
VISION BASED COLLABORATIVE LOCALIZATION AND PATH PLANNING

FOR MICRO AERIAL VEHICLES

A Dissertation

by

SAI HEMACHANDRA VEMPRALA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Srikanth Saripalli
Committee Members, Swaminathan Gopalswamy

Sivakumar Rathinam
Dylan Shell

Head of Department, Andreas A. Polycarpou

May 2019

Major Subject: Mechanical Engineering

Copyright 2019 Sai Hemachandra Vemprala

ABSTRACT

Autonomous micro aerial vehicles (MAV) have gained immense popularity in both

the commercial and research worlds over the last few years. Due to their small size and

agility, MAVs are considered to have great potential for civil and industrial tasks such as

photography, search and rescue, exploration, inspection and surveillance.

Autonomy on MAVs usually involves solving the major problems of localization and

path planning. While GPS is a popular choice for localization for many MAV platforms

today, it suffers from issues such as inaccurate estimation around large structures, and

complete unavailability in remote areas/indoor scenarios. From the alternative sensing

mechanisms, cameras arise as an attractive choice to be an onboard sensor due to the

richness of information captured, along with small size and inexpensiveness. Another

consideration that comes into picture for micro aerial vehicles is the fact that these small

platforms suffer from inability to fly for long amounts of time or carry heavy payload,

scenarios that can be solved by allocating a group, or a swarm of MAVs to perform a

task than just one. Collaboration between multiple vehicles allows for better accuracy of

estimation, task distribution and mission efficiency.

Combining these rationales, this dissertation presents collaborative vision based localiza-

tion and path planning frameworks. Although these were created as two separate steps, the

ideal application would contain both of them as a loosely coupled localization and planning

algorithm. A forward-facing monocular camera onboard each MAV is considered as the sole

sensor for computing pose estimates. With this minimal setup, this dissertation first investi-

gates methods to perform feature-based localization, with the possibility of fusing two types

of localization data: one that is computed onboard each MAV, and the other that comes

from relative measurements between the vehicles. Feature based methods were preferred

over direct methods for vision because of the relative ease with which tangible data packets

can be transferred between vehicles, and because feature data allows for minimal data

ii

transfer compared to large images. Inspired by techniques from multiple view geometry

and structure from motion, this localization algorithm presents a decentralized full 6-degree

of freedom pose estimation method complete with a consistent fusion methodology to

obtain robust estimates only at discrete instants, thus not requiring constant communication

between vehicles. This method was validated on image data obtained from high fidelity

simulations as well as real life MAV tests.

These vision based collaborative constraints were also applied to the problem of path

planning with a focus on performing uncertainty-aware planning, where the algorithm

is responsible for generating not only a valid, collision-free path, but also making sure

that this path allows for successful localization throughout. As joint multi-robot planning

can be a computationally intractable problem, planning was divided into two steps from a

vision-aware perspective. As the first step for improving localization performance is having

access to a better map of features, a next-best-multi-view algorithm was developed which

can compute the best viewpoints for multiple vehicles that can improve an existing sparse

reconstruction. This algorithm contains a cost function containing vision-based heuristics

that determines the quality of expected images from any set of viewpoints; which is

minimized through an efficient evolutionary strategy known as Covariance Matrix Adaption

(CMA-ES) that can handle very high dimensional sample spaces. In the second step, a

sampling based planner called Vision-Aware RRT* (VA-RRT*) was developed which includes

similar vision heuristics in an information gain based framework in order to drive individual

vehicles towards areas that can benefit feature tracking and thus localization. Both steps of

the planning framework were tested and validated using results from simulation.

iii

DEDICATION

To my parents

and my grandfather

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my advisor, Dr. Srikanth

Saripalli. My grad school experience has been absolutely amazing and I thank Sri whole-

heartedly not only for his tremendous research and academic support, but also for providing

an incredible work environment, many exciting opportunities throughout the course of

my PhD and for being a wonderful advisor in every way possible. I would also like to

thank the rest of my PhD committee: Dr. Dylan Shell, Dr. Swaminathan Gopalswamy

and Dr. Sivakumar Rathinam for the excellent discussions, their insightful comments and

suggestions through the development of this work, and many crucial remarks that helped

shape my work as well as this document.

Furthermore, I would like to especially show my gratitude to the late Dr. Alberto Behar.

I have had the honor of working closely with Alberto on several incredible projects during

my time at Arizona State University, and his broad and diverse knowledge, infectious

enthusiasm and passion for scientific exploration influenced my mindset greatly. Working

under his guidance on robots that explored the most remote parts of this planet helped

nurture my interest in the field of autonomous robotics, which eventually brought me all

the way to a PhD.

I consider myself to be lucky to have had the opportunity to be part of two schools

during my PhD years. Many thanks go to the members at the School of Earth and Space

Exploration at the Arizona State University: professors I have had the pleasure of interacting

with, and other friends I made during the first few years of my PhD. All the members of

ASTRIL, my former lab at ASU, deserve special thanks for being wonderful colleagues and

close friends. After the transition to Texas A&M University, I have had the privilege of being

one of the first few members of the Unmanned Systems Lab, and a chance to make new

friends. Many thanks go to the members of the Unmanned Systems Lab as well as the

CAST group at TAMU: for their help with my experiments, for the illuminating whiteboard

v

discussions and for being great friends and colleagues.

Last but not the least, an immense amount of gratitude goes to my parents for their

belief in me throughout and for always encouraging me to follow my dreams. I will forever

be indebted to them for their unbelievable amounts of support through many challenging

times.

vi

CONTRIBUTORS AND FUNDING SOURCES

This work was supported by a dissertation committee consisting of Dr, Srikanth Saripalli

[advisor], Dr. Swaminathan Gopalswamy and Dr. Sivakumar Rathinam of the Department

of Mechanical Engineering and Dr. Dylan Shell of the Department of Computer Science.

Graduate study was supported by a research assistantship from Texas A&M University.

vii

NOMENCLATURE

UAV Unmanned Aerial Vehicle

MAV Micro Aerial Vehicle

VCL Vision based Collaborative Localization

VCP Vision based Collaborative Path-planning

PNP Perspective N Point

SFM Structure From Motion

CMA-ES Covariance Matrix Adaptation - Evolution Strategy

NBV Next Best View

NBMV Next Best Multi-View

RRT Rapidly Exploring Random Tree

VA-RRT* Vision Aware Rapidly-exploring Random Tree

viii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION.. iv

ACKNOWLEDGMENTS. v

CONTRIBUTORS AND FUNDING SOURCES . vii

NOMENCLATURE . viii

TABLE OF CONTENTS . ix

LIST OF FIGURES . xii

LIST OF TABLES . xv

1. INTRODUCTION .. 1

1.1 Micro Aerial Vehicles . 2
1.2 Challenges associated with MAV . 3

1.2.1 Limited power and payload . 3
1.2.2 Degrees of Freedom . 3
1.2.3 Sensitivity to Uncertainty . 4

1.3 MAV Localization . 4
1.4 Collaborative aerial vehicles . 6

2. STATE OF THE ART AND CONTRIBUTIONS . 9

2.1 Micro Aerial Vehicle Localization . 9
2.1.1 Collaborative Localization . 12

2.2 Path Planning . 13
2.3 Contributions. 15

3. VISION BASED COLLABORATIVE LOCALIZATION .. 19

3.1 Problem Statement . 19
3.2 General framework and assumptions . 20
3.3 Feature detection and matching . 21

3.3.1 A-KAZE features. 22
3.3.2 KORAL features . 23

ix

3.3.3 Feature Matching . 24
3.4 Relative pose estimation . 24
3.5 Map building . 28
3.6 Intra-MAV localization . 29
3.7 Inter-MAV localization . 32

3.7.1 Relative pose estimation. 33
3.7.2 Scale factor estimation . 33
3.7.3 Guided Matching. 34

3.8 Uncertainty estimation . 36
3.9 Kalman Filter and Outlier rejection . 38
3.10 Data fusion . 40
3.11 Map updates . 43
3.12 Implementation and Results . 44

3.12.1 Intra-MAV localization . 46
3.12.1.1 Simulation . 46
3.12.1.2 Real experiments . 47

3.12.2 Inter-MAV localization . 49
3.12.2.1 Simulation . 49
3.12.2.2 Effect of number of vehicles in group . 52
3.12.2.3 Handling pure rotation . 54

3.12.3 Inter-MAV localization: real experiments . 55
3.13 Algorithm requirements . 56

4. COLLABORATIVE UNCERTAINTY-AWARE PLANNING .. 58

4.1 Next best view planning for multiple vehicles . 60
4.1.1 Heuristics for optimization . 62
4.1.2 CMA-ES optimization . 64
4.1.3 Working of the NBMV planner . 65

4.2 Localization aware path planning. 66
4.2.1 Vision-Aware RRT* . 68

4.2.1.1 Tree expansion . 68
4.2.1.2 Uncertainty metrics. 69
4.2.1.3 Uncertainty propagation . 70
4.2.1.4 Cost metric and rewiring . 73

4.3 Trajectory generation . 74
4.4 Implementation and Results . 76

4.4.1 Next Best Multi-View Planning . 77
4.4.1.1 Effect of baseline-depth ratio . 79
4.4.1.2 Effect of path cost constraint . 79
4.4.1.3 Effect of number of vehicles . 80

4.4.2 VA-RRT* planning for individual MAVs . 83
4.5 Interleaved VA-RRT* and NBMV operation . 88

5. CONCLUSIONS AND DISCUSSION .. 91

x

5.1 Summary of contributions . 91
5.2 Possible applications . 94

5.2.1 Decoupled aerial stereo . 94
5.2.2 Cooperative assembly. 94

5.3 Future Work . 95

REFERENCES . 96

APPENDIX A. CAMERA PINHOLE MODEL AND PROJECTIVE GEOMETRY. 107

A.1 Pinhole Model . 107

APPENDIX B. COVARIANCE OF CAMERA POSE ESTIMATION THROUGH REPRO-
JECTION ERROR .. 111

xi

LIST OF FIGURES

FIGURE Page

2.1 The two main phases of vision based collaborative localization: collaborative
mapping (left) and subsequent localization through data fusion (right).
Reprinted from Vemprala and Saripalli64 . 16

2.2 The two main phases of vision based collaborative path planning: covariance
reduction can be achieved through either improving existing maps (left) or
by improving feature tracking on the map (right). Reprinted from Vemprala
and Saripalli66 . 17

3.1 Vision based Collaborative Localization (VCL): process flow. Reprinted from
Vemprala and Saripalli64 . 20

3.2 Salient features identified and marked in green for a sample image. 22

3.3 Epipolar geometry . 25

3.4 Demonstration of how AC-RANSAC helps with filtering out outliers in feature
matches. 28

3.5 Perspective-N-point: The problem of determining rotation and translation of
a camera, given the positions of a set of 3D points and their corresponding
projections onto an image. 30

3.6 Example scenario where intra-MAV localization could fail, but inter-MAV
localization could help. 32

3.7 Guided matching to remove outliers: false matches are seen to have a high
epipolar error, corresponding circles seen to have a much larger radius than
those of the inlier matches.. 36

3.8 Fusion of inter-MAV and intra-MAV estimates: a pictorial representation.
Reprinted from Vemprala and Saripalli64 . 40

3.9 The concept of covariance intersection. 42

3.10 Example of covariance intersection fusion of data from three sources. 43

3.11 Implementation details . 46

3.12 VCL position estimates for three MAVs navigating within AirSim.. 47

xii

3.13 Intra-MAV localization in real experiments . 48

3.14 Roll angle comparison between VCL estimates and IMU for a fast side-to-side
flight. 49

3.15 Inter-MAV estimation test: backward and forward trajectory sample images . 49

3.16 Effect of frequency of inter-MAV data fusion on position estimate error. Error
bar shows variation of Y axis position MSE between clients V1 and V2. 50

3.17 Effect of frequency of inter-MAV data fusion on mean squared error on one
axis - both clients . 51

3.18 Comparison of inter vs intra-MAV measurement covariances. Inter-MAV
measurements are usually seen to have significantly lower solution covariance. 52

3.19 Images from the starting positions for four MAVs in AirSim . 52

3.20 Client X axis position estimate with data from (a) one host (b) two hosts (c)
three hosts . 53

3.21 Effect of number of participants on MSE of estimates . 53

3.22 Left: Fused yaw angle estimate for a rotating MAV. Right: Yaw angle from
relative estimates from the other two vehicles, and associated reprojection
errors. Reprinted from Vemprala and Saripalli64 . 54

3.23 Test of fused vs unfused localization for an indoor trajectory using real MAVs 55

3.24 Process of map updates while maintaining localization: newly captured
features are appended to the global map when the number of tracked features
becomes low. 56

4.1 Result of NBMV planner for a case with 2 MAVs. Initial and final maps seen
in (e) and (f). Reprinted from Vemprala and Saripalli66 . 78

4.2 Performance of localization against an initial map and a map improved
through the NBMV algorithm. Reprinted from Vemprala and Saripalli66 78

4.3 Effect of baseline-depth ratio on mapping quality . 79

4.4 Effect of path cost weight on mapping quality . 80

4.5 Performance of the NBMV planner when its has access to different numbers
of vehicles. 80

4.6 Localization error between maps made by 2 vs 3 vehicles. 81

xiii

4.7 Result of the NBMV planner in an environment with five MAVs. Initial map
and solution on left, final reconstruction on right. Reprinted from Vemprala
and Saripalli66 . 82

4.8 Results of NBMV planner applied to a bigger environment. Initial map on
left, final map on right. Middle shows original structure. Reprinted from
Vemprala and Saripalli66 . 82

4.9 More NBMV examples: Images from initial poses (top) and images from
optimized poses (bottom). Reprinted from Vemprala and Saripalli66 83

4.10 Sample plan from VA-RRT* that ensures good visual observations of features
while moving from start to goal. 84

4.11 VA-RRT* expansion with number of nodes: 50, 100 and 1000 nodes 85

4.12 Performance of VA-RRT* for different combinations of wc and wΣ. 85

4.13 VA-RRT*: coarse, initial path plan on the left, minimum-snap optimized
smooth plan on right. 86

4.14 VA-RRT* demonstrating vision-aware behavior along with collision avoidance
in a simulated room .. 86

4.15 Path plans generated from the VA-RRT* for a sample map from AirSim. 87

4.16 Comparison of covariance (trace) between VA-RRT* paths generated with
different weighting parameters . 88

4.17 Interleaved VA-RRT* and NBMV operation. When VA-RRT* is not able
to reduce covariance by expected amounts, NBMV can identify possible
viewpoint sets from where inter-MAV localization can be attempted. 90

A.1 Pinhole camera model . 108

xiv

LIST OF TABLES

TABLE Page

3.1 Mean squared errors for position estimates of three MAVs in AirSim 47

4.1 Comparison of localization accuracy with maps from different runs of the
NBMV planner. Reprinted from Vemprala and Saripalli66 . 78

4.2 Comparison of localization accuracy with respect to number of vehicles
involved in NBMV.. 81

xv

1. INTRODUCTION

The field of aerial robotics encompasses the study of a variety of flying machines, with

the main goal of operation without need for direct human intervention. These machines are

usually known as Unmanned Aerial Vehicles (UAV). The American Institute of Aeronautics

and Astronautics defines a UAV as follows:1

”an aircraft which is designed or modified to not carry a human pilot, and is operated

through electronic input initiated by the flight controller or by an onboard autonomous flight

management control system that does not require flight controller intervention."

In the current age, unmanned aerial vehicle technology is on the cutting edge of

robotics research. Recently developed UAV platforms recently possess various perception

and navigational capabilities combined with the level of decisional autonomy required to

execute complex tasks. Naturally, UAVs present a unique advantage over ground robots

because of their capability to exploit the third dimension, and the ability to move in six

degrees of freedom which makes them capable of navigating cluttered and/or challenging

environments. Within the classification of unmanned aerial vehicles, a certain class of

vehicles known as ’rotary-wing’ unmanned aerial vehicles (RW-UAV) deals with vehicles

that are specifically tailored to achieve hovering ability. This enables the vehicles to

examine environments without having to be in motion continuously, such as for instance,

reaching a vantage point to image or map their surroundings. RW-UAV in turn have various

classifications, ranging from helicopter type configurations that were examined initially, to

the later-developed multi-rotor configurations. Multi-rotor configurations currently enjoy

immense popularity both as research platforms as well as hobby flying vehicles usually due

to their small size and maneuverability, along with a relative ease of prototyping.

Multirotor UAV currently enjoy widespread popularity in several application domains.

The most well known ones are aerial photography, filmmaking, precision agriculture

etc., with others being actively developed such as utilization within search and rescue

1

applications, surveying, reconnaissance and structural inspection.

1.1 Micro Aerial Vehicles

Micro aerial vehicles are a special class of UAV that have gained general attention as

well as research focus in the past few years. Galiski and Zbikowski2 define a micro aerial

vehicle as a vehicle "small enough to be practical for a single-person transport and use."

In a more colloquial sense, the term MAV is typically used for platforms that are under

1m of size in any dimension. While the phrase MAV can be used to refer to different

classes of flying vehicles, throughout this dissertation, it is used exclusively to refer to

multi-rotor configurations, which are more commonly referred to as quadrotors, hexrotors

etc. depending on the number of actuators/rotors the vehicle is equipped with.

Multirotor micro aerial vehicles have a common physical configuration: where irrespec-

tive of number, all rotors are aligned in a plane, and all the rotor axes are perpendicular to

that plane. A multirotor is also an inherently unstable configuration: while it affords higher

agility, it creates numerous challenges in terms of control, perception and planning when it

comes to implementing autonomous operations.

Due to the requirement of small size, MAVs are usually equipped with small and low-

power sensors. The choice of sensor typically involves many considerations and for MAVs,

monocular cameras have been found to be a good fit as they share many advantages with

the vehicles themselves, such as inexpensiveness and small size. The fidelity of information

is what determines the accuracy of localization and thereby other functions related to

autonomy: and even in this regard, monocular vision sensors have great potential due to

their richness of information assuming sufficient illumination. Other vision sensors that

have the potential to produce richer information have certain limitations: stereo cameras,

for instance, would have limitations on the distance between the two cameras which in

turn limits their ability to perceive depth. For these reasons, monocular cameras are almost

ubiquitous on both commercial and research MAV platforms today.

2

1.2 Challenges associated with MAV

The small size of MAVs coupled with the instability of the multirotor platform creates

numerous challenges for autonomous operations. Some of the relevant ones are discussed

below.

1.2.1 Limited power and payload

The constraint of small size on MAVs translates directly to a low payload carrying

capacity. As MAVs have to continuously expend energy in order to stay airborne, the

amount of vertical thrust spent in order to hover scales up with the weight of the equipment

onboard. Naturally, this means MAVs are limited not in terms of sensors and computers,

but also with regards to the size of batteries, which in turn reduces flight time. Hence,

MAVs cannot usually make use of heavy, power-hungry sensors although they may provide

much more accurate information for the purpose of localization. Lighter, low-power sensors

are usually favored, albeit at the expense of low-frequency, noisier or less accurate data in

general. The algorithms that form the autonomy pipeline for MAVs need to take this into

account and need to possess an additional degree of robustness to cope with the possibly

low quality data, while also ensuring low computational complexity. MAVs can only handle

low power computational modules due to the same reasons as before, and this is another

constraint that needs consideration when designing autonomy algorithms.

1.2.2 Degrees of Freedom

As discussed earlier, one of the inherent advantages of MAVs is that they can navigate in

full six degrees of freedom (3D space). In contrast, ground vehicles are usually limited to

two degrees of freedom in position and one as a yaw angle: which makes state estimation

and control significantly more complex for an MAV. The additional degrees of freedom

should be accounted for in the system state that is part of localization and planning for

performing efficient autonomous navigation.

3

1.2.3 Sensitivity to Uncertainty

When ground vehicles are subject to noisy measurements or localization with high

uncertainty, it is possible to stop completely just to acquire more measurements. Whereas in

the context of MAVs, although they are able to hover, this is still a complex control operation

owing to their inherent instability of operation. Hence, MAVs are more susceptible to drift

because of bad measurements. In turn, this means MAVs need an additional degree of

accuracy in their perception/planning modules to ensure good measurements with low

uncertainty for safe, efficient navigation.

1.3 MAV Localization

MAVs by themselves are inherently unstable dynamic systems. A key problem in these

platforms is the continuous stabilization and control in six degrees of freedom, which can

be divided into two steps: attitude control (roll, pitch and yaw angles) and position control

(X, Y and Z). Their highly nonlinear and unstable system necessitates a carefully chosen

combination of sensor equipment and controller.

Conventionally, an MAV controller is designed as a cascaded structure that contains an

inner and an outer loop. The inner loop contains attitude control which runs at a very

high frequency, usually at 200-400 Hz to match the dynamics and control frequency of the

actuators. The outer loop contains position control that runs at significantly lower rates.

As the first step towards control is estimation, attitude control typically utilizes data from

inertial measurement units (IMU) that measure angular velocities and linear accelerations

of the vehicle.

Although attitude control is capable of making an MAV hover, it is still not possible to

estimate and correct for any drift that is caused by an accumulation of errors in measure-

ment. IMUs on most current MAV platforms are made of a combination of micro electro

mechanical systems (MEMS) accelerometers and gyroscopes which are susceptible to var-

ious errors arising from bias, temperature dependence, repeatability issues etc. that are

4

hard to model accurately. Hence, it is common practice in MAV platform design to combine

IMUs with one or more exteroceptive sensors that can estimate the vehicle’s position.

The most common sensor used for this purpose is a GPS receiver. Usually coupled with

the IMU, a GPS+IMU system fuses attitude data with position data received from satellites

to create a drift-limited, controllable platform. While GPS+IMU combinations are almost

ubiquitous on many MAVs today for position and attitude estimation, they do have several

drawbacks: GPS signals are not very reliable and may exhibit position error near large

structures such as buildings, and they have limited availability in remote areas, while being

completely inaccessible indoors. Several alternatives to GPS have been considered for

autonomous robots, such as laser rangefinders. Yet, both 2D and 3D laser scanners are not

optimal choices for MAV platforms as they are usually large, heavy and have high power

requirements that could seriously affect flight time.

The choice of sensing with the most level of success in MAV position estimation has

been vision. The earliest implementations of vision based estimation involved setting up

external cameras at known positions which can track the MAV - a concept that has now

been extended into motion capture systems such as the Vicon,3 which can perform tracking

with millimeter-level accuracy. However, such external systems can only be viable in a

research/prototyping setting, and does not help achieve fully autononomous behavior in

general environments.

A natural extension to tracking a vehicle using external vision sensors would be to install

a vision sensor onboard the vehicle directly: which is capable of estimating its own pose and

by extension, that of the vehicle. This allows for making the vehicle fully autonomous, as

the sensor is responsible for the vehicle’s perception directly. Several types of vision sensors

have been evaluated for this purpose, such as monocular cameras, stereo cameras and

RGBD cameras. Of these, monocular cameras arise to be the best choice for MAV platforms.

Stereo cameras are two monocular cameras separated by a known distance called the

baseline: and this baseline is directly proportional to the observable depth from the camera.

5

As MAVs operate under stringent size restrictions, this limits the baseline of the stereo

camera and thereby the viewing distance of the sensor. The other type of vision sensor is an

RGBD camera, such as the Microsoft Kinect, and these are active 3D depth estimation setups

which employ infrared lasers to perform depth calculations. These sensors usually perform

reliably only in indoor areas and are prone to failure when there is high ambient light such

as in outdoor areas. To summarize, out of many onboard vision sensor choices, monocular

vision offers the best trade-off between size, cost, reliability of information and applicability.

Due to this reason, cameras have become one of the most widely installed sensors on many

off-the-shelf MAV platforms alongside GPS+IMU sensor combinations. As explained in

subsequent chapters, techniques described in this dissertation employ monocular vision

based methods to perform localization and path planning.

1.4 Collaborative aerial vehicles

A single autonomous robot in a complex operation can always run the risk of being

resource-limited, with no backup in conditions that may lead to its failure. This effect

is more prominently seen in the context of MAVs, given their challenges with regards to

limitations in sensor hardware, computation as well as flight capability. Recent advances

in hardware, sensing and wireless communication have enabled research to focus on the

idea of multiple autonomous agents that can collaborate with each other. Collaborative

multi-robot systems provide several advantages over single agents, such as robustness due

to sharing of data and fusing information, redundancy in case of robot or sensor failure,

increased spatial coverage etc. In regard to MAVs, it could be more desirable to employ

a team of simpler, smaller, low-power MAVs compared to one high-power, heavy aerial

vehicle which could pose problems for flight time. Using multiple MAVs as a group has

the potential to boost mission efficiency: by allowing larger spatial coverage, carriage of

heavier payloads etc. Multiple MAVs can also be leveraged for task distribution in various

schemes. As an example, one or more MAVs with higher computational power can act as

leader vehicles, performing the more intensive tasks and commanding the other vehicles as

6

is required.

Collaboration can be defined as a theme for various tasks performed between the mem-

bers of a team: these could be sharing and merging information originating from multiple

sources, and joint decision-making with the intention of improving existing information

and the efficiency of the team. In the first part, the term ‘information’ means two things:

information about the robots themselves: such as state estimates, paths taken for navi-

gating, uncertainties etc. and information about the environment: reconstructed maps,

obstacle locations etc. Collaboration and information sharing helps the members manage

and distribute tasks in a more efficient way that accounts for their limited resources. On

the other hand, joint decision-making ensures that individual actions of the members can

benefit the whole team, while helping them determine specific locations or areas to navigate

to according to their limitations.

Joint decision-making and information merging especially benefits monocular sensing.

One of the major challenges with monocular cameras is the problem of estimating depth: i.e,

when viewing an object through a single camera, the image of the object does not afford any

information about the size of the object or the distance between the camera and the object.

Extended to any general environment, a single camera/image is insufficient to determine

the scale of the objects in the environment, which poses a problem for metrically accurate

localization and navigation of a vision based vehicle. Binocular vision solves this problem

by employing two views; so it can be intuitively seen that multiple vehicles equipped with

monocular cameras can collaborate to solve the same problem, thereby acting somewhat as

a decoupled stereo camera.

When multiple vehicles function as a group, task distribution can be achieved by

enabling collaboration between the vehicles. For example, computationally heavy tasks can

be offloaded to a leader MAV with more hardware capacity. Collaboration can also help

with localization: if multiple sources of information are available, they can be fused in a

consistent manner and the final pose estimates can be made more robust. In the case of

7

monocular sensing, information fusion can be especially useful: considering that a single

camera cannot estimate depth or scale directly by itself, collaboration with other sensors

can help resolve these unknown factors.

8

2. STATE OF THE ART AND CONTRIBUTIONS

The research in the field of autonomous micro aerial vehicles has been very active over

the past few years. The relevant research can be mainly classified into broad fields such

as localization, control, path planning etc. In the scope of this dissertation, this chapter

presents a summary of the state of the art research in localization and mapping using vision

sensors and subsequently path planning. Subsequently, this chapter also lists the primary

contributions of this dissertation.

2.1 Micro Aerial Vehicle Localization

Traditional sensors used for MAV localization and navigation were GPS receivers com-

bined with onboard IMU sensors. Initial works have examined the efficacy of fusing GPS

and IMU data for flight, such as in Abdelkrim et al4 and Yun et al.5 To alleviate the problems

with GPS receivers on MAVs such as drift and inaccuracy, fusion of information from other

sources of data were also investigated, such as a combination of vision, GPS and IMU pre-

sented by Templeton et al.6 Caballero et al7 present a technique of georeferencing images

obtained from the downward facing camera of a UAV and improving pose estimation by

propagating this data through a Kalman filter.

In other early works, the potential of vision sensors onboard UAV platforms was recog-

nized although the onboard cameras were not directly used for localization. For instance,

camera based navigation was used for helicopters to perform autonomous landing, as

presented by Saripalli et al.8 When vision based localization was first implemented, it was

through external camera placement such as in professional motion capture systems, as

shown in,9 or external marker placement such as AR Tags. Many approaches that used

motion capture systems for localization were able to capitalize on the extremely precise,

high update rate pose estimates to demonstrate impressive results such as aggressive flight,

complex and precise maneuvers (Lupashin et al,10 Hehn and D’Andrea11), formation control

9

for MAV swarms (Kushlayev et al,12 Ritz et al13) etc. As these approaches focused on

the control or planning aspects of flight, while assuming reliable and continuous state

estimation, their feasibility was limited to controlled environments.

Afterwards, localization using vision sensors as the main exteroceptive sensors started

to be of interest. RGBD sensors were one of the initially investigated setups due to the

advantage of having direct depth estimates. Stowers et al14 used a Microsoft Kinect depth

sensor on a MAV for altitude estimation. Shen et al15 presented a fusion of a Kinect depth

sensor along with a 2D laser rangefinder for localizing in 2.5D, but creating full 3D maps

for the purpose of mapping. Bachrach et al16 presented localization using an MAV that

hosted an onboard Microsoft Kinect, which allowed for RGBD visual odometry. Tomic et

al18 created an approach that combines odometry from a stereo camera as well as a laser

rangefinder with onboard computation and data fusion between both estimates. Even more

recently, Fang and Scherer19 showed full 6-DoF localization of MAVs using RGBD sensors.

As MAV platforms got smaller, the interest shifted towards monocular cameras, and MAV

related research was able to capitalize on the huge amount of progress that was made in

the computer vision field on monocular camera based estimation and mapping.

The ubiquity, compactness and relative inexpensiveness of monocular cameras have

had a significant influence on the popularity and applicability of the sensor for estimation

purposes in the computer vision community for well over a decade. As mentioned earlier,

the lack of absolute scale estimation through a single camera has posed several problems in

its applicability to MAV localization, due to the necessity of metric positions or velocities

in MAV navigation and control. One of the seminal works that presented a monocular

localization and mapping method was Parallel Tracking And Mapping (PTAM) framework,

originally developed by Klein and Murray,20 where the scale factor was estimated by a

manual calibration sequence during initialization. Soon after, more robust and generally

applicable SLAM frameworks were presented through SVO,21 ORB-SLAM222 and LSD-

SLAM,23 among which some were successfully implemented on UAV platforms.

10

The lack of scale estimation affects all monocular setups, regardless of whether they are

performing pose estimation in a perspective-N-point formulation, optical flow approaches

or SLAM systems. Methods in the literature have investigated different ways of solving

the problem of scale ambiguity. Additional IMU data was used to solve scale ambiguity in

the approach presented by Blösch et al.24 Further advancements in this line of work were

shown by Achtelik et al,17 where vision and IMU data were fused to achieve localization

entirely onboard an MAV, using a barometric pressure sensor for visual scale estimation

through altitude. Burri et al25 extend a similar visual-inertial framework to performing

mapping, relocalization and planning onboard an MAV in real time. Many other promising

monocular visual-inertial systems have been proposed, such as MSCKF,26 visual-inertial

ORB-SLAM2,27 VINS-MONO28 etc.

To examine some other ways of solving the depth/scale problem, Bristeau et al.29

combined a small camera with an ultrasonic rangefinder: while the camera employed

an optical flow algorithm to compute planar velocities, the rangefinder would compute

altitude, thus removing the scale ambiguity problem. This was implemented commercially

in the AR Drone platform. Similarly, Meier et al30 fused optical flow, ultrasonic altitude data

along with altitude estimates from barometric pressure sensors for added reliability, which

formed the core of the ‘PixHawk’ autopilot project. However, these optical flow approaches

were only able to compute velocities instead of absolute positions, thus still resulting

in occasional drift. Engel et al.31 provided an enhanced solution where the AR.Drone’s

operation was combined with PTAM, and scale factors were computed using a maximum

likelihood approach. AR.Drone applicability was found to have certain limitations as well,

because of the limited range of the ultrasonic sensors and their sensitivity to other sensors

and noise. Shen et al15 use a single camera at a high frame-rate as their primary sensor, but

combine this data with another camera of known intrinsic and extrinsic values, that works

at a lower frame rate. Pizzolli et al32 present a very impressive framework that utilizes

probabilistic techniques to intelligently estimate depth directly from a monocular video

11

stream on a per-pixel basis.

2.1.1 Collaborative Localization

Over the past few years, significant work has been done on the theoretical aspects of

collaboration for localization purposes. For a generic multi-robot scenario, Martinelli et al33

present a localization approach that fuses proprioceptive and exteroceptive measurements

through an extended Kalman filter, effectively utilizing data fusion. Nerurkar et al34 present

a cooperative localization algorithm that works in a distributed fashion to achieve maxi-

mum a-posteriori estimation, but which requires continuous synchronous communication

within the robot group. Carrillo-Arce et al35 present a decentralized cooperative localization

algorithm, with the robots only needing robot-to-robot communication when relative mea-

surements are required. Knuth and Barooah36 propose a distributed algorithm specifically

for GPS-denied scenarios, where the robots fuse information from each other continuously

and average the relative pose data in order to achieve cooperative estimation that helps

all the members. Indelman et al37 propose a multi robot localization algorithm that uses

expectation maximization to take care of the data association problem between the team

members, and is also capable of handling unknown starting poses.

Only very recently have there been advances in the realm of collaborative localiza-

tion using vision and aerial vehicles. For aerial vehicles equipped with monocular cam-

eras, Indelman et al38 propose a multi-view geometry inspired technique that estimates

transformations between the camera views through multi-focal tensors and subsequently

localization. Zou and Tan39 present a collaborative monocular SLAM algorithm with a

focus on handling dynamic environments, with multiple vehicles performing individual

and relative estimation. Achtelik et al40 present an approach for two UAVs that each host a

monocular camera and an IMU, which is capable of estimating relative poses along with

absolute scale, thus acting similar to a stereo camera. Piasco et al41 treat multiple UAVs with

cameras as a distributed stereo system for localization purposes, with a focus on achieving

formation control. Forster et al42 demonstrate a SLAM system that contains a central server

12

that focuses on features like map merging using information from multiple camera-based

vehicles. In this framework, the vehicles do not receive any additional information from

the central server or other vehicles in order to benefit from map optimization or pose

fusion. Schmuck and Chli43 present a collaborative monocular SLAM algorithm, also with

somewhat of a centralized paradigm: each MAV is responsible for running its own SLAM

pipeline and a central server focuses on place recognition, optimization and map fusion.

2.2 Path Planning

Once a robot can localize itself by combining perception and estimation, it assumes the

ability to follow certain trajectories and the next step is to compute valid movements from

one location to another: this is known as the path planning problem. This problem can be

expressed as a partially observable Markov decision process (POMDP) framework, which

is known to be computationally intractable.44 Thus, most of the research in the planning

domain has a focus on developing approximate approaches that can scale effectively to the

dimensionality and complexity expected in real world problem scenarios.

In particular, sampling based approaches have been found to be highly applicable for

combining with SLAM-related frameworks and for real-time implementations onboard

vehicles. Sampling based planners discretize the state space using randomized exploration

strategies to explore in search of a valid plan, possibly satisfying one or more conditions that

define optimality. This approach was adapted into the robot path planning domain with

significant success. Influential works in this area include probabilistic roadmap (PRM),45

rapidly exploring random trees (RRT),46 which was extended into an asymptotically optimal

version RRT* and a graph version RRG by Karaman and Frazzoli.47 All of these approaches

assumed perfect knowledge of the state, deterministic control and a known environment

with no consideration of uncertainty. Later, these assumptions were relaxed, and the

research community moved its focus towards uncertainty-aware planning approaches,

where the robot’s belief was no longer perfect. The belief-based counterparts of the

previous works were developed as, for example, the belief roadmap (BRM)48 and the

13

rapidly exploring random belief trees (RRBT),49 where predicted uncertainties of future

position estimates are considered beforehand. Similar strategies were used to address

the planning problem from the context of information gains such as the ones in Levine et

al50 and Hollinger et al.51 Other belief space planning methods include direct trajectory

optimization such as the one developed by Van der Berg et al,52 which uses a linear-

quadratic Gaussian to calculate locally optimal control policies given an initial nominal

path, and another method by Agha-Mohammadi et al53 that attempts to incorporate motion

uncertainty in a roadmap framework (FIRM).

While a significant focus was given to the problem of belief-space or uncertainty-aware

planning for ground robots, the number of similar approaches that are applied to MAV

navigation in full 3D environments is rather low. He et al54 use a laser-rangefinder system

for localization and correctly identify that a direct path between start and goal may not be

the best choice for localization, since the measurement range is not considered in a naive

plan. Instead, their planner ensures localization by moving the vehicle such that sufficient

structure is continuously in view. This was further by Bachrach et al16 employing belief

roadmaps in combination with an RGBD camera as the exteroceptive sensor. Achtelik et al55

use an RRBT planner to perform uncertainty aware navigation for a single aerial vehicle that

is equipped with a downward facing camera. In,56 a perception aware planning approach

is discussed for aerial vehicles, where instead of feature based methods, photometric

information of a scene is directly expressed as an information metric in order to achieve

perception-aware planning. More recently, Bircher et al57 presented a receding horizon next

best view planner for a stereo camera, with the target application being 3D exploration

for an MAV. Falanga et al58 attempt to unify control and uncertainty-aware planning by

formulating the optimization of perception related objectives in a model predictive control

framework that works in a receding horizon fashion.

Collaborative path planning for multi-robot systems has been studied for various goals.

Some of the earliest research in the idea of cooperative path planning involved extensions

14

to algorithms such as A*, such as space-time A*.59 Hennes et al60 introduced a collision-

free navigation method for multi-robot systems in the presence of localization uncertainty.

Belkhouche and Jin61 presented a collaborative path planning approach that utilizes real-

time collision detection between the team members, and subsequently modifies positions

and orientations of the robots such that collisions can be avoided. Mellinger et al62

demonstrate an approach capable of planning optimal paths while also enabling formation

control for multiple heterogeneous MAVs. The problem of goal assignment and spatial

traversal for large teams of MAVs was investigated by Turpin et al.63

2.3 Contributions

In the previous sections, the challenges in MAV autonomous localization and navigation

were presented, along with the advantages that multi-MAV teams and subsequent collab-

oration can bring to the pipeline of autonomy. With the aim of addressing some of these

challenges, and attempt to answer them from the context of collaboration, this dissertation

presents two major frameworks: one for performing collaborative localization and one for

collaborative uncertainty-aware path planning. The methods discussed herein are applica-

ble to groups of micro aerial vehicles incorporating a minimal sensor setup, which is only a

monocular camera. Monocular cameras offer a good combination of characteristics such as

low weight, wealth of information and ubiquity which make them appealing candidates for

MAV sensing. This dissertation investigates and proposes two methods: a feature-based

collaborative localization method for MAVs utilizing monocular vision, and as an extension

to that localization system, a collaborative path planning for a group of MAVs also geared

towards feature-based vision. The core contributions are listed in detail below.

1. Development and evaluation of a vision-based collaborative localization (VCL) algo-

rithm. This algorithm uses solely images from a monocular camera for each MAV, and

utilizes a structure-from-motion inspired feature based pipeline to achieve localization

in a mostly decentralized fashion. As the first step, the MAVs communicate feature

15

Figure 2.1: The two main phases of vision based collaborative localization: collaborative mapping
(left) and subsequent localization through data fusion (right). Reprinted from Vemprala and
Saripalli64

data between each other to isolate common features and reconstruct a ‘map’ in 3D.

Once a map is available, two types of localization can be performed: intra-MAV

localization, which is performed by each vehicle to obtain its own pose estimate;

and inter-MAV localization, which involves two or more MAVs to generate a relative

pose measurement. All pose estimates are coupled with estimates of measurement

uncertainty, which is used to compute pose covariances through a Kalman filter. The

VCL framework allows for robust fusion of relative and individual pose estimates

in order to maximize accuracy. Figure 2.1 shows a visual representation of the two

phases of VCL.

2. Development and evaluation of a vision-based collaborative path planning (VCP)

algorithm. This serves as an extension to the VCL algorithm: assuming a group of

vehicles is able to use the VCL algorithm to localize, the VCP framework attempts

to achieve uncertainty-aware navigation by performing two functions. The first one

involves trying to improve the existing 3D maps through a multi-vehicle next best

view algorithm, where multiple vehicles collaborate to identify which viewpoints

can result in a better map than what is already present, which can subsequently be

Figure reprinted with permission from ‘Monocular Vision based Collaborative Localization for Micro Aerial
Vehicle Swarms’ by Sai Vemprala and Srikanth Saripalli, 2018, Proceedings of the 2018 IEEE International
Conference on Unmanned Aircraft Systems, © 2018 IEEE

16

Figure 2.2: The two main phases of vision based collaborative path planning: covariance reduction
can be achieved through either improving existing maps (left) or by improving feature tracking on
the map (right). Reprinted from Vemprala and Saripalli66

shared with all vehicles. Once an improved map is available, the VCP framework

executes a sampling-based planner known as Vision-Aware RRT* (VA-RRT*) that runs

individually for each vehicle. VA-RRT* plans paths for each MAV in such a way that

localization is not compromised, and is improved wherever possible: thus attempting

to reduce the vehicle’s pose covariance. Figure 2.2 shows a visual representation of

the two phases of VCP.

The overall goal of the ideas presented in this dissertation is to provide solutions to

groups of MAVs to navigate in environments where collaboration can be beneficial and a

high localization accuracy is essential. The VCL framework avoids having to run individual

SLAM pipelines on each MAV by treating the mapping function as a distributed task between

MAVs. For example, depending on the architecture of the target system, matching and

reconstruction can be offloaded to one MAV that has access to better computational modules,

thus acting as a leader, and other MAVs with weaker computers can perform only feature

tracking and localization. At the same time, the vehicles can interact with each other

directly through the relative pose estimation. The problem is not formulated as SLAM, so

the focus on mapping is relatively lower: the uncertainty of map points is ignored, and

Figure reprinted with permission from ‘Vision based Collaborative Path Planning for Micro Aerial Vehicles’
by Sai Vemprala and Srikanth Saripalli, 2018, Proceedings of the 2018 IEEE International Conference on
Robotics and Automation (ICRA), © 2018 IEEE

17

the map is not part of the system state. While this system can be capable of handling

dynamic environments through timely map updates, it still operates under the assumption

of sufficient feature overlap over time.

A closely related combination of localization and path planning ensures that collaborative

constraints are taken into account sufficiently in different phases of navigation. With the

focus on uncertainty-aware planning, it is ensured that the MAVs maintain observability of

features while navigating, thus reducing possibilities of drift or crashes. All of these tasks

have been achieved solely with data from a vision sensor without the help of any external

sensing such as GPS or motion-capture systems, thus making it applicable for GPS-denied

scenarios. The techniques presented in this dissertation were validated on a combination of

both simulated and real tests.

The tests did not involve real-time implementation of these algorithms, hence the

algorithms were implemented on pre-recorded data in an offline fashion. Regardless, the

dissertation contains discussion on the feasibility of applying these algorithms real-time

through analyses of timing, communication requirements etc. While these algorithms were

not implemented in real time and were only tested independently, the target application

scenario envisages the VCL and VCP frameworks working together in a loosely coupled

fashion. The localization algorithm can be assumed to run continuously, with the planning

algorithm attempting to contribute to better localization. Thus, the VCL results such as

localization data and uncertainty act as feedback for the VCP algorithm, allowing it to

identify better trajectories or viewpoints.

The work in this dissertation is a combination and extension of the author’s prior research

in the domain of collaborative localization,6465 and uncertainty-aware collaborative path

planning.66

18

3. VISION BASED COLLABORATIVE LOCALIZATION

3.1 Problem Statement

This chapter presents a solution for estimating the poses of multiple micro aerial vehicles

navigating in full 3D space, i.e., utilizing the full six degrees of freedom. Each micro aerial

vehicle is defined as a multirotor platform capable of moving in all 3 directions with full roll,

pitch and yaw capabilities, thus able to traverse the space of R3 × SO(3), and is equipped

with an intrinsically calibrated monocular camera. The cameras are assumed to be facing

forward and capable of capturing images of the environment in front with a finite, known

field of view. Within the world frame of reference, the position of the camera is considered

to be equivalent to the position of the vehicle, as the vehicles are usually small in size. Thus,

for k MAVs in a group, the goal is to estimate a full system state X where each state is a

combination of the 3D position of the vehicle and the roll, pitch, yaw angles in a predefined

frame of reference.

X =

[
X0 X1 ... Xk

]
(3.1)

Xk =

[
xk yk zk φk θk ψk

]
(3.2)

The cameras are assumed to adhere to the central projection (pinhole camera) model.

Each camera is described by an intrinsics matrix K (which is known beforehand) and is

capable of producing R3 → R2 projections for each 3D point it observes through a projection

function π. In Appendix A, the camera model and projective geometry are described in

detail. Given this information, and a set of images from each camera captured at every

instant, the responsibility of the localization algorithm is to estimate the corresponding

Some figures in this chapter are reprinted with permission from ‘Monocular Vision based Collaborative
Localization for Micro Aerial Vehicle Swarms’ by Sai Vemprala and Srikanth Saripalli, 2018, Proceedings of
the 2018 IEEE International Conference on Unmanned Aircraft Systems, © 2018 IEEE

19

Figure 3.1: Vision based Collaborative Localization (VCL): process flow. Reprinted from Vemprala
and Saripalli64

6-DoF poses of all MAVs to form the state matrix specified above. As detailed in the

following sections, the pose estimation problem is solved in a decentralized way: based on

the decomposition of world-to-image and image-to-image transformations, thus achieving

both individual pose estimation for each vehicle and relative pose estimation between

vehicles when needed.

3.2 General framework and assumptions

The general flow of the VCL algorithm can be seen in figure 3.1. The individual blocks

represent various parts of the algorithm, and these parts will be discussed in detail in the

following sections.

To facilitate pose estimation, three important assumptions are made in the context of

the localization algorithm:

1. All the cameras onboard the vehicles are calibrated, and the intrinsics (and distortion

coefficients, if any) are known.

20

2. The true distance between at least two of the vehicles in the group is known prior to

commencement of flight.

3. Communication delays between vehicles are ignored in the current scope of the work.

Any information transmitted between vehicles is assumed to be received without delay

or loss.

3.3 Feature detection and matching

The pose estimation strategy used by the localization framework is addressed as a

feature-based method. Feature-based methods are a subset of vision based methods which

attempt to describe an image through a set of features, as opposed to direct methods,

which use intensity differences between images as a source of information. A feature, also

known as interest point or keypoint; is defined as a point that, when combined with its

immediately neighboring pixels, possesses a specific pattern generally associated with one

or more distinguishable properties. These properties may include corners, regions, edges

and so on. Features represent essential anchor points that can summarize the content of an

image and can also help in searching for specific regions between images. Hence, a feature

is a location in the image plane with X and Y coordinates, combined with a numerical

descriptor that represents the pixel information of the point and its surrounding pixels. The

phrase feature detection traditionally refers to the algorithm or technique that detects local

features and prepares them to be passed to another processing stage that describes their

contents, i.e. a feature descriptor algorithm. In this work, the phrase feature detection is

used to broadly mean a combination of the steps of feature extraction as well as description.

Figure 3.2 shows an example of how feature detection looks for a sample image.

The literature is rich with a variety of feature extraction and description algorithms.

Some of the influential algorithms presented in the last decade or so are SIFT,67 SURF,68

FAST69 and ORB.70 Out of all these methods, only some are termed as invariant methods, i.e.,

they are able to identify and locate interest points even under changing image conditions

21

Figure 3.2: Salient features identified and marked in green for a sample image.

such as scale, illumination, rotation etc. As the focus of the localization algorithm is onboard

micro aerial vehicles which exhibit fast movements, transitions between various lighting

conditions, invariance is essential for a feature detection algorithm that may be used for

MAV camera images. Two methods were chosen, classified by their type of implementation

and are listed below:

1. AKAZE: Accelerated KAZE features and M-LDB descriptors: CPU implementation

2. KORAL: Multi-scale FAST features and LATCH descriptors: GPU implementation

3.3.1 A-KAZE features

A-KAZE features were presented by Alcantarilla et al71 an extension to their previous

work that proposed KAZE features. As mentioned before, invariance is an important

property of feature detectors, and scale invariance is usually achieved by examining an

image at different resolutions, or different scales: also known as the task of constructing a

‘scale space’. KAZE features exploit non-linear scale spaces by using non-linear diffusion

filtering. This technique makes blurring in images locally adaptive to feature points: thus

reducing noise while retaining the boundaries of regions of interest. The KAZE detector

works using the scale normalized determinant of the Hessian matrix that is recomputed

22

at various scale levels. The maxima of these regions of interest are picked up using a

moving window approach and are treated as salient features. A-KAZE uses a more efficient

algorithm to construct the non-linear scale space, known as Fast Explicit Diffusion (FED).

AKAZE features are invariant to scale, rotation, limited affine and have more distinctiveness

at varying scales because of nonlinear scale spaces, while being faster than SIFT/SURF

detection algorithms.

A-KAZE features are combined with a binary description scheme. Binary descriptors

provide a significant advantage over their floating point counterparts (such as the ones

used on SIFT/SURF) because of their low memory footprint, thus being applicable for

algorithms of a cooperative nature that might require communication of feature data. The

descriptor used is known as a modified Local Binary Descriptor (M-LDB) that condenses the

description of surrounding pixel data into a 488-bit vector.

3.3.2 KORAL features

Alongside the earlier implementation, this algorithm has also been tested with a GPU

implementation of multi-scale FAST features, known as KORAL. The FAST algorithm was

originally proposed by Rosten and Drummond,69 which is a technique for determining

corners in a given image by examining a circle of 16 pixels around a candidate pixel.

The intensity differences between the pixels are used to classify it as a corner. FAST

generally exhibits superior performance to many feature detection algorithms in terms of

computation time and resource utilization, thus making it suitable for real-time processing.

As a downside, FAST is susceptible to noise and generally fails to detect good features if the

image exhibits blur. To counter this, FAST can be extended to an image pyramid of multiple

scales: which still provides a considerable speedup over conventional multi-scale detectors.

In KORAL, a candidate image is first divided into 7 scales in a pyramid formation, each

scale containing the image in smaller resolution than the parent: and FAST is run on each

layer of the pyramid to isolate salient features. As FAST is computing keypoints for each

layer, a GPU back-end performs high speed bilinear interpolation to resize the image into

23

the next layer of the pyramid. Once the keypoints are computed throughout the nonlinear

scale space, KORAL uses LATCH description to compute descriptors for each salient feature.

LATCH (Learned Arrangements of Three patCH codes) is a recent advancement in feature

descriptors presented by Levi and Hassner.72 While normal feature description methods

rely on comparison of individual pixel values between two or more patches, LATCH opts

for a triplet approach: where triplets of patches are compared in order to set the binary

values of the representation In this algorithm, the CUDA version of LATCH was used,73

which results in 512-bit descriptor vectors for each feature.

3.3.3 Feature Matching

Once a set of salient features are extracted from all images in consideration, the

common points between the images are identified using a step of feature matching. Feature

matching involves isolating the set of points that are closest to each other in all the

images. Considering only two images for simplicity, each ‘match’ is a pair of features whose

descriptors are closest to each other among all other possible feature combinations. In

both the A-KAZE and KORAL methods, the descriptors are binary vectors: and hence, a

Hamming distance metric was used to perform matching in a brute-force fashion. Hamming

distance between two binary vectors identifies the number of positions where the bits are

different: so, a low distance means the descriptors are very similar to each other. Similar

to the detector implementations, the matching algorithm for KORAL also runs on CUDA,

providing a significant speedup compared to its CPU counterpart.

3.4 Relative pose estimation

This section describes relative pose estimation of two cameras without known 3D poses

and by only observing a previous unknown scene. Due to the unknown scene, no 3D/2D

correspondences are available: only 2D/2D correspondences between image points can be

obtained. The detection and matching step described earlier is responsible for gathering

these correspondences, each correspondence containing a combination of keypoint locations

24

Figure 3.3: Epipolar geometry

(pixel coordinates of the feature) in two or more images. This information is then used to

compute both the relative pose between the cameras and a sparse reconstruction of the

scene being observed.

A simple case of relative pose estimation is shown in figure 3.3. Assuming two cameras

arranged to the left and right are viewing a 3D point X, each of these 3D points would

have two projections on both the image planes of the cameras. If such a point common

to both the cameras exists, these two views would then be related through the concept of

epipolar geometry. The left image contains a point x that originated from the unknown 3D

point X, whereas the same 3D point is projected as x′ in the right camera. According to the

pinhole camera model, X and x can be connected through a line l that eventually passes

through the camera’s center. This line, known as the epipolar line, has its own projection l′

in the right camera; as does the center of the left camera. This projected center is known as

the epipole (e′ in the figure).

The epipolar line projected on the right camera can be described as the line connecting

the epipole and the projection of the 3D point on the right camera, thus:

l′ = e′ ×P′X = t′ × (R′x+ t′) = [t′]×R′x (3.3)

25

As the epipolar line l′ also contains x′, this condition can be expressed as follows, which

in turn results in a relationship between the projections of X in both cameras.

x̂′>l̂′ = 0 =⇒ x̂′>[t]×Rx̂ = 0 (3.4)

The matrix E = [t]×R is called the essential matrix, and it encodes the epipolar geometry

between the two views as a combination of the rotation and translation between the two

camera centers. It can be constructed given a rotation matrix R and a translation vector t

with three degrees of freedom. Although it combines both of those quantities, E only has

five degrees of freedom, and thus is invariant to scaling. Thus, given an essential matrix

only, it is impossible to determine the magnitude of t, i.e., when decomposed, only a unit

vector is obtained. When the internal camera parameters are known, a finite number of

correspondences can be used to estimate the essential matrix. As the epipolar geometry

depends on five parameters: 2 for translation, and 3 for the 3D rotation ,a minimum of 5

matches are required between two images to estimate the essential matrix. Specifically, the

relative pose estimation algorithm used within the VCL framework uses a solution presented

by Nister74 that uses a five point correspondence minimum between the images to estimate

E.

The essential matrix can then be decomposed to obtain the actual rotation and transla-

tion parameters. Up to the scale of t, E can return 4 theoretical solutions, but with only

one of them being valid.75 This validity is determined by what is known as the chirality

constraint, i.e, only one of these solutions for the pose ensure that the scene points are

actually in front of both the cameras in question. The approach used to compute the valid

solution from E involves a singular value decomposition of the matrix as follows.

E = UDV> =

[
u1 u2 u3

]
1 0 0

0 1 0

0 0 0

v′1

v′2

v3

 (3.5)

26

Given this decomposition, it can be shown that the rotation matrix and translation vector

assume the following combinations.

R ∈
(

UWV> UW>V>
)

where W =

0 −1 0

1 0 0

0 0 1

 (3.6)

t = ±λu3 (3.7)

The correspondences obtained between the images (feature matches) are usually not

perfect, i.e., they are a combination of both accurate and inaccurate matches, which can

be attributed to texture repetition in the images or similar looking objects distributed over

the image. To alleviate this problem, estimation of the essential matrix is usually combined

with a random sample consensus (RANSAC) scheme. RANSAC is an algorithm that is used

to estimate parameters of a model that the data adheres to, among which some outliers

exist that do not respect the model. RANSAC operates under the assumption that there

is a consensus among the inliers, whereas the outliers are random. The process usually

involves iteratively selecting small sets of the given data, estimating the parameters of the

model and evaluating the residual error of the fit using a predefined threshold. It can thus

be seen that RANSAC can suffer from the problem of an arbitrary choice, since an accuracy

threshold has to be preset, which could be problematic for a situation like VCL where the

image characteristics and noise levels could change significantly in the application domain

of the RANSAC algorithm.

To avoid the problem of having to pick an accurate threshold, the VCL algorithm uses a

modified scheme known as the a-contrario RANSAC (AC-RANSAC). Proposed by Moisan

and Stival76 and demonstrated for computer vision applications in the subsequent work by

Moisan et al,77 AC-RANSAC has three main features:

1. The threshold for inlier/outlier discrimination is adaptive, it does not need to be fixed.

27

(a) Raw feature matches (b) AC-RANSAC filtered
matches

Figure 3.4: Demonstration of how AC-RANSAC helps with filtering out outliers in feature matches.

2. It gives a decision on the adequacy of the final model: it does not provide a wrong set

of parameters if it does not have enough confidence.

3. The procedure to draw a new sample can be amended as soon as one set of parameters

is deemed meaningful: the new sample can be drawn among the inliers of the existing

model.

This a-contrario approach is capable of choosing the value of parameter T adaptively,

based on the noise in the given data, thus enabling robust choice making in terms of the

finding the right model, i.e., the essential matrix. Through this choice, the feature matches

are filtered to remove outliers, and then the essential matrix is decomposed into rotation

and translation. Figure 3.4 demonstrates how AC-RANSAC helps in filtering outlier matches

during essential matrix estimation.

3.5 Map building

The relative pose estimation step ensures the transformation between two or more views

is known. Next, this information can be used to compute a sparse reconstruction of the

28

surrounding environment. The well known Hartley-Sturm triangulation method78 is used

to combine the transformations with the known projections of the matched points to obtain

the 3D locations of the matched points. This map is then published as a global source of

information, accessible from all the MAVs. This map is the seed information from which

feature tracking, pose estimation etc. are done. The globally available map data consists of

a list of all 3D locations of all the points, as well as the corresponding feature descriptor

vector associated with each point. The images responsible for this reconstruction are known

as ‘keyframes’, and the descriptors of the common matches from these images are stored in

the map data.

It is useful to recall here that according to assumption 2 in section 3.2, the distance

between at least two vehicles is already known prior to initialization. This helps remove the

scale ambiguity problem with the very first reconstruction. For a group containing more

than two vehicles, all MAVs capture images from their cameras, and a visibility graph of

feature overlap is generated in order to isolate all combinations of common features. The

pair with the highest number of overlapping features is considered a seed pair and a first

reconstruction is attempted with only those two views. Once this reconstruction is generated,

other MAVs are incrementally included in this reconstruction based on the features that

are observed from their cameras. Finally, all the poses and scene are refined using a sparse

bundle adjustment method. Considering the fact that this problem is formulated as solely

a localization problem and not SLAM, during/after reconstruction, the uncertainty of the

map points is ignored, and the map points do not form part of the system state. It will

be discussed in the next sections how the currently accurate metric scale value can be

propagated to future reconstructions for relative pose measurements or map updates.

3.6 Intra-MAV localization

The first phase of the VCL algorithm involves relative pose estimation and constructing a

sparse representation of the environment the vehicles are facing, which is known as the map.

After a map is available, the vehicles are free to fly in full 3D, under the assumption that the

29

Figure 3.5: Perspective-N-point: The problem of determining rotation and translation of a camera,
given the positions of a set of 3D points and their corresponding projections onto an image.

vehicles will continue to capture images and detect salient features in subsequent instants

of time. Through this process, the vehicles are made capable of localizing themselves

individually, through a process called ‘intra-MAV’ localization.

The intra-MAV localization method uses a standard image based camera localization

technique that attempts to estimate the six degrees of freedom pose of a camera given a 2D

image containing projections of known 3D points. Under this framework, every new image

is processed through the feature detection step to obtain points of interest, and these points

are compared to the features that formed the map, i.e., the features from the keyframes. If

a sufficient number of points from the map are still visible in this new image frame, it can

be recalled that these points are described by both 2D points on the image plane, as well

as 3D points in the real space. The camera pose can then be computed by solving what is

commonly known as the ‘perspective-N-point’ problem on these 2D-3D correspondences

(shown in figure 3.5).

Given n 3D points denoted as Xi = [xi yi zi] for i = 1, 2...n, and their corresponding 2D

projections denoted as xi = [ui vi 1], the 3D and 2D points are related through projective

30

geometry as

λixi = RXi + t (3.8)

Extending this relationship to a calibrated camera, the equation can be reformulated as

xi = K

R t

0 1

Xi (3.9)

Hence, the objective is to determine the values of R and t. In the current implementa-

tion, intra-MAV localization is solved through a combination of a novel perspective-3-point

algorithm79 with another AC-RANSAC scheme, which is then applied to the tracked corre-

spondences between the image and the 3D map, which results in an estimate of the position

and orientation. Once this seed pose estimate is computed, it can then be refined further, by

attempting to minimize a quantity known as the reprojection error. The reprojection error

for an image is the distance between the actual 2D points of the tracked features in the

image, and the 2D points that result from reprojecting the 3D points into the image plane

from an arbitrary pose θ. π encodes the camera projective transformation of a 3D point Xi

onto the image plane for the computed pose θ, whereas xi is the actual observation from

the image at that time step. Hence, the aim of this minimization is to obtain the pose θ that

results in the least reprojection error, and thus is closest to the real pose of the MAV. This

optimization can be expressed as follows.

θ∗ = arg min
θ

∑
i

‖xi − π(Xi, θ)‖ (3.10)

Through this step, it is also possible to obtain the solution quality, typically expressed

as a covariance matrix which is useful for knowing how uncertain the pose estimation is.

More details about the uncertainty estimation are discussed in section 3.8.

31

(a) Example where vehicle V2 has bad
feature tracking.

(b) V1 has sufficient overlap
with map, whereas V2 does
not.

(c) V1 and V2 have
their own separate
overlap.

Figure 3.6: Example scenario where intra-MAV localization could fail, but inter-MAV localization
could help.

3.7 Inter-MAV localization

The success and the accuracy of intra-MAV localization depends on the quality and

quantity of the features that are successfully tracked in a current image of a certain MAV

from the features that comprise the global map. Although the P3P algorithm requires a

minimum of only 3 tracked 2D-3D correspondences to constrain a camera pose in full 3D,

due to the presence of outliers and noise, in practice, a much higher number of tracked

features is required for an accurate pose. If an insufficient number of features are tracked

by a vehicle, the error in pose estimation would increase drastically, which could then lead

to drift. In a group of multiple vehicles, the existence of other vehicles with their own

cameras can be capitalized upon to assist with localization. Hence, an alternative way of

performing localization within the VCL framework is built upon relative pose estimation,

which allows one MAV to compute the rotation and translation of another MAV in the

group, given sufficient feature overlap between the two cameras. This way of performing

localization is known as ‘inter-MAV localization’.

Figure 3.6 show a possible scenario where inter-MAV localization can be helpful. At

time instant k, vehicle V1 has a good amount of tracked features from the map M (blue

32

shaded region in 3.6.b), whereas vehicle V2 does not (red region in 3.6.c). On the other

hand, there is sufficient feature overlap between V1 and V2 independent of the map; with

a non-zero overlap with the map. In a situation like this, inter-MAV localization lets V1

estimate the metric pose of V2, which can then eventually be fused with V2’s own estimate.

3.7.1 Relative pose estimation

The process for performing relative pose estimation initially follows the same approach

as the one described in section 3.4. The features visible from the images captured by two

MAVs Vi and Vj are isolated and matched, and the essential matrix is used to compute a

relative rotation and translation. This relative pose, as discussed previously, is not sufficient

for a metric pose computation due to the existence of an arbitrary scale factor. It is essential

to recover the scale factor before communicating this pose to Vj. Isolating the matched

points between Vi and Vj and combining them with the relative pose also results in a local

reconstruction of the features common to Vi and Vj: scaled by the same arbitrary factor.

This ‘local map’ is used to help with recovering the true scale factor.

3.7.2 Scale factor estimation

The computation of a relative pose between vehicles Vi and Vj provides access to another

local map of features, the ones that are only common to Vi and Vj. This local map, another

set of 3D points with an arbitrary scale, can be referred to as M′. If an assumption is made

that both Vi and Vj were able to localize using intra-MAV localization, albeit with varying

degrees of accuracy, it can be stated that both Vi and Vj have a non-zero overlap with the

existing map. Hence, it follows that there is a non-zero overlap of features between M′ and

M.

In order to compute the right scale factor λ for this reconstruction (one that matches the

true scale of the global map), the frame of reference for the local map has to be considered.

Within this local frame, for two MAVs, the ‘host’ MAV can be considered to be at the

origin [I|0] and the ‘target’ MAV at [R|t], where R and t are the estimated relative rotation

33

and translation between the host and client. If any two pairs of common features can be

identified between the local and the global map, considering that their true 3D coordinates

are already known from the global map, the ratio of the length of a line connecting the

local coordinates to the length of one connecting the global coordinates is the true scale

factor for the new map. It can be recalled from section 3.5 that (at least the first version

of) the global map is considered to be metrically accurate. Once this scale factor is known

from the ratios, the relative pose is scaled to its right value, and the reprojection error is

minimized to obtain a better estimate.

It is important to note here that while comparing the inter-MAV local map and the

global map, any wrong matches between the two sets of points can affect the estimation of

the scale factor greatly, because the ratio could be computed between completely different

points in the two maps. Hence, the VCL algorithm uses guided matching to ensure accuracy

of matching between the two point sets.

3.7.3 Guided Matching

The goal of this step is to perform completely accurate matching between two maps:

one of them, the (usually larger) global map, and another, a temporary map obtained

by the matches between Vi and Vj. Now, it can be recalled that the host MAV, which is

responsible for generating relative poses has an acceptable degree of confidence in its own

pose, which means that both the global map and local map are generated from confident

poses. According to section 3.5, the map is a combination of 3D locations and descriptors:

so if the descriptors comprising the global and local maps are treated as two separate

images, the transformation between these two views is already known. Unlike the initial

step of relative pose estimation, where matching was performed to isolate the essential

matrix and compute unknown poses, here, the process is considered in its inverse: the

transformation is already known, and it is possible to ‘guide’ the matching towards inliers

according to this known transformation.

It can be assumed that the features belonging to the global map, or at least, a subset of

34

them: are from an imaginary camera that resides at pose [I|0], and the features from the

local map are from a camera that resides at the current pose of the host MAV, say, [R′|t′].

Assuming finite overlap between these maps, there exists a relationship between these two

cameras, and therefore, the maps, which can be described using the fundamental matrix as

F = K−>2 R′K1(K1R
′>t′)× (3.11)

Given that R′ and t′ are known, it is trivial to compute the fundamental matrix according

to equation 3.11. Computing this fundamental matrix allows the implementation of ‘guided’

matching: i.e., any matches that are not adherent to the proper epipolar geometry, as

represented in equation 3.12 can be considered outliers and discarded.

x>2 Fx1 = 0 (3.12)

Figure 3.7 shows an example of guided matching and how it helps determine outliers.

The matches computed by the algorithm between two maps are drawn as colored lines, with

the radius of the circles at the endpoints indicating the corresponding epipolar error. The

bigger circles correspond to a higher epipolar geometric error, and therefore are matches

that are far from satisfying the condition in equation 3.12. In practice, no match corresponds

to exactly zero epipolar error, so a pixel based threshold on the error helps discard all

matches that exhibit a high error. Inliers are shown as thicker circles that correspond to

small radii and thus correspond to low error.

Intra-MAV estimation usually suffers in accuracy when there are not enough features to

be tracked from the original map. In such cases, inter-MAV estimation can be helpful as it

utilizes common features between the MAVs at that instant and does not require multiple

observations over time. Scale recovery in the inter-MAV estimation step requires a minimum

of only two pairs of accurate matches between the local and global map, as opposed to

intra-MAV estimation, which requires a significantly higher number of tracked features for

35

Figure 3.7: Guided matching to remove outliers: false matches are seen to have a high epipolar
error, corresponding circles seen to have a much larger radius than those of the inlier matches.

better accuracy.

3.8 Uncertainty estimation

One of the critical parts of localization is to estimate not only the position and orientation

of a vehicle, but also estimate the uncertainty of the estimated pose. Since the errors of the

sensory system, i.e., the camera, as well as noise from the estimation algorithm affect the

final pose, it is important to try and encode camera-related errors in the pose uncertainty.

In practice, this uncertainty is described as a covariance matrix.

In both the inter and intra-MAV estimation steps, the final refinement of the pose is

performed through a non-linear least squares method where the algorithm attempts to

minimize the reprojection error. The reprojection error is a geometric distance, and hence

a non-linear function. For a projective transformation π, the cost function that is being

36

optimized, i.e, sum of all residuals: can be written for m features as

f(θ) =
1

2
‖r(θ)‖2 (3.13)

r =

[
r1 r2 ... rm

]
where ri(θ) = xi − π(Xi, θ)

The Jacobian and the Hessian of this function can be evaluated to be:

∇f(θ) =
∑
i

ri(θ)∇ri(θ)

= J(θ)>r(θ) (3.14)

∇2f(θ) =
∑
i

∇ri(θ)∇ri(θ)> +
∑
i

∇2ri(θ)

≈ J(θ)>J(θ) (3.15)

When a solution is close to a local minimum, the effect of the second order terms in

equation 3.15 is minimized, and hence they can be ignored in terms of their contribution

towards the objective. Once the second order terms are ignored, it can be seen that the

outer product of this Jacobian matrix at the final optimum with itself is an approximation

of the Hessian matrix of the solution. For a non-linear multidimensional least squares error

near the optimum, the inverse of this Hessian matrix is an approximation of the covariance

matrix of the reprojection errors80 (see appendix B for a simpler treatment). Hence, the

approximate covariance of the solution can be expressed as

Σ = (J>J)−1 (3.16)

Here, it has to be noted that Σ in equation 3.16 does not necessarily translate into

an uncertainty in the position/orientation values directly: it is only able to express the

quality of the solution and the possible uncertainty around the local surface at the point

of convergence. In certain cases, where the solution appears to be a local minimum, the

37

estimated covariance could still be low while the pose estimate is not true to the actual

value. So in order to express the pose uncertainty more accurately, this covariance is inflated

further with the reprojection error obtained for that pose estimate, and then used as an

estimate of the measurement noise covariance in the update step of the recursive estimator.

R = (J>J)−1 ∗ εreproj (3.17)

3.9 Kalman Filter and Outlier rejection

As a final step, the raw measurements obtained during the course of the VCL framework

are propagated through a Kalman filter framework. The VCL scheme being a purely vision

based localization system without augmentation from other sensors like IMUs, the cameras

are essentially considered to be replacements for the vehicles in terms of poses. Due to this

reason, the primary function of the Kalman filter in the VCL framework is for smoothing

and outlier rejection. Still, this filter can be modified to incorporate a more complex vehicle

model, or include IMU measurements as an extension to this work.

Each MAV is responsible for running its own internal recursive estimation scheme

through the Kalman filter. At every instant an image is received, it is expected that the MAV

computes an intra-MAV pose estimate for itself. Once computed, the obtained measurement

is used to correct the state and covariance of that particular MAV. If a measurement obtained

at time step k is denoted as zik,

zik = h(xik−1,x
i
k) + ni

k (3.18)

The measurement is then used to correct the predicted pose at time step k, where the

38

measurement noise covariance is inflated as discussed in section 3.8.

Pi
k|k−1 = Ai

kP
i
k−1|k−1A

i>

k + Qi
k (3.19)

Sik = Hi
kP

i
k|k−1H

i>

k + Ri
k

Pi
k|k = (I−KH)Pk|k−1

Before using the obtained pose value in the measurement update, it is beneficial to deter-

mine the likelihood of the measurement being an outlier. One standard way of performing

this check is through what is known as a Chi-squared gating test. The VCL algorithm uses

this test to detect and reject obvious mismatches or very noisy observations. Every time a

new measurement for the MAV pose is available, the Mahalanobis distance is computed

between the expected measurement and the actual measurement as

γk = (zik − ẑik)
>S−1(zik − ẑik) (3.20)

The rank of S determines the system’s degrees of freedom, which for a full 6 DoF pose,

would be 6. Assuming the process/measurement noises are Gaussian distributed (which

is usually the case), γk should be Chi-square distributed with 6 degrees of freedom. It is

possible to decide upon a certain probabilistic threshold value: which, when exceeded,

makes a candidate measurement an outlier. Hence, if γk exceeds the α-quantile of the

Chi-squared distribution, the measurement can be treated as an outlier and discarded81,82 .

In the context of inter-MAV estimation, the responsibility of computing both the state and

the covariance of the client MAV is taken up by the host MAV. Once a relative measurement

between the host and client, denoted as zi,jk is available, host MAV Vi computes its own

estimate of the state of MAV Vj using the relative measurement as follows.

xj
′

k = xik + Mi,j
k zi,jk (3.21)

39

Figure 3.8: Fusion of inter-MAV and intra-MAV estimates: a pictorial representation. Reprinted
from Vemprala and Saripalli64

While Vi attempts to compute the uncertainty of Vj, this is in combination with Vi’s

own uncertainty. Consequently, the covariance matrix that Vi has estimated for itself is

propagated into any other relative measurements attempted by Vi. When Vi computes a

relative measurement to Vj at time instant k with measurement noise covariance Rij
k , the

corresponding covariance for Vj: Pj′

k can be calculated as:

Pj′

k = Hj′

k Pi
kH

j′>

k + Rij
k (3.22)

3.10 Data fusion

One of the strengths of a collaborative localization routine is the ability to fuse estimated

data from multiple sources, thus attempting to result in more robust pose estimates. In the

case of the VCL algorithm, it can be intuitively noted that while one vehicle has its own

intra-MAV estimate, it could also receive possibly multiple inter-MAV estimates computed

by the other vehicles in the group. For simplicity, as before, if two vehicles are considered

to form the group, the pose computed by Vi for Vj, say xij can be fused with the onboard

estimate of MAV Vj itself, xj, to jointly result in a more robust estimate for Vj (see figure

3.8).

A conventional way of data fusion is to include multiple sources in the update step of a

40

Kalman filter. The VCL case, however, presents a particular problem: while xij and xj arise

from different vehicles, the vehicles have a common source of information: which is the

global map. At the same time, both of those vehicles may have exchanged information or

pose data in the past either directly or indirectly, (a possibility that is not tracked) which

also makes their estimates correlated. Owing to the relative simplicity of the filtering

framework so far, these cross-correlation terms are not tracked, and hence the correlation

between these two measurements is unknown. Disregarding the cross-correlation entirely

can make the conventional Kalman filter update step result in inconsistent and erroneous

estimates, resulting in overly confident behavior of the filter in the future. Hence, the VCL

algorithm incorporates a fusion approach inspired by the one presented by Carrillo-Arce et

al35 for multi-robot teams, to fuse these estimates using covariance intersection.

Covariance intersection (CI), first presented in the seminal paper by Julier and Uhlmann,83

is an elegant solution for the fusion of estimates with unknown correlations. The funda-

mentals of the CI algorithm are rooted in Gaussian intersection (see figure 3.9 for a visual

depiction) and its objective is to obtain a ‘consistent’ estimate of a covariance matrix when

two or more estimates are present, which constrains the estimated covariance with an

upper bound. That is, for a random variable x with mean x̄, an estimate of the mean can

be represented as x̂ with covariance Px. The estimation error would be x̃ = x̂− x̄ with its

associated covariance P̃x = E{x̃x̃>}. The state-covariance pair for the estimate is said to be

consistent iff

Px − P̃x ≥ 0 (3.23)

The CI algorithm expresses the covariance of the fused estimate as a combination of

the individually estimated covariances. Depending on the confidence in each estimate or

a desired final statistic, each individual covariance can be weighted by a scalar value. In

the case of the VCL framework, each estimate is already described by its own confidence

coming either from onboard the same vehicle requiring fusion, or the host vehicle that

generated a pose for the client. At time instant k, assume that the individual estimate of Vj

41

Figure 3.9: The concept of covariance intersection.

is a state-covariance pair with state x̂jk and covariance P̂j
k. For the same time instant, Vi

computes another state-covariance pair for the pose of Vj, represented as x̂ijk and P̂ij
k . Then

the CI algorithm is used to fuse these two estimates as below.

Pj
k =

[
ω(Pj

k)
−1 + (1− ω)(Pij

k)−1
]−1

(3.24)

xjk = Pj
k

[
ω(Pj

k)
−1xjk + (1− ω)(Pij

k)−1xijk

]
(3.25)

Where ω is a parameter that is computed such that the trace of the combination of the

two covariance matrices is minimized: this can be expressed as in equation 3.26.

arg min
ω

Tr
[
ω(Pj

k)
−1 + (1− ω)(Pij

k)−1
]−1

(3.26)

Another elegant property of the CI algorithm is that, while being derived from a

geometric viewpoint, it can also be expressed as a matrix- and scalar-weighted optimization

problem. This property allows the CI algorithm to be extended to the fusion of higher

dimensional state vectors and thus, an arbitrary number of estimates. Consequently, in the

VCL framework, fusion can be performed between more than two sources of data, where

for k sources, the covariance matrices are weighted by an array of k weighting factors

42

Figure 3.10: Example of covariance intersection fusion of data from three sources.

ω1, ω2, ..., ωk such that

ω1 + ω2 + ...+ ωk = 1 (3.27)

For k sources of data, equation 3.26 can be extended into a multi-variable minimization

problem of finding a set of weights that minimize the weighted sum of the traces of all

covariance matrices involved. Figure 3.10 is a visual depiction of covariance intersection

fusion for data from 3 sources, from an experiment where 3 vehicles were responsible for

estimating the position of a fourth on the X axis. At that particular time step, none of the

estimates are particularly close to the ground truth, but the level of confidence exhibited

by the closest estimate is higher compared to the others; which results in the covariance

intersection algorithm computing the right combination of weights to result in a fairly

accurate fused estimate.

3.11 Map updates

While the formulation and focus of the VCL algorithm is mainly on localization, mapping

is an essential part of the process. In certain situations that could be part of the application,

all the MAVs may have to move away from an initial map, which would necessitate an

update of the global map in order to maintain localization. While inter-MAV localization is

able to assist with the case of specific MAVs leaving the area of the mapped scene, all the

vehicles navigating to a different area would require a new map. Hence, the same principles

that allow for inter-MAV localization, i.e, relative pose estimation and scale recovery, can

be used for building a new global map. This process can be invoked when the tracked

43

feature count falls under a certain threshold for all the vehicles in the group or any other

condition that is deemed appropriate. In a real time scenario, the map update operation

would require more communication, because this update would have to be propagated to

all the vehicles.

3.12 Implementation and Results

The collaborative localization framework has been written mainly in C++. Various open-

source libraries available through OpenCV84 and OpenMVG85 were utilized for implementing

feature detection, matching, AC-RANSAC and PNP pose estimation. KORAL was used as a

separate open source library with CUDA support for the GPU-based algorithms. The Ceres

solver86 was used to refine reconstructions and estimated poses, as well for estimating

covariances of the solutions. The refinement of pose estimates through reprojection error

minimization was treated as a non-linear least squares problem and solved through an

efficient sparse Schur complement method. dlib87 was used to perform optimization for the

covariance intersection.

The collaborative localization algorithm has been tested on datasets obtained from both

simulated and real flight tests in an offline manner, i.e., on pre-recorded data. Nevertheless,

this section contains some discussion on the real-time feasibility of this algorithm.

For the simulations, Microsoft AirSim was used as the simulation platform. AirSim88

is a recently developed UAV simulator built as a plugin for Unreal Engine, which is a

popular AAA videogame engine with the capability to render high resolution textures,

realistic scenes, soft shadows, extensive post-processing etc. in order to bring simulated

environments visually close to real life. As the VCL technique is heavily dependent on

computer vision, using AirSim enabled testing in high fidelity environments that are close

to real life scenarios. Each MAV simulated within AirSim had a forward facing monocular

camera, and onboard images were captured at approximately 5 Hz with a resolution of

640×480. A custom urban environment was created in Unreal Engine for the purpose of

testing. The images from the onboard cameras and ground truth from the simulator were

44

Algorithm 1 VCL algorithms: sample for two MAVs

procedure BUILDMAP(xi, I1, I2)
i1, i2 ← detectFeatures(I1, I2)
ī1, ī2 ← matchFeatures(i1, i2)
E← ACRANSAC(ī1, ī2,K1,K2)
R, t← SVD(E)
M← reconstruct(ī1, ī2, [I|0], [R, t]) . M : Global map

end procedure

procedure LOCALIZEINTRAMAV(Ik, Kk, M)
ik ← detectFeatures(Ik)
ī1 ← trackFeatures(ik,M)
R, t← PNP(p̄k,M,K1)
zk,Rk ← refinePose(R, t,M)
xk,Pk ← updateState(zk, Rk)
return xjk,P

j
k

end procedure

procedure LOCALIZEINTERMAV(xi, Ii, Ij)
ii, ij ← detectFeatures(Ii, Ij)
īi, īj ← matchFeatures(ii, ij)
E← ACRANSAC(ī1, ī2,Ki,Kj)
R, t← SVD(E)
M′ ← reconstruct(īi, īj, [I|0], [R, t]) . M ′: Local map
mmap ← matchFeatures(O′, O) . M := Global map
λ← recoverScale(mmap)
[R, t]← [R, t] ∗ λ
zi,jk = [R,xi + t]
zi,jk ,R

i,j
k ← refinePose(R, t,M)

xj
′

k ,P
j′

k ← eqn(7), (8)

return xj
′

k ,P
j′

k

end procedure

procedure FUSEINTERINTRAPOSES((xjk,P
j
k), (x

j′

k ,P
j′

k))
PA ← Pj

k

PB ← Pj′

k

ω ← arg minω Tr(ωPA
−1 + (1− ω)PB

−1)
Pj∗
k ← (ωPA

−1 + (1− ω)PB
−1)−1

xj∗k ← Pj∗
k (ωPA

−1xjk + (1− ω)PB
−1xj

′

k)
end procedure

45

(a) Simulated city environment in Unreal En-
gine/AirSim

(b) Parrot Bebop 2 quadrotors used in real
flight experiments

Figure 3.11: Implementation details

recorded and the VCL algorithm was tested offline on this data, while being compared to

ground truth.

For the real life tests, two Parrot Bebop 2 quadrotors were used in both outdoor and

indoor scenarios. Videos from the forward facing monocular cameras were recorded

onboard the vehicles at a 1280×720 resolution at approximately 15 Hz, and then processed

offline. The GPS/IMU data was also recorded for the outdoor flights for comparison

purposes. Pictures of the simulation environment as well as the real vehicles can be seen in

figure 3.11.

3.12.1 Intra-MAV localization

3.12.1.1 Simulation

In this experiment, three MAVs were initialized in the urban simulation environment,

which were then commanded to take off and fly in square-like trajectories at different

altitudes, while onboard camera images were recorded. Within this dataset, the algorithm

was first asked to build a global map using images from the three vehicles and intra-MAV

localization was tested for images corresponding to each vehicle. Figure 3.12 shows the

three trajectories of the vehicles, and compared to the ground truth, table 3.1 shows the

mean squared errors of the VCL estimates for the three vehicles. It can be seen from the

values in table 3.1 that intra-MAV localization exhibits a good amount of accuracy.

46

Figure 3.12: VCL position estimates for three MAVs navigating within AirSim.

MAV/MSE X (cm) Y (cm) Z (cm)
1 24.11 8.57 21.26
2 13.56 36.19 83.5
3 8.32 6.56 25.58

Table 3.1: Mean squared errors for position estimates of three MAVs in AirSim

3.12.1.2 Real experiments

Similar intra-MAV localization was also tested in real scenarios with the Bebop 2

quadrotors. At first, the vehicles collaborate to isolate common features and build a map,

within which each MAV attempts to localize itself. Figure 3.13 show the localization results

for rectangle shaped trajectories navigated by two MAVs. The first test (3.13(a)) was meant

to evaluate the accuracy of the algorithm against ground truth, so the MAVs were moved by

hand along two pre-marked rectangles of dimensions 75×20 feet each. The VCL estimates

47

(a) X-Y positions of two Bebop 2 quadrotors moved
through a trajectory of known, marked dimensions.
Ground truth plotted in black.

-8 -6 -4 -2 0 2 4 6 8

X distance in meters

-2

0

2

4

6

8

10

12

14

Y

d

is
t
a

n
c
e

in

m

e
t
e

r
s

GPS - MAV 1

GPS - MAV 2

VCL - MAV 1

VCL - MAV 2

(b) X-Y positions of two Bebop 2 quadrotors flown
through rectangular trajectories. GPS position esti-
mates plotted in dotted black.

Figure 3.13: Intra-MAV localization in real experiments

were seen to track the ground truth fairly well, while exhibiting a slight drift at the far

edges (which can be attributed to changes in feature appearance when at a distance of 75

feet from the initial location where the map was built).

The second test of the intra-MAV localization involved manual flight of two MAVs in

an outdoor area near a building, and comparison with the GPS position estimates. In this

test, it was observed that the VCL estimates were closer to the real trajectories taken by

the MAVs than the GPS, which could be attributed to low altitudes and thereby a certain

degree of inaccuracy in the GPS. The results of this test can be seen in 3.13(b).

The accuracy of the orientation estimates was also evaluated in real flights. In one

particular test, the two Bebop MAVs were made to fly side to side at high speeds (up to 5

m/s), and the estimates of the roll angles were compared to the IMU data from onboard

the vehicle. The VCL estimates and the IMU estimates of the angles can be seen to be close

to each other through figure 3.14, demonstrating an accurate estimation of angles even

through fast flights.

48

0 200 400 600 800 1000 1200

Image Number

-20

0

20

R
o
ll

a
n
g
le

 (
d
e
g
)

Roll angle comparison: VCL vs IMU

VCL

0 50 100 150 200 250 300 350 400

Sample

-20

0

20

R
o
ll

a
n
g
le

 (
d
e
g
) IMU

Figure 3.14: Roll angle comparison between VCL estimates and IMU for a fast side-to-side flight.

(a) Initial position (b) Midpoint (c) Final position

Figure 3.15: Inter-MAV estimation test: backward and forward trajectory sample images

3.12.2 Inter-MAV localization

3.12.2.1 Simulation

Inter-MAV localization was first tested and evaluated in the simulation, by creating a

sparsely populated environment where three vehicles start off side by side near a feature-

rich building, but are then commanded to fly backwards (thus away from features) and

then forwards to the starting positions. Three images from this trajectory are shown in

figure 3.15 to demonstrate the change in feature appearances. Between the backward and

forward motion, each MAV traverses 80 + 80 = 160 meters in the environment.

As the biggest advantage of inter-MAV localization is when one vehicle has better

localization than the others, such a condition was simulated in this experiment by making

49

Inf 100 50 20 10 5
Number of time steps between fusion

0

5

10

15

20

25

30

A
vg

. Y
 a

xi
s

M
S

E
 (

m
)

Effect of fusion frequency on MSE

Figure 3.16: Effect of frequency of inter-MAV data fusion on position estimate error. Error bar
shows variation of Y axis position MSE between clients V1 and V2.

an assumption that the MAV in the center has access to better estimates. This was achieved

by using the ground truth values of the positions for the MAV in the center and corrupting

them with zero-mean noise in order to simulate consistently good localization. If this

MAV were to be considered as the ‘host’, the effect of inter-MAV localization between this

host MAV and the others was analyzed. Alongside, intra-MAV localization solely using the

cameras was performed at every time step for both the client MAVs.

The effect of the frequency of the inter-MAV measurements can be seen visually in figures

3.17 and 3.16. This analysis focuses on the estimation error on the Y-axis where most of

the movement is along. With absolutely no inter-MAV measurements, the VCL estimates

show significant error at the midpoint, where the vehicles are the farthest from the scene.

But once inter-MAV measurements are obtained from a MAV with higher confidence in its

own position and fused, the errors decrease, and increasing the number of times inter-MAV

measurements are fused decreases the error significantly. The comparison of mean squared

errors for these different test cases of fusion frequency can be seen in figure 3.16. By

increasing the frequency of the relative measurements to once in 5 images (approximately

1 Hz), the fused position estimates of V1 and V2 are much closer to the ground truth.

Figure 3.18 visually shows the comparison of the measurement confidences of intra-MAV

measurements and the inter-MAV measurements by plotting the trace of the measurement

50

0 100 200 300 400 500
Image Number

-100

-80

-60

-40

-20

0

20

Y
 p

o
si

tio
n
 in

 m
e
te

rs

V1 : Intra-MAV only
Ground Truth
VCL Fused Estimate

(a) Y estimate of V1 with no fusion

0 100 200 300 400 500
Image Number

-100

-80

-60

-40

-20

0

20

Y
 p

o
si

tio
n
 in

 m
e
te

rs

V2 : Intra-MAV only
Ground Truth
VCL Fused Estimate

(b) Y estimate of V2 with no fusion

0 100 200 300 400 500
Image Number

-100

-80

-60

-40

-20

0

20

Y
 p

o
si

tio
n
 in

 m
e
te

rs

V0 -> V1 Fusion: Every 20 images
Ground Truth
VCL Fused Estimate

(c) Y estimate of V1 with fusion
every 20 images

0 100 200 300 400 500
Image Number

-100

-80

-60

-40

-20

0

20

Y
 p

o
si

tio
n
 in

 m
e
te

rs

V0 -> V2 Fusion: Every 20 images
Ground Truth
VCL Fused Estimate

(d) Y estimate of V2 with fusion
every 20 images

0 100 200 300 400 500
Image Number

-100

-80

-60

-40

-20

0

20

Y
 p

os
iti

on
 in

 m
et

er
s

V0 -> V1 Fusion: Every 5 images
Ground Truth
VCL Fused Estimate

(e) Y estimate of V1 with fusion
every 5 images

0 100 200 300 400 500
Image Number

-100

-80

-60

-40

-20

0

20

Y
 p

os
iti

on
 in

 m
et

er
s

V0 -> V2 Fusion: Every 5 images
Ground Truth
VCL Fused Estimate

(f) Y estimate of V2 with fusion
every 5 images

Figure 3.17: Effect of frequency of inter-MAV data fusion on mean squared error on one axis - both
clients

51

0 100 200 300 400
Image Number

0

1

2

3

4

5

Tr
ac

e
of

 R
 m

at
rix

Confidence: Inter-MAV vs. Intra-MAV
Intra-MAV
Inter-MAV

Figure 3.18: Comparison of inter vs intra-MAV measurement covariances. Inter-MAV measurements
are usually seen to have significantly lower solution covariance.

(a) V0 (b) V1 (c) V2 (d) V3

Figure 3.19: Images from the starting positions for four MAVs in AirSim

covariance matrix (for one MAV) over time. It is evident here that as the MAV moves away

from the map features, the intra-MAV measurement covariance rises rapidly due to changes

in feature appearance compared to the keyframes; but the inter-MAV covariance stays low

throughout, as it only depends on the amount of feature overlap and distribution of points.

3.12.2.2 Effect of number of vehicles in group

In another experiment, the effect of the number of contributing hosts to the VCL data

fusion is analyzed. For this experiment, four MAVs were placed side-by-side observing a

building in simulation, spaced apart by a distance of 25m between each pair of vehicles,

which is considerably higher compared to their distance from the scene. V3 is treated as the

client that needs localization assistance, because as seen from figure 3.19, V3 has the least

amount of features visible from the initial map, thus would be most prone to errors in the

intra-MAV localization scheme.

52

0 20 40 60 80 100
Image Number

-100

-80

-60

-40

-20

0

20

X
 d

is
ta

nc
e

in
 m

et
er

s

Ground Truth
Fused Estimate
Raw Estimate

(a) One host

0 20 40 60 80 100
Image Number

-100

-80

-60

-40

-20

0

20

X
 d

is
ta

nc
e

in
 m

et
er

s

Ground Truth
Fused Estimate
Raw Estimate

(b) Two hosts

0 20 40 60 80 100
Image Number

-100

-80

-60

-40

-20

0

20

X
 d

is
ta

nc
e

in
 m

et
er

s

Ground Truth
Fused Estimate
Raw Estimate

(c) Thre hosts

Figure 3.20: Client X axis position estimate with data from (a) one host (b) two hosts (c) three
hosts

1 1.5 2 2.5 3
Number of MAVs for fusion

0

1

2

3

4

5

6

M
S

E
 (

m
)

VCL estimates MSE
X
Y
Z

Figure 3.21: Effect of number of participants on MSE of estimates

All three hosts combining their inter-MAV estimates results in the most accurate estimate

for the client V3. In figure 3.20, the X-axis position estimates of V3 is compared to the

ground truth, with the fused estimate in blue and the raw intra-MAV estimates in dotted

black. The raw estimate exhibits a very high amount of error, but the fused estimate in

3.20(c) is able to track the ground truth with an average MSE of 1.61m. The accuracy

reduces with a reduction in the number of vehicles taking part in the fusion, as evidenced

by the estimates in figures 3.20(a) and 3.20(b). Figure 3.21 compares the MSE on all three

position axes with the number of vehicles participating in data fusion.

53

Figure 3.22: Left: Fused yaw angle estimate for a rotating MAV. Right: Yaw angle from relative
estimates from the other two vehicles, and associated reprojection errors. Reprinted from Vemprala
and Saripalli64

3.12.2.3 Handling pure rotation

One of the problems that is evident in single monocular-camera localization is the issue

with pure rotation movement in the yaw direction, which is a very common maneuver for

MAVs. Pure rotation usually causes existing map points to go out of view, while the fact that

there is no translation by the camera means it is not possible to triangulate new feature

points through a single camera without any additional information. In contrast, the VCL

algorithm is able to handle this problem by capitalizing upon the inter-MAV localization

feature points between what is rotating MAV and another MAV that is observing common

scene points.

As a test case, an environment was simulated containing two perpendicular buildings

being observed by an MAV (MAV 0) that performs periodic 90-degree rotations, trying to

observe both. MAV 0’s rotation speed was set to 45◦/s. Two other MAVs (1 and 2) are also

present in the proximity, with each of them in hover mode, observing one of the buildings

from a distance. To assist with MAV 0’s pose estimation during fast rotations, inter-MAV

localization is exploited. For every image captured by these three MAVs, relative poses are

computed between vehicles 1-0 and 2-0 and fusion is attempted with the estimate onboard

54

-5

20

10

0

10

Z
 p

o
si

tio
n
 in

 m
e
te

rs

Y position in meters

0

X position in meters

0

5

-10 -10

MAV 1

MAV 2

(a) Intra-MAV localization only

-5

20

10

0

10

Z
 p

o
si

tio
n
 in

 m
e
te

rs

Y position in meters X position in meters

0 0

5

-10 -10

MAV 1

MAV 2

(b) Inter+Intra fused localization

Figure 3.23: Test of fused vs unfused localization for an indoor trajectory using real MAVs

MAV 0 itself: and based on which estimate has a lower uncertainty, the final yaw angle of

the rotating MAV is computed. In figure 3.22(a), the fused estimates of the yaw angle are

shown, where it can be seen that the estimated angle closely matches the ground truth. A

careful analysis of figure 3.22(b) shows how MAV 1 or MAV 2 is chosen as the dominant

source of the yaw information based on the reprojection error (on which the uncertainty

estimate depends). Swift rotations such as this are typically problematic for single-camera

localization, but the collaborative aspect can maintain localization through data fusion from

other, possibly more reliable, sources of information.

3.12.3 Inter-MAV localization: real experiments

After validating the efficacy of inter-MAV localization and data fusion in simulation, the

VCL algorithm was also tested on data from real flights. In this experiment, two Bebop

quadrotors V1 and V2 were flown indoors, where both vehicles first obtained initial images

to map a room, and then V1 was commanded to hover in the middle of the room, whereas

V2 navigated a square trajectory around the first. This trajectory was traversed in a way

that V2 has to view relatively less feature rich areas of the room as part of it. As a result of

this, relying solely on intra-MAV localization resulted in a high amount of drift in certain

areas, as can be see in figure 3.23(a).

To counter this effect, the VCL algorithm was made to perform inter-MAV localization

55

-10

50

0

Y distance in m

0

Z
 d

is
ta

n
c
e

 i
n

 m

80

10

60

X distance in m

40
20

0-50

20

(a) Step 1

-20

50

0

Y distance in m

0

Z
 d

is
ta

n
c
e

 i
n

 m

80

20

60

X distance in m

40
20

0-50

40

(b) Step 2

-20

50

0

Y distance in m

0
80

60

X distance in m

Z
 d

is
ta

n
c
e

 i
n

 m

40

20

20

0-50

40

(c) Step 3

Figure 3.24: Process of map updates while maintaining localization: newly captured features are
appended to the global map when the number of tracked features becomes low.

with V1 acting as the host, whenever the number of features tracked by V2 fell under a

threshold (30 inliers in this case). The covariance of inter-MAV localization being much

lower, it took over whenever intra-MAV localization suffered in accuracy, resulting in a

significantly more accurate trajectory estimate for V2, shown in 3.23(b).

The principles behind relative pose estimation and scale recovery can also be used for

performing map updates for the whole group, when the navigation is over large spaces.

Figure 3.24 shows the process of map updates as two MAVs navigate an environment in

AirSim.

3.13 Algorithm requirements

Although the algorithm was not applied in real-time onboard the vehicles, some analysis

was performed on the possible computational and communication requirements. Intra-MAV

localization is expected to be performed on each MAV individually, whenever a new image

is received, whereas inter-MAV localization is only performed in an on-demand fashion. In

order to keep communication bandwidth requirements low, the algorithm was designed in a

way that it does not require images to be transferred between vehicles whenever inter-MAV

localization is performed. Instead, when a client vehicle needs inter-MAV localization data

from a host, a packet containing the feature keypoint locations and descriptors from the

56

image obtained by the client is transmitted to the host. The size required per ‘feature’

would be a sum of the size for storing a single keypoint location: two pixel coordinates,

thus a combination of two double precision numbers and thus 16 bytes and a 512-bit

descriptor vector, so 64 bytes. The total requirement per feature is under 100 bytes, which

stays the same for both CPU and GPU implementations of the feature algorithms. For a

typical image, the total information that needs to be transferred would be in the order

of kilobytes. After the host vehicles finishes its computation of the client’s pose, the pose

data transmission involves sending six double precision values: three positions and three

orientations, again only about 50 bytes, through a simple O(1) update (per host). When

maps are first generated, or subsequently updated, the data that has to be transmitted to

all vehicles involves a set of 3D locations (24 bytes per point) and a descriptor for each

location to facilitate feature tracking (64 bytes per point). This can be broadcast to all the

vehicles, along with a signal indicating when it is updated, so all vehicles can read it and

update their local copies.

Delays in communication were not explicitly considered in the formulation of this

problem, but it is possible to construct a simple way of adapting to delays. If an inter-MAV

localization process is delayed but received at a later time, it would be possible to continue

localizing using intra-MAV measurements, but when the inter-MAV measurement is received,

the system can back up to the previous time, update and then propagate to the present.

This would involve keeping track of not only the posterior belief of the Kalman filter, but

also the measurements. But because the measurements are considered to be essentially

just the state vector (pose only, the map points are not part of the observations), the space

requirements for storing these would be significantly lower.

57

4. COLLABORATIVE UNCERTAINTY-AWARE PLANNING

In the previous chapter, the problem of collaborative localization was considered for

vision based collaborative MAVs, with the solution attempt examining the idea of a feature-

based decentralized algorithm that combines individual pose estimation with relative pose

estimation for increased accuracy. As an extension, this chapter is dedicated towards a

discussion of how path planning can be performed for a group of MAVs that can localize

through the VCL framework.

While path planning usually concerns the idea of connecting start and goal locations

through valid paths, considering the challenges of micro aerial vehicles with regards to

energy expenditure and their instability, it is important to also focus on other factors such

as the uncertainty of the pose estimation or the cost of path traversal when navigating from

one point to another. The former is the primary motivation to the problem of ‘uncertainty-

aware’ path planning, which seeks to evaluate paths based on how informative they are,

and thereby avoiding areas that can affect localization adversely.

As mentioned in earlier discussion, the complete planning problem is known to be com-

putationally intractable, which is usually resolved to some extent by employing approximate

approaches such as, for example, sampling. Nevertheless, for a multi-robot scenario, the

dimensionality and complexity of the problem increases exponentially with the number of

robots, which can still present an intractable worse case complexity when it is treated a

joint problem. To offset this problem, the framework used in this work attempts to also

treat uncertainty-aware planning in a slightly decentralized way by identifying two separate

causes of uncertainty for vision-based approaches and addressing them in a decoupled

manner.

If any vehicle is able to localize purely through vision: specifically, a feature-based

Some figures in this chapter are reprinted with permission from ‘Vision based Collaborative Path Planning
for Micro Aerial Vehicles’ by Sai Vemprala and Srikanth Saripalli, 2018, Proceedings of the 2018 IEEE
International Conference on Robotics and Automation (ICRA), © 2018 IEEE

58

framework such as in VCL, two main factors affecting uncertainty can be identified. The

fidelity of measurements obtained in a keyframe-based localization framework depend

both on the quality of the features that comprise the map being localized against, as

well as the quality of tracking of the features from the map as the vehicle is in motion.

Hence, a planning algorithm seeking to solve the planning problem in a way that improves

feature-based localization needs to improve both of these factors. Thus, the solution to the

vision based collaborative path planning (VCP) problem is approached from two separate

directions, which are:

1. Map improvement: Prior to generating and executing individual trajectories for the

MAVs in a group, it is beneficial to consider the possibility of improving an existing

global map. In many instances, an insufficient feature overlap, or bad initial placement

of the MAVs can result in a sparse map that can adversely affect localization for all

members of the MAV team. Given the multiple view geometry-inspired approach

for mapping that the VCL framework uses, map improvement can be redefined as

a view selection problem: to identify the most beneficial camera viewpoints for the

multi-view reconstruction process which can achieve the highest possible accuracy

and density of reconstruction. While generating these viewpoints, it is essential to

also take into account constraints such as energy expenditure.

In the field of computer vision, the problem of seeking an optimal placement for

a single vision sensor to improve an existing representation is known as the ‘next

best view’ (NBV) problem. NBV can be considered to be an incremental approach

to build a sensing strategy for exploration or reconstruction. As an extension, active

model improvement is a sub-problem that is defined as the sequential process of

systematically increasing the precision and fidelity of an estimated 3D model. In the

path planning framework that is the focus of this chapter, the map improvement phase

can be defined as a multi-camera extension to active model improvement, where the

view selection problem is solved simultaneously for multiple cameras.

59

2. Uncertainty-aware planning: If the previous step is successful, the MAVs potentially

have access to an improved global map. The next step would be to plan paths

from start to goal state in a localization-aware fashion as they attempt to track

existing features. The VCP framework solves this step using a sampling based planner

that attempts to improve vision based localization constraints: specifically those

that would affect a feature-based localization scheme, thus attempting to connect

only those viewpoints that optimize visibility of features along with path cost. The

approach used here is inspired by previous sampling based planners for uncertainty-

aware planning such as information-rich rapidly-exploring random tree (I-RRT)50 and

rapidly-exploring random belief trees (RRBT).49

Through the VCP framework, the MAVs are expected to collaborate in the beginning to

improve an existing reconstruction, and then plan paths in a decentralized fashion. This

decentralized path planning, which is expected to be performed by the MAVs individually,

is responsible for constructing uncertainty-aware paths that can ensure that the MAV is

in proximity to texture-rich areas wherever possible, and is continuously able to localize

through feature observations.

4.1 Next best view planning for multiple vehicles

Finding the best placement of a vision sensor in order to improve an existing represen-

tation of a scene (under certain predefined constraints) is termed as the ‘next best view’

(NBV) problem.89 Depending on the context, NBV can be applied for various types of

vision sensors such as monocular cameras, stereo cameras and furthermore. In the VCP

application, the NBV problem is applied to multiple MAVs simultaneously, (equipped with

monocular cameras) and from now on, is referred to as next-best multi-view (NBMV).

Given n MAVs, and a set of starting positions, it is assumed that the very first set of images

acquired from the starting positions afford partial knowledge of a scene through a point

cloud. Using this initial map as seed data, the NBMV problem is expressed as the problem

60

of calculating vehicle poses xi for all i ∈ [1, n] such that certain parameters relating to

the visibility of the existing features are optimized further. This can be represented as a

minimization problem for a set of vehicles over a space of candidate poses:

min
xi

f(x,X) (4.1)

where f is a cost function that encodes various parameters relating to 3D reconstruction

and X is a set of 3D points representing the scene. For the sake of simplicity, candidate

poses for each MAV/sensor are selected only in 4DoF: i.e., 3D position (x, y, z) and the yaw

angle ψ. Hence, a vehicle’s pose forming xi can be represented as:

xi = [pi, ψi]|pi ∈ R3, ψi ∈ SO(3) (4.2)

The operation of this NBMV planner can thus be divided into the following steps:

1. The inputs, a partial 3D scene along with the initial poses of the vehicles that resulted

in this scene, are read into memory by the algorithm.

2. Several candidate viewpoint sets, each set containing n position and yaw samples for

n vehicles are sampled in the valid space. Each such viewpoint set is evaluated using

a custom cost function to obtain a value representing the quality of reconstruction, if

one were attempted from that sample.

3. Over several iterations, the optimization routine evaluates multiple candidate samples

and picks the sample that affords the least cost. Over the course of time, the algorithm

is expected to converge to a locally optimal solution.

The representation of the scene considered here, in accordance to the VCL algorithm,

is a 3D point cloud. A new viewpoint set that is sought out by the NBMV planner is

expected to find a balance between reduction of geometric uncertainty of the reconstruction

and maximization of the number of points in the point cloud. As discussed earlier, the

61

localization algorithm does not have access to vertex-wise 3D uncertainty estimates; hence,

the quality of the map is described through a set of custom-designed criteria. These

criteria are essentially a set of heuristics that are crafted from the theory of image based

reconstruction and multiple-view geometry, and try to encode factors that are responsible for

accuracy and quality of reconstruction for a multi-view system, and contribute systematically

to the attempt of reducing uncertainty of the point cloud and subsequent localization that

uses this point cloud.

4.1.1 Heuristics for optimization

To recap, the mapping phase involves image captures from each MAV at a specific

location in 3D space and isolating common features between all of them. Each MAV pose

xi represented as above has a 3D-2D projection associated with it arising from the image

captured from that pose. When an initial set of 3D points X is known, projections of X on an

image plane can be computed trivially from any pose in 3D space. Given this information,a

set of heuristics can be computed for any arbitrary pose, which when combined, describe

the ‘quality’ of an image captured from that pose, and subsequently the quality of 3D

reconstruction or localization. The heuristics are listed as follows:

1. Visibility: The very first constraint that needs to be satisfied is that the cameras need

to keep a maximum amount of the existing features in view, while searching for more

optimal viewpoint locations. The visibility factor expresses the ratio of visible features

from a candidate viewpoint to the number of actual features that are part of the

global map. When applied to a group of MAVs, this factor ensures that the features

are visible at least from two of the members together to allow for reconstruction,

while preferring a maximum number of vehicles viewing the features simultaneously.

Through this last part, overlap is ensured between cameras.

2. Span: Vision-based algorithms such as the PNP algorithm, or 5-point algorithm have

certain degenerate cases where they fail if all the points are on a straight line, or in a

62

small part of the image. It is beneficial to have the features spanning a large part of

the image in order to obtain accurate model estimates. The span factors computes the

ratio of the area currently occupied by the features in the projection from a candidate

pose to the total area of the image. Preference is given to viewpoints that have a large

area of the image filled with features.

3. Baseline: Multiple-view geometry states that when attempting to observe a scene at a

specific depth Z, the baseline between the cameras b is proportional to the amount of

error in depth perception. Hence, the cameras must be arranged according to their

distance to the observed scene geometry (depth). This factor calculates the deviation

of the baseline-to-depth ratio from a desired value. Configurations with a ratio far

away from the desired value are penalized.

4. Vergence angle: Another factor in multi-view configurations is the vergence angle, or

the angle between the projected rays from the cameras at their intersection point in

the scene. When the vergence angle is high, maximum overlap is guaranteed but at

the expense of matching error because of the different appearance of the features in

both the views. A lower vergence angle is preferred wherever possible, while still

being in agreement with factors such as baseline and overlap.

5. Collisions and occlusion: Configurations that can potentially result in collisions between

the vehicles or the scene (distance between vehicles below a certain threshold) and

occlusion (one vehicle blocking the view of another) are penalized.

The cost function that needs to be optimized is expressed as a weighted combination

of the above metrics, where a minimum value indicates the best set of viewpoints. This

combined optimization function takes a set of candidate poses for all vehicles being used as

its input and outputs a value of the objective function that encodes all the heuristics.

Apart from the vision heuristics listed above, it is important that the cost function in the

NBMV planner also includes the path cost for every evaluated sample: which is the sum

63

of the total Euclidean distance traveled by the MAVs to reach that particular sample. This

path cost is combined with a weighting parameter δ, which determines how much priority

is assigned to minimizing the path cost. High values of δ constrain the amount of distance

the MAVs are allowed to travel in search of optimal viewpoints , in comparison with the

reduction of the cost function.

For a given sampling space, the behavior of this cost function can be complex. As

evidenced by the fact that the function’s value depends on the number of MAVs in the

team, the function can live in a high-dimensional space, while also depending heavily

on scene geometry and being sensitive to small changes in pose parameters such as the

yaw angle. This makes it hard to estimate an algebraic model of the function and to

evaluate the derivatives in order to understand the direction and location of the minimum:

which is typically required for common approaches such as gradient descent. Given this

constraint, the NBMV planner considers the minimization of this cost function as a black-

box optimization problem and uses a derivative-free method known as Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) to solve it.

4.1.2 CMA-ES optimization

The CMA-ES algorithm, first presented in,90 with numerous updates and improvements

afterward, is an evolutionary algorithm that is suited for high dimensional black box

optimization problems. CMA-ES typically works on bounded or unbounded constraint

optimization problems and is well suited for functions that exhibit highly nonlinear behavior.

Especially for cases where derivative methods such as quasi-Newton BFGS or conjugate

gradient may fail due to discontinuities, sharp ridges etc., CMA-ES employs an alternative

approach by not considering or using approximate gradients. Thus, this method is feasible

for even non-smooth or non-continuous functions.

CMA-ES is an evolutionary algorithm with a second order approach. Similar to other

evolutionary algorithms such as the genetic algorithm, it works on the concept of a ‘pop-

ulation’, which is first initialized as a set of random samples, and subsequently modified

64

through a mutation step, resulting in new generations. This combination of samples can

be treated as a random distribution, and this distribution is ‘adapted’ between iterations

through a sampling step. The basic equation for sampling looks as below at generation

g + 1:

xk
g+1 = mg + σgN (0,Σg) (4.3)

Here, σ denotes a step size: indicating the movement of the samples between iterations,

and Σ ∈ Rn×n represents the covariance matrix of the distribution, which essentially

characterizes the shape of the distribution ellipsoid. The primary strategy for driving the

evolution is by estimating and evaluating the covariance matrix of the distribution. The

algorithm determines the strongest sample by evaluating the function at all these samples;

and once these values are available, the mean of the distribution is updated such that the

likelihood of strong samples is maximized in the next step. Likewise, the covariance matrix

of this distribution is also updated at every iteration, such that the direction of the sampling

is biased towards stronger solutions. CMA-ES uses various ways of updating the covariance

matrix, all adhering to the idea that adaptation should increase the likelihood of successful

steps. In a covariance matrix, the off-diagonal terms represent the dependences between

the variables while evaluating the distribution: in a case like next-best-view where the

variables are tightly coupled in their effect on the final cost function, CMA-ES learns the

pairwise dependencies between variables effectively through its adaptation strategy, and

eventually, how changes in these variables affect the cost function.

4.1.3 Working of the NBMV planner

The NBMV planner involves initializing the CMA-ES algorithm with the initial poses

(position and yaw) of the MAVs as the seed variables. A population of samples is gathered

around these positions and the algorithm iteratively searches for the best viewpoints,

returning the solution after a fixed number of iterations. This solution is then broken down

into position/yaw for individual vehicles and supplied to them as waypoints. The work in

65

this dissertation focuses mainly on evaluation of these solutions and examining the effect of

the NBMV algorithm’s solutions on the reconstruction/localization quality, and the problem

of how to actually navigate to the waypoints is not considered directly. For a system that

uses collaborative localization in real time, these waypoints would have to be coupled with

a feedback control system to ensure they actually reach the specified waypoints. Given

any position errors and drift, it is entirely possible that the MAVs fail to reach the exact

commanded viewpoint locations. But such localization drift can be offset by the fact that

the positions reported by the MAVs can be re-evaluated within the NBMV algorithm, and

if they do not match the expected minimum value of the cost, they can be controlled in

the right direction in an iterative fashion by the controller until the cost function is close

enough to the expected minimum value.

Algorithm 2 Next Best Multi View Algorithm

1: procedure COMPUTENBMV(x,X,C)
2: set λ . Population size
3: initialize m← x, σ, C ← I
4: while ¬stop do
5: for i ∈ [1, λ] do
6: xi ← N (m,σ2C)
7: fi ← computeHeuristics(xi, X)
8: end for
9: x1...λ ← xf(1)...f(λ)

10: C ← updateCovariance()
11: σ ← updateStepSize()
12: end while
13: return x
14: end procedure

4.2 Localization aware path planning

As the MAVs in this context rely solely upon feature based localization, a planner

attempting to be localization-aware while planning paths to move from any start to goal

66

locations needs to optimize certain factors relating to monocular vision and reduce the

uncertainty arising from the localization. It must be recalled here that the intra-MAV

localization, the fundamental way of localization, uses the PNP algorithm and relies on 3D-

2D correspondences to estimate the pose of the MAV. Hence, the uncertainty in localization

depends mainly on the visibility and appearance of the map features on the image, along

with other relatively minor factors such as the angle of viewing, distance from the area

where the keyframes were captured from etc. Optimizing these features can contribute to a

reduction in the measurement uncertainty, and thereby the pose covariance of the vehicle

itself. In this discussion, only one vehicle is considered to be performing uncertainty-aware

path planning.

Assume the space that the MAV is traversing as a bounded set. Given such a bounded

open set X ⊂ Rd partitioned into an obstacle region Xobs and an obstacle-free region Xfree,

the path planning problem is to find a path π : [0, T] ∈ Xfree that is collision free at all

points and satisfies both the initial and goal state constraints. While many such feasible

paths may exist, the concern of a vision-aware algorithm is to find a path that ensures vision

based localization, to reduce uncertainty along the path, while also attempting to minimize

path cost as much as possible. The path cost is expressed as a Euclidean distance metric

from the start to any current position in space.

The space X is also supposed to contain a known number of 3D points, which comprise

the global map, a set represented by M . The vehicle navigating in space X is assumed to

be equipped with a camera C which is characterized by a projection matrix P. As discussed

earlier, this camera is capable of estimating 2D projections of any subset of M on the image

plane. These projected features are the ones that are utilized by the PNP algorithm in order

to localize the vehicle in space. Any possible location for the vehicle in Xfree, can thus be

characterized by a metric of ‘information’: representing the quality of the measurements

of the camera projections of the 3D map points. Now, the objective can be expressed as a

combination of minimizing the cost of the traversed path while maximizing the information

67

gain.

For the general path planning problem, sampling-based methods, which seek approxi-

mate connectivity in Xfree by randomly sampling configurations and checking feasibility,

have been found to have several desirable properties. Sampling based planners are suitable

for application in high-dimensional spaces, while affording performance that scales well

with available computational resources. The RRT (rapidly-exploring random tree), has par-

ticularly been a baseline for several planning approaches because of its ability to generalize

over various types of vehicle dynamics. For the VCP framework, a customized version of

RRT* named Vision-Aware RRT* (VA-RRT*) was implemented, which is described in detail

below.

4.2.1 Vision-Aware RRT*

The modus operandi of a general RRT is to construct and maintain a tree-structured

graph T , where various nodes sampled in the state space of the MAV act as the vertices of

the graph and the connecting segments between these nodes form the edges of the graph.

Similar to the discussion regarding the NBMV planner, in this discussion, the state space

is limited to four dimensions: position and yaw. Thus, each sample, or ‘node’: consists

of these four values. The tree originates from a start node qstart (also the initial state

of the vehicle) and attempts to connect Xfree through various edges, which are in turn

connections between these random samples. The lengths of segments that form the edges

can be limited by a quantity known as the step size, which controls the maximum length

of a connection between two nodes. In the VA-RRT*, each node q ∈ T represents a tuple

qi = {xi, ci, σi, Ii,Σi, Ji}. The various components of this node description will be discussed

later.

4.2.1.1 Tree expansion

In every iteration of the algorithm, the first step of VA-RRT* is to generate a valid

random sample qrand from Xfree. Any sample can be checked for possible collisions with

68

known objects in the 3D space, thus ensuring it is part of Xfree. Expansion of the tree

typically involves finding the nearest neighbor qnear to qrand, and this is performed using a

Euclidean distance metric. Next, a steering function is implemented that seeks to connect

qnear to qrand but while adhering to the preset step size that the tree can move in a given

iteration. The result of this operation is a new node qnew. If the distance between qnear and

qrand is already less than the specified step size, qnew would be the same as qnear.

For a vehicle using feature-based localization, not every sample in Xfree guarantees

localization ability. There can exist numerous configurations that are collision-free, but

could be bad for the vehicle either due to a complete lack of visibility of the map feature, or

a bad distribution of features in the image, which can render the vehicle unable to localize

and cause drift. Hence, VA-RRT* uses a vision-aware sampling strategy. Once a new node is

sampled and steering is attempted, the camera projections of the map points are computed

from qnew. If this results in a zero visibility of map points, this node is discarded and the

algorithm attempts the sampling step again. Else, this new node is added to the tree and the

algorithm proceeds with node evaluation. The subset of samples that guarantee a non-zero

visibility of map points can be considered to be Xloc ⊂ Xfree.

4.2.1.2 Uncertainty metrics

For an MAV navigating in Xloc ⊂ Xfree, observations zi are generated according to a

specific observation model for every newly sampled and connected state. Given a potential

path π, it would be ideal to assess the localization quality of this path via the posterior belief

of the vehicle, which would be a function of the set of observations received throughout

the path Zπ. But, as planning is a high level process that is typically executed prior to

navigation, it is impossible to anticipate the true measurements and the exact sequence

of observations affecting the belief of the vehicle at this phase. Hence, the objective of an

information-based planning approach is to approximate these potential observations and

their quality and embed the expected visual information quantitatively into the existing

graph: thus simulating the potential uncertainty expected at nodes within the planning

69

problem.

According to this idea, while constructing the tree, VA-RRT* also attempts to describe

each node through an uncertainty metric, which represents the quality of that node in

the sense of vision based localization. First, every node that needs to be evaluated is

assigned a set of heuristics, similar to the NBMV problem but more specific to single-

camera localization. The heuristics are listed below, and are calculated every time camera

projections are computed for a valid node.

1. Visibility: The first heuristic computes the ratio of the number of points in the projected

image that can be tracked given a specific state and the total number of points in the

global map.

2. Span: The second heuristic ensures that images captured from locations that are

close to the existing map features are assigned higher confidence. The calculation of

this heuristic involves a binning operation on the image (the number of bins can be

selected prior) and counting how many bins contain points from the map.

3. Viewing angle: Feature-based localization algorithms such as the perspective-N-point

as well as several tracking algorithms exhibit better performance when the features

are viewed at a low angle of vergence. Ideally, fronto-parallel views of a known

scene result in the best localization, and to simulate this effect, the viewing angle is

described through the cosine to include it in the heuristic metric.

A weighted combination of these metrics is encoded in a value q.σ for each node, and is

representative of the quality of measurements that can potentially be obtained from that

particular sample.

4.2.1.3 Uncertainty propagation

Once a metric is available to express a simulated uncertainty from a given sample, it is

necessary to approximate the accumulation of good measurements through edges using a

70

measure of information. This is because while measurement uncertainty is discrete and has

a unique value for each sample, the actual pose uncertainty at a given sample is always

a function of the path taken to reach that sample. Hence, each pose in the sample space

can theoretically have multiple uncertainty values, each corresponding to a unique path

taken to reach the sample. Some of the common ways of quantifying information are

mutual information, divergence and Fisher information. Of these methods, typically mutual

information and divergence require approximating the posterior belief. In the case of the

VCP framework, no complex system dynamics are considered for simplicity, hence it is

possible to opt for a simpler metric. Thus, the Fisher information based metric was chosen to

develop uncertainty propagation inspired by the method presented in the information-rich

RRT.50 Fisher information is also a measurement-free informativeness metric, which can

work solely with the information of map points and simulated 2D projections from the

samples.

The Fisher information matrix I describes the ‘information’ contained by a sequence of

measurements z about the estimation of a quantity x. The advantage of using the FIM as a

metric for uncertainty is that the inverse of a true FIM directly represents the achievable

lower bound on the estimate covariance, which is the Cramer-Rao lower bound (CRLB).

It can be recalled from the Kalman filter related discussion in section 3.9 that a discrete

system with linear state transitions and measurements can be modelled within a recursive

estimation framework as:

xk = Axk−1 + wk−1 (4.4)

zk = Hxk + vk (4.5)

The zero-mean Gaussian white noises w and v are described by covariance matrices

Qk and Rk respectively. When attempting to propagate the uncertainty from one instant

to another (which can be encoded by one edge in the tree), the conventional recursive

71

estimation equation provides this relationship between the start and end state covariance

matrices:

Pk = (I−KkHk)Pk−1 (4.6)

= (I− (Pk−1 ∗H>k (HkPk−1H
>
k + Rk)−1)Hk) ∗Pk−1

= Pk−1 −Pk−1H
>
k (HkPk−1H

>
k + Rk)−1HkPk−1

The expression in equation 4.6 can be subject to the Woodbury matrix identity, which

allows an alternative representation of the covariance computation as

P−1k = P−1k−1 + H>k R−1k Hk (4.7)

This inverse of a covariance matrix is equivalent to the Fisher information matrix. At

the same time, it has to be noted that the measurements being acquired, either by the

PNP algorithm in the VCL framework or these simulated measurements within VA-RRT*

are measurements of the state directly, which means the measurement Jacobian H is an

identity matrix. Hence, equation 4.7 can be rewritten as follows.

Ik = Ik−1 + R−1
k (4.8)

Equation 4.8 points out a critical property of the Fisher information matrix in the realm

of uncertainty propagation. The FIM exhibits a simple additive property,and the information

content on a set of nodes (a path) would be just the sum of all individual FIMs in the

set, thus the sum of all inverse measurement noise covariances. This property enables a

computationally efficient approach of propagating uncertainty within the VA-RRT*. For any

node k, the FIM at that node is formed through a recursive update of FIMs through its parent

k − 1. Naturally, maximizing the information matrix is equivalent to minimizing the state

covariance. Hence, in order to represent the uncertainty metric that needs to be minimized

72

over any path, VA-RRT* uses another quantity Σ, which is a simulated covariance, to

denote the uncertainty at any given node, as a function of the recursive information update

received from its parents. This matrix Σ is not expected to be an accurate pose covariance

estimate: but merely a quantity indicative of whether or not a certain node or path is

conducive to good localization.

Σk = I−1
k (4.9)

4.2.1.4 Cost metric and rewiring

The VA-RRT* combines the classic RRT* effect of attempting to minimize path cost

with this new representation of vision based localization ability. The localization ability is

expected to be described the combination of heuristics described in the previous section:

so in turn, each node that results in a successful connection within Xfree can be described

by a unique combination of path cost and estimated covariance. As it can be seen from

equations 4.8 and 4.9, each connection results in a propagation of uncertainty from the

parent to the child node. When a new node is sampled and described, the main function of

the VA-RRT*, similar to other optimal tree-based planners is to examine whether moving

from this node to any previously-connected neighbor would be more beneficial. In other

words, if propagating from the current node qnew to another node qnear results in a cost

value better than qnear’s existing cost, the edge that is already connecting qnear with its

parent is pruned, and a new connection is made between qnew and qnear. This comparison is

performed through a weighted cost function that is defined below.

Ji = wc ∗ qi.c+ wΣ ∗ qi.Σ (4.10)

The path cost for the node in question represented as qi.c, which is the combination of

Euclidean distances over all edges that connect the start state to the node qi. To describe

the effect of covariance, the A-optimality criterion, i.e., the trace of the covariance matrix

(inverse of the accumulated information matrix) is used. The parameters wc and wΣ

73

are considered to be tuning parameters. The objective function in equation 4.10 is also

responsible for a cost vs. uncertainty reduction trade-off. Setting wΣ to zero would cause the

algorithm to perform similar to a normal RRT*, choosing paths based on the sole criterion

of travel distance. Increasing the value of wΣ would make the algorithm prefer covariance

minimization over path cost.

To enable quick propagation of good measurements through the tree, VA-RRT* uses a

concept known as cascaded rewiring, similar to the RRBT algorithm. If any node results in

rewiring changes to the neighbors, the neighbors are rewired promptly and the VA-RRT*

adds these newly changed nodes into a queue. The same rewiring check is repeated for

newly added nodes in the queue. This queue ensures that the discovery of areas affording

good measurements and higher reduction in uncertainty is updated recursively through the

entire existing graph, rewiring the whole graph.

4.3 Trajectory generation

The VA-RRT* algorithm is responsible for returning a valid, collision-free path that,

depending on the cost constraints, attempts to drive an MAV to texture-rich areas in the

map with the assumption that its actual localization would benefit from it. However, it

does not explicitly take the dynamic model of the vehicle into account and thus, the paths

returned by the algorithm are essentially coarse connections through the free space of the

environment. For a system such as an aerial vehicle with highly nonlinear, high degree-of-

freedom dynamics, a coarse path like this can be infeasible and constructing a dynamically

feasible trajectory usually involves iterating over the equations of motion.

In order to solve this problem, the VA-RRT* algorithm is combined with a minimum-snap

trajectory generation scheme that was presented by Richter et al91 as a modification of

earlier UAV trajectory generation work by Mellinger et al.62 This trajectory generation

algorithm works on a combination of a 3D occupancy map and a high level path returned

by the VA-RRT* to construct a sequence of polynomial segments that are jointly optimized

in order to connect the VA-RRT* path nodes into a smooth trajectory between start and goal.

74

Algorithm 3 Vision-Aware RRT*

1: procedure VARRT(qstart, qgoal, X) . X = map points
2: init T
3: init wc, wΣ

4: σinit ← computeHeuristics(qstart, X)
5: qstart.c = 0, qstart.σ = σinit, qstart.p = −1, qstart.Σ = Σinit

6: while Niter < IterMAX do
7: qrand ← sample()
8: qnearest ← knn(T , qrand)
9: qnew ← steer(qnearest, qrand, ε)

10: qnew.σ, qnew.R← computeHeuristics(qnew, X)
11: if qnew.σ.v == 0 then
12: goto 5
13: end if
14: enew ← connect(qnear, qnew)
15: if qnew, enew /∈ Xfree then
16: goto 5
17: end if
18: qnew.I = qnearest.I + (qnew.R)−1

19: qnew.Σ = qnew.I−1

20: qnew.J = wc ∗ qnew.c+ wΣ ∗ qnew.Σ
21: T ← T ∪ qnew, enew
22: Q← Q ∪ vnew
23: while Q 6= ∅ do
24: u← pop(Q)
25: for un ∈ knn(u) do
26: J ′ =propagate(u.J, un)
27: if J ′ < un.J then
28: G.E ← G.E \ {un.p, un}
29: un.p = u
30: G.E ← G.E∪ connect(u, un)
31: Q← Q ∪ un
32: end if
33: end for
34: end while
35: end while
36: qneighbor ← knn(qgoal)
37: while qneighbor.p 6= −1 do
38: Path← Path ∪ qneighbor.p
39: qneighbor = qneighbor.p
40: end while
41: return Path
42: end procedure

75

Minimum-snap splines have been shown to be excellent choices for multirotor vehicles,

since the motor commands of these vehicles are proportional to the snap (the second

derivative of acceleration) of the path. Hence, minimizing the snap of a path is equivalent

to reducing abrupt movements and also helps in avoiding loss of observations.

The method for minimum snap trajectory generation involves concatenating a set of

individual optimization problems, each working on one segment of the full path. Each

segment is composed of trajectories for the variables of positions x, y, z and yaw ψ. A

multirotor is considered to be a ‘differentially flat’ system: which means that the system

has an output that can be used to explicitly express all states and inputs without requiring

integration, so only in terms of the outputs and some of its derivatives. The differentiability

of these polynomial segments makes them applicable for a differentially flat representation

of quadrotor dynamics. In order to minimize the snap of these polynomial trajectories, a

cost function for optimization is described as follows.

J =

∫ T

0

c0P (t)2 + c1P
′(t”2) + c2P

′′(t)2 + ... (4.11)

To solve for a minimum snap trajectory, the coefficient corresponding to the fourth

derivative would be the only non-zero component. This can be rewritten in matrix form as

J = p̃>Qp̃ (4.12)

The method in Richter et al91 which is used as part of the VCP framework, expresses this

minimization problem as an unconstrained quadratic programming problem which results

in an efficient computation of the final smooth trajectory.

4.4 Implementation and Results

The planning framework was validated on a combination of manually created sample

scenarios and environments from the AirSim simulation platform. Open source implementa-

tions of the CMA-ES algorithm were used in both C++ and MATLAB, and the VA-RRT* was

76

similarly programmed in both C++ and MATLAB. The C++ implementation of the VA-RRT*

uses a KD-tree for storage as well as efficient k-nearest neighbor queries during the course

of the algorithm execution. The C++ versions of the NBMV and VA-RRT* algorithms were

also integrated with ROS.92 Point clouds of the map were converted to OctoMap occupancy

grids,93 and the flexible collision library (FCL)94 was integrated within VA-RRT* in order to

sample states and perform connections in a collision-free fashion. The VA-RRT* computed

coarse paths were passed to the minimum-snap trajectory generation module made for

ROS in order to compute a smoothed, minimum-snap trajectory feasible for navigation.

During the evaluation of both NBMV and VA-RRT* modules, the focus is mainly on sparsely

populated environments, as they present the biggest challenge to feature-based localization

methods.

4.4.1 Next Best Multi-View Planning

A depiction of the basic working of the multi-vehicle NBMV planner is shown in figure

4.1. In this experiment, two MAVs were initialized in a sparsely populated map in AirSim

(containing one building far away from the MAV positions). The initial images captured

by the MAVs can be seen in 4.1.a and 4.1.b. This pair of images resulted in a sparse

reconstruction (a point cloud with 83 points) which was then used as initial knowledge

for the NBMV algorithm. Through sampling the valid space and examining the simulated

projections, the NBMV planner was able to compute a new pair of positions, under the

assumption that attempting a reconstruction from these points could result in a better map.

When reconstructed from these new viewpoints, the map was updated with a point count

of 207 (4.1.f), demonstrating significant improvement in the density.

To evaluate whether the generation of a new map actually improved the localization, one

of the MAVs was made to execute a rectangular trajectory in this environment, which was

first localized against the initial, sparse map and next against the updated, relatively denser

map. The comparison of the estimation results from the VCL algorithm can be seen in figure

4.2. Localization using the map generated from the closer viewpoint resulted in estimates

77

(a) Initial view L (b) Initial view R (c) Optimized
view L

(d) Optimized
view R

(e) Initial point
cloud

(f) Optimized
point cloud

Figure 4.1: Result of NBMV planner for a case with 2 MAVs. Initial and final maps seen in (e) and
(f). Reprinted from Vemprala and Saripalli66

Figure 4.2: Performance of localization against an initial map and a map improved through the
NBMV algorithm. Reprinted from Vemprala and Saripalli66

that matched the ground truth better with a mean squared error (MSE) of approximately

23 cm, whereas using the map from the farther viewpoint resulted in performance that

exhibited a significant amount of drift and inaccuracy.

Table 4.1: Comparison of localization accuracy with maps from different runs of the NBMV planner.
Reprinted from Vemprala and Saripalli66

Index 1 2 3 4 5 6 7 8 9 10

MSE (cm) 17.2 18.8 11.4 14.2 22.2 20.9 19.1 24.3 21.2 19.4

pts 217 248 271 200 199 230 232 197 212 257

As CMA-ES is an evolutionary strategy, it contains a certain degree of randomness which

can change the result slightly between runs, especially when multiple sets of viewpoints

can result in a minimum value of the cost function. In order to test these characteristics,

a repeatability test was performed, where the previous test case was repeated ten times.

78

0.20.40.60.811.21.41.61.82

Alpha

0

500

1000

1500

2000

N
u
m

b
e
r

o
f
p
o
in

ts

Effect of baseline/depth ratio on map density

(a) Baseline-depth ratio vs. point cloud den-
sity

0.20.40.60.811.21.41.61.82

Alpha

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
e
p
th

 e
rr

o
r

(m
)

Effect of baseline/depth ratio on depth error

(b) Baseline-depth ratio vs. map depth error

Figure 4.3: Effect of baseline-depth ratio on mapping quality

The NBMV planner was asked to compute optimal viewpoints for both the vehicles, and for

each set of viewpoints, a map was reconstructed from those locations and the rectangular

trajectory was localized against this map. Table 4.1 shows a comparison of the runs in terms

of localization accuracy. The average position MSE over all axes compared to the ground

truth was under 25 cm for all the maps, showing that the algorithm is able to consistently

result in good viewpoints for map improvement.

4.4.1.1 Effect of baseline-depth ratio

Figure 4.3 depicts the analysis of the effect of the choice of α, the baseline-depth ratio

on the performance of the NBMV algorithm. Constraining α to low values results in a high

density of the point cloud due to maximal overlap and better feature matching, but at

the expense of higher depth error. The values in figure 4.3 are purely for demonstrative

purposes, as the actual characteristics of the effect of α are very much dependent on camera

parameters. For general operation of the NBMV planner for the AirSim cameras, an α value

of 0.5 was chosen.

4.4.1.2 Effect of path cost constraint

In figure 4.4, the effect of the choice of δ, the path cost parameter is shown. Increasing

the value of δ means larger distances traveled by the MAVs in search of optimal viewpoints

are penalized greatly: this results in the final locations being constrained to farther locations

79

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Delta

0

100

200

300

400

500

600

700

N
u
m

b
e
r

o
f
p
o
in

ts

Effect of path cost parameter on map density

(a) Path cost weight vs. point cloud density

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Delta

0

0.2

0.4

0.6

0.8

1

D
e
p
th

 e
rr

o
r

(m
)

Effect of path cost parameter on depth error

(b) Path cost weight vs. map depth error

Figure 4.4: Effect of path cost weight on mapping quality

Figure 4.5: Performance of the NBMV planner when its has access to different numbers of vehicles.

from the map. But even with this constraint, the NBMV algorithm ensures that the baseline

between cameras is varied accordingly in order to reduce reconstruction error. As a side

effect of increasing δ, the point cloud density decreases.

4.4.1.3 Effect of number of vehicles

Extending the NBMV planner to more than two vehicles brings many advantages into

the scene. The most obvious advantage is that increasing the number of cameras that are

responsible for observation of the scene from many cameras can bring additional features

into view, thus increasing the density of the reconstructed point cloud. Using more cameras

for reconstruction also means that the baseline constraint can be relaxed, allowing the

cameras to move closer to the scene being observed. Figure 4.5 shows an example where

different 2, 3 and 5 cameras were run in the NBMV planner. As the number of cameras

80

Figure 4.6: Localization error between maps made by 2 vs 3 vehicles.

increases, it can be noticed how the observation distance also decreases. A similar case of

using multiple vehicles for mapping was analyzed through AirSim: and table 4.2 shows

that the more cameras are used for mapping and reconstruction, the lesser the subsequent

localization error in that environment. Localization vs. ground truth is compared for the

two vs. three vehicle case in figure 4.6.

Table 4.2: Comparison of localization accuracy with respect to number of vehicles involved in
NBMV

Number of vehicles Map Density (pts) MSE (cm)

Initial 147 59.8

2 344 25.5

3 552 17.4

4 621 15.6

5 654 14.8

At the same time, the NBMV planner is expected to balance this expected improvement

with the additional path cost expenditure, so when the path cost parameter δ is higher, the

NBMV planner can choose to use only some vehicles for mapping purposes. An interesting

81

20

Z
 d

is
ta

n
c
e

 i
n

 m

40

150

Y distance in m

100 50

X distance in m

0
50

-50

0

20

Z
 d

is
ta

n
c
e

 i
n

 m

40

150

Y distance in m

100

50

50

X distance in m

0

-50
0

Figure 4.7: Result of the NBMV planner in an environment with five MAVs. Initial map and solution
on left, final reconstruction on right. Reprinted from Vemprala and Saripalli66

Figure 4.8: Results of NBMV planner applied to a bigger environment. Initial map on left, final map
on right. Middle shows original structure. Reprinted from Vemprala and Saripalli66

effect of using more than 2 vehicles can be seen in figure 4.7. Here, a large scene was asked

to be observed by a set of five MAVs, but with a higher cost constraint. As the path cost is a

sum of distances traveled by all the MAVs, the CMA-ES algorithm opted to return a solution

with only three MAVs selected for examining the buildings closely, whereas the other two

remained close to the starting location. It can be recalled here that the cost function was

constructed in such a way that a minimum of two MAVs are required for examination to

facilitate a successful map reconstruction, hence, three is a valid number of MAVs to be

selected to capture images for an improved map. The initial and improved maps are shown

in figure 4.7.

A few more scenes where the NBMV planner was applied can be seen through images

82

Figure 4.9: More NBMV examples: Images from initial poses (top) and images from optimized
poses (bottom). Reprinted from Vemprala and Saripalli66

captured from initial and final positions of MAVs in figures 4.8 and 4.9.

4.4.2 VA-RRT* planning for individual MAVs

Under the assumption that a sufficiently informative map is already available, the

VA-RRT* algorithm is meant to be executed by individual vehicles in order to result in

vision-aware paths. Initially, the general characteristics of the VA-RRT* and performance

are demonstrated through a set of simple experiments.

A typical result from the VA-RRT* shown figure 4.10 demonstrates its general operation.

In this experiment, a synthetic ‘map’ of 3D points was initialized in the beginning to simulate

a point cloud a vehicle might have access to, shown as a rectangular array of blue points in

the figure. The VA-RRT* was asked to plan a path from the start location qstart = (0, 0, 0) to

qnew = (100, 0, 0). The resultant path is shown in red, with camera views drawn at the nodes

throughout the path. From the result, it can be understood that the VA-RRT* was able to

successfully estimate the best views to be those which maximize feature distribution in the

image plane and thus need to be in proximity to the map points. It can also be noticed that

the VA-RRT* prioritizes spending more time in proximity to the map points, as obtaining

multiple good measurements could result in a lower accumulated covariance that could

be beneficial later in the path where the MAV is forced to move away from the points to

reach its goal. It can also be seen how the entire tree, shown as light blue connections, is

rewired in such a way that most edges lead to the area of good measurements. Under the

83

Figure 4.10: Sample plan from VA-RRT* that ensures good visual observations of features while
moving from start to goal

assumption of static environments, this is beneficial for future planning queries.

Figure 4.11 shows sample paths returned by the VA-RRT* algorithm for different number

of maximum iterations. This comparison shows the benefit of features such as vision-aware

sampling and cascaded rewiring. The algorithm is able to plan paths that adhere to the idea

of better feature data acquisition even after a low number of iterations, such as can be seen

in figure 4.11.a: where the tree is already biased towards the area of good measurements.

This can also be partly attributed to the Voronoi bias of RRT-variants.

The main parameters that control the performance of VA-RRT* are the weights within

the cost function: wc and wΣ. The effect of different values of wc and wΣ can be best

observed in the figures in 4.12. A high value for wc results in a path that chooses low

path cost over information gathering, and thus behaves similarly to algorithms such as the

generic RRT*. Conversely, choosing a high wΣ results in the algorithm prioritizing acquiring

84

Figure 4.11: VA-RRT* expansion with number of nodes: 50, 100 and 1000 nodes

(a) High wc, low wΣ (b) Low wc, high wΣ

(c) Balanced wc and wΣ (d) Balanced wc and wΣ

Figure 4.12: Performance of VA-RRT* for different combinations of wc and wΣ.

85

Figure 4.13: VA-RRT*: coarse, initial path plan on the left, minimum-snap optimized smooth plan
on right.

Figure 4.14: VA-RRT* demonstrating vision-aware behavior along with collision avoidance in a
simulated room

better views of the map at the expense of path cost. It is possible to devise a balanced

combination of these two values, which can result in paths such as the ones shown in 4.12.c

and 4.12.d, where VA-RRT* attempts to optimize both path cost and uncertainty reduction.

The extension of VA-RRT* for minimum-snap trajectory generation results in feasible,

smooth trajectories for MAV navigation. Figure 4.13 demonstrates this: given a map of

points, the core of VA-RRT* is only responsible for a coarse connection of nodes (4.13 -

left) indicating where the localization would improve. As the next step, the minimum snap

trajectory generation takes this coarse connection and converts that into a smooth trajectory

(4.13 - right). Figure 4.14 shows a more complex example where an environment resembling

86

(a) Balanced choice of wc and wΣ (b) High value of wΣ

Figure 4.15: Path plans generated from the VA-RRT* for a sample map from AirSim.

two rooms and a doorway was synthesized, with only some of the walls containing texture

(seen in the occupancy grid as colored points), and the others being blank, and thus of no

use for localization. The VA-RRT* maintains view of a subset of these features throughout

the trajectory from start to goal, and carefully plans the yaw angles (green arrow on axes)

when moving through the doorway that allows continuous feature visibility. The trajectory

is also planned such that the vehicle stays away from any chance of collision with the walls.

After validating the basic characteristics of the VA-RRT*, its ability to improve localization

was tested using AirSim. Results from a sample experiment are shown here, where a 3D

map was reconstructed from two MAVs (from viewpoints provided by the NBMV planner).

A third MAV was placed at approximately 100m away from the map, and the VA-RRT*

algorithm was asked to plan a vision-aware path from the start location to a goal location

100m to its left. Intuitively, the result from a shortest path algorithm would involve flying

to the left in a straight line till the goal location is reached. On the other hand, VA-RRT*

prioritizes obtaining better measurements and enhanced feature viewing, hence the paths

planned by VA-RRT* are as shown in figure 4.15. Figure 4.15 shows two paths planned

with different weighting parameters on the cost: increasing the weight on path cost results

in a path that tries to balance both distance traveled and covariance reduction, similar to

examples above.

87

0 100 200 300 400 500 600

Image Number

0

0.5

1

1.5

2

2.5

3

T
ra

c
e

 o
f

p
o

s
it
io

n
 c

o
v
a

ri
a

n
c
e

Wc = 0.1

Wc = 0.01

Wc = 0.001

Figure 4.16: Comparison of covariance (trace) between VA-RRT* paths generated with different
weighting parameters

Results from the localization algorithm prove that the VA-RRT* was indeed successful

in reducing pose uncertainty. The trajectory that was estimated to reduce covariance is

seen to actually reduce pose covariance as evidenced by the comparison of pose covariance

traces in figure 4.16. While a path with high path-cost weight (close to a shortest path plan)

resulted in high, increasing covariance, both the trajectories shown in figure 4.15 result in

a decrease in covariance between start and goal.

4.5 Interleaved VA-RRT* and NBMV operation

The primary function of the VA-RRT* algorithm is to compute trajectories that are more

optimal than a naive trajectory or one that only optimizes path cost, in the sense that feature

based localization is always possible, and it can be improved wherever possible. From

this statement, and some of the demonstrations shown in section 4.4.2, a connection can

be made between this planning framework and the localization framework that VA-RRT*,

whenever possible, attempts to reduce the need for inter-MAV localization. Inter-MAV

localization is mainly beneficial when one of the MAVs is, for instance, suffering from bad

feature tracking that results in an increasing pose uncertainty, or is just navigating at a

farther distance from the map. Allowing VA-RRT* to act on these scenarios could result in a

certain degree of improvement, where the planner could ask the MAV to be controlled so

88

that it is in view of more features, or just accumulate good measurements before moving to

an area of the map where feature tracking may not work very well. In essence, using the

VA-RRT* can result in less requirement of communication between the vehicles.

One scenario where VA-RRT* cannot perform to its expected level of uncertainty re-

duction is when the operation is deliberately constrained. In applications where energy

expenditure needs to be minimal, or in a case where the MAV’s battery level is too low to

execute long maneuvers that could result in better localization, the VA-RRT* algorithm can

be constrained by increasing the weight on the path cost parameter (wc): and in this case,

the VA-RRT* plans would have to make compromises in their expected covariance reduction.

To handle these corner cases, it is possible to combine VA-RRT* and the previously described

NBMV planner, to hand off the responsibility of pose uncertainty improvement to the inter-

MAV localization module by identifying certain points in the path where communication

would be necessary.

Figure 4.17 shows an example scenario where these two algorithms can be combined.

Two MAVs were commanded to move away from a set of features but with a high value of

wc, a command that would result in reduction in feature distribution on the image plane.

Consequently, the VA-RRT* has to plan an almost straight-line path from start to goal, while

being aware that this would result in an insufficient decrease of estimated covariance -

the covariance computed through information accumulation. The covariances expected

throughout the path were analyzed, and if the least covariance expected in the path is not

under a certain threshold (relative to the initial covariance), intermediate points in the path

were marked to be candidates for improvement.

Once marked, a slice of the complete environment is isolated, with the points from the

VA-RRT* path acting as ‘seed’ poses, and was passed to the NBMV planner. Naturally, the

NBMV planner tries to maximize overlap and other relevant factors: and hence, it resulted

in an improved pair of points - with the assumption that if inter-MAV localization were to be

performed from these locations, it would result in enhanced accuracy. Allowing the NBMV

89

Figure 4.17: Interleaved VA-RRT* and NBMV operation. When VA-RRT* is not able to reduce
covariance by expected amounts, NBMV can identify possible viewpoint sets from where inter-MAV
localization can be attempted.

planner to only sample within a slice of the environment ensures that the new viewpoints

selected by the NBMV planner do not require considerable energy expenditure.

90

5. CONCLUSIONS AND DISCUSSION

5.1 Summary of contributions

In this dissertation, two algorithmic frameworks: one for collaborative localization and

one for collaborative uncertainty-aware path planning were presented for vision-based

micro aerial vehicles. The target application scenario involves a set of multirotor micro aerial

vehicles, each equipped with a forward-facing monocular camera, as well as communication

abilities with other vehicles. The collaborative localization is an approach that is solely

vision-based, and uses a feature-based method. The localization starts with the vehicles

sharing their feature data to build 3D maps of the surroundings. The VCL framework

uses two types of localization: one which runs onboard the vehicles in a decentralized

way, known as intra-MAV localization and another, that is performed by one vehicle for

another: known as inter-MAV localization. Concepts from computer vision, multiple view

geometry and structure from motion were combined to achieve collaborative mapping of

environments, as well as the two types of localization mentioned previously. Different

estimates coming from the other vehicles in the group are fused in a consistent manner

using a technique known as covariance intersection, which does not require keeping track

of cross-correlation terms. Mapping can be repeated over time to update the map point

clouds with new features.

This collaborative localization was implemented as C++ software, and tested with image

datasets from high fidelity simulation environments (Microsoft AirSim) as well as from real

life MAVs in both indoor and outdoor scenes. Some of these experiments involved flights

over large areas, some simulated flights well over 100m of distance, yet only exhibiting

around position estimation errors in the order of 1-2% once the collaborative nature of the

VCL algorithm came into play. In general, the VCL framework was shown to consistently

result in good localization through data fusion when required. The findings show that

91

collaboration has the potential to improve localization in challenging environments and

generally result in more accurate pose estimates, thus supporting the initial claim that

collaboration can enhance localization accuracy. The implementation of the algorithm

was designed in such a way that it does not require constant communication between the

vehicles. Even when communication is required, such as in cases of inter-MAV localization,

the data that needs to be transferred is only feature points and descriptors, generally in

the order of kilobytes and thus can be handled comfortably by Wi-Fi networks. While this

algorithm was not tested real-time in a feedback loop, a timing analysis of the modules

involved shows that most of these computation tasks can be performed in the order of

milliseconds by conventional hardware. There is potential for optimization of the existing

code for better performance. With the proliferation of small, efficient GPU platforms such

as the NVIDIA Jetson TX2 and Jetson Nano, the implementation of GPU-based feature

detection and matching in VCL has the potential for fast, accurate localization onboard

MAVs.

In chapter 4, the collaborative path planning framework was presented. This extends the

idea of a collaborative MAV system into the planning phase, and attempts to adapt the same

factors defined in the localization framework into an uncertainty-aware planning scenario.

As for any feature-based localization framework, the major factors affecting localization

quality were identified to be firstly the quality of reconstruction of the environment being

used as the map and secondly, the quality of feature tracking from the given map. Proximity

to feature-rich areas, fronto-parallel views, a proper baseline to depth ratio are some of the

factors that influence the accuracy of reconstruction and subsequent localization. Hence, a

set of heuristics were developed to describe these qualities mathematically, with the idea

that the lower the values of these heuristics, the more improved these characteristics are.

To improve mapping performance and to generate better 3D point clouds, a next-best-view

planner was developed for multiple vehicles, called a next-best multi-view (NBMV) planner.

The combination of multiple vision-specific heuristics was formulated as a cost function and

92

was adapted into an evolutionary algorithm called covariance matrix adaptation (CMA-ES),

with the idea that solving this optimization problem results in a set of viewpoints the

vehicles can move to, and then create better maps.

Alongside the next-best-view planner, which is mainly responsible for map improvement,

a sampling based planner was also developed to take care of individual vehicle navigation

and to ensure that feature tracking is always possible, and that the vehicles prioritize

obtaining better observations of the feature map whenever possible. This planner, an

RRT-based algorithm with features inspired by several recent variants of RRT, was named

Vision-Aware RRT* (VA-RRT*). It is an extension to RRT*, the sampling based planner that

exhibits asymptotic optimality characteristics: and contains a customized cost function that

is a trade-off between minimization of path cost along with minimization of covariance with

weighting parameters that allow the user to choose the priority. The expected covariance at

various parts of the 3D environment is estimated through a heuristic-based measurement

uncertainty value, which is eventually propagated through the trajectories by formulating

good measurements as ‘information gain’. Through several experiments in simulation, this

planning framework was shown to be beneficial for localization. The NBMV planner was

shown to consistently result in denser, more accurate point clouds, and it was demonstrated

that these improved maps did also result in improved pose estimation accuracy. The

VA-RRT* also exhibits similar characteristics, driving the vehicles efficiently towards texture-

rich areas and maintaining observability of features throughout the trajectories. While

the planning framework was only implemented in simulation, it was developed in a way

that it is feasible to apply it on real MAVs. The VA-RRT* algorithm was coupled with a

minimum-snap trajectory generation algorithm which ensures that any coarse high-level

path returned by the RRT-based planner is converted into a smooth, quadrotor-feasible

trajectory for navigation.

93

5.2 Possible applications

With the surging interest in the idea of micro aerial vehicle swarms, the constantly

reducing size of vehicles, while enhancements are made in computational speed and commu-

nication, several possible applications can be identified with regards to using collaborative

methods for autonomy. Considering the factors that are fundamental to the work presented

in this dissertation, this section attempts to identify a few applications where the presented

approaches would be useful.

5.2.1 Decoupled aerial stereo

The first application where collaborative localization and planning could be beneficial

would be mapping of large structures such as buildings or natural structures. The classical

structure from motion pipeline, which involves identifying sveral viewpoints and having a

camera move between them while taking pictures; could be made more efficient by using

a set of (possibly cheap, expendable) quadrotors. Proper imaging would require accurate

positioning of the cameras and in situations where the structures might be so remote that

GPS coverage is not guaranteed, a GPS-denied approach such as this would be beneficial.

The NBMV planner, for example, could attempt to identify the best viewpoints for imaging

the structure, whereas the collaborative localization can make sure that each MAV is at

its position by considering the relative positions between the vehicles. While performing

this navigation and imaging, the VA-RRT* would act as the high level planning framework

ensuring localization is not lost during operation. For a simple operation with only two

vehicles, this system could essentially act as a decoupled, variable-baseline stereo camera,

thus the name decoupled aerial stereo.

5.2.2 Cooperative assembly

Another application where collaborative localization and trajectory planning could be

highly useful is where multiple MAVs such as quadrotors work together to carry payload and

to assemble larger objects. These applications usually involve two or more small quadrotors

94

attempting to pick up large objects by attaching themselves to the edges or the corners of

the object, and thus, require very precise positioning. Intuitively, this can be seen as a sort

of formation control, and hence a robust combination of individual and relative estimation

is an attractive choice for positioning the vehicles in their precise spots and maintaining

them through flight and payload carriage. At the same time, it would be desirable for the

MAVs to navigate only through well lit areas, and to keep texture-rich areas in view as

much as possible if vision is their primary sensing modality, hence the planning framework

would be able to handle trajectory generation for safe navigation and payload transport.

5.3 Future Work

There are numerous possibilities of extending this current work. Adapting the current

software into a real-time framework, capable of running onboard separate vehicles with

communication capabilities would be a desirable extension. This deployment could also

investigate the ability to handle communication delays, creation of a feedback control loop.

The algorithms used in the VCL framework could also be extended to match a more

robust SLAM framework. Primarily, generating and including map uncertainty could assist

in a higher degree of informativeness for localization and subsequent map improvement. It

is also possible to use a more accurate system model within the Kalman filter to match the

MAV dynamics. Another direction of work could involve integrating IMU measurements

into the vision based framework in order to relax the assumption of knowing the initial

estimate of scale: utilizing visual-inertial data would allow for online scale estimation and

propagation.

95

REFERENCES

[1] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.

[2] C. Galiński and R. Zbikowski, “Some problems of micro air vehicles development,”

2007.

[3] “Vicon motion capture system.” https://www.vicon.com/motion-capture/

engineering. Accessed: 2010-09-30.

[4] N. Abdelkrim, N. Aouf, A. Tsourdos, and B. White, “Robust nonlinear filtering for

ins/gps uav localization,” in 2008 16th Mediterranean Conference on Control and

Automation, pp. 695–702, IEEE, 2008.

[5] B. Yun, K. Peng, and B. M. Chen, “Enhancement of gps signals for automatic control

of a uav helicopter system,” in 2007 IEEE International Conference on Control and

Automation, pp. 1185–1189, IEEE, 2007.

[6] T. Templeton, D. H. Shim, C. Geyer, and S. S. Sastry, “Autonomous vision-based landing

and terrain mapping using an mpc-controlled unmanned rotorcraft,” in Proceedings

2007 IEEE International Conference on Robotics and Automation, pp. 1349–1356, IEEE,

2007.

[7] F. Caballero, L. Merino, J. Ferruz, and A. Ollero, “Vision-based odometry and slam

for medium and high altitude flying uavs,” Journal of Intelligent and Robotic Systems,

vol. 54, no. 1-3, pp. 137–161, 2009.

[8] S. Saripalli, J. F. Montgomery, and G. S. Sukhatme, “Vision-based autonomous landing

of an unmanned aerial vehicle,” in Proceedings 2002 IEEE International Conference on

Robotics and Automation (Cat. No. 02CH37292), vol. 3, pp. 2799–2804, IEEE, 2002.

[9] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The grasp multiple micro-uav

testbed,” IEEE Robotics & Automation Magazine, vol. 17, no. 3, pp. 56–65, 2010.

96

https://www.vicon.com/motion-capture/engineering
https://www.vicon.com/motion-capture/engineering

[10] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple learning strategy

for high-speed quadrocopter multi-flips,” in 2010 IEEE International Conference on

Robotics and Automation, pp. 1642–1648, IEEE, 2010.

[11] M. Hehn and R. D’Andrea, “A flying inverted pendulum,” in 2011 IEEE International

Conference on Robotics and Automation, pp. 763–770, IEEE, 2011.

[12] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, “Towards a swarm of agile micro

quadrotors,” Autonomous Robots, vol. 35, no. 4, pp. 287–300, 2013.

[13] R. Ritz, M. W. Müller, M. Hehn, and R. D’Andrea, “Cooperative quadrocopter ball

throwing and catching,” in 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 4972–4978, IEEE, 2012.

[14] J. Stowers, M. Hayes, and A. Bainbridge-Smith, “Altitude control of a quadrotor

helicopter using depth map from microsoft kinect sensor,” in 2011 IEEE International

Conference on Mechatronics, pp. 358–362, IEEE, 2011.

[15] S. Shen, N. Michael, and V. Kumar, “Autonomous indoor 3d exploration with a micro-

aerial vehicle,” in 2012 IEEE international conference on robotics and automation,

pp. 9–15, IEEE, 2012.

[16] A. Bachrach, S. Prentice, R. He, P. Henry, A. S. Huang, M. Krainin, D. Maturana,

D. Fox, and N. Roy, “Estimation, planning, and mapping for autonomous flight using

an rgb-d camera in gps-denied environments,” The International Journal of Robotics

Research, vol. 31, no. 11, pp. 1320–1343, 2012.

[17] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart, “Onboard imu and monocular

vision based control for mavs in unknown in-and outdoor environments,” in 2011

IEEE International Conference on Robotics and Automation, pp. 3056–3063, IEEE, 2011.

[18] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L. Grixa, F. Ruess,

M. Suppa, and D. Burschka, “Toward a fully autonomous uav: Research platform for

97

indoor and outdoor urban search and rescue,” IEEE robotics & automation magazine,

vol. 19, no. 3, pp. 46–56, 2012.

[19] Z. Fang and S. Scherer, “Real-time onboard 6dof localization of an indoor mav in

degraded visual environments using a rgb-d camera,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA), pp. 5253–5259, IEEE, 2015.

[20] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in

Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and

Augmented Reality, pp. 1–10, IEEE Computer Society, 2007.

[21] C. Forster, M. Pizzoli, and D. Scaramuzza, “Svo: Fast semi-direct monocular visual

odometry,” in 2014 IEEE international conference on robotics and automation (ICRA),

pp. 15–22, IEEE, 2014.

[22] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system for monocular,

stereo, and rgb-d cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–

1262, 2017.

[23] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale direct monocular slam,”

in European conference on computer vision, pp. 834–849, Springer, 2014.

[24] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based mav navigation in

unknown and unstructured environments,” in 2010 IEEE International Conference on

Robotics and Automation, pp. 21–28, IEEE, 2010.

[25] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart, “Real-time visual-inertial

mapping, re-localization and planning onboard mavs in unknown environments,”

in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 1872–1878, Sep. 2015.

[26] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman filter for vision-

aided inertial navigation,” in Proceedings 2007 IEEE International Conference on

Robotics and Automation, pp. 3565–3572, IEEE, 2007.

98

[27] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular slam with map reuse,” IEEE

Robotics and Automation Letters, vol. 2, no. 2, pp. 796–803, 2017.

[28] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-inertial

state estimator,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[29] P.-J. Bristeau, F. Callou, D. Vissiere, and N. Petit, “The navigation and control tech-

nology inside the ar. drone micro uav,” IFAC Proceedings Volumes, vol. 44, no. 1,

pp. 1477–1484, 2011.

[30] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys, “Pixhawk:

A micro aerial vehicle design for autonomous flight using onboard computer vision,”

Autonomous Robots, vol. 33, no. 1-2, pp. 21–39, 2012.

[31] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a low-cost quadro-

copter,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 2815–2821, IEEE, 2012.

[32] M. Pizzoli, C. Forster, and D. Scaramuzza, “Remode: Probabilistic, monocular dense

reconstruction in real time,” in 2014 IEEE International Conference on Robotics and

Automation (ICRA), pp. 2609–2616, IEEE, 2014.

[33] A. Martinelli, F. Pont, and R. Siegwart, “Multi-robot localization using relative obser-

vations,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE

International Conference on, pp. 2797–2802, IEEE, 2005.

[34] E. D. Nerurkar, S. I. Roumeliotis, and A. Martinelli, “Distributed maximum a posteriori

estimation for multi-robot cooperative localization,” in Robotics and Automation, 2009.

ICRA’09. IEEE International Conference on, pp. 1402–1409, IEEE, 2009.

[35] L. C. Carrillo-Arce, E. D. Nerurkar, J. L. Gordillo, and S. I. Roumeliotis, “Decentralized

multi-robot cooperative localization using covariance intersection,” in Intelligent

Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pp. 1412–

1417, IEEE, 2013.

99

[36] J. Knuth and P. Barooah, “Distributed collaborative localization of multiple vehicles

from relative pose measurements,” in Communication, Control, and Computing, 2009.

Allerton 2009. 47th Annual Allerton Conference on, pp. 314–321, IEEE, 2009.

[37] V. Indelman, E. Nelson, N. Michael, and F. Dellaert, “Multi-robot pose graph local-

ization and data association from unknown initial relative poses via expectation

maximization,” in Robotics and Automation (ICRA), 2014 IEEE International Conference

on, pp. 593–600, IEEE, 2014.

[38] V. Indelman, P. Gurfil, E. Rivlin, and H. Rotstein, “Distributed vision-aided cooperative

localization and navigation based on three-view geometry,” Robotics and Autonomous

Systems, vol. 60, no. 6, pp. 822–840, 2012.

[39] D. Zou and P. Tan, “Coslam: Collaborative visual slam in dynamic environments,” IEEE

transactions on pattern analysis and machine intelligence, vol. 35, no. 2, pp. 354–366,

2013.

[40] M. W. Achtelik, S. Weiss, M. Chli, F. Dellaerty, and R. Siegwart, “Collaborative stereo,”

in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on,

pp. 2242–2248, IEEE, 2011.

[41] N. Piasco, J. Marzat, and M. Sanfourche, “Collaborative localization and formation

flying using distributed stereo-vision,” in Robotics and Automation (ICRA), 2016 IEEE

International Conference on, pp. 1202–1207, IEEE, 2016.

[42] C. Forster, S. Lynen, L. Kneip, and D. Scaramuzza, “Collaborative monocular slam

with multiple micro aerial vehicles,” in Intelligent Robots and Systems (IROS), 2013

IEEE/RSJ International Conference on, pp. 3962–3970, IEEE, 2013.

[43] P. Schmuck and M. Chli, “Multi-uav collaborative monocular slam,” in Robotics and

Automation (ICRA), 2017 IEEE International Conference on, pp. 3863–3870, IEEE,

2017.

100

[44] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov decision processes,”

Mathematics of operations research, vol. 12, no. 3, pp. 441–450, 1987.

[45] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Probabilistic roadmaps

for path planning in high-dimensional configuration spaces,” IEEE Transactions on

Robotics and Automation, vol. 12, pp. 566–580, Aug 1996.

[46] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” The International

Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[47] S. Karaman, “Incremental sampling-based algorithms for optimal motion planning,”

Robotics Science and Systems VI, vol. 104.

[48] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in linear pomdps by

factoring the covariance,” in Robotics Research, pp. 293–305, Springer, 2010.

[49] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion planning under

uncertainty,” in Robotics and Automation (ICRA), 2011 IEEE International Conference

on, pp. 723–730, IEEE, 2011.

[50] D. Levine, B. Luders, and J. How, “Information-rich path planning with general

constraints using rapidly-exploring random trees,” in AIAA Infotech Aerospace 2010,

p. 3360.

[51] G. A. Hollinger and G. S. Sukhatme, “Sampling-based robotic information gathering

algorithms,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1271–

1287, 2014.

[52] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty

using iterative local optimization in belief space,” The International Journal of Robotics

Research, vol. 31, no. 11, pp. 1263–1278, 2012.

[53] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm: Sampling-based

feedback motion-planning under motion uncertainty and imperfect measurements,”

The International Journal of Robotics Research, vol. 33, no. 2, pp. 268–304, 2014.

101

[54] R. He, S. Prentice, and N. Roy, “Planning in information space for a quadrotor

helicopter in a gps-denied environment,” in 2008 IEEE International Conference on

Robotics and Automation, pp. 1814–1820, IEEE, 2008.

[55] M. W. Achtelik, S. Lynen, S. Weiss, M. Chli, and R. Siegwart, “Motion-and uncertainty-

aware path planning for micro aerial vehicles,” Journal of Field Robotics, vol. 31, no. 4,

pp. 676–698, 2014.

[56] G. Costante, C. Forster, J. Delmerico, P. Valigi, and D. Scaramuzza, “Perception-aware

path planning,” arXiv preprint arXiv:1605.04151, 2016.

[57] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding horizon"

next-best-view" planner for 3d exploration,” in Robotics and Automation (ICRA), 2016

IEEE International Conference on, pp. 1462–1468, IEEE, 2016.

[58] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “Pampc: Perception-aware model

predictive control for quadrotors,” in 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 1–8, IEEE, 2018.

[59] D. Silver, “Cooperative pathfinding.,” 2005.

[60] D. Hennes, D. Claes, W. Meeussen, and K. Tuyls, “Multi-robot collision avoidance

with localization uncertainty,” in Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems-Volume 1, pp. 147–154, International

Foundation for Autonomous Agents and Multiagent Systems, 2012.

[61] F. Belkhouche and T. Jin, “An approach for collaborative path planning in multi-robot

systems,” in 2009 IEEE International Conference on Systems, Man and Cybernetics,

pp. 2356–2361, IEEE, 2009.

[62] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control for precise

aggressive maneuvers with quadrotors,” The International Journal of Robotics Research,

vol. 31, no. 5, pp. 664–674, 2012.

102

[63] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal assignment and trajectory

planning for large teams of aerial robots,” in Robotics: Science and Systems, 2013.

[64] S. Vemprala and S. Saripalli, “Monocular vision based collaborative localization for

micro aerial vehicle swarms,” in 2018 International Conference on Unmanned Aircraft

Systems (ICUAS), pp. 315–323, June 2018.

[65] S. Vemprala and S. Saripalli, “Vision based collaborative localization for multirotor

vehicles,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1653–1658, Oct 2016.

[66] S. Vemprala and S. Saripalli, “Vision based collaborative path planning for micro

aerial vehicles,” in 2018 IEEE International Conference on Robotics and Automation

(ICRA), pp. 1–7, May 2018.

[67] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International

journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[68] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in European

conference on computer vision, pp. 404–417, Springer, 2006.

[69] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in

European conference on computer vision, pp. 430–443, Springer, 2006.

[70] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative to

sift or surf,” 2011.

[71] P. F. Alcantarilla and T. Solutions, “Fast explicit diffusion for accelerated features in

nonlinear scale spaces,” IEEE Trans. Patt. Anal. Mach. Intell, vol. 34, no. 7, pp. 1281–

1298, 2011.

[72] G. Levi and T. Hassner, “Latch: learned arrangements of three patch codes,” in 2016

IEEE winter conference on applications of computer vision (WACV), pp. 1–9, IEEE, 2016.

103

[73] C. Parker, M. Daiter, K. Omar, G. Levi, and T. Hassner, “The cuda latch binary descriptor:

because sometimes faster means better,” in European Conference on Computer Vision,

pp. 685–697, Springer, 2016.

[74] D. Nistér, “An efficient solution to the five-point relative pose problem,” IEEE trans-

actions on pattern analysis and machine intelligence, vol. 26, no. 6, pp. 0756–777,

2004.

[75] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from two

projections,” Nature, vol. 293, no. 5828, p. 133, 1981.

[76] L. Moisan and B. Stival, “A probabilistic criterion to detect rigid point matches between

two images and estimate the fundamental matrix,” International Journal of Computer

Vision, vol. 57, no. 3, pp. 201–218, 2004.

[77] L. Moisan, P. Moulon, and P. Monasse, “Automatic homographic registration of a pair

of images, with a contrario elimination of outliers,” Image Processing On Line, vol. 2,

pp. 56–73, 2012.

[78] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge

university press, 2003.

[79] T. Ke and S. I. Roumeliotis, “An efficient algebraic solution to the perspective-three-

point problem,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 7225–7233, 2017.

[80] W. H. Press, Numerical recipes in C, vol. 2.

[81] G. Chang, “Robust kalman filtering based on mahalanobis distance as outlier judging

criterion,” Journal of Geodesy, vol. 88, no. 4, pp. 391–401, 2014.

[82] F. M. Mirzaei and S. I. Roumeliotis, “A kalman filter-based algorithm for imu-camera

calibration: Observability analysis and performance evaluation,” IEEE transactions on

robotics, vol. 24, no. 5, pp. 1143–1156, 2008.

104

[83] S. J. Julier and J. K. Uhlmann, “A non-divergent estimation algorithm in the presence

of unknown correlations,” in Proceedings of the 1997 American Control Conference (Cat.

No. 97CH36041), vol. 4, pp. 2369–2373, IEEE, 1997.

[84] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[85] P. Moulon, P. Monasse, R. Marlet, and Others, “Openmvg.” https://github.com/

openMVG/openMVG.

[86] S. Agarwal, K. Mierle, and Others, “Ceres solver.” http://ceres-solver.org.

[87] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine Learning Research,

vol. 10, pp. 1755–1758, 2009.

[88] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical

simulation for autonomous vehicles,” in Field and Service Robotics, 2017.

[89] C. Connolly, “The determination of next best views,” in Proceedings. 1985 IEEE Inter-

national Conference on Robotics and Automation, vol. 2, pp. 432–435, IEEE, 1985.

[90] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation distributions

in evolution strategies: The covariance matrix adaptation,” in Proceedings of IEEE

international conference on evolutionary computation, pp. 312–317, IEEE, 1996.

[91] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive quadrotor

flight in dense indoor environments,” in Robotics Research, pp. 649–666, Springer,

2016.

[92] M. Quigley, J. Faust, T. Foote, and J. Leibs, “Ros: an open-source robot operating

system,”

[93] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Octomap: An

efficient probabilistic 3d mapping framework based on octrees,” Autonomous robots,

vol. 34, no. 3, pp. 189–206, 2013.

105

https://github.com/openMVG/openMVG
https://github.com/openMVG/openMVG
http://ceres-solver.org

[94] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for collision and

proximity queries,” in 2012 IEEE International Conference on Robotics and Automation,

pp. 3859–3866, May 2012.

106

APPENDIX A

CAMERA PINHOLE MODEL AND PROJECTIVE GEOMETRY

A.1 Pinhole Model

A camera is a device that is capable of recording a three-dimensional object or a scene

as a two-dimensional image. A simple model that represents the operation of a camera

is what is known as the ‘pinhole camera model’, or the central projection model. In this

model, a camera system is designed as a photographic sensor that is placed behind a barrier

with a tiny hole in it, known as the aperture. It is expected that the 3D object that needs

to be imaged is emitting multiple rays of light outward. Because of the small size of the

aperture, only very few of these emitted rays reach the sensor, thus allowing a one-to-one

mapping between the recording and the actual object.

The aperture is referred to as the pinhole, or the center of the camera. The recorded

image is represented by a 2D plane, also known as the retinal plane. The distance between

the retinal plane and the camera center is the focal length of the camera, denoted by f .

To unify these two references, a coordinate system can be defined with the pinhole O at

the center, called the camera coordinate system. Contrary to other common navigational

coordinate systems like NED, for a system [i j k], it is conventional in a camera coordinate

system to have k pointing perpendicularly outwards from the pinhole.

Let X = [x y z]
T be a 3D point being imaged by the camera. X, when visible to the

pinhole camera, will be projected onto the image plane Π, resulting in a corresponding

projection X ′ = [x′ y′]
T . It can be gathered from image A.1 that, through the law of similar

triangles between OCX ′ and OXZ,

X ′ =

x′
y′

 =

f xz
f yz

 (A.1)

107

Figure A.1: Pinhole camera model

This R3 → R2 mapping is known as the projective transformation. While the considera-

tion so far has been that of a perfect image plane, in reality, digital images introduce several

of their own transformations, such as distortion. One basic transformation that needs to be

appended to the one in equation A.1 is that in an image, the origin is usually at the top-left

corner, instead of the center as in the image plane. Hence, the transformation in A.1 can be

modified as follows:

X ′ =

x
y

 =

f xz + cx

f y
z

+ cy

 (A.2)

This nonlinear relationship between the object point and the image point can be re-

expressed as a matrix product for simplification. This is usually achieved by introducing

what is known as a homogeneous coordinate system. In this homogeneous coordinate

system, a new unit coordinate is appended to each vector: thus changing the image

coordinates to X ′h = [x′ y′ 1]T and the object coordinates to Xh = [x y z 1]T . Now,

the same relationship in A.2 can be rewritten in the homogeneous system as

108

X ′h =

fx+ cxz

fy + cyz

z

 =

f 0 cx 0

0 f cy 0

0 0 1 0

x

y

z

1

(A.3)

Dropping the h subscript and considering entirely homogeneous coordinates, this can

be further decomposed as follows:

X ′ =

fx+ cxz

fy + cyz

z

 =

f 0 cx

0 f cy

0 0 1

[
I 0

]
X = K

[
I 0

]
X (A.4)

The matrix K contains the internal parameters of the camera such as focal length and

principal point (and occasionally, skew parameters), and is called the camera matrix or

the intrinsic matrix. The intrinsic parameters of a camera are usually computed through a

calibration procedure that involves comparisons between known 3D points and their 2D

projections. It is also usually necessary to estimate the distortion parameters of cameras, as

distortion is very commonly introduced in images due to the usage of lenses.

The relationship in equation A.4 assumes a camera placed at the origin of the world

coordinate system. If the camera were to be at an arbitrary position and orientation that can

be captured by a translation vector t and a rotation matrix R, the projective transformation

is converted to

X ′ = K

[
R t

]
X (A.5)

This equation represents the complete mapping of a 3D point X in an arbitrary world

reference frame to an image plane. The matrix
[
R t

]
is known as the extrinsic matrix,

the extrinsics encoding the external parameters of the camera, i.e., pose. The function

of many camera pose estimation algorithms, and especially the ones described in this

dissertation are to estimate the extrinsic parameters given the intrinsic parameters, and the

109

point correspondences. The intrinsic and extrinsic parameters together form the camera

projection matrix.

P = K

[
R t

]
(A.6)

110

APPENDIX B

COVARIANCE OF CAMERA POSE ESTIMATION THROUGH REPROJECTION ERROR

Typically, the minimization of reprojection error as described in section 3.6 is solved

through a non-linear least squares formulation. Although pixel space errors are usually

Cauchy distributed, it is conventional to adapt a Gaussian error model when considering

camera parameters in the context of refinement. Hence, an additive error model of the

form below can be constructed for the reprojection.

Xi = π(xi, θ) + ui (B.1)

The sum of squares of the reprojection error of each 3D-2D correspondence is to be

minimized, with the sum of squares expressed as

S =
∑
i

r2
i (B.2)

where ri represents the residual, typically written in standard form as follows:

ri = Xi − π(xi, θ) (B.3)

S is minimum when the gradient is zero. Thus, the minimization condition would be

∂S

∂θk
= 2
∑
i

ri
∂ri
∂θk

= 0 (B.4)

It can be recalled that the initial estimate of θ is already available: either from the PNP

algorithm or the 5-point algorithm in case of inter-MAV estimation. Hence, the function of

the least squares is to minimize S through incremental changes of θ, where the model is

111

linearized at every iteration by approximating the Taylor series expansion.

θk+1 = θk + ∆θ (B.5)

π(xi, θ
k+1) = π(xi, θ

k) +
∑
j

∂π(xi, θk)

∂θj
(θk+1
j − θkj)

= π(xi, θ
k) +

∑
j

Jij∆θ

(B.6)

The Jacobian J represents the change in reprojection error for changes in pose. Extend-

ing the expression in B.5 results in the well known normal equations for non-linear least

squares, written as

(JTJ)∆θ = JT∆X (B.7)

For any estimate θ̂, the covariance matrix of the estimator can be written as

Σθ̂ = E[(θ̂ − θ)(θ̂ − θ)T] (B.8)

For one iteration round that resulted in a value θ, the current value of θ would be

θ̂k = (Jk
T

Jk)−1JkXk (B.9)

Therefore, the covariance can be rewritten as

Σθ̂ = E[((JTJ)−1JTu)((JTJ)−1JTu)T]

= (JTJ)−1JTE[uuT]J(JTJ)−1

= (JTJ)−1JTσ2J(JTJ)−1

= σ2(JTJ)−1

(B.10)

Under the assumption that the Gaussian noise parameters are drawn from a zero-mean,

unit-variance multivariate Gaussian distribution, the noise covariance would be equal to

112

the identity, simplifying B.10 to

Σθ̂ = (JTJ)−1 (B.11)

113

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Micro Aerial Vehicles
	Challenges associated with MAV
	Limited power and payload
	Degrees of Freedom
	Sensitivity to Uncertainty

	MAV Localization
	Collaborative aerial vehicles

	State of the Art and Contributions
	Micro Aerial Vehicle Localization
	Collaborative Localization

	Path Planning
	Contributions

	Vision based Collaborative Localization
	Problem Statement
	General framework and assumptions
	Feature detection and matching
	A-KAZE features
	KORAL features
	Feature Matching

	Relative pose estimation
	Map building
	Intra-MAV localization
	Inter-MAV localization
	Relative pose estimation
	Scale factor estimation
	Guided Matching

	Uncertainty estimation
	Kalman Filter and Outlier rejection
	Data fusion
	Map updates
	Implementation and Results
	Intra-MAV localization
	Simulation
	Real experiments

	Inter-MAV localization
	Simulation
	Effect of number of vehicles in group
	Handling pure rotation

	Inter-MAV localization: real experiments

	Algorithm requirements

	Collaborative Uncertainty-Aware Planning
	Next best view planning for multiple vehicles
	Heuristics for optimization
	CMA-ES optimization
	Working of the NBMV planner

	Localization aware path planning
	Vision-Aware RRT*
	Tree expansion
	Uncertainty metrics
	Uncertainty propagation
	Cost metric and rewiring

	Trajectory generation
	Implementation and Results
	Next Best Multi-View Planning
	Effect of baseline-depth ratio
	Effect of path cost constraint
	Effect of number of vehicles

	VA-RRT* planning for individual MAVs

	Interleaved VA-RRT* and NBMV operation

	CONCLUSIONS AND DISCUSSION
	Summary of contributions
	Possible applications
	Decoupled aerial stereo
	Cooperative assembly

	Future Work

	REFERENCES
	APPENDIX Camera pinhole model and projective geometry
	Pinhole Model

	APPENDIX Covariance of camera pose estimation through reprojection error

