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Abstract

Coccidiosis, caused by various Eimeria species, is a major parasitic disease in chickens. However, our understanding on how
chickens respond to coccidian infection is highly limited at both molecular and cellular levels. The present study employed
the Affymetrix chicken genome array and performed transcriptome analysis on chicken cecal epithelia in response to
infection for 4.5 days in vivo by the cecal-specific species E. tenella. By Significance Analysis of Microarrays (SAM), we have
identified 7,099 probe sets with q-values at ,0.05, in which 4,033 and 3,066 genes were found to be up- or down-regulated
in response to parasite infection. The reliability of the microarray data were validated by real-time qRT-PCR of 20 genes with
varied fold changes in expression (i.e., correlation coefficient between microarray and qRT-PCR datasets: R2 = 0.8773,
p,0.0001). Gene ontology analysis, KEGG pathway mapping and manual annotations of regulated genes indicated that up-
regulated genes were mainly involved in immunity/defense, responses to various stimuli, apoptosis/cell death and
differentiation, signal transduction and extracellular matrix (ECM), whereas down-regulated genes were mainly encoding
general metabolic enzymes, membrane components, and some transporters. Chickens mustered complex cecal eipthelia
molecular and immunological responses in response to E. tenella infection, which included pathways involved in cytokine
production and interactions, natural killer cell mediated cytotoxicity, and intestinal IgA production. In response to the
pathogenesis and damage caused by infection, chicken cecal epithelia reduced general metabolism, DNA replication and
repair, protein degradation, and mitochondrial functions.
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Introduction

Chickens are one of the major sources of animal protein

around the world. However, the poultry industry is consistently

threatened by various viral, bacterial, and parasitic diseases.

Among them, coccidiosis caused by a number of Eimeria species,

including cecal E. tenella, is the most important parasitic disease

that requires continuous prophylactic treatment. Live vaccines

against certain coccidian species are available and well

established for use in broiler breeds and layer hens. They are

also increasingly accepted by the broiler industry, particularly

with the attenuated vaccines [1], although the mainstream

prophylactic treatments still use anti-coccidial drugs. The

development of immune-based or other non-antibiotic thera-

peutics is highly appealing, considering the development of

resistance in chickens against various anti-coccidian drugs (e.g,

[2–6]), and the global trends against the use of prophylactic

antibiotics in food animals. However, such an effort has been

hampered by our limited understanding on how chickens

respond to coccidian infections at molecular levels.

Previous studies have shown that coccidian infections produce

both antibody and cell-mediated immune responses, in which cell-

mediated immunity appeared to play a major role in disease

resistance [7]. These observations might explain the unsuccessful

attempts at developing subunit vaccines, despite several earlier

attempts directed at identifying potential protective antigens for

avian coccidiosis [8–11]. There have been other studies by real-

time quantitative reverse transcription-polymerase chain reaction

(qRT-PCR) on the fluctuated expression of immune-relevant

genes in various chicken tissues or cells [12–14]. More recently, an

intraepithelial lymphocyte (IEL) cDNA microarray has been

developed and used to study gene expression profile changes in

immune cells in response to E. maxima, E. acevulina, and E. tenella

infections [15–19].

Two whole genome microarrays have been developed (i.e.,

Affymetrix chicken genome array and the Agilent platform-based

44 K chicken oligo microarray), which permit global gene

expression profiling analysis [20,21]. In the present study, we

used the Affymetrix chicken array and performed global

transcriptome analysis on chicken cecal mucous membranes in

response to E. tenella infection in vivo. We observed complex

responses, mainly elevated expression of genes associated with the

immunological responses and regulation, signal transduction, cell

death and cell differentiation.
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Results and Discussion

General Characterization of the Lanzhou-1 Strain of E.
tenella
Chickens may be infected by up to 7–9 different Eimeria species

specialized at different portions of the gut, in which E. tenella is one

of the most pathogenic species that exclusively occupies the cecum

[22–24]. All Eimeria species infect the intestinal epithelial cells with

the potential to fully occupy the infection sites if appropriate

control measurements are not given. The present study focused on

evaluating gene expression changes in cecal epithelia after E. tenella

infection in chickens for 4.5 days, corresponding to the most

damaging developmental stage of second generation of merogony.

The study used Lanzhou-1 strain of E. tenella that was locally

isolated from a farm in Lanzhou, China. Chickens infected with

this strain (105 oocysts/10-day old bird) started to show classic

clinical symptoms on day 3 to 4 post-infection (pi), which included

droopiness, listlessness, ruffled feathers, reduced weight gain and

loss of appetite. Bloody diarrheas typically started on day 5 pi, but

it occurred on day 4 pi in some birds. Chicken ceca became

thickened, shortened and filled with blood. Based on a 0 to 4

scoring system [25], the lesions could be scored at 4 in all infected

birds on day 7 pi, or at ,3 in day 4.5 pi (Figure 1). The reductions

in both weight gain and feed intake were statistically significant on

day 4 pi, and thereafter (Figure 2). In a separate experiment with

10 birds infected for 8 days, one death was observed on each of the

days 5 to 7 pi (i.e., 30% death in 7 days pi). However, deaths did

not occur in birds used in this study. These observation indicate

that this strain of E. tenella is highly pathogenic to chickens and

could cause symptoms characteristic of cecal coccidiosis.

Differentially Expressed Genes in Chicken Cecal Epithelia
upon E. tenella Infection
Both infected and uninfected samples included three biological

replicates, with cecal epithelia pooled from 4 chickens for RNA

extraction. Using Significance Analysis of Microarrays (SAM)

software, we have identified 7,099 genes (probe sets) from a total of

16,391 genes in the array with q-values at ,0.05, in which fold

changes ranged from 1.112 to 67.335 fold in up-regulated

(n= 4,033) and from 0.916 to 0.099 fold in down-regulated genes

(n = 3,066) upon infection (Figure S1, also see Table S1 for a

complete list). Among the up-regulated, 1,355 or 831 probe sets

had .2 or .3 fold changes, while in the down-regulated, 538 or

57 sets had .2 or .3 fold changes (i.e., ratios between infected

and uninfected specimens at ,0.5 or ,0.3333), respectively.

Parasites in infected specimens had no or little effect on the

microarray data as separate hybridization of chips using probes

prepared from RNA isolated from pure E. tenella merozoites only

produced background or near background signals (data not

shown). The reliability of the microarray data were validated by

real-time qRT-PCR of 20 genes with varied fold changes in

expression, in which no conflicts were observed between the real-

time and microarray datasets (Figure 3). The two datasets had a

good correlation coefficient (R2 = 0.8773, p,0.0001).

The top 10 up-regulated genes were associated with extracel-

lular matrix (ECM) (matrix metallopeptide 3, fibronectin 1 and

lumican), immunity/defense (lymphatic vessel endothelial hyalur-

onan receptor 1 and chemokine [C-C motif] ligand 17), signal

transduction across membrane (ecotropic viral integration site 2A

and POU class 2 associating factor 1), cytoskeleton/smooth muscle

contraction (caldesmon 1 and myosin light chain kinase), and

Figure 1. Typical cecal lesion (score=3) in a chicken infected with the Lanzhou-1 strain of Eimeria tenella (105 oocyst/bird) on day 5
post-infection (pi) in comparison with that from an uninfected bird.
doi:10.1371/journal.pone.0064236.g001
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heme degradation (biliverdin reductase A) (Table 1). Six of the top

10 down-regulated genes were involved in general metabolism

(carbonic anhydrase VII, calbindin, NAD kinase, UDP glucur-

onosyltransferase, beta-galactoside alpha-2,3-sialyltransferase, and

succinate-CoA ligase), along with three transporters (two solute

carrier family proteins and lysosomal H+ transporter), and

twinfilin, which is an actin-binding protein and actin assembly

inhibitor [26].

Gene Ontology Analysis and Pathway Mapping
Due to the disproportional numbers between up- and down-

regulated genes, we selected 831 up-regulated genes with .3X

fold changes and 538 down-regulated ones with.2X fold changes

in our gene ontology (GO) and pathway mapping analyses. Using

updated GO terms maintained by the AgriGO project (http://

bioinfo.cau.edu.cn/agriGO/) and a Singular Enrichment Analysis

(SEA) with both minimal p-value (Fisher) and false discovery rate

(FDR) (Hochberg) q-value set at 0.05, we were able to map 179

and 321 GO terms to the up- and down-regulated genes,

respectively (Figure 4 and Figure 5, also see Table S2 for a

complete list of the terms associated with information of probe

sets). In KEGG pathway mapping, 1,046 genes could be assigned

gene identification numbers with the National Center for

Biotechnology Information (NCBI Gene ID), in which 450 genes

Figure 2. Comparison of accumulated weight gains (A) and daily feed intake (B) between chickens infected with the Lanzhou-1
strain of Eimeria tenella (105 oocysts/bird) and uninfected controls. Asterisks indicate statistically significant differences between infected and
uninfected groups (p,0.05).
doi:10.1371/journal.pone.0064236.g002

Figure 3. Correlation between microarray and qRT-PCR data on 20 selected genes with various fold changes as plotted by the
logarithm of ratios of means between infected and uninfected samples. Primers are listed in Table S5.
doi:10.1371/journal.pone.0064236.g003
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could be mapped into various pathways at the Kyoto Encyclope-

dia of Genes and Genomes databases (http://www.genome.jp/

kegg/). A total of 113 KEGG pathways were mappable by at least

one gene and 44 pathways by at least 5 genes (Figure 6A, also see

Table S3 for a complete list and Figure S2 for the top 20 color-

coded KEGG pathways).

Additionally, since the chicken genome is not fully annotated, a

large number of regulated genes could not be mapped into specific

pathways in either the AgriGO or KEGG databases. Therefore,

we performed a ‘‘rough’’ manual annotation of all infection-

regulated genes by assigning them to major functional groups. We

were able to classify 629 out of the 1,369 genes into 13 major

groups (Figure 6B, also see Table S4 for a complete list). The

manual classification provided a new look at gene expression

profiles that might be obscured by GO and KEGG pathway

mapping, particularly among the down-regulated members

involved in DNA replication and repair, mitochondrial metabo-

lism, protein degradation, and a subset of chaperonins and heat

shock proteins (HSPs).

All analyses revealed the same trend that major elevated

expression of genes in infected chicken cecal epithelia during the

second generation of merogony were associated with immunity

and defense (e.g., cytokine-cytokine receptor interaction, phago-

some, natural killer cell mediated cytotoxicity and toll-like

receptors signaling pathway), signal transduction (e.g., MAPK,

Jak-STAT, ErbB, and phosphatidylinositol signaling pathways),

ECM (e.g., focal adhesion, cell adhesion and ECM-receptor

interaction), and cell cycle-associated pathways such as those

involved in apoptosis and cell differentiation. A higher number of

up-regulated genes, particularly those involved in various immu-

nological responses, than down-regulated ones in infected speci-

mens were likely a result of the ‘‘new’’ population of immune cells

recruited to the infection site, rather than by the ‘‘original’’

population of epithelial cells. These observations were in

congruence with earlier observations that interferon-c and various

interleukins mediating cellular immunity plays an important role

in response to the coccidian infections [12,15,27–31].

Many regulated pathways were interconnected or functionally

overlapped, such as cytokine/cytokine receptor interaction and

Jak-STAT signaling pathway, and the recruiting of immune and

other types of cells in the adhesion molecule interactions (e.g.,

MHC-I, MHC-II or ITGB2 in dendritic cells that interact with

CD8, CD4 or CD226 in T cells). Notably, many genes encoding

components within the intestinal immune network for IgA

production were highly elevated, including class II MHC in

dendritic cells, CD28, CD40L and ICOS in CD4+ T cells, BAFF

in the epithelia, as well as MHC in B2 cells and integrin a4b7 in

IgA+ B cells. The role of IgA in immuno-protection against Eimeria

infection is still debatable. Although significant levels of IgA were

consistently observed in the gut mucosa in response to Eimeria

infection, several studies have shown that both chemical and

hormonal bursectomy could not diminish the development of

protective immunity against Eimeria reinfection [28,32]. All

together, we speculate that IgA production may not be essential

for chickens to develop protective immunity, but may play an

additive role in combating coccidian infection.

Another notable change was the elevated expression of several

genes encoding the coagulation cascade, such as coagulation

Table 1. List of top 20 differentially expressed genes.*

Functional Group Signal Ratio Protein ID Gene description and note

Top 10 up-regulated

Extracellular matrix 67.33 XP_417175 Matrix metallopeptidase 3 (stromelysin 1, progelatinase)

Immunity/defense 32.61 XP_420971 Lymphatic vessel endothelial hyaluronan receptor 1

Cytoskeleton 29.98 NP_989489 Caldesmon 1 [Smooth muscle contraction]

Metabolism 29.58 XP_418872 Biliverdin reductase A [Heme degradation]

Immunity/defense 29.43 XP_414018 Chemokine (C-C motif) ligand 17

Cytoskeleton 23.41 NP_990790 Myosin, light chain kinase [Smooth muscle contraction]

Extracellular matrix 23.20 XP_421868 Fibronectin 1

Signal transduction 21.40 NP_001074362 Ecotropic viral integration site 2A

Signal transduction 21.372 NP_989506 POU class 2 associating factor 1 [Negative regulation of NF-kappaB transcription factor
activity]

Extracellular matrix 21.079 XP_421599 Lumican [laminin-binding]

Top 10 down-regulated

Transporter 0.26 XP_415945 Solute carrier family 26, member 3

Metabolism 0.26 XP_414152 Carbonic anhydrase VII

Transporter 0.25 NP_001008455 ATPase, H+ transporting, lysosomal 38 kda, V0 subunit D2

Cytoskeleton 0.23 NP_001025910 Twinfilin, actin-binding protein, homolog 1 (Drosophila) [Actin assembly inhibitor]

Metabolism 0.22 NP_990844 Calbindin 1, 28 kda; calcium-binding

Metabolism 0.21 NP_001026041 NAD kinase

Metabolism 0.19 XP_420613 UDP glucuronosyltransferase 2 family, polypeptide A3

Metabolism 0.19 XP_417860 ST3 beta-galactoside alpha-2,3-sialyltransferase 4

Transporter 0.17 XP_416918 Solute carrier family 9 (sodium/hydrogen exchanger), member 2

Metabolism 0.10 NP_001006141 Succinate-CoA ligase, GDP-forming, beta subunit

*Four unknown genes were excluded from the list. Also see Table S1 for a complete gene list with probe set numbers.
doi:10.1371/journal.pone.0064236.t001
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Figure 4. Gene ontology (GO) analysis of up-regulated genes in chicken cecal epithelia in response to Eimeria tenella infection. (A)
Top GO terms in biological process. (B) Top GO terms in molecular function and cellular components.
doi:10.1371/journal.pone.0064236.g004
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Figure 5. Gene ontology (GO) analysis of down-regulated genes in chicken cecal epithelia in response to Eimeria tenella infection. (A)
Top GO terms in biological process. (B) Top GO terms in molecular function. (C) Top GO term in cellular components.
doi:10.1371/journal.pone.0064236.g005
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Figure 6. Major pathways and functional clarifications of significantly regulated genes in chicken cecal epithelia in response to
Eimeria tenella infection. (A) KEGG metabolic pathway mapping of regulated genes. (B) Manual annotation of regulated genes by functional
groups. Cutoff values: q,0.05, fold change .3 for up-regulated and .2 for down-regulated genes.
doi:10.1371/journal.pone.0064236.g006
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factors VII (probe set: Gga.3468.1.S1_at), coagulation factor X

(Gga.514.1.S1_at), and tissue factor pathway inhibitor

(Gga.11741.1.S1_a_at), which was apparently associated with

the typical pathology (i.e., severe bleeding) caused by infection.

In contrast to immunity and defense associated pathways,

general metabolism was significantly decreased in the infected

cecal epithelia. Also down-regulated were genes involved in

protein degradation, DNA replication and repair, and mitochon-

drial functions (Figure 6B), suggesting that infected cecal epithelia

suppressed cell growth associated activities after devoting a

significant amount of resources to muster a complex immunolog-

ical defense against the severe coccidian infection. However, the

reductions in general metabolism may also be associated with the

significantly reduced feed intake and the 12-h fasting prior to the

collection of tissues, as these would unavoidably decrease the

availability of nutrients in infected chickens, affecting their general

metabolism (Figure 2B).

Genome microarray and recently developed RNA-Seq tech-

nologies are powerful tools for transcriptome analysis of host cell

responses against infections. However, only a limited number of

studies were devoted to the analyses of global gene expression

profiling in chickens in response to coccidian infections. In a

pioneering study in 2003, a cDNA microarray containing 400

unique chicken genes was developed and used to study the gene

expression changes in intestinal intraepithelial lymphocytes (IELs)

in response to the primary and secondary infections by E. acervulina

and E. maxima [15]. The cDNA microarray was then significantly

expanded to contain 9,668 genes, which was reapplied to study the

infections of E. acervulina and E. maxima [18,33], and later extended

to include E. tenella [19]. This serial of studies using cDNA

microarray focused on the gene expressions in isolated intestinal

lymphocytes, and have identified a large number of genes that

were significantly regulated by coccidian infections, including

those involved in ‘‘Diseases and Disorder’’ and ‘‘Physiological

System Development and Function’’, along with 16 intracellular

signaling pathways. In chickens infected with E. tenella, the major

regulated pathways were those involved in ‘‘Hematological system

development and function’’, ‘‘Hematopoiesis’’, ‘‘Connective tissue

development and function’’, and ‘‘Digestive system development

and function’’ [19]. It was noticeable that two of the four

functional categories were related to hematopoiesis, which was in

congruent with the data obtained in this study.

Although Affymetrix and Agilent microarrays have been

recently developed to cover the entire chicken genome (e.g.

[20,21]), these two less-biased platforms were previously not used

to study the coccidian infections. The present study employed

Affymetrix chicken microarray to study gene expressions regulated

by E. tenella infection in cecal epithelial cells, rather than focusing

on a single specific type of cells, thus providing a more

comprehensive snapshot of the global gene expression changes

in both infected epithelial cells and immune cells recruited to the

infection sites. However, more comprehensive analyses with

multiple time points of infection, various parasite strains and

chicken breeds with distinguished phenotypes, as well as with

isolated cell subpopulations are still needed to fully understand the

molecular interactions and pathogenesis at the infection sites.

Materials and Methods

Eimeria tenella Infection in Chickens
The Lanzhou-1 strain of E. tenella was originally isolated in the

field in Lanzhou, China and maintained in the Lanzhou

Veterinary Research Institute. Parasite oocysts were harvested,

sporulated and stored as previously described [34]. One-day old

specific pathogen-free (SPF) ISA Brown chickens were purchased

from Xigu Farms, Lanzhou and housed in an oocyst-free animal

house. Animals were given free access to feed and water, and

constant light was provided during the entire experimental period.

When the animals were 10-days old, 35 healthy chickens were

randomly divided into two groups consisting of 20 and 15

chickens. Group 1 chickens (n = 20) were orally inoculated with

1.06105 sporulated oocysts (,3 months old). Chickens in group 2

(n= 15) receiving no oocysts were used as uninfected controls. To

avoid contamination, the two groups of chickens were housed in

two separate rooms, and care and feeding were performed by

different personnel. All experimental protocols were approved by

the Committee for the Care and Use of Experimental Animals at

Lanzhou Veterinary Research Institute, China.

Isolation of Chicken Cecal Epithelia
All chickens were fasted for 12 h prior to collecting ceca.

Twelve birds in each group were killed by cervical dislocation at

4.5 days post-infection (pi). A protocol adapted from previous

reports was used to isolated cecal epithelial cells from infected and

uninfected chickens [35,36]. Briefly, cecal mucus and gut contents

were first gently scraped with glass microscope slides and

discarded. Samples from 4 of the 12 chickens were pooled

together to form 3 biological replicates in each group. Pooled

samples were suspended in 5 mL solution containing 40 mM Tris-

HCl (pH 7.4), 4 mM KCl, 3 mM MgCl, and 0.25 M sucrose, and

homogenized with a Dounce homogenizer with a loose fitting

pestle (Yongcheng Company, Guangzhou, China). Epithelial cells

were enriched by passing consecutively through 212, 106, 61 and

45 mm sieves. Cells retained in 45 mm sieves were collected by

centrifugation at 5006g for 10 min. Collected cells were examined

microscopically and counted with a hemocytometer which

revealed ,90% epithelial cells, plus a small portion of other cells

including immune cells.

Preparation and Purification of Merozoites from Infected
Chickens
Parasite merozoites were isolated from four infected group 1

chickens (5 days pi) using a slightly modified protocol as previously

described [37]. Briefly, chicken cecal epithelial layers were

collected by scraping with glass slides and homogenized using a

motar and pestle in a solution containing 120 mM NaCl, 20 mM

Tris-HCl (pH 7.4), 3 mM K2HPO4, and 1 mM CaC12. The

mixture was further homogenized in 50 mL loose fitting pestles,

and sieved through a 350 mm sieve. The filtrates were centrifuged

at 10006g for 10 min. The pellet was washed once with PBS

(pH 7.4) and resuspended in 50 mL PBS. The solution containing

merozoites was passed through a series of 212, 106 and 61 mm
sieves. Final filtrate contained merozoites with .90% purity as

assessed microscopically with a hemocytometer. The remaining

portion was red blood cells and epithelial debris.

Probe Preparation and Hybridization
Isolation of total RNA, preparation of cRNA probes, hybrid-

ization and chip scans were performed by CapitalBio (Beijing,

China). Briefly, total RNA was first isolated using a Trizol RNA

isolation kit (Invitrogen, USA) and then purified using an RNeasy

Mini Kit (Qiagen, Germany) according to the manufacturers’

instructions. The quality and quantity of RNA were assessed by

formaldehyde agarose gel electrophoresis and spectrophotometry.

Biotin-labeled double-stranded cRNA probes were prepared from

total RNA (2 mg/sample) using a MessageAmpTM II aRNA

Amplification Kit. The resulting biotin-tagged cRNA samples

Eimeria tenella Infection on Chicken Transcriptome
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were fragmented to 35–200 bases in length according to the

protocols from Affymetrix. The fragmented cRNA was hybridized

to GeneChip Chicken Genome Arrays (GPL3213, Affymetrix,

Santa Clara) that contained 16,392 probe sets, representing 32,773

transcripts and 28,000 genes.

Seven Affymetrix chicken genome array chips were used,

including three biological replicates in each of the infected and

uninfected groups, plus one for the merozoite specimen as an

additional control. Hybridization was performed at 45uC with

rotation for 16 h in an Affymetrix GeneChip Hybridization Oven

640. The arrays were washed and then stained with streptavidin-

phycoerythrin on an Affymetrix Fluidics Station 450, followed by

scanning on a GeneChip Scanner 3000.

Microarray Data Analysis
Acquired signal intensity data were analyzed using GeneChip

Operating software (GCOS 1.4), in which the scanned images

were assessed by visual inspection, then median signals were read

with default settings and saved as CEL files. Raw signal intensities

were first normalized by an invariant-set normalization algorithm

using a DNA-chip analyzer (dChip version 2008) [38,39].

Significance Analysis of Microarrays (SAM) was used to identify

genes that were differentially expressed between infected and

uninfected samples. Genes with .2 fold changes and both false

discovery rate (FDR, q) and Wilcoxon Rank-Sum test significance

level (p) ,0.05 were considered as significantly regulated.

However, due to the disproportionally higher number of up-

regulated genes than down-regulated ones (Figure S1), and to

better balance the number of genes in both directions, we selected

genes with .3 fold changes in the up-regulated and .2 fold

changes in the down-regulated for subsequent gene ontology (GO)

analysis and KEGG pathway mapping. Gene ontology (GO)

analysis was performed using the AgriGO system with p-values

and FDR values calculated by Fisher and Hachburg algorithms,

respectively (http://bioinfo.cau.edu.cn/agriGO/). GO terms were

considered as significantly enriched with both p-values and FDR at

,0.05. KEGG pathway mapping was performed using KEGG

mapper (http://www.genome.jp/kegg/tool/map_pathway2.

html). Manual annotation was performed by visual scanning the

definitions of all genes, including those unmapped in AgriGO and

KEGG databases, and assigning them into major functional

groups as previously described [40–42].

Quantitative Real-time RT-PCR
Quantitative real-time RT-PCR (qRT-PCR) was performed for

20 genes with different levels of differential expression (10 up-

regulated, 6 down-regulated, and 4 with no or little changes in

microarray data). The same RNA extracts used for microarray

analyses were further digested with DNase I at 37uC for 15 min to

remove contaminating DNA. RNA quantities and qualities were

determined by spectrophotometer and electrophoresis, judged by

the presence of intact 28S and 18S rRNA bands at intensity ratio

of ,2:1. Reverse transcription was performed using a PrimeScript

RT kit (Takara Biotechnology, Dalian, China). Subsequent PCR

amplification reactions were conducted using SYBR Premix

ExTaq II (Takara Biotechnology) using primers listed in Table

S5. Real-time PCR was carried out in a final volume of 25 mL
containing 0.4 mm of each primer, 12.5 mL of 26SYBR Premix

ExTaq and varied concentrations of cDNA templates. Rotor-Gene

Q real-time PCR detection system (Qiagen, Germany), with the

recommended universal thermal cycling parameters, was used for

amplification. Each reaction was run in at least triplicate. 18S

rRNA was used as a reference transcript for normalization.

Quality of qRT-PCR was were assessed by melting curve analysis

for primers and amplicons. Expression levels were determined by

the 22DDCT method, where DDCT= (CT[gene-infected]2CT[18S-

infected])2(CT[gene-uninfected]2CT[18S-uninfected]).

Data Deposition
Minimum Information About a Microarray Experiment

(MIAME) data from this experiment has been deposited to the

NCBI’s Gene Expression Omnibus (GEO) database. Microarray

data can be accessed with the following accession numbers: GEO

platform number GPL3213, GEO series number GSE39602 and

sample accession numbers GSM972785–GSM972791.

Supporting Information

Figure S1 Distribution of genes against log2(fold chang-
es) and q-values. (A) Plot of all probe sets against log2(fold

change). The light grey area defines genes below 2-fold changes,

while the dark grey area defines those below 3-fold changes. (B)
Plot of log2(fold change) against q-values of all probe sets. Green

lines define the boundaries of q-value at 0.05 and fold changes at

2X and 3X as indicated.

(TIF)

Figure S2 Diagram of the top 20 mapped KEGG
pathways with significantly regulated genes in cecal
epithelia upon Eimeria tenella infection (panels A to T).
Regulated genes are colored by fold changes as follows: red, .17

folds; brown/orange, 17 to 9 folds; yellow, 8 to 2 folds; cyan,22 to

24 folds; green, 24 to 28 folds; blue, 29 folds or larger.

(PDF)

Table S1 Complete list of probe sets with q-values ,5%
in fold changes.
(XLSX)

Table S2 Complete list of regulated genes that could be
mapped by gene ontology (GO), including GO terms, p-
values, FDR (q) values and mappable genes.
(XLSX)

Table S3 List of KEGG pathways and associated genes.
(PDF)

Table S4 List of differentially expressed genes that
could be manually assigned into major functional
groups. Up-regulated genes are in red, while down-regulated

genes are in blue font.

(PDF)

Table S5 List of primers used in real-time qRT-PCR
analysis.
(PDF)
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