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Abstract
Inflammation critically contributes to the development of various metabolic diseases. How-

ever, the effects of inhibiting inflammatory signaling on hepatic steatosis and insulin resis-

tance, as well as the underlying mechanisms remain obscure. In the current study, male

C57BL/6J mice were fed a chow diet or high-fat diet (HFD) for 8 weeks. HFD-fed mice were

respectively treated with p65 siRNA, non-silence control siRNA or vehicle every 4th day for

the last 4 weeks. Vehicle-treated (HF) and non-silence siRNA-treated (HFNS) mice dis-

played overt inflammation, hepatic steatosis and insulin resistance compared with chow-

diet-fed (NC) mice. Upon treatment with NF-κB p65 siRNA, HFD-fed (HFPS) mice were pro-

tected from hepatic steatosis and insulin resistance. Furthermore, Atg7 and Beclin1 expres-

sions and p-AMPK were increased while p-mTOR was decreased in livers of HFPS mice in

relative to HF and HFNS mice. These results suggest a crosslink between NF-κB signaling

pathway and liver AMPK/mTOR/autophagy axis in the context of hepatic steatosis and insu-

lin resistance.

Introduction
Insulin resistance is a hallmark of Type-2 diabetes and evidence demonstrates chronic low-
grade inflammation as a contributor to the initiation and perpetuation of insulin resistance [1,
2]. Plenty of proinflammatory factors are involved in such low-grade inflammation [3]. The
mechanisms responsible for these inflammation-induced deleterious changes provide consid-
erable therapeutic targets for drug discovery. High doses of sodium salicylate were observed to
attenuate glycosuria more than a century ago [2]. Nowadays several studies have provided
clues that nuclear factor kappa B (NF-κB) may be a principal regulator of pathways down-
stream of calorie excess that produce detrimental effects on glucose homeostasis and insulin
sensitivity[4–6] and, insulin resistance is partially promoted by a shift of macrophage polariza-
tion from alterative M2 activation state to classic M1 activation state, during which process,
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activated M1 macrophages non-specific markers F4/80, CD68 and specific marker CD11c were
upregulated, driven by NF-κB signaling [7]. Furthermore, selective inhibition of NF-κB in hypo-
thalamus has been found to protect experimental animals from diet-related insulin resistance [8].

Accumulating evidence also suggests that autophagy, an evolutionarily conserved pro-
grammed process, impacts diverse cellular processes and plays a crucial role in lipid and glyco-
gen metabolism, and the regulation of inflammation responses [9, 10]. Autophagy-related
genes like Atg7 and Beclin1 encode for protein products, which are essential components of the
functional complex mediating autophagic process. Defects in autophagy are observed in vari-
ous pathological conditions including obesity, steatosis, cancer and neurodegenerative diseases
[11–13]. Of note, autophagy defect in skeletal muscle can induce NF-κB -mediated inflamma-
tion [14]. Restoring autophagic flux in liver has been proved to suppress inflammation and
ameliorate insulin resistance by Park et al.[15] very recently. The expressions of genes involved
in lipogenesis (acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), carnitine palmitoyl-
transferase 1A (CPT1A) and sterol regulatory element binding protein-1c (SREBP1c)) and in
fatty acid oxidation (acyl-CoA oxidase 1 (Acox1)) were altered according to various nutrition
conditions in vivo and in vitro, ultimately leading to lipid accumulation or clearance in tissues
via depressed or enhanced autophagy. Intracellular lipid content, hepatic lipid deposition and
insulin resistance after lipid loading are increased as a result of autophagy insufficiency [16].
These hint at the exciting possibility that targeting the diet-induced branch of NF-κB inflam-
mation signaling somehow correlated with remodeling autophagy could have beneficial effects
on improving insulin resistance in type-2 diabetes without affecting pivotal immune functions.

Small interfering RNA (siRNA) has been widely applied in biomedicine because of its spe-
cific and efficient gene silencing. Data from preclinical programs suggest that siRNA therapeu-
tics have the potency for treating diseases. And many clinical trials of siRNA-based
therapeutics have been carried out [17]. Due to its strong transcriptional activity, the p65 sub-
unit of NF-κB is responsible for most of NF-κB’s transcriptional activity. Here, we utilized
chemically modified P65 siRNA to explore the pathophysiological connections between insulin
resistance, NF-κB inflammatory pathways and liver autophagy in HFD feeding mice and to
reveal the molecular mechanisms underlying the alteration of autophagy responses as well as
their impacts on insulin signaling in target tissues.

Materials and Methods

P65 siRNA preparation
P65 siRNA and non-silence control siRNA (NC siRNA) were purchased from Guangzhou
RiboBio Co., Ltd. (Guangdong, China). P65 siRNA sense sequence is 5’- CAAGATCAA
TGGCTACACAdTdT-3’ and the antisense sequence is 3’-dTdT GUUCUAGUUACCGA
UGUGU-5’. The NC siRNA sense sequence is 5'-GGCCUCAGCUGCGCGACGCdTdT-3',
and the antisense sequence is 5'-GCGUCGCGCAGCUGGGCCAdTdT-3'. Both siRNA were
modified by 5’ Cholesterol and 2’OMe to prolong each half life to about 96h [18].

Animal experiments
Six-week-old C57 BL/6j mice, purchased fromWuhan University Center for Animal Experi-
ment/A3-Lab, were housed individually in an environmentally controlled room (18°C–21°C,
40%–70% relative humidity) with ad libitum access to water and food and kept under a
12-hour dark/12-hour light cycle. After 4 weeks of acclimatization reared with chow diet, nor-
mal control mice (NC, n = 10) were continuously fed a chow diet, whereas high fat diet mice,
classified as high-fat diet group (HF, n = 10), high-fat diet with non-silence siRNA group
(HFNS, n = 10) and high-fat diet with P65 siRNA group (HFPS, n = 10), received a diet

Blocking NF-κB Inflammatory Pathway Improves Insulin Resistance

PLOS ONE | DOI:10.1371/journal.pone.0149677 March 1, 2016 2 / 15

diet group; HFNS, high-fat diet with non-silence
siRNA group; HFPS, high-fat diet with P65 siRNA
group; p-AMPK, phosphorylation of AMP-activated
protein kinase; p-mTOR, phosphorylation of
mammalian target of rapamycin; ACC, acetyl CoA
carboxylase; FAS, fatty acid synthase; CPT1A,
carnitine palmitoyltransferase 1A; SREBP1c, sterol
regulatory element binding protein-1c; Acox1, acyl-
CoA oxidase 1; GTT, glucose tolerance test; ITT,
insulin tolerance test.



(D12492, Research Diets, Beijing HFK Bioscience Co., Ltd., China) with 60% kcal% fat for 8
weeks. During the last 4 weeks of dietary treatment, mice of HFPS and HFNS received a tail
vein injection of P65 siRNA and negative control (NC siRNA) dissolved in 0.2 ml normal
saline respectively, and an equal amount of normal saline alone for the other two groups every
4th day. The siRNAs were injected 15nmol (about 8 mg/Kg body weight) per mouse every time.
The treatment was well-tolerated and there were no dropouts. At the end of experiments, mice
were killed by cervical dislocation after a 6 h period of fasting; blood samples and tissues were
harvested and stored at -80°C for further analysis. The Institutional Animal Care and Use
Committee at the Tongji Medical College, Huazhong University of Science and Technology
approved all animal procedures.(license no. SYXK 2010–0057)

Metabolic Phenotyping
Mouse body weight was regularly measured. Serum insulin levels were measured at certain
intervals throughout the animal experiments using commercially available ELISA kits (ALPCO
Diagnostics, Windham, NH), during which detection blood samples were collected from the
orbital sinus of mice. After acclimatization, at the end of 4th and 8th week, overnight-fasted or
6h-fasted mice were intraperitoneally injected with glucose (2g/kg of body weight) or insulin
(1U/kg of body weight, Novolin R; Novo Nordisk, Bagsværd, Denmark) for the glucose and
insulin tolerance test respectively; blood glucose concentrations were measured at the indicated
time points post-injection from tail blood with the One Touch blood glucose monitoring sys-
tem (LifeScan Inc., Milpitas, CA). Homeostasis model assessment index-insulin resistance
(HOMA-IR) was calculated as follows: HOMA-IR = fasting serum insulin (mU/L) × fasting
plasma glucose (mM)/22.5 [19]. Serum and liver triglyceride (TG) and serum total cholesterol
(TC) were determined with triglyceride and total cholesterol test kits (Nanjing Jian Cheng Bio-
engineering Institute, Jiangsu, China) according to the manufacturers’ instructions. The levels
of fatty acid in blood and tissues (liver, epididymal fat, subcutaneous fat and gastrocnemius)
were quantified using specific ELISA kits from Nanjing Jian Cheng.

Tissue histology
Liver tissues were fixed in buffered 4% paraformaldehyde. Then fixed tissues were dehydrated by
graded ethanol and xylene and embedded in paraffin. Sections (4 μm thick) were stained with
H&Emethod. All the images were visualized and captured with a Motic microscope BA310 (Ted
Pella, Inc., Los Angeles, CA) equipped with a digital camera. Image-Pro Plus software was then
used to determine the degree of lipid droplets of the immunohistochemical images.

Cytokines and NF-κB activation assay
The concentrations of tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6) in the serum
and liver, epididymal fat, subcutaneous fat and gastrocnemius tissues as well as p65 activity
(i.e. NF-κB DNA binding activity) in liver and epididymal fat were measured using commer-
cially available ELISA kits (RayBiotech, Inc., Norcross, GA and Cayman chemical company,
Ann Arbor, MI respectively) according to the manufacturers’ protocols. The plates were read
on an EL800 ELISA plate reader (BioTek Instruments Ltd., Potton, UK). All samples were run
in duplicates and analyzed on the same day to eliminate day-to-day variation.

Western blot analyses
Mice were intraperitoneally injected with saline or Novolin R (1.5 U/Kg body weight) 0.5h
before killed. Liver and gastrocnemius tissues lysis, protein extraction, and western blot
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analyses were performed as described previously [20]. Briefly, tissues were dissolved in a lysis
buffer (Beyotime, Shanghai, China) containing protease inhibitors and phosphatase inhibitor
according to the manufacturer’s protocol. Equal amounts of protein extracts were separated by
SDS/PAGE, then transferred to a PVDF membrane (Millipore, Boston, MA), followed by
blocking for 1.5 hours at room temperature, incubating with primary antibody in different rec-
ommended dilutions at 4°C overnight and horseradish peroxidase-conjugated secondary anti-
body for 1 hour at room temperature. Primary antibodies included rabbit anti-Akt, anti-
phosphorylated Akt (Ser473), anti-AMPKα, anti- phosphorylated AMPKα (Thr172), anti-
mTOR, anti-phosphorylated mTOR (Ser2448) and mouse anti-GAPDH. Secondary antibody
were HRP-conjugatedanti-rabbit or -mouse IgGs. The blots were detected using enhanced
chemiluminescence detection kit (Beyotime, Shanghai, China) and densitometric analyses of
Western blotting images were performed using Image J software (National Institutes of
Health). Antibodies were purchased from Cell Signaling Tech. (Beverly, MA, USA) except for
GAPDHmonoclonal mouse mAb (Abbkine, USA).

RT-qPCR
Total RNAs from liver tissues were extracted using TRIzol (Qiagen, Valencia, CA). Complementary
DNAwas synthesized using the Prime Script RT reagent kit (Takara Biotechnology Co., Ltd.,
Japan) according to the manufacturer’s protocol. Then PCR was performed and quantified using
SYBR Green real-time PCRMaster Mix (Takara Biotechnology Co., Ltd., Japan) at a LightCy-
cler480-PCRmachine (Roche Diagnostics, Mannheim, Germany). Gene expression levels were cal-
culated after normalization to the standard housekeeping genes GAPDH, using the comparative CT
method as described previously [21]. Briefly, the gene expression levels were quantified as follows:
Fold change = 2−ΔΔCt = 2- [(Ct gene of interest—Ct GAPDH) sample A—(Ct gene of interest—Ct GAPDH)sample B].
The primers were synthesized and purchased from Shangon Biotech (Shanghai, China), and the
sequences are presented in Table 1.

Statistical analysis
Results are presented as mean ± standard error (SE). The data was, or can be converted to be
normally distributed. Statistical analyses were performed to assess the differences among the
groups at the same sampling points using one-way analysis of variance followed by the Bonfer-
roni post-hoc test for multiple comparisons with GraphPad Prism 5.0 (GraphPad Software
Inc., San Diego, CA, USA). p<0.05 was considered statistically significant.

Results

P65 siRNA regulated HFD-induced inflammatory response
It was observed that HF mice displayed enhanced NF-κB activation, parallel to HFNS mice’s
level, in the hepatic and adipose tissue by 52% and 41%, respectively (Fig 1A). Interestingly,
repeated P65 siRNA injection via tail vein of subject mice significantly inhibited NF-κB activa-
tion in liver but with little effect on adipose tissue. Meanwhile, high-fat diet (HFD) feeding ele-
vated key pro-inflammatory cytokines, IL-6 and TNF-α, levels in circulation and tissues,
including liver, epididymal fat, subcutaneous fat and gastrocnemius tissues (Fig 1B–1E). In
agreement with the alteration of NF-κB, P65 siRNA administration decreased both inflamma-
tory markers in serum and all the observed tissues.

In liver tissue, mRNA expression analyses of M1 macrophages immune activators including
CD68, F4/80 and CD11c were increased by approximately 50%, 180% and 80%, sequentially, in
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HF versus NC mice (Fig 1F). HFNS mice had a similar change with HF mice. When NF-κB
was partially silenced, liver macrophages activation dropped significantly.

P65 siRNA improved hepatic steatosis and insulin signaling in HFD
feeding mice
Histological analyses revealed that HF and HFNS mice had significantly more severe obesity-
induced hepatic steatosis and lipid accumulation in terms of fat droplets volume and number
(Fig 2A and 2B). Such changes were supported by increased liver triglyceride deposition in HF
mice compared to NC mice (9.46±0.22 vs. 3.89±0.29 mmol/g protein, p<0.01, Fig 2C). Inter-
estingly, P65 siRNA repeated injection pronounced reversed the hepatic lipid accumulation
(p<0.01). Additionally, qPCR analyses of liver tissues showed that mRNA expression of genes
involved in lipogenesis (ACC, FAS, CPT1A and SREBP1c) were attenuated by P65 siRNA treat-
ment (Fig 2D). However, genes involved in fatty acid oxidation (Acox1) were unchanged (Fig
2D). Moreover, insulin-stimulated p-Akt in liver was decreased in HF and HFNS mice and
markedly rebounded by P65 siRNA treatment (Fig 2E).

P65 siRNA restored liver autophagy and enhanced activity of AMPK
Autophagy is regulated by series of kinase, among them, mTOR is crucial. In our study, mTOR
protein level in liver was significantly increased by about 3-fold on HF and HFNS mice com-
pared to NC mice (Fig 3A), simultaneously, Atg7 and Beclin1mRNA expressions were
depressed to less than 50% (Fig 3B). As we know, the kinase mTOR is a negative regulator of
autophagy induction, with activated mTOR suppressing autophagy, and inhibited mTOR

Table 1. Primer sequences for qPCR analysis.

Target Direction Sequence

GAPDH Sense 5’ GGTGAAGGTCGGTGTGAACG 3’

Anti-sense 5’ CTCGCTCCTGGAAGATGGTG 3’

CD68 Sense 5’ CTTCGGGCCATGTTTCTCTT 3’

Anti-sense 5’ ATTGTCGTCTGCGGGTGAT 3’

F4/80 Sense 5’ GCTGTGAGATTGTGGAAGCA 3’

Anti-sense 5’ GGCAAGACATACCAGGGAGA 3’

CD11c Sense 5’ GGTGAAGGTCGGTGTGAACG 3’

Anti-sense 5’ CATCAGGGAGAACCGTGTG 3’

Atg7 Sense 5’ATGCCAGGACACCCTGTGAACTTC3’

Anti-sense 5’ACATCATTGCAGAAGTAGCAGCCA3’

Beclin1 Sense 5’ AGCCTCTGAAACTGGACACG3’

Anti-sense 5’ TAGCCTCTTCCTCCTGGGTCT3’

ACC Sense 5’TTTCTTCCTTCGCCTCCTTT3’

Anti-sense 5’GCCAATCTCATTTCCTCCT3’

FAS Sense 5’AAATTCAGCCCGTTGGAGT3’

Anti-sense 5’AAGTTGCATCCACCCAAATC3’

CPT1A Sense 5’TCAAGCCAGACGAAGAACATC3’

Anti-sense 5’TGGTAGGAGAGCAGCACCTT3’

SREBP1c Sense 5’GAGGCAGAGAGCAGAGATGG3’

Anti-sense 5’GACAAAGAGAAGAGCCAAGCA3’

Acox1 Sense 5’ATCAAGAGAAGCGAGCCAGA3’

Anti-sense 5’CCGAGAAAGTGGAAGGCATA3’

doi:10.1371/journal.pone.0149677.t001
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promoting it [9]. And Beclin1 and Atg7 were necessary components of autophagosome forma-
tion. Hence the above markers expression of hepatic tissues for autophagy demonstrated a
down-regulated autophagic flux, which was significantly reversed from both protein and tran-
script levels by P65 siRNA repeated injection. Interestingly, AMPK activation in liver tissue

Fig 1. P65 siRNA administration inhibited inflammatory cytokines production in the circulation and tissues of HFDmice. (A) DNA binding activity of
NF- kB (p65) was determined from liver and adipose tissue extracts by ELISA for each sample relative to the normal control. IL-6 and TNF-α levels were
determined by ELISA in (B) Serum, (C) Liver, (D) Adipose tissue and (E) Skeletal muscle. (F) RT-qPCR of markers (CD68, F4/80, CD11c) of M1
macrophagesin liver. RT-PCR data are expressed as mean ± SE relative to NC values, arbitrarily set at 1. *p<0.05, **p<0.01 HF, HFNS and HFPS versus
NC. #p<0.05, ##p<0.01 HFPS versus HF. $p<0.05, $ $p<0.01, HFPS versus HFNS. n = 5–6. Data are shown as mean ± SE. NC (normal control group), HF
(high-fat diet group), HFNS (high-fat diet with non-silence siRNA group) and HFPS (high-fat diet with P65 siRNA group).

doi:10.1371/journal.pone.0149677.g001
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was markedly suppressed under chronic HFD feeding condition (Fig 3C). And this alteration
was also significantly attenuated by P65 siRNA administration.

P65 siRNA attenuated whole-body metabolic changes induced by
chronic HFD feeding
At the end of 8 weeks, body weight (BW) in mice fed a high fat diet significantly outpaced mice
fed normal chow diet (Fig 4A). There were no significant BW differences between HFD with or
without P65 siRNA treatment mice (Fig 4A) and no differences in food intake were detected
during the last four weeks (data were not shown). These results show that P65 siRNA treatment
could not reverse diet-induced obesity.

HF and HFNS mice featured hyperlipidemia compared to normal diet mice, with serum
FFA, TG and TC significantly elevated (Table 2). The FA contents of liver, epididymal fat, sub-
cutaneous fat and gastrocnemius lysates were also analyzed. We observed higher FA concentra-
tions in liver, fat and muscle tissues, all up to statistically significant except subcutaneous fat
FA. Notably, mice with P65 siRNA administration were markedly protected from the diet-
induced lipid disorders aforementioned. However, we did not assessment physical activity of
the different group mice, but its affect was limited for single cage feeding and the same rearing
environment.

Mice from different groups displayed similar glucose tolerance and insulin sensitivity before
diet and siRNA treatment (S1 Fig). The glucose response during glucose tolerance test (GTT)
was increased after HFD feeding for 4 weeks (S2 Fig), which even deteriorated during pro-
longed over nutrition (Fig 4B). Consistently, HF and HFNS mice become insulin insensitive
and hyperinsulinemic (Fig 4C and 4D), while the impaired glucose and insulin tolerance were
significantly improved in HFPS versus HF and HFNS mice. Moreover, HOMA-IR, a vital indi-
cator of insulin resistance, was significantly increased by high-fat feeding (Fig 4E), which was
partially down-regulated by P65 siRNA intervention.

Discussion
Although evidence indicates that chronic low-grade inflammation state, now known as ‘‘meta-
bolic inflammation”, is a critical contributing factor in the initiation and development of insu-
lin resistance in obesity or caloric excess condition [22], the exact pathway(s) that transduce
the inflammatory signal are obscure. Here we show that blockade of NF-κB mainly in liver,
which is a key transcription factor involved in the regulation of gene expression in cytokines
and pathways associated with inflammation, prevented HFD/obesity-induced hepatic steatosis,
glucose intolerance, and abrogated insulin resistance in liver and systemic. Certainly, there
must also be insulin resistance in adipose tissue for mounting studies have demonstrated it pre-
viously [23, 24]. What cannot be ignored is that the beneficial effects of P65 siRNA has little to
do with body weight, because P65 siRNA administration did not reverse HFD related obesity
in mice.

Interestingly, our results seem to reveal that P65 siRNA predominantly affected NF-κB
transcriptional activity in liver other than adipose tissue, maybe due to chemically modified
siRNA injected via tail vein generally easier to penetrate into the blood-rich organs like liver,

Fig 2. Improvement of hepatic steatosis and liver insulin signaling. (A) H&E staining of liver sections. Magnification: 200×. (B) Quantification of the
degree of lipid droplets. (C) Liver triglyceride contents (n = 4–6). (D) Relative hepatic mRNA levels of genes related to lipid metabolism (n = 4–6). (E)Western
blotting of insulin-stimulated Akt phosphorylation in liver. Representative western blot images and graphs representing the ratio of the (insulin-stimulated
phospho-) protein of interest on Akt as measured by densitometry analysis are shown. *p<0.05, **p<0.01 HF, HFNS and HFPS versus NC. #p<0.05,
##p<0.01 HFPS versus HF. $p<0.05, $ $p<0.01, HFPS versus HFNS. All data are presented as mean ± SE.

doi:10.1371/journal.pone.0149677.g002
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Fig 3. P65 siRNA enhances liver AMPK activation and increases the expression of key autophagy components.Western blotting of mTOR
phosphorylation in liver (A), AMPK phosphorylation in liver (C) and RT-PCR of autophagy components (Atg7, Beclin1) in liver (B). Representative western
blot images and graphs representing the ratio of the (insulin-stimulated phospho-) protein of interest on mTOR or AMPK as measured by densitometry
analysis are shown. RT-qPCR data are expressed as mean ± SE relative to NC values, arbitrarily set at 1. *p<0.05, **p<0.01 HF, HFNS and HFPS versus
NC. #p<0.05, ##p<0.01 HFPS versus HF. $p<0.05, $ $p<0.01, HFPS versus HFNS. All data are presented as mean ± SE.

doi:10.1371/journal.pone.0149677.g003
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Fig 4. P65 siRNA partly protects mice from diet-induced systemic metabolic disorders. (A) Body weight curves of mice in different group over 8 weeks
(n = 6–10). (B) Glucose tolerance test (GTT) in overnight fasted mice (n = 6–8). Glucose (2g/Kg BW) were injected intraperitoneally and tail vein blood
samples were assessed for glucose concentration at the indicated time points (0min, 30min, 60min, 120min after injection). (C) Insulin tolerance test (ITT,
1U/Kg BW, n = 6–8) in mice fasted for 6h. Tail vein blood samples were assessed for glucose concentration at the indicated time points (0min, 15min, 30min,
60min, 90min after injection). (D) Serum insulin concentration in 6h fasted mice were measured by orbital blood samples (n = 5). (E) Insulin sensitivity was
analyzed by HOMA-IR (n = 5). *p<0.05, **p<0.01 HF, HFNS and HFPS versus NC. #p<0.05, ##p<0.01 HFPS versus HF. $p<0.05, $ $p<0.01, HFPS versus
HFNS. All data are presented as mean ± SE.

doi:10.1371/journal.pone.0149677.g004
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heart, kidney and lung [25]. Moreover, Toll-like receptor 4 (Tlr4) is right the upstream of NF-
κB signaling and, Jia et al.[1] have put it that Tlr4 activation on hepatocytes is responsible for
obesity-related inflammation and insulin resistance. However, Tlr4 is highly expressed in mac-
rophages and the causative role of macrophage-mediated inflammation in the pathogenesis of
insulin resistance has also been well documented, so the proinflammatory activation of macro-
phages in liver, predominantly Kupffer cells, accounting for more than 80% of resident macro-
phages in the whole body, may also play a role. This has been confirmed by Neyrinck and
Lanthier [26, 27] and is consistent with our results that gene expression of macrophages mark-
ers in liver, CD68, F4/80 and CD11c, were elevated in HFD feeding while significantly reversed
by NF-κB silence, indicating that inhibition of macrophages in liver, maybe largely Kupffer
cells, exerted ameliorating obesity and related metabolic disorders effects in HFD-fed mice.
Taken together, it is possibility that inflammatory response in liver is amplified through cross-
talk between activated Kupffer cells and impaired hepatocytes [1]. For the time being, this
inter-cell action is just a hypothesis and ripe for further work in this field. Nevertheless, it is
safe to draw a conclusion that liver is a critical source, not inferior to adipose tissue, of inflam-
mation for metabolic disorders induced by obesity or over nutrition.

The above-mentioned could be concluded that caloric excess or diet-induced obesity trig-
gered the activation of NF-κB pathway possibly via Tlr4 (of hepatocytes or Kupffer cells or
both) resulting in the expression of proinflammatory cytokines such as TNF- α and IL-6, then
amplification cascade of inflammation predisposed tissues and cells toward insulin resistance
through the inhibition of insulin signaling. Hopefully, selective inhibition of NF-κB activity
may be achieved by targeting specific tissue like liver to limit the side effects associated with
global inhibitors of the NF-κB pathway.

Furthermore, our data showed that the improved insulin action in P65 siRNA treatment
mice seemed to be in conjunction with enhanced liver autophagy. Autophagy deregulation
during chronic caloric excess pushes the pathogenesis of multiple metabolic disorders [28–30].
Reports demonstrate autophagy restoration in liver can suppress “meta-inflammation” in
obese mice [15]. There are also experimental evidence indicating that efficient autophagy activ-
ity can retard the activation of inflammasomes and induction of inflammatory responses [31,
32]. However, the possible crosstalk between NF-κB and autophagy signaling pathways is
largely unknown. Our data demonstrated when NF-κB pathway was partly blocked by P65
siRNA, the activation of mTOR, known as an autophagy inhibitor, was decreased, though not
reaching statistical significance. Therefore, mTOR may be one of the mediators between the

Table 2. Lipid concentrations in blood and tissues. FFA, free fatty acids; TG, triglycerides; TC, total cholesterol; FA, fatty acid; mM/gprot,mmol/g protein.

Blood lipids(mmol/L) Tissue lipids(mM/gprot)

FFA TG TC Liver FA Epididymal FA Subcutaneous FA Gastrocnemius FA

NC 0.21±0.05 0.70±0.05 3.39±0.22 0.03±0.01 1.72±0.3 2.15±0.33 0.06±0.02

HF 0.69±0.12** 1.16±0.12** 4.38±0.2** 0.19±0.04** 6.57±1.13** 4.04±0.73 0.61±0.11*

HFNS 0.71±0.10** 1.32±0.11** 4.17+0.22* 0.12±0.02* 6.86±1.3** 4.24±0.19 0.53±0.11

HFPS 0.29±0.02##$ $ 0.72±0.09##$ $ 3.66±0.17# 0.05±0.01##$ 2.89±0.5#$ 2.55±0.46 0.26±0.05

*p<0.05

**p<0.01 HF, HFNS and HFPS versus NC.
#P<0.05
##P<0.01, HFPS versus HF.
$p<0.05
$ $p<0.01, HFPS versus HFNS. n = 4–6. All data are presented as mean ± SE.

doi:10.1371/journal.pone.0149677.t002
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two pathways, which has been proved by Djavaheri-Mergny et al [33]. Restored autophagy in
liver, in turn, can facilitate lipid droplets degradation and thus improve fatty liver-associated
pathologies such as hepatic steatosis and inflammation, ultimately leading to local and systemic
insulin resistance. These studies provide evidence for a connection between inflammation sig-
naling and autophagy and hint at the possibility of inducing selective autophagy to protect
against HFD-induced insulin resistance.

Meanwhile, AMPK is reviewed as the major energy-sensor that activates a variety of catabolic
processes and simultaneously inhibits several anabolic pathways involve in glucose and lipid
metabolism and energy balance in multicellular organisms [34, 35]. A recent study demonstrated
that upregulates activity of AMPK restores cardiac autophagic flux and ultimately enhances car-
diac function in diabetic mice [36]. Hence, the ameliorated liver autophagy may also have some-
thing to do with AMPK activation in our study. Not unexpectedly, we observed a significantly
reversed AMPK activity via P65 siRNA injections in our mice model of HFD-induced insulin
resistance. Although the precise cellular mechanisms here require further clarification, the works
done by Alers and Kim [34, 37] propose a possibility that AMPK and mTORC1 regulate autop-
hagy through coordinated phosphorylation of Ulk1, a homologue of yeast Atg1.

However, controversy of the exact state of autophagy in the caloric excess situation exists:
some publications report a suppressed autophagy [30, 38], whereas others claim a facilitated
autophagic flux [39, 40] after a period of HFD feeding. This discrepancy might be explained by
the fact that autophagy is a dynamic and highly regulated process impacted by diverse factors
like species and ages of experimental animals, states of overfeeding, different methods used to
examine autophagy as well as identification of basal and induced autophagy [41]. More impor-
tantly, it is challenging to discriminate the observed effects are just a secondary process or right
caused by autophagy.

Conclusion
In summary, we highlight that hepatic NF-κB pathway plays a pivotal role in diet-induced
insulin resistance, and AMPK/mTOR-associated autophagy signaling seems to play a role in
the above pathological process. Furthermore, silence of NF-κB using small interfering RNA
partly abrogates features of HFD feeding mice, from inflammation, insulin resistance, hepatic
steatosis to suppressed liver autophagic flux. This knowledge may facilitate novel therapeutic
strategies to against diabetes associated with obesity and inflammation.

Supporting Information
S1 Fig. Basal glucose tolerance and insulin sensitivity after acclimatization. (A) Glucose tol-
erance test (GTT) in overnight fasted mice. Glucose (2g/Kg BW) were injected intraperitone-
ally and tail vein blood samples were assessed for glucose concentration at the indicated time
points (n = 6–8) and corresponding area under the curve calculations for glucose values are
shown (B). (C) Serum insulin concentration in 6h fasted mice were measured by orbital blood
samples (n = 5). (D) Insulin tolerance test (ITT, 1U/Kg BW, n = 6–8) in mice fasted for 6h and
corresponding area under the curve calculations for glucose values are shown (E). (F) Insulin
sensitivity was analyzed by HOMA-IR (n = 5). �p<0.05, ��p<0.01 HF, HFNS and HFPS versus
NC. #p<0.05, ##p<0.01 HFPS versus HF. $p<0.05, $ $p<0.01, HFPS versus HFNS. All data are
presented as mean ± SE.
(TIF)

S2 Fig. Glucose tolerance and insulin sensitivity after 4-week high-fat-diet feeding. (A) Glu-
cose tolerance test (GTT) in overnight fasted mice. Glucose (2g/Kg BW) were injected
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intraperitoneally and tail vein blood samples were assessed for glucose concentration at the
indicated time points (n = 6–8) and corresponding area under the curve calculations for glu-
cose values are shown (B). (C) Serum insulin concentration in 6h fasted mice were measured
by orbital blood samples (n = 5). (D) Insulin tolerance test (ITT, 1U/Kg BW, n = 6–8) in mice
fasted for 6h and corresponding area under the curve calculations for glucose values are shown
(E). (F) Insulin sensitivity was analyzed by HOMA-IR (n = 5). �p<0.05, ��p<0.01 HF, HFNS
and HFPS versus NC. #p<0.05, ##p<0.01 HFPS versus HF. $p<0.05, $ $p<0.01, HFPS versus
HFNS. All data are presented as mean ± SE.
(TIF)
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