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ABSTRACT

Recently the authors have introduced a new gauged supergravity theory with a

positive definite potential in D = 6, obtained through a generalised Kaluza-Klein re-

duction from D = 7. Of particular interest is the fact that this theory admits certain

Minkowski×Sphere vacua. In this paper we extend the previous results by construct-

ing gauged supergravities with positive definitive potentials in diverse dimensions,

together with their vacuum solutions. In addition, we prove the supersymmetry of

the generalised reduction ansatz. We obtain a supersymmetric solution with no form-

field fluxes in the new gauged theory in D = 9. This solution may be lifted to D = 10,

where it acquires an interpretation as a time-dependent supersymmetric cosmological

solution supported purely by the dilaton. A further uplift to D = 11 yields a solution

describing a pp-wave.
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1 Introduction

Recent interest in both de Sitter and anti-de Sitter vacua has led to a renewed study

of gauged supergravities, where the gauging of some R-symmetry naturally leads to

a non-trivial potential. Well-known examples include the gauged supergravities in

four, five and seven dimensions that admit maximally supersymmetric anti-de Sitter

vacua. In addition, there are also gauged supergravities with run-away potentials.

Although such theories do not admit maximally supersymmetric vacua, they typi-

cally allow domain-wall solutions where scalar gradient energy is balanced against

the scalar potential. What has not been achieved, however, is the construction of

conventional gauged supergravities admitting de Sitter vacua. Of course this is not

particularly surprising, since de Sitter spacetime is incompatible with conventional

supersymmetry.

Supergravities with positive-definite (albeit run-away) potentials do nevertheless

exist. A particularly interesting example is the Salam-Sezgin model, which is a gauged

N = (1, 0) supergravity in D = 6 coupled to a tensor and an abelian vector multiplet

[1]. This model has a (Minkowski)4 × S2 vacuum, in which the vector has a non-

trivial flux on the 2-sphere. This monopole flux, combined with the single-exponential

potential V ∼ exp(−ϕ/
√
2), is responsible for a “self-tuning” of the vacuum, in which

the positive energy density is confined to the 2-sphere, thereby ensuring a vanishing

4-dimensional cosmological constant and correspondingly a (Minkowski)4 vacuum.

The self-tuning feature of this model has attracted much attention, especially as

a means of protecting the cosmological constant from large corrections even after

supersymmetry breaking [2, 3]. It was shown in [4] that the Salam-Sezgin theory

arises from a consistent reduction of ten-dimensional supergravity on a circle times

a hyperbolic 3-space. It was also shown, in [5], that the Salam-Sezgin model can be

consistently reduced on S2 to give rise to N = 1, D = 4 supergravity coupled to an

SU(2) vector multiplet and a scalar multiplet.

The interesting features of the Salam-Sezgin model have led us to search for

other possible supergravity theories with positive-definite potentials. This search

was guided by the realization of [6] that a generalised Kaluza-Klein reduction which

gauges a combination of a homogeneous global scaling symmetry together with a
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Cremmer-Julia type global symmetry yields a consistent reduction with just such a

positive-definite potential. In particular, this generalised reduction was used to con-

struct a variant N = (1, 1) supergravity in D = 6 admitting both (Minkowski)4 × S2

and (Minkowski)3 × S3 vacua [7, 8]. This construction is based on the generalised

reduction of minimal D = 7 supergravity, where a would-be vector multiplet may be

truncated out by a judicious choice of the gauging parameters. In this manner, the

reduction takes one from a pure (d + 1)-dimensional supergravity without a poten-

tial to a pure d-dimensional supergravity with a (positive-definite) single-exponential

potential. Generalised Kaluza-Klein reduction via the gauging of the Cremmer-Julia

global symmetries were considered in [9, 10, 11, 12]

Although the work of [7, 8] focused on the reduction from seven to six dimensions,

the generalised Kaluza-Klein procedure may be carried out in arbitrary dimensions. In

general, the various supergravities in diverse dimensions are quite distinct (especially

in their fermionic sectors). However it is noteworthy that the bosonic sector of the

half-maximal (16 supercharge) supergravities inD ≤ 10 is universal, with field content

(gµν , Bµν , φ, A
a
µ) (1.1)

(a = 1, 2, . . . , 10 − D). This is of course the bosonic content of the heterotic string

(or the NS-NS sector of the Type-II string) compactified on a (10−D)-dimensional

torus, with vector multiplets truncated out. Owing to this universality of the field

content, we may perform a generalised Kaluza-Klein reduction on the half-maximal

supergravities in arbitrary dimensions, and in this manner obtain the full class of (16

supercharge) variant supergravities generalising the results of [7, 8].

The resulting d-dimensional variant supergravities admit both (Minkowski)d−3×S3

and also, in certain cases, (Minkowski)d−2 × S2, vacua. Furthermore, we are able to

construct a new time-dependent supersymmetric solution (or “cosmological solution”)

in D = 9 with no form-field fluxes. This solution lifts to a purely dilaton driven

cosmology in D = 10, and a pp-wave in D = 11.

2 Generalised reduction

We begin with the generalised Kaluza-Klein reduction of the bosonic sector of half-

maximal supergravities in arbitrary dimensions D ≤ 10. In this section, all fields and
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their equations of motion pertain to the Einstein frame. The string-frame picture will

be examined in section 3.

As indicated above, the bosonic field content of pure supergravity with 16 super-

charges consists of the graviton ĝµν , antisymmetric tensor B̂µν and dilaton φ̂, along

with (10 − D) 1-form potentials Âa
µ. The Lagrangian for the bosonic sector can be

written as

L̂ = R̂∗̂1l− 1
2
∗̂dφ̂ ∧ dφ̂− 1

2
eâφ̂∗̂Ĥ(3) ∧ Ĥ(3) − 1

2
e

1
2
âφ̂∗̂F̂ a

(2) ∧ F̂ a
(2) , (2.1)

where F̂ a
(2)

= dÂa
(1)
, Ĥ(3) = dB̂(2)− 1

2
F̂ a

(2)
∧Âa

(1)
, and a = 1, 2, . . . , (10−D). The constant

â is given by

â2 =
8

D − 2
. (2.2)

The equations of motion following from (2.1) are

R̂MN = 1
2
∂M φ̂ ∂N φ̂+ 1

4
eâφ̂

(
ĤMPQ Ĥ

PQ

N
− 2

3(D − 2)
Ĥ2

(3) ĝMN

)

+1
2
e

1
2
âφ̂

(
F̂ a

MP
F̂ a P

N
− 1

2(D − 2)
(F̂ a

(2))
2 ĝMN

)
,

d(eâφ̂ ∗̂Ĥ(3)) = 0 ,

d(e
1
2
âφ̂ ∗̂F̂ a

(2)
) = (−1)D+1eâφ̂ ∗̂Ĥ(3) ∧ F̂ a

(2)
,

̂ φ̂ =
â

12
eâφ̂Ĥ2

(3)
+
â

8
e

1
2
âφ̂ (F̂ a

(2)
)2 . (2.3)

The key observation behind the generalised reduction of ref. [6] is that the equa-

tions of motion are invariant under the two global symmetries

φ̂→ φ̂+
1

â
λ1 , dŝ2 → e2λ2 dŝ2 ,

B̂(2) → e−2λ1+2λ2 B̂(2) , Âa
(1) → e−λ1+λ2 Âa

(1) . (2.4)

The constant λ1 parameterises a global symmetry of the Lagrangian, while the scaling

transformation parameterised by the constant λ2 is a symmetry only at the level of the

equations of motion, since the Lagrangian scales homogeneously as
√−ĝ(R̂+ · · ·) −→

e(D−2) λ2
√−ĝ (R̂ + · · ·).

Following [6], we now reduce from D dimensions to d = (D− 1), while simultane-

ously gauging the above two global symmetries. The D-dimensional pure supergrav-

ity multiplet then reduces to d-dimensional supergravity coupled to a single vector
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multiplet. This is achieved by making the generalised reduction ansatz

dŝ2 = e2m2z
(
e2αϕ ds2 + e2βϕ (dz +A(1))

2
)
,

B̂(2) = e2(m2−m1)z
(
B(2) +B(1) ∧ dz

)
,

Âa
(1) = e(m2−m1)z

(
Aa

(1) + χa dz
)
,

φ̂ = φ+
4

â
m1z , (2.5)

where

α2 =
1

2(d− 1)(d− 2)
, β = −(d− 2)α . (2.6)

The standard Kaluza-Klein ansatz for an ungauged S1 reduction would correspond

to setting m1 = m2 = 0.

In general, for unequal mass parameters m1 and m2, the lower-dimensional equa-

tions of motion are rather complicated. However, a significant simplification occurs

if m1 = m2. In this case, various exponential factors drop out from (2.5), and one

can consistently truncate out the vector multiplet, owing to conspiracies between the

fields. In this manner, one can obtain variant gauged supergravities with positive-

definite scalar potentials and with half-maximal supersymmetry in d ≤ 9 dimensions.

Before writing out the complete reduction of the bosonic equations of motion, we

first collect some intermediate results. The reduction of the potentials in (2.5) yields

a corresponding reduction on the field strengths:

Ĥ(3) = e2(m2−m1)z(H(3) +H(2) ∧ (dz +A(1))) ,

F̂ a
(2) = e(m2−m1)z(F a

(2) + La
(1) ∧ (dz +A(1))) , (2.7)

where the lower dimensional fields are defined by

H(3) = dB(2) − 1
2
F a

(2)
∧Aa

(1)
− dB(1) ∧A(1) − 2(m2 −m1)B(2) ∧A(1) +

1
2
χaF a

(2)
∧A(1) ,

G(2) = dB(1) − 1
2
χa F a

(2)
+ 1

2
La

(1)
∧ Aa

(1)
− 1

2
χaLa

(1)
∧ A(1) + 2(m2 −m1)B(2) ,

F a
(2)

= dAa
(1)

− dχa ∧ A(1) + (m2 −m1)A
a
(1)

∧A(1) ,

La
(1) = dχa − (m2 −m1)A

a
(1) . (2.8)

The Kaluza-Klein potential A(1) has the standard field strength F(2) = dA(1). It is

evident at this stage that the vector fields Aa
(1)

and the tensor field B(2) acquire masses

proportional to |m2 − m1|, in the process eating the axions χa and the vector B(1)

respectively.
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2.1 Untruncated d-dimensional equations

We are now able to write down the full bosonic equations of motion for the variant

d-dimensional gauged supergravity. The bosonic field content is

(gµν , Bµν , ϕ, A
a
µ,Aµ) and (Bµ, χ

a, φ) , (2.9)

corresponding to half-maximal supergravity coupled to a single vector multiplet. This

representation is schematic in the sense that the scalars φ and ϕ as well as the 1-form

potentials B(1) and A(1) must necessarily be taken as appropriate linear combinations

in the actual multiplets.

We find that the equations of motion for the form fields are given by

∇σ(eâφ−4αϕHµνσ) = (2m1 + (d− 3)m2)
(
eâφ−4αϕHµνσA σ − eâφ+2(d−3)αϕGµν

)
,

∇ν(eâφ+2(d−3)αϕGµν) = 1
2
eâφ−4αϕHµνσFνσ

+ (2m1 + (d− 3)m2)e
âφ+2(d−3)αϕGµν Aν ,

∇ν(e
1
2
âφ−2αϕF a

µν) = 1
2
eâφ−4αϕHµνσF

aνσ + eâφ+2(d−3)αϕGµνL
aν

+ (m1 + (d− 2)m2)
(
e

1
2
âφ−2αϕF a

µνAν − e
1
2
âφ+2(d−2)αϕLa

µ

)
,

∇µ(e
1
2
âφ+2(d−2)αϕLa

µ) = − 1
2
eâφ+2(d−3)αϕGµν F

aµν + 1
2
e

1
2
âφ−2αϕF a

µνFµν

+ (m1 + (d− 2)m2)e
1
2
âφ+2(d−2)αϕLa

µAµ ,

∇ν(e−2(d−1)αϕFµν) = 1
2
eâφ−4αϕHµνσG

νσ − e
1
2
âφ−2αϕF a

µνL
aν

+
4

â
m1(∂µφ− 4

â
m1Aµ)− 2m2(d− 1) (β∂µϕ−m2Aµ)

+m2(d− 1)e−2(d−1)αϕ FµνAν . (2.10)

The two scalar fields, φ and ϕ satisfy similar m1 and m2 dependent equations of

motion. The scalar coming from the metric satisfies the equation

− β ϕ = − eâφ−4αϕ

6(d− 1)
H2

(3)
− e

1
2
âφ−2αϕ

4(d− 1)
(F a

(2)
)2 +

d− 3

4(d− 1)
eâφ+2(d−3)αϕG2

(2)

+
d− 2

2(d− 1)
e

1
2
âφ+2(d−2)αϕ(La

(1)
)2 − 1

4
e−2(d−1)αϕF2

(2)
(2.11)

−m2β(d− 1)Aµ∂µϕ−m2∇µAµ +m2
2(d− 1)A2

(1)
+

8

â2
m2

1e
2(d−1)αϕ ,

while the D-dimensional dilaton equation reduces to

φ =
â

12
eâφ−4αϕH2

(3) +
â

4
eâφ+2(d−3)αϕG2

(2) +
â

8
e

1
2
âφ−2αϕ(F a

(2))
2
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+
â

4
e

1
2
âφ+2(d−2)αϕ(La

(1)
)2 + m2(d− 1)Aµ∂µφ+

4

â
m1∇µAµ

−4(d− 1)

â
m1m2 (A2

(1) + e2(d−1)αϕ) . (2.12)

The d-dimensional Einstein equation takes the form

Rµν − 1
2
Rgµν = 1

2
(∂µϕ∂νϕ− 1

2
(∂ϕ)2 gµν) +

1
2
(∂µφ ∂νφ− 1

2
(∂φ)2 gµν)

+ 1
2
e−2(d−1)αϕ (FµσF σ

ν − 1
4
gµνF2

(2)) +
1
4
eâφ−4αϕ(HµρσH

ρσ
ν − 1

6
gµνH

2
(3))

+ 1
2
e

1
2
âφ−2αϕ(F a

µσ F
aσ
ν − 1

4
gµν(F

a
(2)
)2) + 1

2
eâφ+2(d−3)αϕ(GµσG

σ
ν − 1

4
gµνG

2
(2)
)

+ 1
2
e

1
2
âφ+2(d−2)αϕ (La

µL
a
ν − 1

2
gµν (L

a
(1)
)2)

−αm2(d− 1)(Aσ∂σϕ gµν −Aµ∂νϕ−Aν∂µϕ)

+
2

â
m1(Aσ∂σφ gµν −Aµ∂νφ−Aν∂µφ) +

( 8

â2
m2

1 − (d− 1)m2
2

)
AµAν

− 1
2
m2(d− 1)(∇µAν +∇νAµ − 2∇σAσ gµν)

−
(4m2

1

â2
+ 1

2
m2

2(d− 1)(d− 2)
)
(A2

(1) + e2(d−1)αϕ)gµν . (2.13)

Note that the last term is associated with a positive-definite scalar potential.

2.2 Truncated d-dimensional equations

The scalars φ and ϕ may be disentangled between the supergravity and vector mul-

tiplets of (2.9) by performing a rotation to φ1 (supergravity) and φ2 (vector) given

by

âφ− 4αϕ = aφ1 , 4αφ+ âϕ = aφ2 , (2.14)

where a =
√
8/(D − 3). When m1 = m2, the vector multiplet may be further trun-

cated away. This is done by setting

B(1) = A(1) ≡ 1√
2
A(1) , φ2 = 0 , La

(1)
= 0 . (2.15)

The equations of motion for the pure supergravity fields are then given by

∇ρ
(
eaφHµνρ

)
=
d− 1√

2
m

(
eaφHµνρA

ρ − e
1
2
aφFµν

)
,

∇ν
(
e

1
2
aφFµν

)
= 1

2
eaφHµνρF

νρ +
d− 1√

2
me

1
2
aφFµν A

ν ,

∇ν
(
e

1
2
aφF a

µν

)
= 1

2
eaφHµνρ F

a νρ +
d− 1√

2
me

1
2
aφF a

µν A
ν ,
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φ =
eaφ

3
√
2(d− 2)

H2
(3) +

e
1
2
aφ

2
√
2(d− 2)

(F 2
(2) + (F a

(2))
2) +

d− 1√
2
mAµ ∂µφ

+
d− 1√
d− 2

m∇µA
µ −

√
2 (d− 1)2√
d− 2

m2(1
2
A2

(1) + e−
1
2
aφ) ,

Rµν = 1
2
∂µφ∂νφ+ 1

4
eaφ(HµρσH

ρσ
ν − 2

3(d− 2)
H2

(3)
gµν)

+1
2
e

1
2
aφ(FµρF

ρ
ν − 1

2(d− 2)
F 2

(2)
gµν) +

1
2
e

1
2
aφ(F a

µρF
a ρ
ν − 1

2(d− 2)
(F a

(2)
)2gµν)

−m(d− 1)

2
√
d− 2

(Aµ∂νφ+ Aν∂µφ)−
m(d − 1)

2
√
2

(∇µAν +∇νAµ +
2

d− 2
∇ρA

ρgµν)

+
m2(d− 1)2

2(d− 2)
(A2

(1)
+ 2e−

1
2
aφ)gµν , (2.16)

where we have rewritten φ1 as φ. It may be seen that this set of equations cannot

be obtained from a Lagrangian in terms of the physical fields. This is not altogether

surprising, since they were derived in a generalised reduction that gauged a symmetry

of the equations of motion which was not a symmetry of the Lagrangian.

By examining the linearised equations of motion, it can be seen that A(1) is a

massless gauge potential. This gauge field can in fact be consistently set to zero. In

this case, the remaining equations of motion can then be obtained from the Lagrangian

e−1L = R− 1
2
(∂φ)2 − 1

12
eaφH2

(3)
− 1

4
e

1
2
aφ(F a

(2)
)2 − (d− 1)2m2e−

1
2
aφ , (2.17)

where e =
√−g. Thus we see once again that the scalar potential is positive definite.

3 String frame and σ-model action

For many purposes it is advantageous to perform the Weyl rescaling of the metric that

transforms from the Einstein frame that we used in the previous section to the string

frame. One reason is because the half-maximal supergravities that we are considering

have a direct relation to the heterotic string, or the NS-NS sector of the Type-II

string. Another reason is that many of the formulae become considerably simpler

when expressed in the string frame. We shall consider only the case m1 = m2 = m.

Consistent string propagation demands world-sheet conformal invariance, and

hence the vanishing of the beta functions for the background spacetime fields. In

this manner one obtains supergravity equations of motion which arise naturally in
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the string frame. The corresponding equations may be derived from the string-frame

Lagrangian

ê−1L̂ = e−2Φ̂(R̂ + 4(∂Φ̂)2 − 1
12
Ĥ2

(3)
− 1

4
(F̂ a

(2)
)2) , (3.1)

taken here to have been compactified on a (10 − D)-dimensional torus (with the

additional truncation of (10 − D) vector multiplets). It is to be understood that

all fields in this section are labelled with a suppressed tilde (g̃µν , H̃(3), etc.) unless

otherwise indicated, to distinguish them from the Einstein frame fields. The complete

transformation between the two frames in dimensions D ≤ 10 is given in appendix C.

The equations of motion following from the Lagrangian (3.1) are

R̂MN = −2∇̂M∇̂NΦ̂ + 1
4
ĤMPQĤ

PQ

N
+ 1

2
F̂ a

MP
F̂ a P

N
,

d(e−2Φ̂∗̂Ĥ(3)) = 0 ,

d(e−2Φ̂∗̂F̂ a
(2)
) = (−1)D+1 e−2Φ̂∗̂Ĥ(3) ∧ F̂ a

(2)
,

̂ Φ̂ = 2(∂Φ̂)2 − 1
12
Ĥ2

(3) − 1
8
(F̂ a

(2))
2 . (3.2)

By tracing the Einstein equation and substituting in the dilaton equation, we may

obtain an expression for the Ricci scalar:

R̂ = −4(∂ Φ̂)2 + 5
12
Ĥ2

(3) +
3
4
(F̂ a

(2))
2 . (3.3)

In D dimensions, the Einstein-frame and the string-frame metrics are related by

dŝ2Ein = e
1
2
âφ̂ dŝ2str = e−

1
2
â2Φ̂ dŝ2str , (3.4)

where we have defined Φ̂ = −φ̂/â and φ̂ is the Einstein-frame dilaton field. For the

case where m1 = m2, the reduction ansatz (2.5) converted to the string frame is

rather simple, namely

dŝ2str = ds2str + e−
√
2ϕ(dz +A(1))

2 ,

B̂(2) = B(2) +B(1) ∧ dz ,
Φ̂ = Φ− 1√

8
ϕ− 1

2
(d− 1)mz . (3.5)

In other words, the reduction is exactly the same as a standard Kaluza-Klein reduc-

tion, except for a linear z-dependence in the dilaton Φ̂.
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It follows that the σ-model action for this generalised circle reduction is given by

I =
1

4π α′

∫
dσ dτ

[√
γ γij ∂iX

µ ∂jX
ν ĝµν + ǫij ∂iX

µ ∂jX
ν B̂µν

+α′R̂ (Φ− 1
2
(D − 2)mz)

]
,

where Φ, ĝµν and B̂µν are independent of z, and X0 (the circle coordinate) is given

by X0 = z. However, the z dependence of the string action implies that T -duality is

now broken. This can also be seen from the low-energy effective action obtained in

the previous section, where the Kaluza-Klein vector A(1) and the winding vector B(1)

are clearly not on a parallel footing.

3.1 Untruncated d-dimensional string-frame equations

We give here the complete set of bosonic equations of motion for the untruncated

system, expressed in the string frame. It will be seen that these are considerably

simpler than the previous expressions that were obtained in the Einsten frame.

For the form fields in the string frame we find

∇ρ(e−2ΦHµνρ) = m(d− 1)
(
e−2ΦHµνσAσ − e−2Φ+

√
2ϕGµν

)
,

∇ν(e−2Φ+
√
2ϕGµν) = 1

2
e−2ΦHµνσFνσ +m(d− 1)e−2Φ+

√
2ϕGµνAν ,

∇ν(e−2ΦF a
µν) = 1

2
e−2ΦHµνσF

a νσ + e−2Φ+
√
2ϕGµνL

a ν

+m(d− 1)
(
e−2ΦF a

µνAν − e−2Φ+
√
2ϕLa

µ

)
,

∇µ(e−2Φ+
√
2ϕLa

µ) = 1
2
e−2ΦF a

µνFµν − 1
2
e−2Φ+

√
2ϕGµνF

aµν

+m(d− 1)e−2Φ+
√
2ϕLa

µAµ ,

∇ν(e
− 3

√

2
ϕFµν) = e

− 1
√

2
ϕ
(1
2
HµνσG

νσ − F a
µνL

aν) + 2e
− 3

√

2
ϕ
(∂νΦ− 1√

8
∂νϕ)F ν

µ

+m(d− 1)(
√
2 e

− 1
√

2
ϕ
∂µϕ+ e

− 3
√

2
ϕAνFµν) . (3.6)

For the scalar fields, we find

ϕ = 1
2
√
2
(e

√
2ϕG2

(2)
− e−

√
2ϕF2

(2)
) + 1√

2
e
√
2ϕ(La

(1)
)2 + 2∂µϕ∂

µΦ+m(d − 1)Aµ∂µϕ ,

Φ = − 1
12
H2

(3) − 1
8
(F a

(2))
2 − 1

8
(e

√
2ϕG2

(2) + e−
√
2ϕF2

(2)) + 2(∂Φ)2 (3.7)

+2m(d− 1)Aµ ∂µΦ− 1
2
m(d− 1)∇µAµ + 1

2
m2(d− 1)2(A2

(1)
+ e

√
2ϕ) .

The Einstein equations in the string frame are given by

Rµν = 1
2
∂µϕ∂νϕ− 2∇µ∂νΦ + 1

4
HµρσH

ρσ
ν + 1

2
e
√
2ϕGµρG

ρ
ν + 1

2
e−

√
2ϕFµρF ρ

ν

10



+ 1
2
F a
µρ F

a ρ
ν + 1

2
e
√
2ϕLa

µL
a
ν − 1

2
m(d− 1)(∇µAν +∇νAµ) . (3.8)

3.2 Truncated d-dimensional string-frame equations

In the string frame, we may again truncate out the vector multiplet by setting ϕ = 0,

La
(1)

= 0 and A(1) = B(1) ≡ A(1)/
√
2. The equations of motion for the bosonic fields of

the pure supergravity multiplet now become

∇σHµνσ = 2HµνσM
σ − 1√

2
m(d− 1)Fµν ,

∇νFµν = 1
2
HµνσF

νσ + 2FµνM
ν ,

∇νF a
µν = 1

2
HµνσF

a νσ + 2F a
µνM

ν ,

∇µMµ = 2M2
(1)

− 1
12
H2

(3)
− 1

8
(F 2

(2)
+ (F a

(2)
)2) + 1

2
m2(d− 1)2 ,

Rµν = −∇µMν −∇νMµ +
1
4
HµρσH

ρσ
ν + 1

2
(Fµρ F

ρ
ν + F a

µρ F
a ρ
ν ) , (3.9)

where we have introduced the field

M(1) = dΦ +
m(d− 1)

2
√
2

A(1) . (3.10)

It is evident that the massive field M(1) arises because the dilaton Φ is eaten by the

gauge field A(1) .

As in the Einstein frame, these equations cannot be obtained from a Lagrangian.

However, if we set A(1) to zero, the equations of motion for the remaining fields can

be obtained from a Lagrangian, given by

e−1L = e−2Φ
(
R + 4(∂Φ)2 − 1

12
H2

(3) − 1
4
(F a

(2))
2 − (d− 1)2m2

)
. (3.11)

Although this truncation is consistent within the bosonic theory, it cannot be consis-

tent with the full supergravity, as it would be incompatible with the structure of the

supermultiplets. Nevertheless, we see from (3.11) that in the string frame the scalar

potential becomes a pure positive cosmological constant.

4 Supersymmetry

With the derivation of the bosonic equations of motion both in the Einstein frame

and the string frame completed, we now turn to a consideration of the supersymmetry

11



transformation rules for these generalised reductions. We shall present the results for

two cases in this section. The first is the variant ten-dimensional massive gauged su-

pergravity obtained in [6] by performing a generalised reduction of eleven-dimensional

supergravity.1 The reduction in this case involves just the global scaling symmetry

of the D = 11 equations of motion. Then, we shall consider the nine-dimensional

massive gauged theory obtained from massless N = 1, D = 10 supergravity, using

the generalised reduction involving the two global symmetries that we discussed in

section 2. Analogous results for the six-dimensional gauged theory were obtained in

detail in [8].

4.1 Massive type IIA supergravity from D = 11

The supersymmetry transformations in D = 11 are

δê A

M
= ˆ̄ǫγ̂Aψ̂M , δÂMNP = 3ˆ̄ǫγ̂[MN ψ̂P ] ,

δψ̂M = ∇̂M ǫ̂− 1
288
F̂NPQR(γ̂

NPQR

M
− 8γ̂PQRδN

M
) ǫ̂ , (4.1)

where in our conventions

{γ̂A, γ̂B} = 2η̂AB (4.2)

and the metric signature is (− + + · · ·+). The equations of motion of the eleven-

dimensional theory are invariant under a scaling symmetry, which was used in [6]

in a generalised reduction to obtain the bosonic sector of a massive ten-dimensional

supergravity. Here, we extend that discussion to include the fermionic sector. This

variant maximal supersymmetric D = 10 massive theory [13, 6] has also been con-

sidered in [12]. The corresponding ansatz for the generalised circle reduction of the

fermions is

ǫ̂ = e
1
2
m2ze

1
24

ϕ ǫ ,

ψ̂11 = 2
√
2

3
e−

1
2
m2ze−

1
24

ϕγ̂11λ ,

ψ̂a = e−
1
2
m2ze−

1
24

ϕ(ψa −
√
2

12
γaλ) . (4.3)

1Note that this massive type IIA supergravity [13, 6] is not the same as the massive IIA theory

obtained by Romans [14].
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Performing the reduction of the fermionic transformation rules, we obtain

δλ = − 1
2
√
2
γµǫ ∂µϕ− 1

192
√
2
e−

1
4
ϕFµνσργ

µνσρǫ+ 1
24

√
2
e

1
2
ϕFµνσγ

µνσγ̂11ǫ

− 3
16

√
2
e−

3
4
ϕFµνγ

µν γ̂11ǫ− 3
4
√
2
m2(Aµγ

µ − e
3
4
ϕγ̂11)ǫ ,

δψµ = ∇µǫ− 1
256
e−

1
4
ϕFνασρ

(
γ νασρ
µ − 20

3
δνµγ

ασρ
)
ǫ− 1

96
e

1
2
ϕFνσρ

(
γ νσρ
µ − 9δνµγ

σρ
)
γ̂11ǫ

− 1
64
e−

3
4
ϕFνσ

(
γ νσ
µ − 14δνµγ

σ
)
γ̂11ǫ− 9

16
m2(Aνγµγ

ν − e
3
4
ϕγµγ̂11)ǫ . (4.4)

The supersymmetry transformation rules for the bosons are

δe a
µ = ǭγaψµ , δφ = −

√
2 ǭ λ ,

δAµ = e
3
4
φǭγ̂11(ψµ − 3

√
2

4
γµλ) ,

δAµν = e−
1
2
φǭγ̂11(2γ[µψν] +

1√
2
γµνλ) ,

δAµνρ = 3e
1
4
φǭ(γ[µνψρ] −

√
2

12
γµνρλ) + 3A[µδAνρ] . (4.5)

As was shown in [6] this theory admits a de Sitter vacuum solution, which nec-

essarily breaks all supersymmetry. Note that the ten dimensional field strengths are

those defined in [6].

4.2 Reduction of D = 10,N = 1 supersymmetry

Since we have obtained the transformation rules for the type IIA massive gauged

supergravity in section 4.1, it is convenient to make use of these here in order to

establish our conventions and notation for the transformation rules of the standard

massless N = 1 supergravity in ten dimensions. These are obtained by setting the

mass parameter m2 = 0 in (4.4), and in addition making the chiral projection that

reduces the N = 2 supersymmetry to N = 1:

γ̂11ǫ = ǫ , γ̂11ψa = ψa and γ̂11λ = −λ . (4.6)

The chirality condition is consistent with setting to zero both the 3-form potential

and the Kaluza-Klein vector. This yields the ten-dimensional N = 1 supersymmetry

transformation rules

δλ̂ = − 1
2
√
2
γ̂M ǫ̂ ∂M φ̂+ 1

24
√
2
e

1
2
φ̂ ĤMNP γ̂

MNP ǫ̂ ,

δψ̂M = ∇̂M ǫ̂− 1
96
e

1
2
φ̂ĤNPQ

(
γ̂ NPQ

M
− 9 γ̂PQδ N

M

)
ǫ̂ ,
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δê A

M
= ˆ̄ǫγ̂Aψ̂M , δφ̂ = −

√
2 ˆ̄ǫ λ̂ ,

δB̂MN = −e− 1
2
φ̂ˆ̄ǫ (2γ̂[Mψ̂N] +

1√
2
γ̂MN λ̂) . (4.7)

We can now use these standard N = 1 results in a generalised circle reduction to

d = 9. We shall focus just on the pure supergravity multiplet in d = 9, by performing

a (consistent) truncation of the matter multiplet. The required reduction ansatz is

obtained from the arbitrary-dimension ansatz of appendix B by setting m1 = m2 = m

and φ2 = 0 = χ. This gives

ǫ̂ = e
1
2
mze

− 1

16
√

14
φ1 ǫ̃ ,

λ̂ =
√

7
8
e−

1
2
mze

1
16

√

14
φ1 λ̃ ,

ψ̂10 = −
√
7
8
e−

1
2
mze

1

16
√

14
φ1 γ̃10λ̃ ,

ψ̂a = e−
1
2
mze

1
16

√

14
φ1
(
ψ̃a +

1
8
√
7
γ̃aλ̃

)
,

φ̂ =
√
14
4
φ1 + 4mz . (4.8)

The tildes signify that the fermions and the Dirac matrices are still ten-dimensional.

These can be related to the nine-dimensional quantities as follows:

γ̃a = γa × σ1 , γ̃10 = 1l× σ2 and γ̂11 = 1l× σ3 ,

ǫ̃ = ǫ× η , λ̃ = λ× σ1η and ψ̃a = ψa × η , (4.9)

where η is a 2-component constant spinor. The chiral projections (4.6) imply that

we must have σ3η = η. In the following subsections, we present the resulting nine-

dimensional transformation rules in the Einstein frame and the string frame.

4.2.1 D = 9 supersymmetry in the Einstein frame

Reducing the N = 1, D = 10 transformation rules, and setting G(2) = F(2) =
1√
2
F(2),

we obtain the following nine-dimensional supersymmetry transformation rules:

δλ = − 1
2
√
2
γ µǫ ∂µφ+ 1

12
√
7
e
√

2
7
φHµνσγ

µνσǫ+ i
4
√
14
e

1
√

14
φ
Fµνγ

µνǫ

+ 4√
7
m

(
1√
2
γ µAµ − ie

− 1
√

14
φ
)
ǫ ,

δψµ = ∇µǫ− 1
84
e
√

2
7
φHνσρ(γ

νσρ
µ − 15

2
δνµγ

σρ)ǫ− i
28

√
2
e

1
√

14
φ
Fνσ(γ

νσ
µ − 12δνµγ

σ)ǫ

− 4
7
√
2
mAνγµγ

νǫ+ 4i
7
me

− 1
√

14
φ
γµǫ ,
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δe a
µ = ǭγaψµ , δφ = −

√
2 ǭ λ ,

δAµ = i
√
2e

− 1
√

14
φ
ǭ(ψµ +

1√
7
γµλ) ,

δBµν = −e−
√

2
7
φǭ(2γ[µψν] +

2√
7
γµνλ)− A[µδAν] , (4.10)

where we have dropped the “1” subscript on the scalar field. The field strengths are

Hµνρ = 3∂[µBνρ] − 3
2
A[µFνρ] and Fµν = 2∂[µAν] . This theory is an Abelian gauged

version of N = 1, D = 9 supergravity. We shall show that it admits a supersym-

metric (Minkowski)6 × S3 vacuum solution. We shall also obtain a time-dependent

supersymmetric cosmological solution in this theory.

4.2.2 D = 9 supersymmetry in the string frame

The above transformation rules for the fermions are readily expressed in terms of the

fields of the string frame, using the formulae given in appendix C. Specialised to nine

dimensions, these are

gµν = e
√

2
7
φ1 g̃µν , F(2) = F̃(2) , H(3) = H̃(3) , dΦ+

√
8mA(1) = M̃(1) ,

φ1 = −
√

8
7
Φ , ǫ = e

1
2
√

14
φ1 ǫ̃ , λ = e

− 1
2
√

14
φ1 λ̃ , ψµ = e

1
2
√

14
φ1ψ̃µ , (4.11)

The fermionic transformation rules in the string frame then take the form

δλ̃ =
(

1√
7
M̃µγ̃

µ + 1
12

√
7
H̃µνσ γ̃

µνσ + i
4
√
14
F̃µν γ̃

µν − 4i√
7
m

)
ǫ̃ ,

δψ̃µ =
(
∇̃µ − 1

7
M̃ν γ̃µγ̃

ν − 1
84
H̃νσρ(γ̃

νσρ
µ − 15

2
δνµγ̃

σρ)

− i
28

√
2
F̃νσ(γ̃

νσ
µ − 12δνµγ̃

σ) + 4i
7
mγ̃µ

)
ǫ̃ . (4.12)

5 Supersymmetric Md−3 × S3 and Md−2 × S2 vacua

The generalised Kaluza-Klein reduction gives rise to gauged supergravities that ad-

mit supersymmetric vacuum solutions of the form Minkowski×Sphere [8]. The nine-

dimensional theory admits just a (Minkowski)6 × S3 vacuum of this kind, supported

by the H(3) flux. The theories in lower dimensions admit (Minkowski)d−3 × S3 vacua

supported by H(3), and (Minkowski)d−2 × S2 vacua supported by a 2-form F(2). In

this section, we shall show that these vacua are all supersymmetric.
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Consider first the (Minkowski)d−3 × S3 solution supported by the H(3) field. This

is given by

ds2d = dxµ dxν ηµν +
4

m2 (d− 1)2
dΩ2

3 ,

H(3) =
8

m2 (d− 1)2
Ω(3) , φ = 0 . (5.1)

If we lift the solution back to D dimensions using the generalised reduction ansatz,

it becomes the near-horizon geometry of a (D− 5)-brane supported by the field Ĥ(3).

To see this, we start with the (D − 5)-brane in D dimensions, given by

dŝ2
D

= H− 2
D−2 dxµ dxν ηµν +H

D−4
D−2 (dr2 + r2 dΩ2

3) ,

Ĥ(3) = 2QΩ(3) , φ̂ = −1
2
â logH , H = 1 +Q/r2 . (5.2)

In the near-horizon limit, the additive constant 1 in H is dropped. Making the

coordinate transformation r2/Q = e(D−2)mz, and letting Q = 4/((D − 2)2m2), we

obtain

dŝ2
D

= e2mz
(
dxµ dxν ηµν + dz2 +

4

m2 (D − 2)2
dΩ2

3

)
,

Ĥ(3) =
8

m2 (D − 2)2
Ω(3) , φ̂ =

4

â
mz , (5.3)

which fits the reduction ansatz precisely, giving rise to the lower-dimensional solution

(5.1).

The supersymmetry of the (Minkowski)d−3 × S3 solution is easily established.

Firstly, since its lift to D = d + 1 dimensions gives the near-horizon limit of the

(D − 5)-brane, as discussed above, it is manifest that qua D-dimensional solution,

it will preserve one half of the D-dimensional supersymmetry. This halving of su-

persymmetry comes about from the usual projection condition for supersymmetry of

the (D − 5)-brane, ǫ̂ = Γ̂∗ ǫ̂, where Γ̂∗ is built from the product of Dirac matrices in

the world-volume of the (D − 5)-brane. As is well known, for any of the BPS brane

solutions with metric given by

dŝ2 = e2A dxµ dxµ + e2B dym dym , (5.4)

the Killing spinors are given by

ǫ̂ = e
1
2
A ǫ̂0 , Γ̂∗ ǫ̂0 = ǫ̂0 , (5.5)
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where ǫ̂0 is a constant spinor. We see from (5.3) that A = mz, and hence the Killing

spinors in D dimensions take the form

ǫ̂ = e
1
2
mz ǫ̂0 . (5.6)

Since this z dependence matches precisely the z dependence for ǫ̂ in the generalised

reduction ansatz (4.8), it immediately follows that the (Minkowski)d−3 × S3 solution

will be supersymmetric qua solution of the d-dimensional gauged supergravity.

Another class of supersymmetric vacuum is of the form (Minkowski)d−2 × S2,

supported by one of the two-form field strengths F a
(2)
. It is given by

ds2d = dxµ dxν ηµν +
1

m2 (d− 1)2
dΩ2

2 ,

F(2) =

√
2

m (d− 1)
Ω(2) , φ = 0 . (5.7)

Lifting this solution back to D dimensions, it becomes the near-horizon limit of the

(D−4)-brane supported by one of the field strengths F̂ a
(2). The (D−4)-brane solution

is given by

dŝ2
D

= H− 2
D−2 dxµ dxν ηµν +H

2(D−3)
D−2 (dr2 + r2 dΩ2

2) ,

F̂(2) =
√
2QΩ(2), φ̂ = −1

2
â logH , H = 1 +Q/r . (5.8)

In the near-horizon limit, the constant 1 in H is dropped. Making the coordinate

transformation r/Q = e(D−2)mz and setting Q = 1/(m (D − 2)) we have

dŝ2
D

= e2mz
(
dxµ dxν ηµν + dz2 +

1

m2 (D − 2)2
dΩ2

2

)
,

F̂(2) =

√
2

m (D − 2)
Ω(2) , φ̂ =

4

â
mz . (5.9)

This clearly fits the reduction ansatz exactly to give rise to (5.7).

Again, the supersymmetry of the solution as a lifted D-dimensional configuration

is manifest, since it is just the near-horizon limit of a BPS (D − 4)-brane. Its su-

persymmetry as a solution in the d = D − 1 dimensional gauged supergravity itself

is again easily seen, from the general form (5.5) of the Killing spinors in the lifted

(D− 4)-brane. Thus we again find that the D-dimensional Killing spinors are of the

form (5.6), and so comparison with the generalised reduction ansatz (4.8) for ǫ̂ shows

that the (Minkowski)d−2 × S2 solution will be supersymmetric in the d-dimensional

gauged supergravity.
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6 Supersymmetric time-dependent solutions and

pp-waves

In this section we construct a time-dependent solution of the new gauged nine-

dimensional supergravity, and we show that it is supersymmetric. It can be thought

of as a cosmological solution in the gauged supergravity.

The solution is of a form analogous to a standard domain wall, except that here

the “transverse space coordinate” is timelike rather than spatial. It is easily seen that

the configuration

ds29 = −dt2 + (8
7
mt)2dxidxi ,

e
1

√

14
φ

= 8
7
mt . (6.1)

solves the nine-dimensional equations of motion that follow from (2.17). Note that

the form-fields are all zero in this solution.

The fermionic transformation rules (4.10) in this background reduce to

δλ = − 1
2
√
2
γM(∂Mφ) ǫ− 4i√

7
me

− 1
√

14
φ
ǫ ,

δψM = ∇M ǫ+
4i
7
me

− 1
√

14
φ
γM ǫ , (6.2)

and it is easily verified that (6.1) is supersymmetric.

In the string frame, the metric in the solution (6.1) becomes simply the Minkowski

metric ds2str = ηMNdx
MdxN , where

t = exp(8
7
mx0) . (6.3)

The dilaton is a linear function of the redefined time; Φ = −4mx0+ constant.

The solution (6.1) is straightforwardly lifted to ten dimensions, where it gives

ds210 = e2mz
[
− (8

7
mt)−1/4dt2 + (8

7
mt)7/4(dz2 + dxidxi)

]
,

eφ̂ = e4mz(8
7
mt)7/2 . (6.4)

This can again be viewed as a time-dependent supersymmetric cosmological solution,

driven purely by the dilaton. In the string frame the metric is again Minkowskian,

but now the dilaton is linearly proportional to the light-cone coordinate x+:

ds2str = 2dx+ dx− + dxi dxi , Φ = x+ . (6.5)
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A metric-dilaton configuration of this kind was also discussed in [15]. It is straight-

forward to see that the solution preserves half of the supersymmetry, with the Killing

spinor given by γ+ ǫ0 where ǫ0 is a constant spinor.

A further uplift to D = 11 using the standard Kaluza-Klein formula

ds211 = e
1
6
φ̂ds210 + e−

4
3
φ̂dy2 (6.6)

yields the Ricci-flat solution

ds2
11
= −r2dt2 + t2dr2 + r2t2dxidxi + r−4t−4dy2 , (6.7)

where we have changed from the ten-dimensional coordinate z to a new coordinate

r defined by r = e
4
3
mz(8

7
mt)1/6 . The metric (6.7) is a pp-wave. To see this, we

introduce new coordinates X+ and X− defined by

r2 t2 = X+ ,
r

t
= e2X− , (6.8)

in terms of which (6.7) becomes

ds211 = dX+dX− +X+dx
idxi +X−2

+ dy2 . (6.9)

Thus, we conclude that in eleven dimensions the solution describes a pp-wave.

The metric (6.9) is a particular example of a more general class of pp-waves,

contained within the ansatz

dsD = dX+dX− +Xh1
+ dx

m1dxm1 +Xh2
+ dy

m2dym2 +Xh3
+ dz

m3dzm3 + · · · . (6.10)

Here, we take the index ranges to be

1 ≤ m1 ≤ p1 , p1 + 1 ≤ m2 ≤ p1 + p2 , etc. , (6.11)

and so the total dimension is D = 2+ p1 + p2 + · · · . The only non-vanishing vielbein

components of the Riemann tensor for (6.10) are given by

Rmi +mj + = −1
2
hi(hi − 2)X−2

+ δmi mj
. (6.12)

Thus (6.10) is Ricci-flat if

0 =
∑

i=1

pihi(hi − 2) . (6.13)

The pp-wave (6.9) that resulted from lifting our time-dependent cosmological solution

to D = 11 is the special case with

p1 = 8 , h1 = 1 , p2 = 1 , h2 = −2 , (6.14)

which clearly satisfies (6.13).
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7 Conclusions

In this paper, we have obtained generalised Kaluza-Klein reductions of the low-energy

effective actions of string theories involving the metric, the dilaton, a 3-form field

strength and a 2-form field strength. The generalised reduction gauges two global

symmetries, namely the homogeneous scaling symmetry of the equations of motion,

and also the dilaton shift symmetry of the Lagrangian. The resulting dimensionally-

reduced theory has a positive scalar potential, in the form of a single-exponential of

the lower-dimensional dilaton. We showed that the reduction is supersymmetric, by

explicitly deriving the lower-dimensional supersymmetry transformation rules.

Although it might seem somewhat perverse to perform generalised reductions of

the kind we have considered in this paper, they are actually related by U-duality

to more conventional reductions that have been considered extensively in the past.

Specifically, a generalised reduction involving the global shift symmetry of the axion

in the type IIB theory has been used in order to establish a T-duality between the

type IIB theory and the massive type IIA theory [9]. The S-duality of the type IIB

theory implies that one should also consider SL(2, R)-related generalised reductions

[11], which will involve the global shift symmetry of the dilaton. When one extends

the discussion of non-perturbative dualities to lower dimensions, the underlying global

Cremmer-Julia type symmetries can only be interpreted as strictly internal symme-

tries if one also makes use of the scaling symmetry of the equations of motion that

homogeneously scales the Lagrangian. Thus it is very natural to consider generalised

reductions of the kind we have studied in this paper.

The new supergravities have the interesting feature that they all admit super-

symmetric vacuum solutions of the form (Minkowski)×S3, and in some cases also

(Minkowski)×S2. These solutions provide novel compatifications of higher dimen-

sional string theories. Furthermore, owing to the positivity of the scalar potential,

the supergravities we have obtained admit time-dependent cosmological solutions that

preserve half of the supersymmetry. Lifting these solutions back to D = 10, they

yield supersymmetric time-dependent solutions driven purely by the dilaton, with no

form-field fluxes. Under a further lifting to eleven dimensions, these time-dependent

solutions become supersymmetric pp-waves. It would be interesting to study string
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theory and M-theory in these simple but non-trivial backgrounds.

A Bosonic reduction ansatz; Einstein frame

We begin by reducing the D = d + 1 dimensional Ricci tensor to d dimensions by

using the metric ansatz in (2.5). We choose the natural vielbein basis

êa = em2z+αϕea, êz = em2z+βϕ(dz +A(1)) . (A.1)

Thus we have

ê A

M
= em2z



eαϕe a

µ eβϕAµ

0 eβϕ


 , ê M

A
= e−m2z



e−αϕe µ

a −e−αϕAa

0 e−βϕ


 . (A.2)

The determinant of the metric is

√
−ĝ = e(d+1)m2z+(β+dα)ϕ√−g = e(d+1)m2z+2αϕ√−g . (A.3)

Using the first Cartan structure equation with zero torsion, dêA = −ω̂A

B
∧ êB, we

obtain the spin connections

ω̂a
b = ωa

b + e−(m2z+αϕ)
(
(α∂bϕ−m2Ab) ê

a − (α∂ aϕ−m2Aa) êb
)

−1
2
e−m2z+(β−2α)ϕFa

b ê
z, (A.4)

ω̂a
z = e−(m2z+αϕ)(m2Aa − β∂ aϕ) êz − 1

2
e−m2z+(β−2α)ϕFa

b ê
b +m2e

−(m2z+βϕ)êa .

From the curvature 2-forms Θ̂A
B = dω̂A

B + ω̂A
C ∧ ω̂C

B = 1
2
R̂A

BCD ê
C ∧ êD, we obtain

the Ricci tensor with vielbein components

R̂ab = e−2(m2z+αϕ)
(
Rab − 1

2
∂aϕ∂bϕ− αηab ϕ

+αm2(d− 1)(Ac∂ cϕ ηab −Aa∂bϕ−Ab∂aϕ)

+1
2
m2(d− 1)(∇aAb +∇bAa) +m2∇cAcηab +m2

2(d− 1)(AaAb −A2
(1)
ηab)

)

− m2
2(d− 1)e−2(m2z+βϕ)ηab − 1

2
e−2(m2z+dαϕ)Fa

cFbc ,

R̂az = e−2m2z+(d−3)αϕ
(
1
2
∇b(e−2(d−1)αϕFab) +m2(d− 1)(β∂aϕ−m2Aa)

)

− 1
2
m2(d− 1)e−2m2z−(d+1)αϕAbFab ,

R̂zz = e−2(m2z+αϕ)
(
− β ϕ+m2∇cAc +m2β(d− 1)Ab∂bϕ−m2

2(d− 1)A2
(1)

)

+ 1
4
e−2(m2z+dαϕ)F2

(2)
. (A.5)
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The Ricci scalar is

R̂ = e−2(m2z+αϕ)
(
R− 2α ϕ− 1

2
(∂ϕ)2 + 2m2d∇aAa −m2

2d (d− 1)A2
(1)

)

− e−2m2z
(
m2

2 d (d− 1)e−2βϕ + 1
4
e−2dαϕF2

(2)

)
. (A.6)

The reduced Ricci components in (A.5) have been simplified through use of the rela-

tions (2.6).

The Laplacian operator acting on the D-dimensional dilaton is given by

e2m2z+2αϕ ̂ φ̂ = φ−m2(d−1)
(
Aµ∂µφ−

4

â
m1 (A2

(1)+e
2(d−1)αϕ)

)
− 4

â
m1∇µAµ , (A.7)

where φ̂ = φ+ 4
â
m1z, as given by (2.5).

The vielbein components of the various D-dimensional antisymmetric tensors re-

duce according to

Ĥa1···an = e−(m2+(n−1)m1)z−nαϕHa1···an ,

Ĥa1···an−1z = e−(m2+(n−1)m1)z+(d−n−1)αϕHa1···an−1 . (A.8)

B Fermionic reduction ansatz in D ≤ 10; Einstein

frame

In this appendix we provide an arbitrary dimensional generalised ansatz that reduces

the fermions in D = d+1 to d dimensions. The generalised ansatz we are constructing

is such that the standard S1 reduction (m1 = 0 = m2) reduces canonical fermionic

kinetic terms with a normalization as

ê−1L̂ = κ( ˆ̄ΨM γ̂
MNP∇̂NΨ̂P + ˆ̄λγ̂M∇̂M λ̂) (B.1)

to canonical kinetic terms

e−1L = κ(Ψ̄µγ
µνρ∇νΨρ + λ̄γµ∇µλ+ χ̄γµ∇µχ) + rest . (B.2)

Here κ is an arbitrary coefficient. Performing the split of the gravitino as ψ̂A =

(ψ̂a, ψ̂D) an ansatz that accomplishes this is

ǫ̂ = e
1
2
m2ze

1
2
αϕ ǫ ,

22



λ̂ = 1√
D−2

e−
1
2
m2ze−

1
2
αϕ(χ+

√
D − 3λ) ,

ψ̂D =
√
D−3
D−2

e−
1
2
m2ze−

1
2
αϕγD(

√
D − 3χ− λ) ,

ψ̂a = e−
1
2
m2ze−

1
2
αϕ(ψa − 1

(D−2)
√
D−3

γa(
√
D − 3χ− λ)) ,

φ̂ =
√

D−3
D−2

φ1 +
1√
D−2

φ2 +
√
2(D − 2)m1z ,

ϕ = − 1√
D−2

φ1 +
√

D−3
D−2

φ2 . (B.3)

Note that, here and elsewhere in this paper our convention is always α > 0 . A

consistent truncation of the matter multiplet can be obtained by setting m1 = m2

and φ2 = 0 = χ .

C Einstein-frame to string-frame conversion

The D-dimensional Lagrangian in the Einstein frame is given by

e−1L = R− 1
2
(∂φ)2 − 1

12
eâφH2

(3)
− 1

4
e

1
2
âφ(F a

(2)
)2 − 1

2
Ψ̄Mγ

MNP∇NΨP − 1
2
λ̄ γM∇Mλ

− 1
2
√
2
λ̄γNγMΨN∂Mφ+ · · · , (C.1)

where â =
√

8
D−2

, and where we have omitted additional interaction and four-fermi

terms. This may be mapped to the string frame Lagrangian

ẽ−1L̃ = e−2Φ
(
R̃ + 4(∂Φ)2 − 1

12
H̃2

(3)
− 1

4
(F̃ a

(2)
)2 − 1

2
¯̃ΨM γ̃

MNP ∇̃NΨ̃P − 1
2

¯̃λ γ̃M∇̃M λ̃

−( ¯̃ΨN γ̃
NΨ̃M − â

2
√
2

¯̃
λγ̃N γ̃MΨ̃N)∂MΦ+ · · ·

)
, (C.2)

by the transformations

gMN = e
1
2
âφ g̃MN , HMNP = H̃MNP , F a

MN
= F̃ a

MN
, φ = −âΦ ,

ǫ = e
1
8
âφ ǫ̃ , λ = e−

1
8
âφλ̃ , ΨM = e

1
8
âφΨ̃M . (C.3)

Note that γM = e
1
4
âφ γ̃M i.e. γA = γ̃A . Furthermore, we have made use of the D-

dimensional Majorana flip properties ψ̄γMχ = −χ̄γMψ and ψ̄γMNPχ = χ̄γMNPψ for

any two anti-commuting spinors ψ and χ.

The bosonic reduction ansätze in the string frame are considerably simpler than

their Einstein-frame counterparts. The reduction of the D = d+1 dimensional Ricci
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tensor is given by

R̂ab = Rab +
1√
2
∇a∂bϕ− 1

2
∂aϕ∂bϕ− 1

2
e−

√
2ϕFac F c

b ,

R̂az = 1
2
e
√
2ϕ ∇b(e

− 3
√

2
ϕFab) ,

R̂zz = 1√
2

ϕ− 1
2
(∂ϕ)2 + 1

4
e−

√
2ϕF 2

(2) ,

R̂ = R +
√
2 ϕ− (∂ϕ)2 − 1

4
e−

√
2ϕF 2

(2) . (C.4)

Some useful formulae for the reduction of the scalar fields are:

̂ Φ̂ = ̂ (Φ− ϕ√
8
− 1

2
(D − 2)mz

)
= Φ− 1√

8
ϕ− 1√

2
(∂µϕ∂

µΦ− 1√
8
(∂ϕ)2)

− 1
2
m(d− 1)( 1√

2
Aµ∂µϕ−∇µAµ) , (C.5)

(∂Φ̂)2 = (∂Φ)2 + 1
8
(∂ϕ)2 − 1√

2
∂µϕ∂

µΦ+m(d− 1)Aµ(∂µΦ− 1√
8
∂µϕ)

+ 1
4
m2(d− 1)2(A2

(1) + e
√
2ϕ) , (C.6)

ê M

a ê N

b ∇̂M∂NΦ̂ = ∇a∂bΦ− 1√
8
∇a∂bϕ + 1

4
m(d− 1)(∇aAb +∇bAa) ,

ê M

a ê N

z ∇̂M∂NΦ̂ = − 1
2
e
− 1

√

2
ϕF b

a (∂bΦ− 1√
8
∂bϕ)− 1

2
√
2
m(d− 1)e

1
√

2
ϕ
∂aϕ

− 1
4
m(d− 1)e

− 1
√

2
ϕFabAb ,

ê M

z ê N

z ∇̂M∂NΦ̂ = − 1√
2
∂ µϕ (∂µΦ− 1√

8
∂µϕ)− 1

2
√
2
m(d− 1)Aµ∂µϕ . (C.7)
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[4] M. Cvetič, G.W. Gibbons and C.N. Pope, A string and M-theory origin for the

Salam-Sezgin model, Nucl. Phys. B677, 164 (2004), hep-th/0308026.

24

http://arxiv.org/abs/hep-th/0212091
http://arxiv.org/abs/hep-th/0304256
http://arxiv.org/abs/hep-th/0308026


[5] G.W. Gibbons and C.N. Pope, Consistent S2 Pauli reduction of six-dimensional

chiral gauged Einstein-Maxwell supergravity, hep-th/0307052.
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