) around

Meckel’s cartilage. Specifically, membranous ossification of the

premaxilla (pmx), maxilla (mx), mandible (md), frontal (fnt) and

parietal (par) bones are missing at this stage. Ossification of the

sphenoid (sb) and basioccipital (bb) bones are also defective in the

Fuz null mice (Fig. 4D). To determine if craniofacial bone

development was delayed or reduced in the Fuz null mice we

analyzed E18.5 Fuz null mice and found a delayed ossification of

the craniofacial region compared to heterozygous littermates

(Fig. 4E–H). Further research is ongoing to understand the

delayed bone development and in this report we focused on the

regulatory mechanisms directing Meckel’s cartilage formation.

Increased proliferation of Meckel’s cartilage cells in Fuz
null embryos

Cell proliferation of E14.5 Meckel’s cartilage was measured by

immunofluorescence with a Ki67 antibody (Fig. 5A). The Ki67

positive cell number to total cell number (DAPI) within Meckel’s

Figure 1. Expression of the Fuz LacZ allele during mouse craniofacial development. Fuz LacZ allele expression is shown by X-Gal staining of
heterozygous Fuz LacZ/+ embryos. A) Fuz LacZ expression is predominantly in the dorsal tissue at E9.5. B) At E11.5, Fuz LacZ expression is concentrated in
the brain, spinal cord and eyes. C) At E12.5, Fuz LacZ expression begins to expand from dorsal to ventral region. Fuz expression in the oral epithelium
(arrow), mesenchyme and Meckel’s Cartilage is shown in a sagittal section (dotted circle) (D). At E14.5 embryos, the ventral expression of Fuz LacZ is
increased while the dorsal expression is relatively decreased (C). Fuz LacZ expression in the oral epithelium (arrow, E), Meckel’s Cartilage (MC) and the
perichondrium (PC) is shown in a sagittal section (E, F). G) RT-PCR reveals that Fuz is highly expressed in LS-8 (oral epithelium), C3H10T1/2
(embryonic fibroblast), HEK 293 FT (embryonic kidney fibroblast) and SW1353 (chondrocyte) cell lines. It has relatively weak expression in MDPC-23
cells (dental mesenchyme), and no expression in CHO cells (ovary). PL, palate; TE, tongue.
doi:10.1371/journal.pone.0024608.g001
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cartilage was calculated to estimate the proliferation ratio.

Compared with a 75% ratio observed in heterozygous Meckel’s

cartilage, the ratio in null samples was significantly increased to

88% (Fig. 5B). These cells are proliferating at a higher rate

compared to Fuz heterozygous Meckel’s cartilage.

Fuz regulates cilia development in the mandibular
mesenchyme

We asked if cilia formation was affected in the mandible by

immunofluorescence with an Arl13b antibody in mandible

mesenchyme at E14.5. The amount of primary cilium was

significantly decreased in the Fuz2/2 mandible mesenchyme

(Fig. 6). The average cilium number per 5000 mm2 in the sagittal

sections of the mutant mandible mesenchyme was 2.9, compared

to 16.5 in the wild type. Because Hh signaling is regulated by the

primary cilium components, we hypothesized that the Hh

signaling was altered due to the cilium defect in the Fuz null

mouse.

Down-regulation of Hedgehog signaling in Fuz2/2

embryos
A loss of primary cilia correlates with an absence of membrane

associated Smoothened and failure to activate downstream

transcription factors responding to the Hh signal [4,32,33]. We

asked if sonic hedgehog (Shh) signaling was altered in the

craniofacial region of Fuz mutant embryos. A whole-mount in

situ hybridization assay was performed at E9.5 and showed an

overall reduction of Patched 1 (Ptch1), and Gli1 expression levels

while Shh levels were unchanged (Fig. 7). Given that Ptch1 and

Gli1are indicative of Hh signaling [34,35], these data revealed a

general down-regulation of Hh signaling in the Fuz null mouse.

Immunohistochemistry experiments revealed that Ptch1 was

highly expressed in the tongue, oral and dental epithelium and

mesenchyme, but weakly expressed in Meckel’s cartilage in E14.5

heterozygous embryos (Fig. 8A). In the Fuz null embryos, Ptch1

expression was decreased overall in the oral cavity as well as in

Meckel’s cartilage (Fig. 8B). Real-time PCR with mRNA of

dissected Meckel’s cartilage and surrounding mesenchyme con-

firmed the down-regulation of Ptch1 (Fig. 8E). Real-time PCR also

revealed a significant decrease in Gli1 transcripts in the Fuz null

embryos (Fig. 8E). At E14.5, Gli2 had a similar expression pattern

with Ptch1 and Gli2 protein was decreased in the null embryos

compared to heterozygotes (Fig. 8C,D), though its transcript level

was not significantly changed (Fig. 8E). Shh transcript levels were

also reduced in the null embryos suggesting that Fuz was required

for the maintenance of Hh signaling. Hh signaling is essential for

establishing and maintaining dorsal-ventral patterning and

required for incisor development. The disrupted Hh signaling

provides a possible explanation for the malformed Meckel’s

cartilage and the missing incisors. Hh signaling is also able to

stimulate cell proliferation by activating Cyclin D1 (Ccnd1) and

Cyclin D2 (Ccnd2) expression [36]. However, the decreased Hh

Figure 2. Craniofacial defects associated with a deletion of Fuz at E18.5. A) E18.5 embryos of heterozygous (Fuz+/2) and homozygous
(Fuz2/2) mice. The null embryo (Fuz2/2) has a hypoplastic maxilla and mandible, missing eyes and displaced ears. The white arrow denotes an
abnormal bulge in the null mandible. B) The cleft palate is shown by the black arrow in E18.5 null embryos (Fuz2/2). (C, D) H&E staining of
heterozygous (Fuz+/2, left) and homozygous (Fuz2/2, right) head sagittal sections. The bottom panels are higher magnification of the top panels. C)
At E18.5, the Fuz homozygous mandibles are shorter than heterozygotes. Meckel’s cartilage expends in the dorsal-ventral axis in addition to anterior-
posterior axis and the ventral end of the mutant Meckel’s cartilage points down and forms the mandibular bulge. The plane of section is depicted by
the dotted line through the mouse drawing. TE, tongue; MC, Meckel’s cartilage; LI, lower incisor.
doi:10.1371/journal.pone.0024608.g002

Fuz Regulates Signaling Pathways

PLoS ONE | www.plosone.org 4 September 2011 | Volume 6 | Issue 9 | e24608



signaling is contrary to the increased proliferation of Meckel’s

cartilage. We hypothesized that another mechanism must be

involved in the enhanced proliferation of Meckel’s cartilage.

Increased Wnt/b-catenin signaling in Fuz2/2 embryos
Wnt/b-catenin signaling is regulated by the basal component of

the primary cilium [29,30] and Hh signaling interacts with Wnt/

b-catenin signaling during multiple developmental programs

[37,38,39]. We asked if Wnt/b-catenin signaling was altered in the

Fuz null embryos, which could affect cell proliferation. Immunoflu-

orescence with a b-catenin antibody was performed using sagittal

sections of E14.5 embryos. These experiments revealed that b-

catenin was increased in the Fuz2/2 oral epithelium, mesenchyme

(Fig. 9A) and Meckel’s cartilage (Fig. 9B), compared to those of

heterozygous littermates. Because Lef-1 is a transcription factor

whose activity and expression are positively regulated by Wnt/b -

catenin signaling, we asked if Lef-1 expression was modulated in the

Fuz null mutants. Lef-1 is normally expressed in the oral and dental

epithelium and mesenchyme at E14.5 (Fig. 9C,D, upper panels). In

the null embryos Lef-1 expression in the oral mesenchyme was

increased (Fig. 9C,D, lower panels), confirmed by Real-time PCR

(Fig. 9F). Tcf4 (Tcf7l2) expression is also regulated by Wnt/b-catenin

signaling [40], and immunofluorescence assays revealed increased

Tcf4 in Fuz null Meckel’s cartilage at E14.5, and further confirmed by

Real-time PCR (Fig. 9E,F). Inspection of a group of Wnt/b -catenin

target genes revealed increased expression of Axin2, Cyclin D1, Cyclin

D2 and Runx2 in Fuz2/2 Meckel’s cartilage (Fig. 9F), [41,42,43,44].

On the contrary, non-canonical Wnt signaling including Wnt5a, Ror2,

and their downstream target Pcdh8 (known as Papc in Xenopus) [45]

were down regulated in Fuz2/2 Meckel’s cartilage (Fig. 9F). As a

Figure 3. Early stages of craniofacial defects in the Fuz2/2 mice. A) E12.5 embryos of heterozygous (Fuz+/2) and homozygous (Fuz2/2) mice.
The overall structure of the ventral craniofacial region is not severely affected at this stage in the Fuz null embryos, due to the low expression of Fuz.
However, the dorsal structures including the choroid plexus (CP) differentiating from the roof of fourth ventricle, the choroid plexus extending into
the lateral ventricle (CPL), and the optic recess of the diencephalon (OR) are missing in the Fuz null mice. The corpus striatum mediale (STM), and the
cochlea (CO) are displaced in the Fuz null mice. Higher magnification of the mandible is shown in the bottom panels and reveals normal Meckel’s
cartilage formation at this stage. B) At E14.5 the craniofacial defects of the Fuz null mice are severe. The tongue muscles are fused with the mandible,
the pituitary (PI) is missing and the trigeminal nerve (TG) is seen in its place and the OR is displaced, corresponding to anophthalmia in the mutant.
The higher magnification sections showed a lack of upper (UI) and lower incisors (LI), no tongue (TE) and expanded Meckel’s cartilage (MC) in the
dorsal-ventral axis instead of anterior-posterior axis. The palate is now a piece of displaced palatal tissue (PLT). C) E16.5 coronal sections reveal a cleft
palate in the Fuz null mice. The palate tissue is displaced to the lateral portions of the oral cavity and the secondary palate is not fused, due to the
dorsal-ventral and medial-lateral expansion of Meckel’s cartilage. The molars (ML) are shown and appear to be grossly normal in the mutant mice. The
plane of section is depicted by the dotted line through the mouse drawing.
doi:10.1371/journal.pone.0024608.g003
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Figure 4. Skeletal defects of Fuz null mutant embryos. A, B) Upper panels are Alcian Blue/Alizarin Red staining of cartilage and bone skeletal
preparations of E16.0 Fuz heterozygous embryos (A) and Fuz null littermates (B). Ossification is reduced in the Fuz null embryos. Lower panels are
higher magnification of the head region. The anterior region of Meckel’s cartilage (MC) is deformed with an ascending branch. E–H) E18.5 head
preparations revealing delayed bone formation and defective craniofacial structures in the Fuz mutant embryos (arrows denote the malformed and
ossified Meckel’s cartilage). Frontal (fnt), parietal (par), premaxilla (pmx), maxilla (mx), sphenoid (sb) and basioccipital (bb) bones and other facial
bones are missing. Background red staining was due to soft tissues, which were left intact.
doi:10.1371/journal.pone.0024608.g004

Figure 5. Enhanced cell proliferation in Meckel’s cartilage of the Fuz2/2 mandible. A) The proliferation of E14.5 Meckel’s cartilage was
assessed by immunofluorescence with a Ki67 antibody. B) The proliferation ratio is calculated by dividing the Ki67 positive cell number with DAPI cell
number within Meckel’s cartilage. The proliferation of mutant Meckel’s cartilage (88%) is significantly increased compared with wild type (75%).
Experiments were repeated three times and p-value is shown.
doi:10.1371/journal.pone.0024608.g005
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control real-time PCR demonstrated a lack of Fuz transcripts in the

null embryos (Fig. 9F). These data indicate that Fuz acts as a repressor

of Wnt/b-catenin signaling during craniofacial development. The

increased Cyclin D1 and D2 provide a possible explanation of the

enhanced cell proliferation in the Fuz2/2 Meckel’s cartilage.

To confirm the repressor role of Fuz on Wnt/b-catenin

signaling, Fuz expression plasmid was co-expressed with the

7xTopflash reporter in both HEK 293 FT cells and CHO cells.

Co-transfection of Fuz with the 7xTopflash reporter resulted in a

50% decrease in Topflash reporter activity, compared to that with

the control vector in both cell lines (Fig. 9G). The result was

consistent between 293 cells, which has high endogenous Fuz

expression and CHO cells which do not endogenously express Fuz.

These results indicate a repressor role of Fuz on Wnt/b-catenin

signaling.

b-catenin directly activated the Fuz promoter
Sequence analyses revealed eleven Wnt response elements (Lef/

Tcf binding sites) within the murine Fuz 2.4 kb promoter (Fig. 10A).

A chromatin immunoprecipitation (ChIP) assay demonstrates

Figure 6. The cilium defect in the Fuz null mouse. A) The primary cilia are shown by immunofluorescence with an Arl13b antibody in mandible
mesenchyme at E14.5. B) The amount of cilia in the sagittal sections of Fuz2/2 mandible mesenchyme was quantitated and compared to wild type
mandible mesenchyme. Error bars indicate S.E., n = 8, p,0.01.
doi:10.1371/journal.pone.0024608.g006

Figure 7. Defective Sonic Hedgehog signaling. Whole-mount in situ hybridization assays with indicated probes were performed with E9.5
embryos. The overall decrease of Ptch1, and Gli1 transcript levels are shown.
doi:10.1371/journal.pone.0024608.g007
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endogenous b-catenin associating with the Fuz promoter. Non-

transfected LS-8 cells were used as these cells endogenously

express Lef-1, b-catenin and Fuz. The Fuz promoter chromatin

was amplified by PCR using primers specific for the Fuz promoter

flanking the Lef/Tcf binding site (Fig. 10A,B). The primers

amplified a 201 bp product from the chromatin input and

antibody IP (Fig. 10B, lanes 3 and 5, respectively). The primers

did not produce a PCR product from primers only or normal

rabbit IgG IP control (Fig. 10B, lanes 2 and 4, respectively). To

test whether this association could lead to functional activity, the

Fuz 2.4 kb promoter was cloned into a luciferase vector and

transfected into LS-8 and CHO cells. Addition of LiCl (10 mM) to

the cell culture medium stimulates b-catenin nuclear localization

and caused significant increase of Fuz promoter activity in both

cell lines (Fig. 10C). These results demonstrate that b-catenin

directly targets the Fuz promoter and activates its transcription.

Combined with the Fuz repression of Wnt/b-catenin signaling, we

conclude that Fuz constitutes a negative feedback loop that

controls Wnt/b-catenin signal activity.

Sox9 expression is increased in Fuz2/2 Meckel’s cartilage
A previous study reported that Wnt/b-catenin signaling

repressed Sox9 expression both in vitro and in vivo [46]. Given

the increased Wnt/b-catenin signaling in the Fuz null mice, we

expected reduced expression of Sox9 in Fuz null Meckel’s cartilage.

However, immunofluorescence with Sox9 antibody in E14.5

Meckel’s cartilage revealed that Sox9 expression was increased in

the null embryos (Fig. 11A). This increase was validated by Real-

time PCR using RNA from E14.5 Meckel’s cartilage (Fig. 11B).

Type II Collagen (Col2a1) is a downstream target gene of Sox9 [47].

Col2a1 expression was also increased in Fuz null Meckel’s cartilage

measured by Real-time PCR (Fig. 11B). Over-expression of Fuz in

SW1353 cells confirmed the repression of Sox9 expression. The

human chondrocyte cell line SW1353 was transfected with the Fuz

Figure 8. The Hh signaling pathway effectors are decreased in E14.5 Fuz2/2 mouse embryos. A) Immunofluorescence of Patched1 in
sagittal sections of E14.5 Fuz+/2 heterozygous embryos. Sections in the bottom panels are higher magnification of those in the top panels. Ptch1 is
weakly expressed in Meckel’s cartilage. B) In the Fuz2/2 embryos, Ptch1 expression is decreased overall as well as in Meckel’s cartilage. C)
Immunofluorescence of Gli2 in sagittal sections of E14.5 Fuz+/2 heterozygous embryos. Sections in the bottom panels are higher magnification of
those in the top panels. Gli2 is highly expressed in the oral and dental epithelium and mesenchyme, but weakly expressed in the Meckel’s cartilage.
The expression pattern of Gli2 is similar to Ptch1, but Gli2 has increased expression in the oral mesenchyme compared to Ptch1. D) In the Fuz2/2

embryos, Gli2 expression was decreased overall as well as in Meckel’s cartilage. E) The wild type and Fuz2/2 Meckel’s cartilage and surrounding
mesenchyme were dissected from E14.5 embryos and the mRNA was extracted, followed by reverse transcription. The real-time PCR was performed
with indicated probes. Results are shown as normalized relative expression. bactin served as the reference gene. Experiments were repeated three to
five times each from multiple samples. Error bars indicate S.E. *: p-values,0.05; **: p-values,0.01.
doi:10.1371/journal.pone.0024608.g008
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Figure 9. Wnt/b-catenin signaling is increased in the Fuz null mice. Immunofluorescence on sagittal sections of E14.5 embryos. A) b-catenin
expression was increased in the oral epithelium and mesenchyme in mutant (Fuz2/2) embryos. The bottom panels are the Fuz2/2 embryos. B) b-
catenin expression was also increased in the Fuz null Meckel’s cartilage (bottom panel), compared to the heterozygote (Fuz+/2, top panel) samples. C)
Lef-1 expression in the dental epithelium, oral and dental mesenchyme at E14.5. Lef-1 expression increased in the Fuz null oral mesenchyme (bottom
panel). D) These are higher magnification of the boxed areas in C. Lef-1 expression was expanded in the Fuz2/2 mice oral mesenchyme. E) The
expression of Tcf4 (Tcf7l2) was increased in Fuz mutant Meckel’s cartilage (bottom panels) at E14.5 compared with wild type samples (top panels). F)
Real-time PCR with mRNA from dissected E14.5 Meckel’s cartilage and surrounding mesenchyme. Canonical Wnt target gene expression was
increased whereas non-canonical Wnt pathway gene expression was decreased. b-actin served as the reference gene. Experiments were repeated
three to five times each from multiple samples. G) Topflash reporter activity was repressed by co-transfection of Fuz in HEK 293FT and CHO cells. The
activities are shown as mean fold activation compared to reporter activation co-transfected with pcDNA3.1 empty vector and normalized to SV-40 b-
galactosidase activity. Error bars indicate S.E. *: p-values,0.05; **: p-values,0.01.
doi:10.1371/journal.pone.0024608.g009
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expression vector and total RNA was harvested two days after

transfection. Real-time PCR revealed that endogenous SOX9 and

COL2A1 expression was significantly repressed in the Fuz

transfected cells compared to those with control vector. These

results indicate that Fuz represses Sox9 and cartilage expansion

during craniofacial development. Loss of Fuz leads to increased Sox9

expression in the null mice, which maintains cartilage expansion in

the presence of increased Wnt/b-catenin signaling.

Discussion

In this study we have analyzed the role of the Fuz gene during

craniofacial development. Fuz loss of function analyses revealed a

critical function of this gene in the development of multiple

craniofacial tissues and structures. Fuz is required for the

formation of eyes, bone, tongue and incisors. These affected

organs and craniofacial structures show essential roles of Fuz in

tissue patterning and cell proliferation.

Fuz regulates Hh signaling
In the Fuz null mice, down regulation of Hh signaling has been

shown in the neural tube and limb buds [7,8]. In this study we

have shown a decrease in Hh downstream gene expression in early

and late craniofacial development. Hh signaling is essential for

dorsal-ventral patterning and incisor development, but apparently

not for molar development, as the molar tooth buds form normally

in the Fuz2/2 mice. A loss of Hh signaling in the oral epithelium

results in a lack of epithelial cell proliferation and tooth bud

formation [48]. This would explain the absence of incisor

development, but not molar development. We suspect that this

is a timing issue as incisors develop earlier than molars, however

more experiments are required to understand the defect. Hh

signaling is required for mouse brain and craniofacial morpho-

genesis and loss or gain of Hh function is associated with midline

facial anomalies [49,50]. However, the overall craniofacial defects

observed in the Fuz null mice do not resemble the other cilia

related gene defects or Shh mutant mice, with the exception of

brain and cleft palate defects. A recent report revealed a role

for Fuz in the development of hair follicles [51]. Hair follicle

development was impaired due to inhibition of cilia formation and

Hh signaling, revealing a direct role for Fuz in regulating Hh

signaling through defective cilia formation. Interestingly, Fuz

regulated Hh signaling does not appear to regulate Meckel’s

cartilage growth but may affect patterning and placement of

Meckel’s cartilage in the mandible. Thus, Fuz could be regulating

Hh signaling which in turn restricts the normal growth and

patterning of Meckel’s cartilage by influencing the surrounding

tissue formation (such as incisor development) and other

craniofacial structures.

Fuz regulates Wnt signaling
In the Fuz null mice, the Wnt/b-catenin pathway was up

regulated whereas the non-canonical Wnt5a/Ror2 pathway was

down regulated. These data suggest that Fuz is a potent repressor

of Wnt/b-catenin signaling. The data also indicate that Fuz is

critical to maintain the non-canonical Wnt signaling pathway,

which is overlapped with PCP signaling. It provides a possible

explanation of the neural tube defect (a typical phenotype in non-

canonical Wnt deficient mice) previously reported in Fuz null mice

[7,52]. The increased Meckel’s cartilage growth in the Fuz2/2

mice can be attributed to increased Wnt/b-catenin signaling.

Thus, PCP, Wnt/b-catenin and Hh signaling pathways may

converge to provide cues for and instruct specific cell differenti-

ation, tissue patterning and morphogenesis.

Fuz regulation of Wnt/b-catenin signaling may be mediated by

primary cilia and interaction of multiple signaling pathways.

Previous studies have reported that the basal component of

primary cilium could repress Wnt/b-catenin signaling through

interaction of Dishevelled protein [29,30]. The loss of Fuz could

cause the secondary up-regulation of Wnt/b-catenin signaling.

Previous studies have shown that Hh signaling antagonizes Wnt/

b-catenin during development of the tongue and cartilage

[37,38,53]. The increase in Wnt/b-catenin signaling could be

secondary to decreased Hh signaling in the Fuz null mice. Non-

canonical Wnt signaling is known to antagonize the canonical

Wnt/b-catenin activity [17,45]. In particular, Wnt5a was shown to

repress Wnt/b-catenin signaling in the limb buds [54]. An in vitro

study revealed that the Ror2 receptor was necessary for Wnt5a

repression of Wnt/b-catenin activity [55]. In the Fuz null mice,

down-regulation of Wnt5a and Ror2 could attribute to activation of

Wnt/b-catenin signaling as well. Whether it is one of those

mechanisms or a combination requires further investigation.

Figure 10. b-catenin activates the Fuz promoter. A) A schematic of
the Fuz 2.4 kb promoter with eleven Wnt response elements (Lef/Tcf
binding sites). Chromatin immunoprecipitation assay reveals endoge-
nous b-catenin associated with the Fuz promoter chromatin in LS-8 cells.
The location of the PCR primers are shown in A. B) A gel with specific PCR
products from the immunoprecipitated chromatin and controls are
shown. C) The Fuz 2.4 kb promoter was transfected into LS-8 and CHO
cells and LiCl (10 mM) was added to the cell culture medium. The
activities are shown as mean fold activation compared to reporter
activation without LiCl and normalized to SV-40 b-galactosidase activity.
Error bars indicate S.E.
doi:10.1371/journal.pone.0024608.g010
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Primary cilia defects associated with increased Hh
signaling

In contrast to loss of Fuz, mice mutants for cilia intraflagellar

transport (IFT) proteins; IFT88/polaris and Kif3a have increased

Hh activity [50,56]. Mice with mutations in IFT88 lack cilia on all

cells and present with severe neural tube defects, polydactyly,

asymmetry defects and ectopic tooth formation [56,57,58]. Kif3a

mice mutants display a range of similar developmental defects and a

conditional knockout of Kif3a in the neural crest results in an

increase in Hh activity associated with truncated cilia [50].

However, other groups have reported that mutations in IFT

proteins including Kif3a demonstrate decreased Hh signaling

[59,60,61]. These differences could be attributed to the differential

tissue expression of the Gli proteins during development

[50,56,60,62,63]. Our data reveal Fuz expression is predominantly

expressed in the oral and dental epithelium at early stages and in

epithelial cell lines. The Fuz2/2 mice do not present with a wide

facial prominence, which is indicative of increased Hh signaling

[50]. Furthermore, as a PCP effector it may play an extended role in

regulating signaling pathways and gene expression independent of

cilia formation. However, unlike the Wnt and Hh signaling

mechanisms, which act at the level of transcription, the PCP

pathway controls cell morphology [17,45]. It is not inconceivable

that changes in cell morphology induce changes in signaling

mechanisms. The Fuz2/2 mice have reduced and truncated cilia, but

not a complete loss of primary cilia. The presence of truncated cilia

in the Fuz null mice may play a limited role in the signaling

activities. Fuz interacts with a Rab-similar GTPase (RSG1) to affect

trafficking from the cytoplasm to basal bodies and to cilia tips [7].

Fuz may have a bigger role in exocytosis than ciliogenesis and could

promote a cell type-specific regulation of signaling mechanisms and

gene expression [7,17,64]. Transport and exocytosis facilitated by

Fuz maybe be more important and explain the mouse craniofacial

phenotypes of the Fuz null mice more than defective cilia.

Craniofacial Bone and Meckel’s Cartilage Defects. Runx2

plays a major role in bone development and specifically

intramembranous bone formation during craniofacial development.

Figure 11. Sox9 expression was increased in Fuz2/2 Meckel’s cartilage. A) Sox9 expression was expanded in E14.5 Fuz2/2 Meckel’s cartilage
shown by immunofluorescence (bottom panel) compared to heterozygotes (Fuz+/2, top panel). B) Real-Time PCR revealed increased Sox9 expression
as well as Type II Collagen (Col2a1) in Fuz null Meckel’s cartilage at E14.5. C) Transfection of Fuz results in reduced SOX9 and COL2A1 expression in
chondrocyte (SW1353) cells compared to those transfected with control vectors. Error bars indicate S.E.M.
doi:10.1371/journal.pone.0024608.g011
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Runx2 null mice have a complete loss of bone tissue and regulation of

Runx2 dosage during development can result in the cleidocranial

dysplasia phenotype [65]. These hypomorphic Runx2 mutant mice

have reduced ossification of the calvarial bones, reduced basisphenoid

bone and non-osseous tissue between the parietal bones, similar to the

Fuz null mice [65]. However, Runx2 expression is increased in the Fuz

null mice and Runx2 over-expression newborn mice do not reveal

defects in calvarial bone development [66]. It is not known if defects

occurred at earlier stages of development in these mice. The Fuz null

mice demonstrated a delayed calvarial bone development, which may

appear normal at later stages of newborn mice (Fuz null mice die at

birth, we are unable to determine if bone development is normal at

later stages). We speculate that increased Runx2 expression may

compensate for reduced Hh expression, which is also required for bone

development.

Meckel’s cartilage is a transient structure responsible for

mandible formation and undergoes endochondral-like ossification

to produce several bones during craniofacial development

[67,68,69,70,71]. Meckel’s cartilage is derived from ectomesench-

ymal cells from cranial neural crest (CNC) cells and non-CNC-

derived cells [72,73,74]. Sox9 is a critical transcription factor

required for cartilage formation and mutations in Sox9 are

associated with campomelic dysplasia, which is characterized by

skeletal defects and cranial dismorphology [75,76,77]. Sox9 is

expressed early in during development in the cranial neural crest

cells and regulates Col2a1 required for chondrocyte differentiation

and Sox9 appears to be a master regulator of cartilage

development [78,79]. Sox9 null mice die midway through

gestation, however the Sox9 conditional knockout with Wnt1-Cre

reveal craniofacial defects including a short mandible and a large

cleft palate [80,81]. Sox9 is required for Meckel’s cartilage growth

and inactivation of Sox9 leads to reduced Meckel’s cartilage

growth. Sox9 and Col2a1 expression are increased in the Fuz null

mice, which correlates with increased Meckel’s cartilage growth.

The expanded Meckel’s cartilage would cause increased endo-

chondral ossification as well giving rise to the boney mandible

structure observed in the Fuz null mouse mandible. Sox9

expression also occurs in the mouse head skeleton and some of

the bone defects could be due to the activity of Sox9 in these

tissues [77]. TGF–b signaling regulates chondrogenesis during

mandible development and may be regulated by Fuz [82,83]. We

are currently exploring these mechanisms.

Human Ciliopathies. There are multiple ciliary genes and

proteins associated with ciliopathies, (for reviews, [22,84,85]).

Human FUZ mutations have not been reported or associated with

syndromes with known ciliary pathology. However, Oral-Facial-

Digital syndrome, type1 (OFDI; OFD 1; OMIM311200) appears

to represent similar phenotypic features to the craniofacial defects

associated with the Fuz null mouse [86]. Although the tongue is

present but is malformed in these patients. This syndrome is

caused by mutations in the Cxorf5 transcript termed OFD1 [87]. It

belongs to a group of developmental disorders known as oral-

facial-digital syndromes and is characterized by malformations of

the oral cavity, face and digits [88]. OFD1 is also mutated in X-

linked Joubert syndrome [89]. OFD1 is a centrosomal protein

localized at the basal bodies of the primary cilia. The mouse OFD1

mutants reproduce the main features of the human syndromes and

have some features not observed in the Fuz null mouse [90,91,92].

OFD1 is nuclear localized and part of the human TIP60

chromatin-remodeling complex [93]. Recent data reveals that

Fuz is not in the nucleus but distributed throughout the cytoplasm

(unpublished data, Amendt laboratory). Fuz does not appear to be

associated with the plasma or nuclear membranes or specific

organelles. The role of FUZ in human disorders and the molecular

mechanisms of FUZ are currently being investigated.

In summary, Fuz is critical for Hh, PCP, and Wnt signaling

regulation and may serve to connect these distinct signaling

pathways. A tentative model linking Fuz to Hh, Wnt and PCP

signal pathways based on our data and others are shown in

figure 12. Fuz acts downstream of Frizzled and Dishevelled to

regulate PCP signaling. Non-canonical Wnt signaling represses

Wnt/b-catenin signaling and Fuz is involved in a negative

feedback loop of Wnt/b-catenin signal regulation. Loss of Fuz

leads to impaired PCP signaling and up-regulation of Wnt/b-

catenin signaling. In addition, it results in impaired actin cap and

cilia, which inhibits the activation of Gli transcription factors and

weakens Hh signaling. Loss of Fuz also causes up regulation of

Sox9. These factors together contribute to the complex defects

in craniofacial structures, delayed bone development and the

hyperplastic and malformed Meckel’s cartilage.

Materials and Methods

Ethics Statement
All animals were housed at the Institute of Biosciences and

Technology under the care of the Program of Animal Resources,

and were handled in accordance with the principles and procedure

of the Guide for the Care and Use of Laboratory Animals. All

experimental procedures were approved by the Texas A&M

Health Science Center, Institutional Animal Care and Use

Committee. Protocol number 09001, mouse models for tooth

development.

Animals
The Fuz gene trap mice were generated by the Texas A&M

Institute for Genomic Medicine and were described previously [7].

These mice were maintained in the C57BL/6 background. FuzLacZ

targeted ES cells corresponding to clone PG00134_Z_E03_2 were

purchased from the Knock Out Mouse Project (KOMP) Repository

and injected into blastocysts by the Texas A&M Institute for

Genomic Medicine. Four chimeras were obtained and mated

to wild-type C57BL/6 mice. Two chimeras yielded germ-line

transmission. Offspring from both chimeras were used for X-gal

staining and exhibited the same expression pattern. Embryos were

collected at various time points, considering the day of observation

of a vaginal plug to be embryonic day (E) 0.5. Genotyping PCR

primers for Fuz+/2 and Fuz2/2 mice and embryos were described

previously [7]. Genotyping PCR primers for FuzLacZ are as below:

forward, 59- CTCTCCTGGCAGCATGTCCT -39; reverse, 59-

TCCTCCTACATAGTTGGCAGTG -39. The resulting PCR

product represents the LacZ knockin allele, whereas the wild-type

allele does not generate any products. All PCR products were

sequenced to confirm their identity.

LacZ staining
Whole embryos of different stages were fixed for 20–40 minutes at

room temperature in the fix solution (0.2% glutaraldehyde, 2%

formaldehyde, 2 mM MgCl2, 5 mM EDTA pH 8.0 and 100 mM

NaH2PO4 pH 7.3) and washed three times in rinse solution (0.2%

Nonidet P-40 and 0.1% sodium deoxycholate, 100 mM NaH2PO4

pH 7.3 and 2 mM MgCl2). Embryos were stained for 72 hour at

37uC in staining solution (1.65 mg/ml potassium ferricyanide,

1.84 mg/ml potassium ferrocyanide, 2 mM MgCl2, 1 mg/ml

X-gal in rinse solution), rinsed in PBS and postfixed in 4%

paraformadehyde. Heads of both E12.5 and E14.5 embryos were

dehydrated through alcohol, embedded in paraffin and sectioned at

16 mm thickness.
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Histology and immunofluorescence
Samples were fixed in 4% paraformadehyde, dehydrated and

embedded in paraffin wax. Sections were cut (7 mm) and stained with

Hematoxylin and Eosin. Some embryos were fixed in Bouin’s

solution and subjected to Wilson section. Immunofluorescence was

done on 7 mm paraffin sections with standard procedure. Antigen

retrieval was done by boiling samples in 10 mM Sodium Citrate,

pH 6.0. Antibodies were obtained and diluted as follows: Ki67

(Abcam, ab15580-100) 1:500; Ptch1 (Abcam, ab53715) 1:300; Gli2

(Abcam, ab7195) 1:300; b-catenin (Upstate, 06-734) 1:500; Lef1 (Cell

Signaling, C12A5) 1:500; Tcf4 (Cell Signaling, C48H11) 1:500; Sox9

(Santa Cruz, sc-20095) 1:500. Secondary antibodies Alexa Fluor 488

goat anti-rabbit HCA were from Invitrogen (A11034) and used at

1:500 dilution. The Arl13b antibody (Abcam, ab83879) for cilia

staining was used at 1:500 and visualized using a Zeiss Axiovert 200

confocal microscope. Skeletal defects are shown by using Alcian

Blue/Alizarin Red staining of cartilage and bone in mouse (Cold

Spring Harb Protoc; 2009).

Real-time PCR analyses
Meckel’s cartilage and surrounding mesenchyme were dissected

from E14.5 mouse embryos. The Real-time PCR was performed

with different probes listed in the table 1. Experiments were

repeated three times each from multiple samples and p-values are

shown. Total RNA was extracted using the RNeasy mini kit from

Qiagen. Total RNA was reverse transcribed into cDNA by iScript

Select cDNA Synthesis kit (BioRad). Real-time PCR was carried

out in a total reaction of 25 ml containing 12.5 m iQ SYBR Green

Supermix, 0.1 mM forward primer, 0.1 mM reverse primer,

0.25 ml cDNA template in the MyiQ Singlecolor Real-Time

Detection System and analyzed by the MyiQ Optical System

Software 2.0 (BioRad). The Real-time PCR was performed with

gene specific probes. b-actin served as a reference gene. The

thermal cycling profile consisted of 95uC for 4 min followed by 40

cycles of denaturation at 95uC for 30 sec, annealing at 60uC for

30 sec and elongation at 72uC for 18 sec. Samples were run in

triplicate. Experiments were repeated three times each from

multiple samples and p-values were calculated. No-template

control was run in each experiment. Melting curve analyses were

performed to confirm amplification specificity of the PCR

products. All PCR products were sequenced to confirm their

identity.

Expression and reporter constructs
The expression plasmid containing the cytomegalovirus (CMV)

promoter linked to the mouse Fuz full length cDNA reverse-

transcribed from total RNA of NIH-3T3 cells was constructed into

pcDNA3.1 vector (Invitrogen). The 7xTopFlash reporter plasmid

was constructed into luciferase vector by inserting seven Lef/Tcf

binding sites upstream of the minimal TK promoter [94]. The

Figure 12. A tentative model linking Fuz to Shh, Wnt and PCP signal pathways. A) Fuz acts downstream of Frizzled and Dishevelled to
regulate PCP signaling. Non-canonical Wnt signaling represses Wnt/b-catenin signaling and Fuz is involved in a negative feedback loop of Wnt/b-
catenin signal regulation. Fuz also regulates assembly of the apical actin cytoskeleton, which is critical for ciliogenesis. Cilia formation can be directly
linked to Hedgehog signaling and Gli transcription factor activation. Activated Gli factors then regulate Hedgehog target genes. B) Loss of Fuz leads
to impaired PCP signaling and up-regulation of Wnt/b-catenin signaling. In addition, it results in impaired actin cap and cilia, which inhibits the
activation of Gli transcription factors and weakens Hedgehog signaling. Loss of Fuz also results in the up-regulation of Sox9.
doi:10.1371/journal.pone.0024608.g012
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mouse Fuz 2.4 kb promoter was constructed into the TK-

luciferase vector by replacing the minimal TK promoter [95].

Cell culture, transient transfections, luciferase and b-
galactosidase assays

CHO, HEK 293 FT, LS-8 and SW1393 cells (all cells were

purchased from the ATCC, except LS-8 cells [96]) were cultured

in DMEM supplemented with 10% FBS and penicillin/strepto-

mycin and transfected by electroporation. The method of transient

transfections, luciferase and b-galactosidase assays were described

previously [95]. LiCl was added to the specified cells at a final

concentration of 10 mM, 23 h before harvest. The pcDNA3.1

empty vector was added to equalize the total amount of co-

transfected expression vectors. All the plasmids were double-

banded CsCl purified.

Chromatin Immunoprecipitation (ChIP) analyses
The ChIP analyses were performed as described [97] using the

ChIP Assay Kit (Upstate) with the following modifications. LS-8

cells were fed for 24 h, harvested and plated in 60 mm dishes.

Cells were cross-linked with 1% formaldehyde for 10 m at 37uC
the next day. Samples were incubated with rabbit anti b-catenin

polyclonal antibody (Upstate 06-734) overnight at 4uC. An aliquot

of the immunoprecipitated DNA (3 ml) from non-transfected cells

were used for PCR (32 cycles). All reactions were done under an

annealing temperature of 61uC. Two primers for amplifying the

Lef/Tcf binding site in the Fuz promoter are as follows: sense- 59-

GCAACACCTTAGCACCATCA -39 and antisense, 59- GGCT-

AAATTCCTGCCTTCATC -39. All the PCR products were

evaluated on a 1% agarose gel in 16 TBE for appropriate size

(201 bp) and confirmed by sequencing. As controls the primers

were used without chromatin, normal mouse IgG was used

replacing the b-catenin antibody to reveal non-specific immuno-

precipitation of the chromatin.

Whole-mount In Situ Hybridization
Whole-mount in situ hybridizations with digoxigenin-labelled

riboprobes were performed as described [Chotteau-Lelièvre, 2006].

Expression analysis of murine genes using in situ hybridization with

radioactive and non-radioactively labeled probes. In: I.A. Darby

and T.D. Hewitson, Editors, Methods Mol. Biol. (third ed.), In Situ

Hybridization Protocols, Humana Press, Totowa, NJ (2006),

pp. 61–87.Chotteau-Lelièvre et al., 2006, using an Intavis InSitu

Pro robot. The detailed robotic procedure can be found at

http://empress.har.mrc.ac.uk/browser/ (gene expression section),

[Chotteau-Lelièvre, 2006]. Expression analysis of murine genes

using in situ hybridization with radioactive and non radioactively

labeled probes. (In: I.A. Darby and T.D. Hewitson, Editors,

Methods Mol. Biol. (third ed.), In Situ Hybridization Protocols,

Humana Press, Totowa, NJ (2006), pp. 61–87).

Statistics
Statistics were performed by two-sample t-test. P-values less

than 0.05 were considered to be significant.

Table 1.

Mouse

Shh F 59 AAGCTCACATCCACTGTTCT 39 Runx2 F 59 AACTTCCTGTGCTCCGTGCT 39

R 59 GTAAGTCCTTCACCAGCTTG 39 R 59 GCCATGACGGTAACCACAGT 39

Ptch1 F 59 GTGAGGAGCTCAGGCAATAC 39 Wnt5a F 59 GAGTTCGTGGACGCTAGAGA 39

R 59 GGAGGCTGATGTCTGGAGT 39 R 59 GAGCCAGACACTCCATGACA 39

Gli1 F 59 GAGAACCTTAGGCTGGATCA 39 Ror2 F 59 TTCTTCCTCGTCTGCATGTG 39

R 59 GACTGTGTAAGCAGAGCTCA 39 R 59 CCGAGCTCCTCCATGAACCT 39

Gli2 F 59 GAAGCTCAAGTCACTGAAGG 39 Pcdh8 F 59 TTCAATGACAGTGACTCGGA 39

R 59 ACTTCGGTCAGCTCTGGTAG 39 R 59 CTCCAGCAGCGATCAGAATG 39

Axin2 F 59 ACAGGAACCACTCGGCTGCT 39 Fuz F 59 CACTTGGAACTGCGACGCTG 39

R 59 AAGTAGGTGACAACCAGCTC 39 R 59 CACGAGATAACAGGCTCTGG 39

Ccnd1 F 59 CTGCGATGCAAGGCCTGAAC 39 Sox9 F 59 TTCCTCCTCCGGCATGAGT 39

R 59 GCGCAGGCTTGACTCCAGAA 39 R 59 CCTCTCGCTTCAGATCAACT 39

Ccnd2 F 59 GAGCTGCTGGCCAAGATCAC 39 Col2a1 F 59 GGCTCCAATGATGTAGAGATG 39

R 59 GACTTGGATCCGGCGTTATG 39 R 59 GGAGGTCTTCTGTGATCGGT 39

Lef1 F 59 GCAGCTATCAACCAGATCCT 39 Actin F 59 GCCTTCCTTCTTGGGTATG 39

R 59 GATGTAGGCAGCTGTCATTC 39 R 59 ACCACCAGACAGCACTGTG 39

Tcf4 F 59 AATGGCCACTGCTTGATGTC 39

R 59 TACGTGATGAGAGGCGTGAG 39

Human

FUZ F 59 GGAACTGAAGCGCTGCCTCT 39 COL2A1 F 59 TCTACCCCAATCCAGCAAAC 39

R 59 CTGGTAGACCTCATCTTCTG 39 R 59 GTTGGGAGCCAGATTGTCAT 39

SOX9 F 59 ACACTCCTCCTCCGGCATGA 39 ACTIN F 59 ACGCCAACACAGTGCTGTCT 39

R 59 TTGGAGATGACGTCGCTGCT 39 R 59 CGATCCACACGGAGTACTTG 39

doi:10.1371/journal.pone.0024608.t001
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