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The informational approach to continuous quantum measurement is derived from POVM formal-
ism for a mesoscopic scattering detector measuring a charge qubit. Quantum Bayesian equations for
the qubit density matrix are derived, and cast into the form of a stochastic conformal map. Mea-
surement statistics are derived for kicked quantum nondemolition measurements, combined with
conditional unitary operations. These results are applied to derive a feedback protocol to produce
an arbitrary pure state after a weak measurement, as well as to investigate how an initially mixed
state becomes purified with and without feedback.
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I. INTRODUCTION

Quantum measurement is usually taught in textbooks
as an instantaneous process. However, in nature, all pro-
cesses take a finite time. Physical projective measure-
ment (or wave-function collapse) must therefore happen
over some time period, and is often a sequence of weak
measurements, run for a sufficiently long time. Weak
quantum measurements are characterized by an intrinsic
uncertainty about the state of the measured system. In
the parlance of detector physics, this is equivalent to the
statement that the signal cannot be confidently distin-
guished from the noise without a sufficiently long integra-
tion time. At some intermediate time, the eigenstates of
the measurement operator can only be assigned a value
with some confidence, determined with the probability
of a given realization of the detector output (similarly to
classical Bayesian inference).

In solid state systems, the typically weak coupling con-
stant between the quantum system and measuring appa-
ratus imply that weak measurements with long measure-
ment times are the norm. While this is often frustrating
to experimentalists who wish to preform projective mea-
surement for quantum computation purposes, we view
this situation as an opportunity to discover and imple-
ment ideas in quantum measurement that are qualita-
tively different from standard projective measurement.
Although many results in this paper are abstract and ap-
ply to many different physical systems and detectors, the
results will be discussed in terms of solid state physics.
Quantum detection in mesoscopic structures began with
the “controlled dephasing” experiments of Ref. 1 and re-
lated theoretical works,2 which has continued to be an
active area of research.3 The particular mesoscopic struc-
ture we shall focus on presently is a quantum point con-
tact (QPC) detector measuring a double quantum dot
charge qubit (DD), a system that has been extensively
investigated, both theoretically4 and experimentally.5

A generic problem that arises if one is interested in

making a projective measurement, made out of many
weak measurements, is that the dynamics from the
Hamiltonian evolution combines in a nontrivial way
with the measurement dynamics. The way around
this problem is with quantum nondemolition (QND)
measurements.6 The QND scheme employed in this pa-
per is that of kicked QND measurements7,8,9,10,11,12 on a
qubit. This idea was discussed for the QPC in Ref. 9, and
was inspired by a similar rotating QND scheme of Ref. 13.
By turning the detector on and off in a time scale much
faster than the Rabi oscillation period, the detector gives
a little information about the quantum state. The qubit
is then allowed to make a full Rabi oscillation before the
next weak measurement, so the measured observable is
static in time from the perspective of the measurement
device, effectively turning off Hamiltonian evolution. In
this fashion, the information contained in the qubit is
teased out over many measurements, or detector kicks.
Kicked QND measurements have many advantages that
recommend them as a technique of choice both for theo-
retical treatment, as well as for experimental implemen-
tation:

• Theoretically, the kicked measurements may be de-
scribed with a non-unitary quantum map. The map
is discrete in the time index, but the measurements
are weak, not projective. The quantum map for-
malism allows for a technically simple treatment
of the combined Hamiltonian and measurement-
induced dynamics in a global manner, in contrast to
continuous measurement analysis using conditional
differential Langevin equations.

• The kicking mechanism is convenient, in that it al-
lows the measurement strengths to be fully tunable
by adding more kicks, as well as the easy inclusion
of unitary operations by simply waiting a fraction
of a Rabi period.

• Kicked QND measurements may be implemented
in experiments with several advantages. The kicks

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/231869374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/cond-mat/0606676v1


2

may be accomplished with a pulse generator on a
QPC measuring a DD, and the waiting time be-
tween kicks gives external decision circuitry the
needed time to process the data in order to do
real-time feedback. Also, the pump variation in-
troduced in Ref. 11 removes the uninteresting back-
ground signal of the measurement, and just gives
the bare output signal as either positive or negative
pumped current.

The purpose of this paper is two-fold. The first topic
is formal: To start with the well-known POVM approach
to generalized measurements, and derive the quantum
Bayesian formalism from it, starting with a scattering
detector. The detector physics allows a natural transla-
tion of the abstract POVM formalism into physical pro-
cesses, and the quantum Bayesian formalism is recovered
in the weak coupling limit. After discussing kicked-QND
measurements, we show how both kicked measurements
and unitary operations may be recast in terms of con-
formal maps, and demonstrate a close parallel with the
mathematics of the special theory of relativity.
The second topic is physical: the formal results are

applied to make predictions using conditional operations
with real-time feedback: (1) We derive an algorithm to
deterministically produce an arbitrary pure state after
a (random) weak measurement using feedback. (2) We
investigate the purification process under measurement
and generalize Jacobs’ qubit feedback protocol to speed
up purification with feedback.14

The paper is organized as follows. In Sec. II, we de-
rive the quantum Bayesian formalism from POVMs ap-
plied to a mesoscopic scattering detector in the weak cou-
pling limit. Kicked QND measurements are reviewed in
Sec. III, in the context of the quantum Bayesian formal-
ism. In Sec. IV we introduce a stereographic projection
representation, and rewrite the measurement dynamics
as a stochastic conformal mapping. A close analogy to
special relativity is also discussed. Sec. V combines
kicked measurements with unitary operations, and calcu-
lates measurement statistics. Sec. VI introduces condi-
tional phase shifts in order to deterministically produce
the same quantum state after a measurement. In Sec.
VII, we investigate the purification process of any ini-
tially mixed density matrix under kicked measurement.
Sec. VIII contains our conclusions.

II. DERIVATION OF THE QUANTUM

BAYESIAN FORMALISM FROM POVM

The formalism used in this paper is called the quantum
Bayesian approach15 because it may be considered as a
generalization of classical Bayesian inference. An anal-
ogous approach to quantum measurement that is bet-
ter known in the quantum information community has
been given the unfortunate name of positive operator-
valued measure (POVM) formalism.16,17 In this section,

the quantum Bayesian formalism for a solid state system
is derived from POVMs.
Consider a bipartite system composed of A and B,

where the states of B are expressed in the orthonormal
basis |Q〉B , and the states of A are expressed in the or-
thonormal basis |j〉A. A unitary transformation that en-
tangles the states in A with the states in B is given by

|ψ〉A|0〉B →
∑

Q

MQ|ψ〉A|Q〉B, (1)

where we consider an initial state |ψ〉A in A, described
by a density operator ρA, an initial state |0〉B in B, and
have introduced the measurement operatorsMQ that are
indexed by the states in B, and operate in A. The nor-
malization of the states gives the completeness relation,
∑

Q M
†
QMQ = 1. Now make a projective measurement

on B alone, and find the result Q. Any measurement of
this kind may be described as a POVM in A. The prob-
ability of finding the result Q, called P (Q), is given by

P (Q) = Tr(ρAM
†
QMQ), (2)

while the outcome of this measurement prepares a new
density operator of A, conditioned on the outcome Q,
and is given by

ρ′A =
MQ ρA M

†
Q

Tr(ρAM
†
QMQ)

. (3)

This defines a mapping ρ′A = $(ρA) from density oper-
ators to density operators, known as a super-operator,
which is not unitary in general.
While the above results are standard generalizations of

projective measurement on A, the abstract formulation
obscures how to practically apply the POVM to a spe-
cific physical system. We now consider such a system in
the solid-state: the quantum point contact (QPC), mea-
suring the state of a double quantum dot (DD), in order
to see how the POVM translates into physical language.
The Coulomb interaction between the DD and QPC al-
ters the transport properties of the QPC, and can thus be
used to detect which quantum dot the DD electron occu-
pies. The QPC is described with the help of a scattering
matrix Sj that depends on the physical state of the DD.
Following Averin and Sukhorukov,18 the unitary evolu-
tion of the total state during the scattering process is
comprised of the state of an individual electron (system
B) incident from the left electrode, |in〉B, and the state
of the DD (system A), α|1〉A + β|2〉A, evolving as

|in〉B(α|1〉A + β|2〉A) → (4)

α(r1|L〉B + t1|R〉B)|1〉A + β(r2|L〉B + t2|R〉B)|2〉A,

where |L,R〉B represent scattering states of the QPC that
have either been reflected or transmitted, and the trans-
mission and reflection amplitudes tj and rj are elements
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of the scattering matrix Sj :

Sj =

(

rj t̄j
tj r̄j

)

. (5)

The state of the “logical” qubit of the DD, is now entan-
gled with the “ancilla” qubit of the left/right position of
the QPC electron, and this comprises the bipartite sys-
tem. Using the evolved state (4), we can now read off the
measurement operators, MQ, of this unitary operation in
the (|0〉A, |1〉A) basis,

ML =

(

r1 0
0 r2

)

, MR =

(

t1 0
0 t2

)

, (6)

and easily verify that M†
LML+M

†
RMR = 1 from proba-

bility conservation. Counting the electron in the collector
of the QPC gives a random outcome, Q = 1 if the elec-
tron is counted, or Q = 0 if the electron is not counted,
and makes a projective measurement on the B part of
the Hilbert space. Equation (2) gives the probability of
counting the electron (or not),

P (1) = ρ11T1 + ρ22T2, P (0) = ρ11R1 + ρ22R2, (7)

where ρij are the elements of the DD density matrix in
the |1, 2〉 basis, Tj = |tj |2, Rj = |rj |2, and Tj + Rj = 1.
The density matrix of the DD qubit may be updated,
given the outcome of the measurement with Eq. (3). If
Q = 1, so an electron is counted, then

ρ′11 = T1ρ11/P (1), ρ′22 = 1− ρ′11,

ρ′12 = (ρ′21)
∗ = t1t

∗
2 ρ12/P (1)

= ρ12 e
iξ
√

ρ′11ρ
′
22/ρ11ρ22, (8)

where ξ= Arg(t1t
∗
2); while if Q = 0, so an electron is not

counted, or equivalently, a hole is counted, then

ρ′11 = R1ρ11/P (0), ρ′22 = 1− ρ′11,

ρ′12 = (ρ′21)
∗ = r1r

∗
2 ρ12/P (0)

= ρ12 e
iχ
√

ρ′11ρ
′
22/ρ11ρ22, (9)

where χ= Arg(r1r
∗
2).

The results (8,9) have a natural interpretation as a
quantum Bayes formula: The diagonal density matrix el-
ements are interpreted as classical probabilities, and are
updated according to the classical Bayes formula, while
the off-diagonal elements have a more exotic rule.15 Note
that if the initial DD qubit state is pure, it remains pure
after the measurement. This is because while the entan-
glement enlarged the effective Hilbert space which would
lead to decoherence if the entangled information went
undetected, the measurement of the QPC electron col-
lapses the 2-particle state back down to a different pure
DD state.
It is instructive to contrast the POVM procedure with

the well known “decoherence” approach to quantum mea-
surement in this most simple case. The decoherence ap-
proach corresponds to explicitly averaging the elements

of the density matrix over all possible outcomes of the
detector. In this case, the two possible outcomes of the
measurement (8,9) are used to obtain

〈ρ′11〉 = P (0)ρ′11(0) + P (1)ρ′11(1) = ρ11 (10)

for the diagonal elements (ρ22 = 1− ρ11), and

〈ρ′12〉 = P (0)ρ′12(0)+P (1)ρ
′
12(1) = (t1t

∗
2+r1r

∗
2)ρ12 (11)

for the off-diagonal elements (ρ21 = ρ∗12), in agreement
with Averin and Sukhorukov.18,19 The new off-diagonal
matrix elements are reduced because |t1t∗2 + r1r

∗
2 | ≤ 1,

resulting in effective decoherence, while the diagonal ma-
trix elements are preserved. The predictive advantage of
the quantum Bayesian approach comes from not averag-
ing over the measurement results, but rather conditioning
the quantum density matrix on the result obtained in a
particular physical realization.
The above POVM analysis is not difficult to extend

to M “ancilla” qubits, or QPC electrons. The basis |Q〉
is now spanned by M qubits, each being projected to ei-
ther 0 or 1. Rather than find the probability of obtaining
a given sequence of 0s and 1s in the output, it happens
that it is sufficient to find the probability of just obtaining

the total charge n =
∑M

i=1Qi, given M attempts, where
Qi = (0, 1). In other words, sequence does not matter,
only the total number of counted electrons. This map-
ping is illustrated in Fig. 1, where the ancilla outcome 1
or 0, is mapped respectively into either counting an elec-
tron, or not counting an electron in the current stream.
The generalization of the quantum Bayesian rules (7-9)
for M ancilla qubits is done by replacing the success prob-
abilities Tj , and the failure probabilities Rj = 1 − Tj by
the probability P (m,M |j) to measure m electrons in M
attempts, under the condition that the qubit is in state
|j〉,

P (m,M |j) =
(

M
m

)

Tm
j (1− Tj)

M−m, (12)

which is the binomial distribution.
While this is sufficient for the diagonal matrix ele-

ments, the off-diagonal matrix elements get a different
phase shift after each electron is measured. The total
phase shift is Φ(m,M) = Mχ +m(ξ − χ), which is de-
terministic if ξ = χ. The symmetric quantum point con-
tact has the property that ξ = χ = 0,2,4 so this sim-
plification will be made in the rest of the paper. For
many electrons M , the current is determined by m/M .
The physically relevant weak-coupling (weakly respond-
ing) limit corresponds to (T1 − T2)/(T1 + T2) ≪ 1. Ap-
pealing to the central limit theorem, we treat the detec-
tor shot noise in the Gaussian approximation with little
lost information.20 The QPC detector is efficient, in the
sense that no information about the DD qubit is lost in
the noisy current output.4,15 This is analogous to saying
in the logical language that no ancilla qubit was left un-
projected, and that the unitary operations did not hide
any qubit information in the phase of the ancilla qubits
that is destroyed after projection in the left/right basis.
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0 0 1 1

0 0 1 1 0

1

|2〉

|1〉

α|1〉 + β|2〉

|1〉

|2〉

α|1〉 + β|2〉

FIG. 1: Weak entangling of a logical qubit with many ancilla qubits, followed by projective measurement on the ancilla qubits
can be mapped onto the measurement of a quantum double dot by the transport electrons of a quantum point contact. Two
given measurement realizations are shown, depending on whether the logical qubit state is either |1〉 or |0〉. The random ancilla
result 1 is mapped onto measuring an electron in the current collector (denoted with a filled circle), while the random ancilla
result 0 is mapped onto not measuring an electron in the current collector, or equivalently, measuring a hole (denoted with an
empty circle). The fact that the states |1〉 and |2〉 of the logical qubit alters the probability of projecting the ancillas to 0 or 1,
allows a weak POVM measurement on the logical qubit.

One manifestation of an efficient detector in the de-
phasing approach, is that the measurement rate coin-
cides with the measurement-induced dephasing rate.4,15

Ref. 18 related the measurement rate to one of the
Rényi entropies, or the statistical overlap O1,2 =
∑

m[P (m,M |1)P (m,M |2)]1/2, and showed that for the
symmetric QPC it coincides with the reduction of the
off-diagonal matrix elements. It is one feature of the
quantum Bayesian approach that this particular measure
comes out in a natural way. To see this, we first note a
general property of the density matrix, |ρ12| ≤

√
ρ11ρ22,

that simply comes from the density matrix eigenvalues
being bounded between zero and one. Next, we consider
an initially pure state (|ρ12| =

√
ρ11ρ22) and notice that

the elements of the density matrix after a measurement,
ρ′, obey the relation

∣

∣

∣

∣

ρ′12
ρ12

∣

∣

∣

∣

≤
√

ρ′11ρ
′
22

ρ11ρ22
. (13)

The above relation is valid for every given measurement
outcome, so it is also valid after averaging over the distri-
bution of results, 〈O(m)〉 =

∑

m P (m,M)O(m), where
O is any observable, and P (m,M) = ρ11P (m,M |1) +
ρ22P (m,M |2). Using the classical Bayes rule for the di-
agonal elements, taking O = |ρ′12/ρ12|, and the fact that
|〈O〉| ≤ 〈|O|〉, we obtain the generalized efficiency rela-
tion

∣

∣

∣

∣

〈

ρ′12
ρ12

〉
∣

∣

∣

∣

≤
∑

m

√

P (m,M |1)P (m,M |2). (14)

Notice this relation is quite general, as no particular up-
date rule for the off-diagonal matrix element has been
invoked. Therefore, a detector reaching the upper bound
(14) can naturally be called ideal, or 100% efficient. (For
the appropriate definition of efficiency for an asymmetric
detector see, e.g., Refs. 15,21.)

Thus far, we have focused only on the dynamics of the
measurement process, and have neglected the Hamilto-
nian evolution of the DD qubit. This evolution rotates
the quantum state, and continually changes the effective
measurement basis, which typically ruins the desired con-
tinuous measurement. The way to get around this both-
ersome detail is with QND measurements, the subject of
the next section.

III. KICKED QND MEASUREMENTS

The unifying theme behind all QND schemes is to cou-
ple the measurement apparatus to the qubit with an op-
erator that is an approximate constant of motion of the
measured quantum system.6 In this way, the detector
only measures the state in the desired fixed basis, and the
internal quantum dynamics that would otherwise spoil
the desired measurement is circumvented. The specific
scheme we employ in this paper is that of kicked QND
measurements, introduced by V. Braginsky et al.7 and
K. Thorne et al.8 for the harmonic oscillator. In Ref. 9,
this idea is introduced for two-state systems by making
an analogy to a cat playing with a string that moves
in a circle. In the kicked QND mode, the cat sits in
one spot waiting for the string to come to it, and only
then bats at it. The motion in a circle comes from the
simple Hamiltonian evolution of a two-state system. If
H = ǫσz/2 + ∆σx/2 is the qubit Hamiltonian, where ∆
is the tunnel coupling energy, and ǫ is the energy asym-
metry, then unitary evolution for a time t is given by

U = exp[−it(ǫσz +∆σx)/2] = 1 cos(Et/2) (15)

− iσz(ǫ/E) sin(Et/2)− iσx(∆/E) sin(Et/2),

where E =
√
ǫ2 +∆2, and ~ = 1 throughout the paper.

From the perspective of the qubit, the measurement ap-
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FIG. 2: (color online). (After Ref. 11). Visualization of the
kicked QND measurement scheme. A voltage pulse is applied
to the quantum point contact on a time scale τV ≪ τq, fol-
lowed by a quiet period of zero voltage bias, lasting for a
Rabi oscillation period τq, followed by another pulse, and so
on. The up/down variation is depicted, where the kicks come
every half period, and the sign of the voltage pulse alternates
with every kick. In this scheme, qubit read-out is by sim-
ply measuring the sign of the current, and corresponds to an
elementary quantum pump.

paratus only measures at approximately discrete points
in time. In this reduced problem, by choosing the wait-
ing time between kicks to be τq = 2π/E (or some integer
multiple n thereof), the unitary evolution (15) becomes
U → (−1)n. The operator we want to measure is then
static in time, and is thus a QND measurement. (The
evolution is also simple if n is a half-integer, especially if
ǫ = 0). However, from the point of view of the detector,
the on/off pulse lasts much longer than any detector time
scale, so many electrons pass through the QPC. If τ0 is
the time scale of the QPC electron correlation, τV the
time scale of the pulse duration, and τq is the Rabi oscil-
lation period, then the considered time scale ordering is
τ0 ≪ τV ≪ τq.

22

A pump variation on kicked QND measurements was
given by Büttiker and the authors in Ref. 11, where in-
stead of giving the same kick every Rabi oscillation, the
experimentalist gives a sequence of voltage kicks to the
QPC with a pulse generator, alternating in sign, every
half oscillation period (see Fig. 2). In this scenario,
we have shown that if ǫ = 0, qubit readout is accom-
plished by pumping current: the kicks provide one AC
current source, and the dynamics of the qubit provides
another (intrinsically quantum mechanical) AC current
source, that nevertheless causes a net DC current flow in
the QPC.23,24 There are two limiting cases the system is
driven into: Either the qubit oscillations are of the same
phase with the pump oscillations, pumping positive cur-
rent, or the qubit oscillations are of opposite phase with
the qubit oscillations, pumping negative current.

To characterize the result of each measurement kick,
the parameters of the measurement process with an
ideal QPC detector are specified by the currents, I1
and I2, produced by the detector when the qubit is
in state |1〉 or |2〉, and the detector shot noise power
SI = eI(1 − T ) (where T is the transparency).26 The
typical integration time needed to distinguish the qubit

signal from the background noise is the measurement
time TM = 4SI/(I1 − I2)

2. Shifted, dimensionless vari-
ables may be introduced by defining the current origin
at I0 = (I1 + I2)/2, and scaling the current per pulse as
I − I0 = x(I1 − I2)/2, so I1,2 are mapped onto x = ±1.
The weak static coupling (per pulse) between QPC and
DD implies that the kick duration τV is less than the
measurement time TM . We take x to be normally dis-
tributed with variance D = TM/τV . The typical number
of kicks needed to distinguish the two states is D, where
we assume D ≫ 1.
The measurement result I after N kicks is

I =
1

N

N
∑

n=1

xn, (16)

and we seek the conditional probability distribution
P (I, N |ρ) of measuring the dimensionless current I,
starting with a given density operator ρ prepared be-
fore the first kick. The functions P (I, N |j) are defined
as classical probability distributions of the current with
mean I = ±1 (if j = ±1) and variance σ2 = D/N , the
Gaussian equivalent of (12),

P (I, N |1) ≡ 1
√

2πD/N
exp

[

− (I − 1)2

2D/N

]

,

P (I, N |2) ≡ 1
√

2πD/N
exp

[

− (I + 1)2

2D/N

]

, (17)

and the notation Pj(xn) is adopted for the j = 1, 2 dis-
tributions of the nth kick. The probability density of
measuring the result xn after one kick is determined by
the state of the qubit just before the measurement, and
is given by the analog of (7),

P (xn) = ρ
(n)
11 P1(xn) + ρ

(n)
22 P2(xn). (18)

The density matrix of the qubit is updated based on the
information obtained from the measurement that just oc-
curred. This is done with the quantum Bayesian update
rules,15 that defines a non-unitary quantum map directly
analogous to Eqs. (8,9),

ρ
(n+1)
11 =

ρ
(n)
11 P1(xn)

ρ
(n)
11 P1(xn) + ρ

(n)
22 P2(xn)

,

ρ
(n+1)
12 = ρ

(n)
12

√

ρ
(n+1)
11 ρ

(n+1)
22 /ρ

(n)
11 ρ

(n)
22 ,

ρ
(n+1)
22 = 1− ρ

(n+1)
11 , ρ

(n+1)
12 = (ρ

(n+1)
21 )∗. (19)

This quantum map is a probabilistic, non-unitary relative
of the unitary maps studied in kicked quantum chaos.27,28

The advantage of QND measurement in the Bayesian ap-
proach is seen by using Eqs. (19) to express the condi-
tional probability density P (xn) in terms of the result of
the preceding kick xn−1. It follows from (18,19) that

P (xn) =
ρ
(n−1)
11 P1(xn−1)P1(xn) + ρ

(n−1)
22 P2(xn−1)P2(xn)

P (xn−1)
.

(20)
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This recursive relation helps in the calculation of the (un-
conditional) probability distribution P (I, N |ρ) of finding
current I, starting with the density matrix ρ, after N
kicks, given by

P (I, N |ρ) =
∫ N
∏

n=1

dxnP (xn) δ

(

I −
N
∑

i=1

xi/N

)

. (21)

Each application of (20) generates a denominator that
cancels the probability density immediately preceding it
in (21). Making N iterations of (20) gives

P (I, N |ρ) =
∫ N
∏

n=1

dxn [ρ11P1(x1) . . . P1(xN ) + ρ22P2(x1) . . . P2(xN )] δ(I −
N
∑

i=1

xi/N) = ρ11P (I, N |1)+ρ22P (I, N |2),

(22)

where ρ11, ρ22 are the diagonal matrix elements of the
original density matrix, and the N Gaussians compose
to form one Gaussian with a variance N times smaller.
As N is increased, the two qubit states can be distin-
guished with greater statistical confidence, and eventu-
ally the distributions limit to delta-functions, giving ei-
ther I = 1 with probability ρ11, or I = −1 with probabil-
ity ρ22. A one-sigma confidence is obtained whenN = D,
as previously stated.
It is worthwhile to point out several features of the

above QND measurement. First, N weak measurements
simply compose to make an N -times stronger measure-
ment. Second, the QND measurement output only in-
volves the diagonal density matrix elements. It is for
this reason that the output of a quantum nondemoli-
tion measurement is equivalent to noisy classical mea-
surement, where the detected “classical probabilities” are
given by the diagonal density matrix elements in the
preferred measurement basis. In spite of the classical
nature of the detector output, the qubit state prepared
after the N measurements can be deduced from the out-
come of the random variable I. To characterize the post-
measurement density matrix, we note another recursion
relation from (19),

ρ
(n+1)
11 /ρ

(n+1)
22 = [ρ

(n)
11 /ρ

(n)
22 ][P1(xn)/P2(xn)]

= [ρ
(n)
11 /ρ

(n)
22 ] exp(2xn/D). (23)

This result may be composed N times, and the update
of the off-diagonal matrix element (19) follows from (23).

Using the definition I = (1/N)
∑N

n=1 xi, the measure-
ment of a given random current I prepares a new density
matrix of the DD,

ρ′ =
1

ρ11 eγ + ρ22 e−γ

(

ρ11 e
γ ρ12

ρ∗12 ρ22 e
−γ

)

, (24)

where γ = IN/D is the rescaled measurement result,
named the rapidity of the measurement, for reasons given
in the Sec. IV. The conditional quantum dynamics of
Eq. (24) is illustrated in Fig. 3, for all pure states, and the
density matrix is parameterized as ρ = (1+

∑

iXiσi)/2,

(a) (b)

(e)(d)

(c)

FIG. 3: (color online). (After Ref. 11). The conditional
evolution of all initial pure states, represented on the Bloch
sphere, under continuous QND measurement by an efficient
detector. From (a-e), the rapidity of the measurement is
γ = NI/D = (−1,−.5, 0, .5, 1) respectively. As the detec-
tor obtains more information about the quantum state, we
can with greater statistical certainty distinguish the post-
measurement quantum state, so the Bloch sphere is more and
more red (|1〉) or blue (|2〉), depending on the value of the
rapidity measured. The conditional evolution of several rep-
resentative states is also indicated with black arrows. The
view-point is parallel to the equator of the Bloch sphere, so
|1〉 → North pole, and |2〉 → South pole.

so (X,Y, Z) give coordinates on the Bloch sphere. The
X and Y behavior follows from Z, which is in turn condi-
tioned on the detector output I, so the sphere is colored
according to the conditional evolution of Z,

Z ′ =
sinh γ + Z cosh γ

cosh γ + Z sinh γ
. (25)

If the rapidity γ is positive, then states are “attracted”
toward the North pole, while if the rapidity γ is nega-
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tive, then states are “attracted” toward the South pole.
As the rapidity grows increasingly positive or negative,
we become more confident which state the qubit has con-
tinuously collapsed to, but this also depends on the initial
state. The conditional evolution of several representative
states is indicated with black arrows.
While the whole point of the kicked QND proposal was

to effectively turn off the qubit unitary evolution while
the continuous measurement is taking place, a much
more interesting situation arises when continuous (non-
unitary) measurements are combined with controlled uni-
tary rotations. The kicked measurement set-up provides
a simple way of generating a single-qubit rotation: wait-
ing. Rather than spacing the pulses by a full Rabi os-
cillation as previously described, we choose to wait some
fraction r of a Rabi oscillation, twait = rτq , that defines
a phase shift φ = 2πr. A single-qubit unitary operation
(expressed in the z-eigenbasis),

U =

(

a −b∗
b a∗

)

, (26)

may be executed by choosing r, such that a = cos(φ/2)−
i(ǫ/E) sin(φ/2), and b = −i(∆/E) sin(φ/2), by using the
Hamiltonian evolution of the qubit, Eq. (15). Varying r,
any point may be reached on a circle on the Bloch sphere,
which is fixed by ǫ and ∆. In order to reach any pure
state (up to an overall phase) by Hamiltonian evolution
starting with a pure state, the qubit asymmetry ǫ should
also be varied between the kicks with gate voltages.

IV. POVM MEASUREMENT AS A

STOCHASTIC CONFORMAL MAP

Before considering specific examples of weak measure-
ment, combined with unitary operations, we first refor-
mulate the above set of weak measurements (18,19), and
unitary operations (26) in an important special case:
where the initial state is pure, the detector is efficient
(as considered in this paper), so the post-measurement
state is also pure. The initial arbitrary DD state is
defined as |ψ〉 = α|1〉 + β|2〉, with density matrix ele-
ments ρ11 = |α|2, ρ12 = αβ∗, ρ21 = ρ∗12, ρ22 = |β|2 =
1−ρ11. Represented as coordinates on the Bloch sphere,
(X,Y, Z), both measurements and unitary operations
leave the state on the surface, X2 + Y 2 + Z2 = 1.
Now make a stereographic projection of the Bloch

sphere onto the complex plane, with the complex vari-
able ζ, defined as

ζ = ρ12/ρ22 = (X + iY )/(1 − Z) = α/β. (27)

The South pole of the Bloch sphere is identified as the
origin of the ζ plane, while the North pole is identified as
∞ on the ζ plane. Translating the unitary operation (26)
on the qubit into an operation on the complex variable
ζ, we find the conformal mapping,

ζ′ =
aζ − b∗

bζ + a∗
, (28)

known as a Möbius transformation. The group algebra
of unitary rotations maps onto the group algebra of con-
formal Möbius transformations. Reference 29 points out
that this property can be used to demonstrate operator
product identities for one qubit.
Translating the non-unitary Bayesian update equa-

tions for the density matrix (19), as an operation on the
complex coordinate ζ, we find the following stochastic

conformal mapping:

ζ′ = ζ
√

P1(x)/P2(x) = ζ exp(x/D). (29)

This conformal mapping is simply a random scale trans-
formation with two fixed points: one at 0 (the South pole,
state |2〉) and the other at ∞ (the North pole, state |1〉).
The random variable x is chosen from the probability
distribution (18), which translates to

P (x) =
ζP1(x) + (ζ∗)−1P2(x)

ζ + (ζ∗)−1
. (30)

Thus, any sequence of weak measurements, combined
with unitary operations can be translated into repeated
conformal mapping. We note that after an arbitrary se-
quence of weak measurements and unitary operations,
the definition ζ = α/β, together with the normalization
of the state, |α|2+|β|2 = 1, immediately allows the wave-
function to be read off (up to an overall phase). The
inclusion of asymmetric measurements, where the phase
shift in Eq. (9) is kept for a broader class of scattering
matrices may also be easily included. This phase shift
has the effect of twisting the Bloch sphere proportionally
to the value of current measured, which is equivalent to
including phases in the scale factor,

ζ′ = ζ exp(iθ1) exp[x(1 + iθ2)/D], (31)

where θ1, θ2 correspond to the continuous limit of the
total acquired phase shift Φ(m,M) = Mχ + m(ξ − χ),
described in Sec. II. The mapping (31) is obviously still
conformal.
If we momentarily let x be a deterministic variable,

then the set of Möbius mappings form a group, and the
set of deterministic scale transformations form a differ-
ent group. A natural question that arises is what (if
any) group is described by the composition of (28), with
(29)? Amusingly, the answer is provided by the special
theory of relativity. Consider a relativistic four-vector
(X,Y, Z, T ). As is well known, any element of the Lorentz
group may be produced by making a spatial rotation,
followed by a boost in the (say) Z direction, followed by
another spatial rotation. The boost from (X,Y, Z, T ) to
(X ′, Y ′, Z ′, T ′) in the Z direction may be described as a
hyperbolic rotation

(

T ′

Z ′

)

=

(

cosh γ sinh γ
sinh γ cosh γ

)(

T
Z

)

, X ′ = X, Y ′ = Y,

γ = (1/2) log

(

1 + v

1− v

)

, (32)
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where the rapidity γ is introduced in terms of the velocity
parameter v, the physical velocity measured in units of
the speed of light, c = 1.
To connect this to spinor formalism, we follow the dis-

cussion in Penrose and Rindler,30 and define a Hermitian
coordinate operator,

C =

(

T + Z X + i Y
X − i Y T − Z

)

. (33)

Translating the boost (32) into an operation on the co-
ordinate operator C yields

C
′ = ACA

†, A =

(

eγ/2 0
0 e−γ/2

)

. (34)

By fixing T = 1, the celestial sphere X2 + Y 2 + Z2 = 1
is defined. The celestial sphere is then stereographi-
cally projected, defining the complex variable ζ = (X +
iY )/(1 − Z). In the complex plane, the boost is simply
a scale transformation,

ζ′ = ζ exp γ. (35)

To extend the analysis to N boosts with rapidities γi,
the mapping simply composes the N scalings, to pro-

duce a boost with rapidity γ =
∑N

i=1 γi. This conformal
mapping is identical with (29), the analogous quantum
measurement composition, if γ = NI/D, the quantum
measurement parameter, is identified with the rapidity
of the boost. Furthermore, any spatial rotation of the
sphere may be interpreted as a unitary operation on the
Bloch sphere, which projects to the Möbius mapping (up
to an overall phase). Thus, the group described by the
composition of (28), with (29) is the (restricted) Lorentz
group.
The difference with the relativity analogy comes when

we recall that γ =
∑

i xi/D is a random variable. The
distribution of this random variable (30), explicitly de-
pends on the “space-time” coordinates ζ, and thus breaks
the Lorentz invariance by introducing a preferred refer-
ence frame, the Z-axis, with Z = ±1 as the attracting
fixed points. From the quantum measurement point of
view, this is a consequence of choosing to measure along

the Z-axis. Therefore, for pure states, the mapping (29,
30) may be viewed as a stochastic Lorentz semi-group.

V. COMBINED WEAK MEASUREMENTS AND

UNITARY OPERATIONS

After having separately described weak measurement
and unitary operations, we now combine them. Consider
an experiment, where N1 kicks are made, followed by a
single qubit unitary operation U (produced by inserting
a dislocation into the pulse sequence), followed by N2

kicks. The measurement results I1 and I2 are defined as

I1 =
1

N1

N1
∑

i=1

xi, I2 =
1

N2

N1+N2
∑

i=N1+1

xi. (36)

We seek the normalized probability distribution
P (I1, N1; I2, N2) of finding current I1 after N1 kicks,
and I2 after N2 subsequent kicks. This distribution may
also be interpreted as joint counting statistics.
The analysis from Sec. III indicates that after the first

N1 kicks, the measured current I1 will occur with a prob-
ability given by (22), and prepares a post-measurement
density matrix ρ′, given by (24), described with the ra-
pidity of the measurement γ = I1N1/D. The subsequent
unitary operation U (26), (characterized by a phase φ)
rotates the post-measurement density matrix,

ρnew = U ρ′ U†. (37)

The following set of N2 kicks start with the density ma-
trix (37), and continue to measure in the z-basis as be-
fore. Equation (22) may be applied again with the mod-
ified initial density matrix (37) to deduce the (uncondi-
tional) probability distribution of finding result I1 after
N1 kicks, and result I2 after N2 kicks,

P (I1, N1; I2, N2) = P (I1, N1|ρ)× P (I2, N2|ρnew), (38)

where P (Ii, Ni|ρ) is given in (22), and the new density
matrix elements are given in terms of the phase φ and
rapidity γ as (we let ǫ = 0 for simplicity),

ρnew11 =
cos2(φ/2)ρ11e

γ + sin2(φ/2)ρ22e
−γ − 2 sin(φ/2) cos(φ/2) Imρ12

ρ11eγ + ρ22e−γ
, ρnew22 = 1− ρnew11 ,

ρnew12 =
Reρ12 + (i/2) sinφ (ρ11e

γ − ρ22e
−γ) + i cosφ Imρ12

ρ11eγ + ρ22e−γ
, ρnew21 = (ρnew12 )∗, (39)

and the natural Hamiltonian dynamics performs the
unitary operation (15,26). One interesting feature of
the result (38,39) is that the outcome of the first N1

measurements, I1, appears in the expression involving
the variables of the second set of kicks. This immedi-
ately implies that the distribution does not factorize,
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P (I1, N1; I2, N2) 6= P1(I1, N1)P2(I2, N2). The effect
comes from the first set of measurements preparing a
given density matrix of the DD, which affects the results
of the next set of measurements. From the distribution
(38), the average current in each interval, as well as the
correlation between the two may be calculated:

〈I1〉 = ρ11 − ρ22,

〈I2〉 = (ρ11 − ρ22) cosφ− 2 exp(−N1/2D) sinφ Im ρ12,

〈I1I2〉 = cosφ. (40)

Also, as N1, N2 are taken to infinity in (38,39), the distri-
bution PPM(I1, I2) from making simple projective mea-
surements on the DD is recovered,

PPM = ρ11 cos
2(φ/2) δ(I1 − 1)δ(I2 − 1)

+ ρ11 sin
2(φ/2) δ(I1 − 1)δ(I2 + 1)

+ ρ22 sin
2(φ/2) δ(I1 + 1)δ(I2 − 1)

+ ρ22 cos
2(φ/2) δ(I1 + 1)δ(I2 + 1). (41)

It is now straightforward to generalize the result (38,39)
to any number ofm−1 dislocations in the pulse sequence,
each of which has a phase shift of φk (and now ǫ is arbi-
trary),

P ({Ij , Nj}) =
m
∏

k=1

[

ρ
(k)
11 P (Ik, Nk|1) + ρ

(k)
22 P (Ik, Nk|2)

]

,

(42)
and each density matrix ρ(k+1) is defined in terms of the
density matrix ρ(k) after the previous dislocation,

ρ(k+1) = Uk
1

Dk

(

ρ
(k)
11 e

γk ρ
(k)
12

[

ρ
(k)
12

]∗

ρ
(k)
22 e

−γk

)

U
†
k, (43)

where Dk = ρ
(k)
11 e

γk + ρ
(k)
22 e

−γk , the rapidities are γk =
IkNk/D, the initial density matrix before the first kick
is ρ(1), and the matrix Uk has elements

(Uk)11 = cos(φk/2)− i(ǫ/E) sin(φk/2),

(Uk)12 = −i(∆/E) sin(φk/2),

(Uk)21 = −i(∆/E) sin(φk/2),

(Uk)22 = cos(φk/2) + i(ǫ/E) sin(φk/2). (44)

Reference 11 applied these results to violate a Bell in-
equality in time.

VI. CONDITIONAL PHASE SHIFTS AND

FEEDBACK PROTOCOLS

In the preceding Section, the phase shift φ was cho-
sen beforehand, independently of the result I1. We can
now use the information gained in the first N1 measure-
ments, and make a conditional phase shift, pending the
outcome of the random variable I1. This is essentially a
feedback protocol that the experimentalist can choose to

execute, defined by a function φ(I1), so a different phase
shift is assigned to every possible random outcome of the
continuous measured current.
Kicked QND measurement provides a realistic mecha-

nism for implementing general qubit feedback protocols.
The reason for this is two-fold: First, as seen in the previ-
ous section, any combination of weak measurements and
unitary operations may be accomplished with a sequence
of voltage pulses to the detector. Second, the feedback
circuitry must take the result obtained from the measure-
ment, execute logical operations, and command the ex-
perimental apparatus to do something it otherwise would
not have done (like make a given phase shift). The intrin-
sic waiting time between the kicks provides the needed
time delay for all of the above to take place.
We now explicitly find the feedback protocol φ(I1) to

take a given pure state to any desired pure state after
a weak measurement. As the simplest case, consider
any pure state on the Z − Y great circle of the Bloch
sphere (X = 0, Y 2 + Z2 = 1), and a symmetric qubit,
ǫ = 0. Both Hamiltonian evolution, and weak measure-
ments (according to (24)) do not take these states out of
the Z − Y great circle. Therefore, knowing the outcome
I1, a conditional phase shift may be applied to determin-
istically prepare any quantum state on the Z − Y great
circle of the Bloch sphere. For definiteness, we choose
to shift to the state |1〉. This choice has the advan-
tage that after the N2 ≫ D measurements, the current
will be I2 = 1 deterministically. The parametrization
(Y, Z) = (− sin θ, cos θ) of the initial state is chosen, so
that if no measurement is made, the shift to the North
pole may be done with a phase shift φ = θ. The result
(39) is applied by setting ρnew11 = 1, and solving for φ as
a function of the rapidity γ, to find

tan(φ/2) = tan(θ/2) exp(−γ). (45)

This answer interpolates between two extreme
strategies:31 (1) If no measurement is made, just
make the desired phase shift, φ = θ. (2) If a projective
measurement is made, either do nothing if I1 = 1, or flip
the state by applying the phase shift φ = π if I1 = −1.
The asymptotic limits in the later case may be obtained
by expanding the inverse tangent to obtain

φ/2 ≈
{

tan (θ/2) exp(−γ) if γ ≫ 1, and θ 6= ±π,
π
2 sign(θ)− exp(γ)

tan(θ/2) if γ ≪ −1, and θ 6= 0.

(46)
The above real-time feedback proposal is experimen-

tally promising in the kicked scheme. However, it de-
mands fast time resolution and feedback circuitry. An
experimentally simpler proposal to verify the above pro-
tocol is to make many realizations of weak measurement,
phase shift, weak measurement, where the phase shift is
chosen randomly in each realization. After the run is
finished, the data record may be reviewed, and all in-
stances of phase shifts where condition (45) is approx-
imately satisfied are post-selected. In this data subset,



10

the prediction is that the following set of N2 ≫ D kicks
will deterministically find I2 = 1.

VII. PURIFICATION OF INITIALLY MIXED

DENSITY MATRICES BY WEAK

MEASUREMENT

Under repeated weak QND measurements, eventually
all states collapse to either |1〉 or |2〉, including mixed
initial states. However, the states |1〉 and |2〉 are both
pure, and therefore if the initial state is mixed, a purifica-
tion occurs during the measurement process.32 This phe-
nomenon is especially counter-intuitive from the point
of view of the dephasing approach to quantum measure-
ment. Jacobs has shown that the average purification
in a given time can be increased by the use of continu-
ous feedback.14 Jacobs’ protocol is somewhat counterin-
tuitive for the qubit: always use Hamiltonian evolution
to rotate the state to Z = 0, i.e. perpendicular to the
measurement axis. The purpose of this section is (1) To
show how this idea can be easily implemented for our
set-up, (2) To demonstrate that the “equatorial plane”
protocol (i.e. Z = 0) is also optimal for kicked QND
measurements which have a continuous output of tunable
measurement strength, and (3) To generalize Jacobs’ no-
feedback purification solution to any initial density ma-
trix.
It is well known that any unitary operation preserves

the purity (or entropy) of the state. It is interesting to
note from (19), that during weak measurement there is a
different preserved physical quantity, that we name the
murity. For the qubit, the purity P and the murity M
are defined as

P = X2 + Y 2 + Z2, M = (X2 + Y 2)/(1− Z2). (47)

If the purity P = 1, then the murity M = 1, reflecting
the statement made in Sec. II that if the initial state
is pure, the post-measurement state is also pure. We
note that P may be expressed in terms of M and Z by
P = M(1 − Z2) + Z2. After one kick, the change in the
purity, ∆P , (or purification) is given by

∆P = P ′ − P = (1−M)[(Z ′)2 − Z2], (48)

where we have used the fact that murity does not
change during measurement. Application of the quan-
tum Bayesian update rules (19) yields Z ′ = [ρ11P1(x) −
ρ22P2(x)]/(ρ11P1(x) + ρ22P2(x)) (also given in (25)),
where x is the measurement result, so the purification
is

∆P = (1− P)

(

1− 1

[cosh(x/D) + Z sinh(x/D)]2

)

.

(49)
Several observations are in order: First, if P = 1, the
purification ∆P is automatically 0, while the first (de-
terministic) factor is maximal if P = 0. Second, if x = 0,

the second (random) factor is zero, so there is no pu-
rification, which corresponds to no gained information.
Finally, the first factor is between [0, 1], while the second
factor could be negative or positive, implying that either
purification or further mixing is possible in a given run.
The average purification is given by averaging (49) over

the distribution of x, given in Eq. (18), to yield

〈∆P〉 = (1− P)[1− f(D,Z)], (50)

where

f(D,Z) = e−
1

2D

∫ ∞

−∞

dx√
2πD

exp(−x2/2D)

cosh(x/D) + Z sinh(x/D)
.

(51)
It is straightforward to check that 0 ≤ f ≤ 1, so
there is nonnegative average purification for all den-
sity matrices.33 Changing variables to γ = x/D, it is
also straightforward to check asymptotic limits. Tak-
ing D → 0, the projective limit, f(0, Z) = 0 is recov-
ered, so 〈∆P〉 = 1 − P , implying that the final state is
pure with unit probability. The opposite limit, D → ∞,
corresponds to an vanishingly weak measurement, so
f(∞, Z) = 1, or 〈δP〉 = 0, giving no purification.
The results (50,51) allow us to find the optimum aver-

age purification strategy for one kick. The best strategy
on average is to rotate the density matrix to where the
purification (50) is maximum. These point(s) may be
found by maximizing 〈∆P〉 on the Bloch ball, under the
constraint that D and P are fixed. The P constraint sim-
ply reflects the fact that unitary operations do not alter
the purity. This problem is equivalent to minimizing f
with respect to Z, by solving df/dZ = 0, which leads to
the equation

−
∫ ∞

−∞

dγ
exp(−Dγ2/2) sinh γ
(cosh γ + Z sinh γ)2

= 0. (52)

The solution is immediate because at the point Z = 0,
the integrand is odd, so the integral is zero. The fact
that f is minimized at Z = 0 is seen by noting that
the integrand of d2f/dZ2(Z = 0) is nonnegative. There-
fore, the average purification is maximized by applying a
phase shift after the first measurement that rotates the
qubit to the equatorial plane of the Bloch ball before the
measurement. This result is in agreement with Jacobs,
who considered purification from a two-outcome POVM
of variable strength (and also the stochastic Schrödinger
equation limit).14 Our approach is from the complimen-
tary perspective of a continuous outcome measurement
of variable strength.
Results (50,51) have a simpler form in the large D

limit, for very weak measurements. The average purifi-
cation 〈∆P〉 and the noise in the purification, 〈(∆P)2〉,
are given to leading order in D−1 as

〈∆P〉 = (1− P)(1− Z2)/D,

〈(∆P)2〉 = 4(1− P)2Z2/D. (53)

In order to compare purification with and without feed-
back, we first consider Jacobs’ feedback protocol Z = 0 at
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every time step. Equation (53) implies that for this feed-
back protocol the purification noise vanishes. Therefore,
the dynamical purification is described by the determin-
istic rate equation dP/dN = (1 − P)/D. Solving the
equation with initial condition P0 yields14

〈PN 〉 = 1 + (P0 − 1) exp(−N/D), (54)

showing an exponential approach to a pure state, with

rate D−1.

In the no feedback case, the purity after N kicks may
be found from the murity relation P ′ = M [1 − (Z ′)2] +
(Z ′)2, where Z ′ is given in (25). Averaging this relation
over the distribution (22) yields the average purity after
N kicks,34

〈PN 〉 =
√

D

2πN
exp

(

− N

2D

)
∫ ∞

−∞

dγ exp

(

−Dγ
2

2N

)

M(cosh γ + Z sinh γ)2 − (M − 1)(sinh γ + Z cosh γ)2

cosh γ + Z sinh γ
. (55)

After some manipulation, the above integral expression
may be simplified to

〈PN 〉 = 1− (M − 1)(Z2 − 1)

√

D

2πN
exp(−N/2D)

×
∫ ∞

−∞

dγ
exp(−Dγ2/2N)

cosh γ + Z sinh γ
. (56)

For large N/D, the dominant dependence comes from
the term outside the integral, and the N/D dependence
inside the integrand may be neglected. In this limit, the
purity may be approximated as

〈PN 〉 ≈ 1− π(1−M)
√

1− Z2
√

D/(2πN) exp(−N/2D),
(57)

yielding an approach to purity with rate (2D)−1, half as
fast as the feedback case, in agreement with Jacobs. The
result (56) generalizes Jacobs’ no-feedback purification
result to arbitrary initial states. Before concluding, we
point out that Wiseman and Ralph have recently shown
that the advantage of feedback for purification depends
on how the question is formulated.35 If instead of asking
about the average purification for a fixed time, we ask
about the average time taken to reach a given purity,
then the no feedback case is actually better.

VIII. CONCLUSIONS

The quantum Bayesian approach to the problem of
quantum measurement has been derived from POVM
formalism, applied to a mesoscopic scattering detector.
By considering an elementary scattering event, measure-
ment operators associated with the successful or failed
detection of the electron in the current collector can be
identified. We recover the quantum Bayesian formalism
in the continuous current approximation.
Kicked QND measurements have been analyzed within

the quantum Bayesian formalism. We derive a quantum
map representation that, while discrete in the time index,

describes a sequence of weak measurements. Unitary op-
erations (easily implemented by waiting a fraction of a
Rabi period), together with kicked measurements, can be
represented as a sequence of conformal mappings, where
the unitary maps are deterministic, and the kicked mea-
surement maps are stochastic. A close analogy exists
between these quantum maps and the Lorentz transfor-
mations of special relativity.

We have calculated the measurement statistics asso-
ciated with combined weak measurements, and unitary
operations. These results are applied to find the feedback
protocol that deterministically takes a given pure state to
any other desired pure state after a weak measurement,
using conditional phase shifts.

Next, we have investigated the process of purification
of mixed density matrices under kicked QND measure-
ment. The concept of “murity” (the physical quantity
that is preserved under measurement) has been intro-
duced, and applied to calculate the change in the state’s
purity associated with a measurement. Purification with
and without feedback has also been investigated.

We stress that kicked QND measurements provides an
experimentally viable way of implementing ideas in quan-
tum feedback: Any combination of weak measurements
and unitary operations can be accomplished by apply-
ing a sequence of voltage pulses to the detector, and the
intrinsic quiet time between kicks allows the necessary
processing time for feedback to occur.
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