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1 Introduction

Finding and studying integrable structures in the context of the AdS/CFT correspondence

has been one of the most active areas of research in high energy physics. The theories

on both sides of the conjecture enjoy a large number of symmetries that make it possible

to obtain impressive results and checks of the conjecture. Although it lacks more recent

updates, a good review with an extensive list of references is [1]. A more recent development

not covered in [1] is the the Quantum Spectral Curve method [2, 3]. For some of its

applications, including higher loop computations, see [4–9].

In the famous work of Bena, Polchinski, and Roiban [10], it was shown that the Green-

Schwarz superstring in AdS5 × S5 [11] has an infinite set of classical conserved currents.

The existence of an analogous set of currents in the context of the AdS5 × S5 pure spinor

superstring was demonstrated in reference [12]. Since this string is a generalization of the

usual Z2 coset to a super-coset with Z4 symmetry, the ability to lift this symmetry to the

super-coset is non-trivial. In this note, we go one step further and show that the pure spinor

string in AdS5 × S5 admits an extension of the master symmetry δ̂ described by Klose,

Loebbert, and Münkler [13]. This symmetry complements the Yangian symmetry, acting as

a raising operator on the classical Yangian charges. The master symmetry is not essentially

new, however it provides a unifying picture containing all local and non-local symmetries

of a coset model. In particular, it is interesting that the conserved charge associated with

δ̂ is the Casimir of the global symmetry algebra. Furthermore, this description is expected

to be of practical use, for example, in applications to the study of supersymmetry Wilson

loops in the AdS5 × S5 super-coset.

The work presented here extends this structure to its super-analogue, specifically, to

the Z4 super-coset description of the AdS5 × S5 pure spinor string. In a sense the ghosts

present in the pure spinor string make the Z4 symmetry manifest with the ghosts’ Lorentz

current playing the role of a gauge covariant current with vanishing Z4 charge.
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The classical and quantum integrability of the string in this background has been

explored much more for the GS string (see e.g. [14]) than for the pure spinor version. Some

interesting results concerning the classical and quantum integrability in the pure spinor

formalism are given in references [15–18]. A possible application of integrability techniques

to the quantum pure spinor string is to study its worldsheet dilatation operator [19]. It

has been shown that semi-classical computations in the pure spinor string give the same

results as the GS string for a set of classical solutions [20, 21], but very little is known

about solutions dual to Wilson loops. This is an interesting line of research to which the

results presented in this work may have suitable applications.

This paper is organized as follows: in section 2, we give a short review of the pure

spinor string in AdS5 × S5 including its flat current using a notation that will be useful in

the subsequent sections. In section 3, we extend the master symmetry discussed in [13] to

the pure spinor string. In section 4, we derive how the existence of the first Yangian charge

is a consequence of the master symmetry and the global psu(2, 2|4) symmetry. We then

give a general derivation of all higher non-local and non-abelian charges the superstring

has. We conclude the paper and discuss directions for future research in section 5.

2 Pure spinor string in AdS5 × S5

The pure spinor string in the AdS5 × S5 background is described in terms of the super-

coset PSU(2, 2|4)/SO(1, 4) × SO(5). The Lie algebra g = psu(2, 2|4) is decomposed as

g =
⊕3

i=0 gi with the projections satisfying

[gi, gj ] ⊂ gi+jmod 4. (2.1)

The Killing form Str(·) also respects this symmetry in the sense that

Str(gigj) 6= 0 iff i+ j = 0 mod 4. (2.2)

This is a Z4 generalization of the usual Z2 symmetry present in any symmetric space and,

in particular, in the bosonic coset construction. For comparison and general convenience,

we will define

h := g0 and m :=

3
⊕

i=1

gi. (2.3)

Note that h = so(1, 4)⊕ so(5). An element g of the coset defines the left-invariant currents

J = g−1dg = K +A, (2.4)

where d = dz∂+dz̄∂̄,1 K ∈ m, and A ∈ h. We will also decompose K = K1+K2+K3 with

Ki ∈ gi when convenient. The gauge field A is used in worldsheet covariant derivatives

∇ = d+ [A, · ]. The Maurer-Cartan identity

dJ + J ∧ J = 0 (2.5)

will also decompose into four independent identities along each gi.

1We will also use the notation J = g−1∂g and J̄ = g−1∂̄g. We hope the difference between the 1-form

current and its dz component can be understood from context.
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In addition to the geometric part, the pure spinor string is defined with pure spinor

ghosts and their conjugate momenta. These are invariant under global PSU(2, 2|4) trans-

formations. The ghosts are fermionic elements of the algebra

λ ∈ g1 and λ̄ ∈ g3 (2.6)

that satisfy

{λ, λ} = 0 = {λ̄, λ̄}. (2.7)

This is the coset generalization of the pure spinor condition in flat space. The momenta

conjugate to the pure spinor variables are denoted

ω ∈ g3 and ω̄ ∈ g1. (2.8)

They suffer the gauge transformations

δω = [A, λ] and δω̄ = [B, λ̄], (2.9)

where A and B are any two local bosonic elements of g2. We will also define

N = −{λ, ω} and N̄ = −{λ̄, ω̄} (2.10)

which are the Lorentz generators for the ghosts. Note that they have zero Z4 charge. The

pure spinor condition implies

[λ,N ] = 0 = [λ̄, N̄ ]. (2.11)

Having all the ingredients, we can write the pure spinor action [22–24]

S =
1

4

∫

d2z Str
(

K1K̄3 + 2K2K̄2 + 3K3K̄1 − 4NN̄ + 4ω∇̄λ+ 4ω̄∇λ̄
)

. (2.12)

The geometric part of this action is the standard kinetic term of a coset model plus a

Wess-Zumino term

SWZ = −
1

4

∫

d2z Str
(

K1K̄3 −K3K̄1

)

. (2.13)

This particular coefficient of the Wess-Zumino term is fundamental for BRST symmetry

and integrability [12, 16].

By construction, the action has global PSU(2, 2|4) invariance and local SO(1, 4) ×

SO(5) invariance. Global transformations act on g by left multiplication and the local

transformations act on g by right multiplication. The current J is invariant under the

global symmetry. On the other hand, K tranforms in the adjoint representation of h if

δg = gM , where M ∈ h and A transforms as a connection. The ghosts and their conjugate

momenta transform in the adjoint representation of h as well.

The next fundamental symmetry is BRST invariance defined by2

δg = g(λ+ λ̄), δλ = 0, δλ̄ = 0, δω = −K3, δω̄ = −K̄1. (2.14)

2These transformations are nilpotent only up to local SO(1, 4) × SO(5) transformations and equations

of motion. There are ways to fix both these issues [25–28], however, they will not be needed here.
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The conserved current associated with BRST symmetry is given by

jBRST = Str(λK3)dz + Str(λ̄K̄1)dz̄. (2.15)

It is not only conserved d ∗ jBRST = 0, but its components are holomorphic and anti-

holomorphic

∂̄
(

Str(λK3)
)

= 0 and ∂
(

Str(λ̄K̄1)
)

= 0 (2.16)

after using the equations of motion which will be discussed below. This fact means that

the charges defined by

Qǫ =

∮

dz ǫ(z)Str(λK3) and Qǭ =

∮

dz̄ ǭ(z̄)Str(λ̄K̄1) (2.17)

also generate symmetries for any two independent holomorphic and anti-holomorphic func-

tions ǫ(z) and ǭ(z̄). In this case the BRST transformations above generalize to3

δg = g
[

ǫ(z)λ+ ǭ(z̄)λ̄
]

, δλ = 0, δλ̄ = 0, δω = −ǫ(z)K3, δω̄ = −ǭ(z̄)K̄1. (2.18)

We now compute the current associated with the global PSU(2, 2|4) symmetry. The

coset element transforms as δg = Ωg. We will let Ω be a local parameter and use the

Noether method. The left invariant currents transform as

δKi = g−1(dΩ)g
∣

∣

∣

gi
, δA = g−1(dΩ)g

∣

∣

∣

h
. (2.19)

When inserting this transformation into the action, we can drop the restriction on the

subspaces since the transformations will always come together with a dual algebra element

inside a supertrace. The action transforms as

δS =
1

4

∫

d2z Str
(

g−1∂ΩgK̄3 + g−1∂̄ΩgK1 + · · ·+ 4g−1∂ΩgN̄ + 4g−1∂̄ΩgN
)

, (2.20)

from which we read off the Noether current

j = g (K1 + 2K2 + 3K3 + 4N) g−1dz + g
(

3K̄1 + 2K̄2 + K̄3 + 4N̄
)

g−1dz̄. (2.21)

Conservation of the current d ∗ j = 0 implies the equations of motion which can be written

compactly as

[∇̄+ K̄,K1 + 2K2 + 3K3 + 4N ] + [∇+K, 3K̄1 + 2K̄2 + K̄3 + 4N̄ ] = 0. (2.22)

These equations are calculated by varying the action (2.12) with respect to a variation

of the coset element given by δg = gX with X ∈ m. Using the Z4 decomposition, the

Maurer-Cartan identity for J , and

∇N̄ − ∇̄N − 2[N, N̄ ] = 0, (2.23)

3It may seem surprising that the BRST invariance in the pure spinor superstring implies a much larger

symmetry than the usual BRST symmetry in field theory. However, we should remember that the pure

spinor BRST should also imply Virasoro symmetry which is an infinite-dimensional chiral symmetry.
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we can separate (2.22) into eight equations of motion. To derive this last equation we use

the equations of motion for the ghosts coming from (2.12):

[∇̄ − N̄ , λ+ ω] = [∇−N, λ̄+ ω̄] = 0. (2.24)

We can use an operator Σ defined in [29] to write very compact expressions for the

action and other observables. We define the action of Σ on the basic currents as

Σ(A) = 0, Σ(K1) = K1, Σ(K2) = 2K2, Σ(K3) = 3K3, Σ(N) = 4N, (2.25)

Σ(Ā) = 0, Σ(K̄1) = 3K̄1, Σ(K̄2) = 2K̄2, Σ(K̄3) = K̄3, Σ(N̄) = 4N̄ . (2.26)

Then, the action can be written as

S =

∫

d2z
(1

4
K̄ Σ(K) + ω∇̄λ+ ω̄∇λ̄−NN̄

)

, (2.27)

and the components of the Noether current can be written as

jz = gΣ(K +N)g−1, jz̄ = gΣ(K̄ + N̄)g−1. (2.28)

For the supertrace, we have

Str
(

OiΣ(Ōj)
)

= Str
(

Σ(Oi)Ōj

)

, (2.29)

where Oi is any current with a defined action of Σ. We note, however, that the usefulness

of Σ in computations is limited by the fact that it is not a Lie algebra homomorphism (e.g.

it does not preserve the Lie bracket).

2.1 The flat current

In contrast to the Noether current of the bosonic cosets, the conserved current (2.21) of

the Z4 super-coset is not flat. Instead, it was shown in reference [12] that the pure spinor

string in AdS5 × S5 has a family of flat currents depending on a complex parameter µ:

Lµ = lµdz + l̄µdz̄, (2.30)

with

lµ = g
[

(e2µ − 1)K2 + (eµ − 1)K1 + (e3µ − 1)K3 + (e4µ − 1)N
]

g−1

l̄µ = g
[

(e−2µ − 1)K̄2 + (e−3µ − 1)K̄1 + (e−µ − 1)K̄3 + (e−4µ − 1)N̄
]

g−1. (2.31)

Using the Σ operator defined above, we can write this compactly as

lµ = g
[

eµΣ − 1
]

(J +N)g−1 and lµ = g
[

e−µΣ − 1
]

(J̄ + N̄)g−1. (2.32)

The current is flat

dLµ + Lµ ∧ Lµ = 0 (2.33)

as a consequence of the equations of motion.
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The existence of this current is remarkable given that, as just mentioned, the conserved

current of a Z4 super-coset is generally not flat. In particular, there is no value of µ for

which the flat current (2.30) reduces to (2.21). However, note that

L′

0 = ∗j, (2.34)

where ′ = d
dµ

and the left-hand side is evaluated at µ = 0. This is the usual statement that

the first charge generated by the flat current Lµ is the conserved charge of the psu(2, 2|4)

algebra. This can be seen from the monodromy matrix4

M(µ) = P exp

(
∫

∞

−∞

Lµ

)

. (2.35)

The charge of the psu(2, 2|4) algebra

Qpsu =

∫

∞

−∞

∗j (2.36)

is the coefficient of the first power of µ in the expansion of M(µ).

3 Master symmetry

Following Klose, Loebbert, and Münkler [13], we can define a flat deformation of the

Maurer-Cartan current by

Lµ = J + g−1Lµg =
[

A+ eµK1 + e2µK2 + e3µK3 + (e4µ − 1)N
]

dz

+
[

Ā+ e−3µK̄1 + e−2µK̄2 + e−µK̄3 + (e−4µ − 1)N̄
]

dz̄. (3.1)

Note that L0 = J , since L0 = 0. Using the Σ operator defined in the previous section, Lµ

can be written as

Lµ =
[

eµΣ(J +N)−N
]

dz +
[

e−µΣ(J̄ + N̄)− N̄
]

dz̄. (3.2)

(It is actually more straightforward to verify that Lµ satifies a flatness condition.)

A deformation gµ of the coset element g can be defined by the differential equa-

tion [30, 31]

dgµ(z, z̄) = gµ(z, z̄)Lµ with gµ(z0, z̄0) = g(z0, z̄0). (3.3)

Here, (z0, z̄0) is any reference point on the worldsheet needed to fix an “initial condition”.

This equation is well-defined since Lµ is flat. Consequently, this deformation of g is only

defined on-shell. An ansatz to solve it is

gµ(z, z̄) = χµ(z, z̄)g(z, z̄), (3.4)

4For simplicity and to avoid global subtleties, we will assume the worldsheet is infinite and open. This

is not essential to any of the results discussed below which are classical. It would be interesting to check

that finite size effects do not spoil our conclusions, but we expect they do not as Berkovits has shown that

the Yangian symmetries are preserved even when such quantum corrections are taken into account [16].
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where χµ satisfies

dχµ = χµLµ with χµ(z0, z̄0) = 1. (3.5)

Again, this equation is well defined since Lµ is flat. We can expand this differential equation

in a power series about 0. The flat current vanishes for µ = 0, so the first two equations are

dχ(0) = 0, dχ(1) = ∗j = jzdz − jz̄dz̄, (3.6)

where we used (2.34). Written in this way, it is clear that χ(1) only exists if the equations

of motion are satisfied. The solution is given by

χ(0)(z, z̄) = 1, χ(1)(z, z̄) =

∫ (z,z̄)

(z0,z̄0)
(dzjz − dz̄jz̄). (3.7)

With this, we are finally in the position to define the “master symmetry” [13]

δ̂g(z, z̄) := χ(1)(z, z̄)g(z, z̄). (3.8)

This is a non-local transformation acting on the currents as

δ̂J = g−1dχ(1)g = δ̂K2 + δ̂K1 + δ̂K3 + δ̂A = g−1(jzdz − jz̄dz̄)g =

= (K1 + 2K2 + 3K3 + 4N) dz −
(

K̄3 + 2K̄2 + 3K̄1 + 4N̄
)

dz̄ (3.9)

Up until this point, the master symmetry has been discussed at the level of geometry.

The pure spinor string also has ghosts, and we should consider that δ̂ also acts on them.

Since the structure under discussion is on-shell, we will consider N and N̄ as fundamental

fields with defining equations of motion ∇N̄ + ∇̄N = 0 and ∇N̄ − ∇̄N − 2[N, N̄ ] = 0. We

will define the extension of the master symmetry to act on them as

δ̂N = 4N, δ̂N̄ = −4N̄ . (3.10)

With these transformations, it is immediate to verify that (3.9) is a symmetry of

the equations of motion (2.22), turning it into a Maurer-Cartan identity together with

∇N̄ − ∇̄N − 2[N, N̄ ] = 0. As argued in [30], χµ generates an infinite tower of non-local

symmetries of a Z2 coset. The analogous statement for the pure spinor string for any value

of µ will be proved at the end of this paper. The main difference here, apart from the

presence of fermionic terms, is that the gauge field A transforms into the ghost current N ,

thereby mixing matter and ghosts.

Since this symmetry is only defined on-shell, discussing it at the level of the action

is potentially meaningless. Nevertheless, we follow reference [13] and try to use Noether

procedure to calculate the current associated to the master symmetry anyway. We include

a local parameter ǫ(z, z̄) in the transformation of g

δ̂g = ǫ(z, z̄)χ(1)g. (3.11)

The currents transform as

δ̂J = dǫg−1χ(1)g + ǫΣ (K +N) dz − ǫΣ
(

K̄ + N̄
)

dz̄. (3.12)

– 7 –
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Inserting this transformation into the action and only collecting terms depending on dǫ,

we find

δ̂S =
1

4

∫

d2z Str
(

∂ǫχ(1)jz̄ + ∂̄ǫχ(1)jz

)

. (3.13)

Using the same normalization as (2.21), we read off the conserved current

J (0) = Str
(

χ(1)jz

)

dz + Str
(

χ(1)jz̄

)

dz̄. (3.14)

Note that by (3.6),

∗ J (0) =
1

2
d
(

Str(χ(1)χ(1))
)

. (3.15)

Using this, we can perform the integral to find the conserved charge

C(0) =

∫

∗J (0) =
1

2
Str(χ(1)χ(1))

∣

∣

∣

∞

−∞

. (3.16)

If we choose the point z0 in the initial condition (3.5) of χµ(z, z̄) to be at spacial −∞ and

use that the psu(2, 2|4) charge is given by

Qpsu = χ(1)(∞), (3.17)

we see that

C(0) =
1

2
Str

(

QpsuQpsu) (3.18)

is the Casimir of the psu(2, 2|4) algebra, as in [13].

In principle we could find the higher scalar charges associated with higher powers of

the µ expansion of χµ in a similar way, but we can guess the result as follows. The form

in (3.14) suggests that the scalar current containing all higher master symmetry charges

is ∗Str
(

χµL
′

µ

)

. However, there are a few problems with this first attempt: χµ is not an

element of the algebra, it is not conserved, and its µ2 coefficient does not match the Casimir

we obtain from acting with δ̂ on C(0). A better guess is

Jµ = ∗Str
(

χ−1
µ χ′

µL
′

µ

)

. (3.19)

This is conserved d∗Jµ = 0 using that d(χ−1
µ χ′

µ) = [χ−1
µ χ′

µ,Lµ]+L′

µ and the first derivative

with respect to µ of the flatness condition (2.33). Then, the complete tower of nonlocal

charges can be defined by

Cµ =

∫

∞

−∞

∗Jµ =

∫

∞

−∞

Str
(

χ−1
µ χ′

µL
′

µ

)

=
1

2
Str

(

(χ−1
µ χ′

µ(∞))(χ−1
µ χ′

µ(∞))
)

. (3.20)

The zeroth power of µ in the expansion gives the Casimir C(0), and it is easy to show that

the coefficient of µ is the result of calculating δ̂C(0).

– 8 –
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4 Yangians

Having defined δ̂, we can see how it affects other symmetries of the string. If we act with

δ̂ on (2.21) we obtain

δ̂j = j(1) = g(K1 + 4K2 + 9K3 + 16N)g−1dz

− g(9K̄1 + 4K̄2 + K̄3 + 16N̄)g−1dz̄ + [χ(1), j], (4.1)

which is the first non-local current given by the monodromy matrix (2.35) constructed

from the flat current (2.30). Schematically, this current generates a transformation on the

coset element of the form δg ∼ [η, χ(1)]g, where η ∈ psu(2, 2|4) is constant. We can try to

use the Noether method again to see if we can obtain the non-local current as the Noether

current associated with this transformation. However, carrying this out, we obtain only

the last term in (4.1). As mentioned previously, it is not surprising that this time we could

not obtain the desired result since this is an on-shell symmetry. In the case of the principal

chiral model it is possible to interpret these non-local currents as Noether currents [32, 33],

but it is not clear that we can use the same method here.

We could obtain the higher non-local currents by successive applications of the master

symmetry generator δ̂, but as before there is a faster way to obtain these currents as we

now show.

4.1 Non-local current

The non-local current associated with the global symmetry and all higher Yangian charges

is calculated by replacing g → gµ (3.3), (3.4) in the definition of the Noether current (2.21)

and defining a finite µ deformation of ghost currents as

N → Nµ = e4µN, N̄ → N̄µ = e−4µN̄ , (4.2)

from which we can see that the master symmetry (3.10) corresponds to the first power of

the µ deformation. With these definitions we have

Jµ = gµ((Kµ)1 + 2(Kµ)2 + 3(Kµ)3 + 4Nµ)g
−1
µ dz

+ gµ(3(K̄µ)1 + 2(K̄µ)2 + (K̄µ)3 + 4N̄µ)g
−1
µ dz̄

= χµg(e
µK1 + 2e2µK2 + 3e3µK3 + 4e4µN)g−1χ−1

u dz

+ χµg(3e
−3µK̄1 + 2e−2µK̄2 + e−µK̄3 + 4e−4µN̄)g−1χ−1

u dz̄, (4.3)

where we defined Kµ = (g−1
µ dgµ)|m = (g−1Lµg + g−1dg)|m. From the last two lines we can

identify this current as

Jµ = χµ

(

∗ L′

µ

)

χ−1
µ . (4.4)

– 9 –
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Computing the ∂ and ∂̄ derivatives of its components, we see that

∂̄Jµ = χµ

(

g[∇̄+ K̄, 2e2µK2 + eµK1 + 3e3µK3 + 4e4µN ]g−1

+ [l̄µ, g(2e
2µK2 + eµK1 + 3e3µK3 + 4e4µN)g−1]

)

χ−1
µ

= χµ

(

∂̄l′µ +
[

l̄µ, l
′

µ

]

)

χ−1
µ . (4.5)

∂J̄µ = χµ

(

g[∇+K, 2e−2µK̄2 + 3e−3µK̄1 + e−µK̄3 + 4e−4µN̄ ]g−1

+ [lµ, g(2e
−2µK̄2 + 3e−3µK̄1 + e−µK̄3 + 4e−4µN̄)g−1]

)

χ−1
µ

= χµ

(

− ∂l̄′µ +
[

lµ,−l̄′µ
]

)

χ−1
µ . (4.6)

So, the conservation of Jµ is simply the first derivative with respect to µ of the flatness

condition (2.33) of Lµ:

∂̄Jµ + ∂J̄µ = χµ

(

∂̄l′µ − ∂l̄′µ +
[

l̄µ, l
′

µ

]

+
[

l̄′µ, lµ
]

)

χ−1
µ = 0. (4.7)

This relation proves that if g is a solution, then the deformation gµ is also a solution. The

current Jµ contains a whole tower of non-local conserved currents of the model, starting

with the global psu(2, 2|4) current (2.4). It is easily checked that

Jµ = j + µj(1) + · · · , (4.8)

where j(1) is the first Yangian current. To prove the higher µ powers are all higher Yangian

currents and that δ̂ acts as a raising operator, we proceed as follows. First we note that

δ̂L′

µ = L′′

µ + [χ(1),L′

µ]. (4.9)

After some manipulations, one can show that

χ−1
µ δ̂Jµχµ = ∗L′′

µ + [χ−1
µ δ̂χµ, ∗L

′

µ] + [χ(1),L′

µ]. (4.10)

To get to final result let us now compute the derivative with respect to µ of Jµ

χ−1
µ J

′

µχµ = ∗L′′

µ + [χ−1
µ χ′

µ, ∗L
′

µ]. (4.11)

If we subtract both equations we have

χ−1
µ

(

δ̂Jµ − J
′

µ

)

χµ = [χ−1
µ δ̂χµ − χ−1

µ χ′

µ, ∗L
′

µ] + [χ(1), ∗L′

µ]. (4.12)

Let us call φµ := χ−1
µ δ̂χµ − χ−1

µ χ′

µ and note that φ0 = −χ(1). Using that

δ̂Lµ = L′

µ + [χ(1),Lµ]− ∗j, (4.13)

we can calculate that the differential equation satisfied by φµ is

dφµ + ∗j = [φµ + χ(1),Lµ]. (4.14)
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Since ∗j = dχ(1), we can change variables φµ → ψµ := φµ + χ(1) and arrive at

dψµ = [ψµ,Lµ], (4.15)

where now the initial condition is ψ0 = 0. Since L0 = 0, all higher powers of µ will vanish.

So we conclude that φµ = −χ(1) for any value of µ.5 Thus, we have finally proven that

δ̂Jµ =
d

dµ
Jµ, (4.16)

so that δ̂ acts as a raising operator for non-local symmetires, exactly as in [13]. Similarly,

it can be shown that the non-local Casimir (3.20) satisfies

δ̂Cµ =
d

dµ
Cµ. (4.17)

5 Conclusions and prospects

We have shown that the classical pure spinor string in the AdS5 × S5 background has

the full set of classical non-local symmetries extending those recently studied by Klose,

Loebbert and Münkler in the context of Z2 cosets [13]. We find that the inclusion of ghosts

in a sense makes the Z4 symmetry manifest, and all non-local symmetries can be lifted to

the super-coset PSU(2, 2|4)/SO(1, 4)× SO(5).

An immediate extension of the results of this paper is to derive the analog for the Green-

Schwarz superstring. That can be done by erasing the ghosts and imposing an appropriate

gauge choice. Classical solutions of the pure spinor string should preserve BRST symmetry

which means the BRST charge should vanish when evaluated on the solution. If we do

not set the ghosts to zero, this means that the currents K3 and K̄1 should vanish. In

reference [12], it was shown that the pure spinor flat current is equivalent to the one in the

Green-Schwarz formalism [10] in this gauge. We expect that the GS string enjoys all of

the symmetries discussed in the present work.

It would be interesting to apply the results of this paper to supersymmetric Wilson

loops in AdS5 as in reference [13]. However, it is as yet not known how to study such

classical solutions in the pure spinor formalism. There is hope such a task can be done,

since it was shown by explicit computations in references [20, 21] that the semi-classical

quantization of the pure spinor string is equivalent to the Green-Schwarz string in a certain

class of solutions. In [34] it was argued that the equivalence holds for any physical solution.

With these results in mind, it is likely that one can extend the results of, for example,

references [35, 36] to the pure spinor string.

A more speculative line of research is the relevance of the master symmetry in the

quantum theory. Since the Yangian currents are still conserved at quantum level [16] it is

possible that there is some quantum version of the master symmetry. However we cannot

say if it will provide any additional help in achieving an exact solution of the model.

5This result can be used as a practical way to calculate δ̂χµ = χ′

µ − χµχ
(1) for any power of µ.
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