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Surface plasmons in graphene may provide an attractive alternative to noble-metal plasmons
due to their tighter confinement, peculiar dispersion, and longer propagation distance. We present
theoretical studies of the nonlinear difference frequency generation of terahertz surface plasmon
modes supported by two-dimensional layers of massless Dirac electrons, which includes graphene
and surface states in topological insulators. Our results demonstrate strong enhancement of the DFG
efficiency near the plasmon resonance and the feasibility of phase-matched nonlinear generation of
plasmons over a broad range of frequencies.
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Graphene exhibits many interesting electronic prop-
erties because of its chiral symmetry and gapless linear
spectrum of free carriers near the Dirac point. In recent
years, graphene has also been recognized as a promising
broadband optoelectronic material in the infrared (IR)
and terahertz (THz) region, especially when utilizing a
surface plasmon resonance [1–3]. Surface plasmon is a
collective mode of coupled charge-density and field os-
cillations at an interface between a free-carrier system
and a dielectric or vacuum. Surface plasmons guided by
graphene are expected to have low losses and be highly
tunable by gating and doping, making graphene an at-
tractive alternative to metal plasmonics. Surface states
in certain topological insulators (TIs) have a massless
Dirac-cone electron dispersion at low energies with a
slope similar to that in graphene. They provide a po-
tentially even more interesting host medium for surface
plasmons due to lower scattering rates of two-dimensional
(2D) surface electrons that are topologically protected
from scattering on non-magnetic impurities [4]. In par-
ticular, Bi2Se3 has a large bulk band gap of about 0.3
eV, suitable for THz and mid-infrared plasmonics, and
a tunable Fermi level which can be put within the bulk
gap [5]. The combination of highly efficient light-matter
interaction, relatively long propagation distances, and
tight confinement of surface plasmons in graphene and
TIs promises interesting applications including compact
room-temperature THz sources for imaging, spectroscopy
and telecommunications; integrated photonic circuits;
THz modulation of telecom signals, and compact THz
sensors. Furthermore, optical methods [6] may provide
a better access to characterization and manipulation of
massless fermion states than transport measurements
that are affected by conductivity in the bulk.

Nonlinear optics of massless Dirac fermions has re-
ceived little attention so far, especially in the THz range
where many basic devices and components are lacking.
Here we show that the difference frequency generation
(DFG) in 2D layers of massless Dirac electrons, e.g.
graphene and TIs, is an efficient and controllable way
of generating surface plasmons over a broad range of
frequencies. Second-order nonlinear processes such as

DFG are usually assumed to be forbidden in an isotropic
medium [14] such as the plane of a graphene layer. How-
ever, the second-order susceptibility χ(2) becomes non-
zero when its spatial dispersion (dependence on pho-
ton wave vectors) is taken into account. In our case
the anisotropy is induced by the in-plane wave vectors
of obliquely incident electromagnetic waves. This ef-
fect is well-known for the DFG of plasma waves in a
bulk isotropic classical plasma [15]. Another second-
order nonlinear process, second-harmonic generation in
graphene has been theoretically studied in [12, 13]. Of
course second-order processes are also non-zero for out-
of-plane excitations due to anisotropy between in-plane
and out-of-plane directions, which is a property of any
surface. Here we consider only in-plane excitations which
yield a much stronger nonlinear effect. We find that the
DFG of surface plasmons at the beat frequency of two
obliquely incident or in-plane propagating infrared beams
shows a surprisingly high efficiency over a broad range of
frequencies and is widely tunable by varying an angle of
incidence, gating, or doping.

First we review the dispersion of surface plasmons in
graphene and TIs, which has been studied before a num-
ber of times in various approximations; see e.g. [7–9].
Assuming the monolayer of massless Dirac electrons in
the xy-plane, z-axis pointing up as in Fig. 1(a), and
wave propagation in the x-direction, we calculate the
linear response and the dispersion for TM surface plas-
mon modes [10]. We include only the intraband tran-
sitions assuming that the electrons are degenerate and
the Fermi energy is higher than the plasmon energy:
EF > ~ω/2. This assumption can be easily dropped
if needed. The resulting 2D linear electric susceptibility
is given by χxx = χyy = χ̃ω,q and χxy = χyx = 0, where

χ̃ω,q =
g

(2π)2
e2EF
~2ω

∫ 2π

0

dφ
cos2 φ

−iγ + υF q cosφ− ω
. (1)

Here ω and q are frequency and x-component of the wave
vector in a monochromatic wave, φ is the angle between
the electron momentum and x-axis; γ is the scattering
rate which greatly depends on the material and sub-
strate quality. The degeneracy factor g is equal to 4 for
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graphene and 1 for one surface in Bi2Se3. The slope of
the linear electron dispersion at low energies, υF is ∼ 108

cm/s in graphene and about two times lower in Bi2Se3
[5]. The integral in Eq. (1) can be evaluated analytically.

For a TM-mode with non-zero Ex, Ez, and By field
components, using Maxwell’s equations and standard
boundary conditions [10], we can obtain the dispersion
relation for surface modes guided by monolayer graphene,
placed on an interface between two dielectric media with
dielectric constants ε1 and ε2, as shown in the inset to
Fig. 1(a):

D(ω, q) = 4πχ̃ω,q +
ε1
p1

+
ε2
p2

= 0, (2)

with p1,2 =
√
q2 − ε1,2 ω

2

c2 .
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FIG. 1: (a) Dispersion curve of a surface plasmon mode in
monolayer graphene for EF = 50 meV. The dielectric constant
ε2 = 4 corresponds to SiO2 in the THz region. (b) Dispersion
curves for symmetric (ω+) and antisymmetric (ω−) plasmon
modes in a thin TI film forming a double layer with a spacer
thickness d = 6 nm; EF = 100 meV. Electric field of the
symmetric plasmon mode is shown in the inset. The value of
ε2 = 10 typical for semiconductors was assumed. Shaded area
is the Landau damping region.

Its solution for the real parts of the frequency and
wavenumber is shown in Fig. 1(a). When cq � ω � υF q,
the dispersion relation can be simplified to 4πχ̃ω,qq +
ε1 + ε2 ≈ 0, and further to the familiar dependence [16]
ω(q) ∝

√
EF q if we neglect the q-dependent term in

the denominator of Eq. (1). With increasing plasmon
frequency, the plasmon-phonon coupling and interband
transitions need to be taken into account [17].

The double layer geometry of the kind shown in the
inset to Fig. 1(b) supports two types of surface plas-
mon modes: symmetric ω+ and antisymmetric ω− (only
the field of the symmetric mode is shown in the inset).
Such a geometry appears naturally in thin films of TIs
and can be also implemented by separating two graphene
layers with a dielectric. The plasmon modes in a double
layer were studied theoretically in [9, 11]. Here, instead
of using the static dispersion relation ε(ω, q) = 0, we
start from the full Maxwell’s equations and derive the

following dispersion equations for the symmetric (top)
and antisymmetric (bottom) modes:

D(ω, q) = 4πχ̃ω,q +
ε1
p1

+
ε2
p2

{
tanh(p2d/2)
coth(p2d/2)

}
= 0, (3)

where d is the distance between two 2D layers of massless
Dirac electrons. Generalization to the case when the top
and bottom media have different dielectric constants is
straightforward, but makes the equations more cumber-
some. The solution to the dispersion equations is shown
in Fig. 1(b). We consider the limit when d is thicker
than about 5 nm so that the electron hybridization and
tunneling can be neglected [5], but on the other hand, d
is thin enough to satisfy p2d � 1 which ensures strong
electromagnetic coupling. For the plasmon frequency of
1 THz the latter means d� 1 µm. In the limit of a thick
spacer p2d→∞, the ω+ and ω− modes merge and turn
into uncoupled monolayer plasmon modes supported by
each surface.
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FIG. 2: (a): Geometry of the DFG process. Two pump
fields at frequencies ωa and ωb incident at angles θa and θb
on graphene/TI placed on a substrate generate a highly con-
fined surface plasmon field Epl at their difference frequency
and in-plane wave vector q = qb − qa. (b): Elementary three-
wave-mixing processes involving two photons and a plasmon
coupled to interband and intraband transitions, respectively.
Grey shading indicates filled electron states.

Now we turn to the nonlinear optical excitation of
THz surface plasmons. First, consider two incident mid-
infrared pump fields at frequencies ωa and ωb linearly
polarized in the xz plane in the geometry shown in Fig.
2(a). For high pump frequencies a purely intraband con-
tribution to the second-order susceptibility is very small,
and the three-wave mixing processes that give the main
contribution to the DFG signal at frequency ω = ωb−ωa
are those in which the pump fields are coupled to the in-
terband transitions and the difference-frequency field is
coupled to the intraband transitions, as sketched in Fig.
2(b). From the density matrix equations we can derive
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the 2D second-order nonlinear susceptibility [10]:

χ
(2)
ijk =

ge2

~2ωaωb

∫∫
d2k1

(2π)2

{[
f(k1)− f(k3)

ω31 − ωb − iγ

+
f(k1)− f(k2)

−ω21 + ωa − iγ

]
µi32v

j
31v

k
12

ω32 − ω − iγ
−
[
f(k1)− f(k3)

ω31 − ωb − iγ

+
f(k2′)− f(k3)

−ω32′ + ωa − iγ

]
µi2′1v

j
31v

k
2′3

ω2′1 − ω − iγ

}
, (4)

where f(k) is the occupation number of a given k-state
and k2(k2′) and k3 can be expressed through k1 utiliz-
ing the selection rules that follow from the matrix el-
ements of the interaction Hamiltonian: k1 + qb = k3;
k1(k2′) +qa = k2(k3). Here ~vαβ = υF 〈α|~σ|β〉 is the ma-

trix element of the velocity operator, ~µαβ =
ieυF
ωβα
〈α|~σ|β〉

is the transition dipole matrix moment, ~σ = (σ̂x, σ̂y) is
a 2D Pauli matrix-vector, and ωαβ = (ε(kα) − ε(kβ))/~
is the energy difference between electron states |α〉 and
|β〉.

An order of magnitude estimate for χ(2) can be ob-
tained if we take the limit of a degenerate electron distri-
bution kBT → 0 and assume that ω � υF q cosφ, γ and
ωa ' ωb. Then Eq. (4) gives

χ(2)
xxx '

e3

8π~2
g

qωaω

{
π

2
+ arctan

(
ωa − 2υF kF

γ

)}
, (5)

where kF is the Fermi momentum. This approximate ex-
pression matches well the low-temperature dependence
of the magnitude of χ(2) for graphene shown in Fig. 3(a)
as a function of the Fermi energy. With increasing Fermi
energy, more states in the integral in Eq. (4) are fully
occupied, which leads to a lower χ(2). The value of
|χ(2)| ∼ 10−6 esu is extremely high: if we divide it by
a monolayer thickness ∼ 0.3 nm to compare with bulk
susceptibilities of other nonlinear materials, we obtain

|χ(2)
bulk| ∼ 10−2 m/V, which is four orders of magnitude

higher than |χ(2)| measured at similar wavelengths in
asymmetric coupled quantum-well structures [18, 19].

Note that, unlike the situation in a magnetized
graphene with a discrete energy spectrum [20, 21], here
we don’t have strong resonant enhancement of the nonlin-
ear susceptibility at interband resonances: it is smeared
out by integration over the continuous spectrum of elec-
tron momenta, as is clear from Eq. (5). Also, the second-
order susceptibility is not affected by plasmon resonance;
its large value is mainly due to large matrix elements of
single-particle transitions. At the same time, the gener-
ated difference-frequency field does experience a strong
enhancement at the surface plasmon resonance, i.e. when
the momentum and frequency of the generated difference-
frequency photons satisfy the plasmon dispersion relation
given by Eq. (2) or (3), depending on the layer geometry.

Indeed, as follows from Maxwell’s equations, for a

given 2D (surface) polarization ~P ∝ x̂eiqx−iωt the gener-
ated surface plasmon mode has the electric field ampli-
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FIG. 3: (a) Magnitude of the 2D χ
(2)
xxx as a function of Fermi

energy for a fixed incidence angle θa = θb = θ = 60◦ and fixed
sum of the incident pump frequencies ωa + ωb = 400 meV.
Red line is the generated plasmon frequency which satisfies
the phase-matching condition and energy conservation at each

Ef . (b) The DFG efficiency η =
Ipl
IaIb

and incidence angle θ

as a function of the plasmon frequency under the conditions
of frequency and phase matching. The sum of the incident
pump frequencies is fixed to ωa + ωb = 400 meV.

tude [10]

Epl(ω, q) = − 4π

D(ω, q)
P = −χ

(2)
xxx(Ea)x(Eb)x

Imχ̃ω,q
. (6)

Here the second equality is valid when q and ω satisfy the
plasmon dispersion equation, in which case the real part
of the denominator D(ω, q) goes to zero and the gener-
ated field is greatly enhanced. For example, in monolayer
graphene, when q >>

√
ε1,2ω/c, we obtain

Imχ̃(ω, q) ≈ γ

4πω

ε1 + ε2
q

. (7)

Fig. 3(b) shows the DFG efficiency η as a function

of the plasmon frequency, where η =
Ipl
IaIb

is defined as
a ratio of the plasmon field intensity to the product of
intensities of the incident pump fields. The generated fre-
quency ω can be tuned by varying the pump frequencies
ωa,b or/and the angles of incidence θa,b. The efficiency
goes to zero at θa,b = 0 (because (Ea,b)x ∝ sin θa,b) and
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at θa,b = π/2 when χ(2) vanishes by symmetry. For mid-
infrared pump frequencies, the generated signal can be
tuned from 1 THz to several THz while still maintaining
a high efficiency; see Fig.3b. For example, focusing two 1-
W mid-infrared beams at wavelengths around 5 µm into
the area of 100×100 µm2 yields about 0.01 W of power in
the in-plane propagating THz plasmon mode. Note that
the DFG efficiency scales roughly as 1/γ2 according to
Eqs. (6,7). The relaxation rate γ is 1 meV for the plots
in Fig. 3.

For integrated photonics and optoelectronics applica-
tions, it is desirable to avoid open optical paths and inte-
grate all fields into a planar waveguide structure, see e.g.
[3, 22]. The simplest geometry is a dielectric or semicon-
ductor waveguide with graphene deposited at the inter-
face between the core and the cladding. Fig. 4 shows
one such example: a Si/SiO2 waveguide in which the top
cladding is air, with graphene deposited on the top. An-
other example would be a TI film in which the bulk TI
material serves as a waveguide core. Consider a waveg-
uide with a core layer of thickness d and dielectric con-
stant ε2 surrounded by cladding materials of lower dielec-
tric constants ε1 and ε3. Let the two pump fields propa-
gate in opposite directions as fundamental TM modes of
the waveguide. They can be excited e.g. by z-polarized
laser beams. In a TM mode the longitudinal component
of the electric field Ex ∝ ∂By/∂z has a maximum near
the interfaces z = ±d/2, where z = 0 in the middle of the
waveguide core. Strong overlap of the Ex components of
the pump fields with a graphene layer is exactly what we
need for efficient nonlinear excitation of a surface plas-
mon at the difference frequency.

For the Ex-fields in the two pump modes given by
Ea ∼ exp (iqax− iωat) and Eb ∼ exp (−iqbx− iωbt), the
second-order nonlinear interaction between the fields gen-
erates the 2D nonlinear polarization in graphene at the
difference frequency ω = ωb − ωa and in-plane momen-
tum q = qa + qb. When ω and q satisfy the surface plas-
mon dispersion relation, the plasmon field excited by the
nonlinear polarization experiences a strong enhancement,
similarly to Eq. (6) [10]:

Ec(ω, q) = −
χ
(2)
xxxEa(d2 )Eb(

d
2 )

Imχ̃(ω, q)
. (8)

Here we assumed that the pump fields are constant over
the vertical confinement scale of the plasmon mode ∼ 1
µm. In Fig. 4 the DFG efficiency is defined as a ratio
of the Poynting flux in the surface plasmon mode to the
product of Poynting fluxes of the TM modes of the pump
fields. Using mid-IR quantum cascade lasers of a typi-

cal power 0.1-1 W as a pump, one can get about 1-10
mW of power in the coherent plasmon mode. We also
performed similar calculations for pump lasers at tele-
com wavelengths around 1.5 µm. In this case the phase-
matched DFG of surface plasmons takes place around
plasmon frequency 25-35 meV (for EF of 50-100 meV)
and the conversion efficiency is ∼ 10−4 − 10−5/W.
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FIG. 4: (a) Integrated waveguide geometry of DFG of surface
plasmons by counter-propagating TM modes. Profiles of By

and Ex field components are indicated in blue dashed and red
lines, respectively. (b) Phase-matched plasmon frequency vs.
wavelength of the fundamental TM mode for one of the pump
fields in a 1-µm thick Si waveguide, for two values of Fermi
energy. (c) DFG efficiency of surface plasmons for EF = 50
meV and two values of the relaxation rate.

In conclusion, we found that THz surface plasmons
in graphene and topological insulators can be generated
with high efficiency through second-order nonlinear fre-
quency mixing of two obliquely incident or in-plane prop-
agating mid-IR beams over a broad range of frequencies
and angles of incidence. This process can be used for
nonlinear generation, detection, and modulation of the
THz light in these fascinating materials or for the ma-
nipulation of electron states by optical means.
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