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Abstract

To obtain natural inflation with large tensor-to-scalar ratio in string framework, we need a special

moduli stabilization mechanism which can separate the masses of real and imaginary components

of Kähler moduli at different scales, and achieve a trans-Planckian axion decay constant from

sub-Planckian axion decay constants. In this work, we stabilize the matter fields by F-terms and

the real components of Kähler moduli by D-terms of two anomalous U(1)X × U(1)A symmetries

strongly at high scales, while the corresponding axions remain light due to their independence on

the Fayet-Iliopoulos (FI) term in moduli stabilization. The racetrack-type axion superpotential is

obtained from gaugino condensations of the hidden gauge symmetries SU(n)×SU(m) with massive

matter fields in the bi-fundamental respresentations. The axion alignment via Kim-Nilles-Pelroso

(KNP) mechanism corresponds to an approximate S2 exchange symmetry of two Kähler moduli in

our model, and a slightly S2 symmetry breaking leads to the natural inflation with super-Planckian

decay constant.
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I. INTRODUCTION

Natural inflation was proposed to explain the unnatural flatness of inflationary potential

which is introduced ad hoc at tree level and remains flat under radiative corrections [1]. The

flatness of inflationary potential is protected by continuous shift symmetry of an axionic

field φ. But this symmetry is spontaneously broken to a discrete shift symmetry at inflation

scale, and the following inflationary potential is generated

V (φ) = Λ4(1± cos(
φ

f
)), (1)

which is invariant under the discrete shift symmetry φ→ φ+2πf with f as an axion decay

constant. Recent observation of the B-mode polarization by the BICEP2 Collaboration

suggests a large tensor-to-scalar ratio r = 0.16+0.06
−0.05 excluding the dust effects [2], which can

be obtained from natural inflation with trans-Planckian axion decay constant f ∼ O(10) MPl,

where MPl = 2.4 × 1018GeV is the reduced Planck mass [3]. While the value of r could be

much smaller [4, 5] if the dust polarization effect plays more important role than estimated

in Ref. [2]. Besides, natural inflation with large r also agrees with the Planck observations

[6], in which a lower bound of trans-Planckian axion decay constant is needed f > 5MPl.

It is an attractive destination to realize natural inflation in string theory or its efffective

no-scale supergravity (SUGRA) theory. Axions arise from anti-symmetric tensor fields in

string theory through compactification of the extra space dimensions, and may play impor-

tant roles in cosmology and particle physics [7]. A more fundamental reason for stringy

inflation is that, according to the Lyth bound obeyed by general single field slow-rolling

process [8], large tensor-to-scalar ratio requires trans-Planckian excursion during inflation.

Therefore, corrections from the Planck-suppressed operators are non-ignorable, and a reli-

able inflation theory has to be constructed based on the ultra violet (UV) complete theory

such as string theory.

Axion (as imaginary component of Kähler modulus T ) inflation in string theory needs

a moduli stabilization mechanism, which can separate the masses of real and imaginary

components of Kähler modulus T at different scales. Specifically, the real component of

modulus should be frozen during inflation, so it obtains a large mass from modulus stabi-

lization: MRe(T) > H , where H is the Hubble constant during inflation, at the order 1014

GeV from the BICEP2 results, while the “effective mass” of axionMIm(T) = Λ2/f is of order

1013 GeV. In the well-known KKLT mechanism [9], once the real component of modulus is
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stabilized, the imaginary component obtains a large mass comparable to the real component

which destroys axion inflation [10].

Moduli stabilization, which is consistent with axion inflation, has been proposed recently

in Refs. [11, 12]. In these works, an anomalous U(1)X gauge symmetry has been introduced

to split the masses of real and imaginary components of Kähler moduli. The anomalous

U(1)X gauge symmetry introduces the moduli-dependent Fayet-Iliopoulos (FI) term as a

result of the non-trivial moduli transformation under U(1)X . The D-term scalar potential

of U(1)X depends only on the real component of moduli, and actually is close to string scale

by taking suitable gauge charges. Consequently, the D-term flatness provides a strong stabi-

lization on real component of moduli once the U(1)X charged matter fields are stabilized by

F-terms. The stabilization of matter fields can be directly done by tree-lever superpoential.

While axion potential for natural inflation is obtained from non-perturbative effects, so it is

generally much weaker than the perturbative terms [12]. In the model, besides moduli sta-

bilization consistent with axion inflation, U(1)X symmetry also provides an elegant solution

to the problem of super-Planckian axion decay constant. A general review on the anomalous

U(1) gauge symmetry in SUGRA and its applications on cosmology is provided in Ref. [13].

However, the super-Planckian axion decay constant in natural inflation required by the

BICEP2 results is problematic in string theory. String theory predicts the axion decay

constants cannot surpass the string scale [7, 14, 15], while as a controllable theory, the scale

of weakly coupled string theory should be lower than the Planck scale. The Kim-Nilles-

Pelroso (KNP) mechanism was proposed to obtain the effective super-Planckian axion decay

constant [16]. In this proposal, two axions with sub-Planckian decay constants are aligned to

have a flat direction along which the effective decay constant can be large enough for natural

inflation. Another solution to this problem was provided in Ref. [12] based on an anomalous

U(1) gauge symmetry. In this work the axion decay constant is directly determined by the

flatness of anomalous U(1) D-term, and can be super-Planckian by taking a reasonably large

condensation gauge group.

Recently, a lot of works on the KNP mechanism have been done after the BICEP2

results [17–21]. Specifically, in Ref. [20] a stringy geometrical realization of aligned axions

was proposed based on the assumption that the moduli are well stabilized. While a complete

realization of the KNP mechanism based on string framework, which is consistent with

moduli stabilization, is still absent.
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In this paper, we will realize both the KNP mechanism and moduli stabilization in string

inspired no-scale supergravity with anomalous gauge symmetries U(1)X ×U(1)A. Similar to

our previous study [11, 12], we stabilize the matter fields by F-term potential and the moduli

by the D-terms of anomalous U(1) symmetries. Two axions are imaginary components of

two Kähelr moduli, which transform non-trivially under two anomalous gauge symmetries

U(1)X × U(1)A. The axion superpotential is of racetrack-type, and is from gaugino con-

densations of two gauge groups SU(n) × SU(m) with massive quark representations. The

alignment of axions as in the KNP proposal, actually corresponds to an approximate S2

exchange symmetry between two Kähler moduli. This S2 symmetry is explicitly broken

slightly so that one linear combination of the axions gives us the natural inflation with

super-Planckian effective decay constant.

This paper is organized as follows. In Section 2 we present string inspired no-scale SUGRA

with anomalous gauge symmetries U(1)X × U(1)A. In Section 3 we provide stabilizations

of matter fields and Kähler moduli based on F-term and D-term potentials, respectively.

In Section 4 we show that the aligned natural inflation can be realized by superpotential

obtained from gaugino condensations of hidden gauge groups. Conclusions are given in

Section 5.

II. ALIGNED AXIONS IN NO-SCALE SUGRA

We start from the no-scale type SUGRA with Kähler potential

K = −ln(T1 + T̄1)− ln(T2 + T̄2) + φiφ̄i + χiχ̄i + ψiψ̄i +XiX̄i + YiȲi , (2)

where i = 1, 2, and T1 and T2 are Kähler moduli. No-scale SUGRA [22] was realized naturally

in the compactifications of weakly coupled heterotic string theory [23] or M-theory on S1/Z2

[24]. For the third Kähler modulus T3, we assume that it is neutral under anomalous gauge

symmetries U(1)X×U(1)A and then is ignored in this work. Two axions θi are the imaginary

parts of the Kähler moduli, i.e., θi ≡ Im(Ti), i = 1, 2.

As we know, n stacks of D7-branes, which wrap a 4-cycles of the Calabi-Yau space, gives

U(n) gauge group. As in the KKLT scenario, the condensation gauge group is SU(n), and

typically there is another anomalous U(1) gauge symmetry. For two Kähler moduli, there can

be two copies of such gauge sectors, saying SU(n)×SU(m)×U(1)X ×U(1)A. In particular,
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two anomalous U(1) gauge symmetries can play special role in moduli stabilization and

inflation.

We assume that the vector-like massive quarks are in the fundamental representations of

Yang-Mills gauge groups SU(n)×SU(m). After integrating out the heavy chiral superfields,

the gaugino condensations of gauge groups SU(n)× SU(m) generate the following effective

superpotential

W = Aφ
1

m

1 e
−(aT1+bT2) +Bφ

1

n

2 e
−(aT1+bT2+cT2), (3)

where φ1 and φ2 are matter fields charged on both SU(n) and SU(m) [25–27]. Here, we

have assumed that the gauge kinetic functions of SU(n) and SU(m), which relate to the

gauge anomaly cancellations of SU(n)2 × U(1)a and SU(m)2 × U(1)a, are

fSU(n) ∝ aT1 + bT2 + cT2 , (4)

fSU(m) ∝ aT1 + bT2 . (5)

The superpotential in Eq. (3) and moduli dependent D-term are employed to stabilize the

matter fields and real parts of the moduli, respectively. Once the matter fields φi obtain

vacuum expectation values (VEVs), the real part of the Kähler moduli are fixed by the D-

term flatnesses. The effects of non-perturbative terms on moduli stabilization and inflation

based on anomalous U(1) have been studied in Refs. [28–33]. In these works, normally the

D-terms are non-cancellable so that they can uplift the AdS vacua to dS vacua from mod-

uli stabilization. The non-cancellability of anomalous U(1) D-term arises from the massless

fundamental representation of condensation gauge group. While here the cancellable anoma-

lous U(1) D-terms are preferred, the condensation gauge groups are equipped with massive

fundamental representations. Recently, under the stimulation from the BICEP2 results, the

potential roles of gaugino condensation on inflation have been studied in [34, 35].

In our strategy, fields φi are stabilized by their superpotential terms, which break anoma-

lous U(1)X (also the continous shift symmetry of Kähler modulus) spontaneously. This

procedure was first proposed in Ref. [12] for string-inspired no-scale SUGRA, and later it

was applied to the case of the minimal SUGRA [36].
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T1 T2 Xi Yi φ1 φ2 χ1 χ2 ψ1 ψ2

U(1)X δ1X δ2X 0 0 q q −q −q q q

U(1)A δ1A δ2A 0 0 q̃ 2q̃ −q̃ −2q̃ q̃ 2q̃

TABLE I: U(1)X × U(1)A charges of the Kähler moduli and matter fields.

A. U(1)X × U(1)A Gauge Invariance

The U(1)a charges of the Kähler moduli and matter fields are provided in Table I, so

the overall superpotential, which is invariant under gauge transformations of U(1)a with

a ∈ {A,X}, is given by

W = w⋆ + Aφ
1

m

1 e
−(aT1+bT2) +Bφ

1

n

2 e
−(aT1+bT2+cT2)

+Xi(φiχi − λ1) + Yi(ψiχi − λ2) + c0ψiχi,
(6)

in which the constant term w⋆ is arising after integrating out all complex-structure moduli.

Similar to Ref. [12], we may realize the above superpotential or its equivalent.

The matter fields zn ∈ {φi, χi, ψi} transform linearly under U(1)a, while Kähler moduli

shift under the U(1)a gauge transformations

Ti → Ti + iδiaǫ,

zn → zne
iǫqazn .

(7)

The U(1)a gauge invariance of matter couplings in (6) is clearly based on the charges

provided in Table I. While for the non-perturbative terms, gauge invariance requires the

following condition




a b

a b+ c









δ1α

δ2α



 =





q1α
m

q2α
n



 ,

where α ∈ {A,X} and qiα means the U(1)α charge of φi. Without c the equation is degenerate

and the moduli charges cannot be uniquely determined based on charges of the matter fields.

In the superpotential (6), the parameter c is very small. There is an exact S2 exchange

symmetry

aT1 ↔ bT2, (8)

in Kähler potential K and also in superpotential W without term cT2. The exact S2 sym-

metry corresponds to exact aligned axions, then the potential is independent with bT1−aT2,
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which becomes an exact flat direction in the scalar potential. The S2 symmetry is broken

explicitly by cT2 while reserves approximately as long as c≪ b. This approximate symmetry

is crucial that it provides sufficient flat potential for inflation.

In this work, we will take m = n+1 for simplicity, besides, the approximate S2 symmetry

is useful to simplify calculations.

Given the charges of φi in Table I, the U(1)a charges of moduli Ti are uniquely fixed

δ1X =
q

a(n+ 1)
(1− b

cn
), δ2X =

q

cn(n+ 1)
,

δ1Y =
q̃

a(n + 1)
(1− b(n + 2)

cn
), δ2Y =

q̃(n+ 2)

cn(n + 1)
.

(9)

In this work the degree of gauge group n is taken as O(10), while the ratio b/c is close to

O(102), so we have 1− b
cn
< 0, i.e., the U(1)a charges of modulus T1 are negative in unit q

or q̃. Negative charges of T1 are directly determined by the smallness of ratio c/b, i.e., the

approximate S2 symmetry between two Kähler moduli. This property is greatly appreciated

in quantum anomaly cancellation, as will be shown later.

B. Quantum Anomaly Cancellation of U(1)X × U(1)A

For a consistent gauge theory, all quantum anomalies associated with U(1)a should be

cancelled. For gauge sectors U(1)X × U(1)A, the gauge anomalies contain the cubic U(1)3a

anomaly, the gravitational U(1)a anomaly and the mixed U(1)2a×U(1)b anomaly. The overall

fermionic contributions on these gauge anomalies are non-zero, to keep theory free of gauge

anomaly, the Green-Schwarz contributions on gauge anomaly [37] are necessary.

For gravitational U(1)a gauge anomaly, the fermionic contributions are

Tr qX =
∑

z

qz = 2q,

Tr qA =
∑

z

q̃z = 3q̃.
(10)

The gravitational anomalies are cancelled by higher derivative terms R2. The mixed anoma-

lies such as U(1)2a × U(1)b and SU(n)× U(1)a can be cancelled as well.
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For cubic U(1)3a anomalies, the fermionic contributions are

Tr q3X =
∑

z

q3z = 2q3, (11)

Tr q3A =
∑

z

q̃3z = 9q̃3. (12)

Gauge kinetic functions of U(1)a are

fU(1)a = k1aT1 + k2aT2, (13)

in which k1a are positive parameters. Consequently, the gauge kinetic terms are
∫

d2θ kiaTiW
2
a , (14)

where Wa is the U(1)a gauge field strength. There are two parts in the gauge kinetic term:

Re(f)F 2 and Im(f)FF̃ . The first part is U(1)a invariant, while the second part shifts

under U(1)a due to non-trivial U(1)a gauge transformations of Kähler moduli Ti, actually

the U(1)a variation of gauge kinetic term cancels the cubic gauge anomaly from fermionic

contributions. Vanishing of cubic U(1)3a anomaly requires

kiaδ
i
a = − 1

48π2
Tr q3a, (15)

where an extra coefficient 1/3 is introduced as a symmetry factor of U(1)3a anomaly graphs.

Specifically, we have

kiXδ
i
X = − 1

24π2
q3, (16)

kiAδ
i
A = − 3

16π2
q̃3. (17)

Here all the coefficients kia are positive. The above conditions cannot be fulfilled unless for

each U(1)a, at least one of the Kähler moduli has negative charge (with unit of q or q̃).

Fortunately, as shown in (9), we do have one Kähler modulus T1 whose U(1)a charges are

negative resulting from the approximate S2 symmetry. Then for any values of q/q̃, it is easy

to adjust the parameters kia so that the cubic U(1)3a anomalies vanish.

III. THE KÄHLER MODULI AND MATTER FIELD STABILIZATION

The matter fields are stabilized by F-term potential. Once the matter fields obtain VEVs,

the real components of the moduli are fixed by vanishing of U(1)a D-terms. Normally field
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stabilization happens at scale much higher than inflation scale. The couplings between

matter fields and inflation potential can only slightly modify the VEVs of matter fields, and

more detailed analysis is presented in Ref. [11, 12]. Here, we just ignore the scalar potential

relating to inflation at this stage.

The F-term scalar potential is determined by the Kähler potential K and superpotential

W

VF = eK(Kij̄DiWDj̄W̄ − 3WW̄ ), (18)

in which Kij̄ is the inverse of the Kähler metric Kij̄ = ∂i∂j̄K and DiW = Wi +KiW . The

D-term scalar potential is given by

VD =
1

2
DaD

a, (19)

in which the gauge indices a are raised by the form [(Ref)−1]ab, and f is the gauge kinetic

function. The Da components are

Da = iKiX
i
a + i

Wi

W
X i

a, (20)

where X i
a are the components of Killing vectors Xa = X i

a(φ)∂/∂φ
i which generate the

isometries of the Kähler manifold that are gauged to form U(1)a. If the superpotential W

is gauge invariant instead of gauge covariant, the Da components reduce to

Da = iKiX
i
a. (21)

For the U(1)a charged matter fields zn, they transform linearly under U(1)a, and the Killing

vectors linearly depend on the matter field zn

Xzn
a = iqaznzn. (22)

For the Kähler moduli Ti, they shift under U(1)a gauge transformations, and the Killing

vectors are

XTi

a = iδia, (23)

which are purely imaginary constants.

A. Matter Field Stabilization

Considering the renormalizable matter couplings in (6), it is clear that the neutral matter

fields Xi and Yi have global minimum at the origin, while the charged matter fields φi, χi
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and ψi obtain non-vanishing VEVs. During inflation, these matter fields will evolve to the

global minimum very fast in consequence of the F-term exponential factor eznz̄n and the

large masses obtained from the matter couplings in (6).

Part of the F-term potential is

Vm = eK(|φiχi − λ1|2 + |ψiχi − λ2|2 + c20(|ψi|2 + |χi|2)

+ 2c0(ψiχiW̄ + ψ̄iχ̄iW ) + · · · ),
(24)

where we have ignored the terms proportional to Xi, Yi or containing φi, χi, ψi while several

orders smaller. The small term 2c0(ψiχiW̄ + ψ̄iχ̄iW ), although ignorable for field stabiliza-

tion, has considerable contribution to inflation potential.

As shown in [12], for λ2 ≫ c20, above potential admits a global minimum at

|ψi| = |χi| ≃
√

λ2,

|φi| ≡ ri ≃
λ1√
λ2
.

(25)

The U(1)a gauge symmetries are broken spontaneously by non-zero VEVs. Through matter

field stabilization, potential Vm obtains VEVs as well and uplifts the vacuum energy

〈Vm〉 = e〈K〉c20(〈ψi〉2 + 〈χi〉2) ≃ 4c20λ2e
〈K〉. (26)

Normally the non-perturbative superpotential associated with no-scale Kähler potential

leads to the AdS vacua. To obtain the Minkowski or dS vacua, an uplifting mechanism

is needed. Here, the positive vacuum energy obtained from matter field stabilization pro-

vides a natural solution to this problem.

Up to now we have ignored the effects of the lower order terms on matter field stabiliza-

tion. In [12] these effects have been studied, it was shown that the small couplings can only

lead to tiny corrections on these VEVs, and reduce the vacuum energy slightly, which are

totally ignorable in a general estimation.

B. Moduli Stabilization from U(1)X × U(1)A D-terms

According to the U(1)a charges provided in Table I, the D-term potentials associated

with U(1)a are

VDa =
1

2fU(1)a

(− δ1a
T1 + T̄1

− δ2a
T2 + T̄2

+ qaznznz̄n)
2, (27)
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where zn ∈ {φi, χi, ψi} and qazn is U(1)a charge of field zn. Gauge kinetic function fU(1)a is

provided in (13). The matter fields zn obtain VEVs through F-term stabilization, then the

U(1)a D-terms become

VDX =
1

2fU(1)X

(− δ1X
T1 + T̄1

− δ2X
T2 + T̄2

+ qr21 + qr22)
2,

VDA =
1

2fU(1)A

(− δ1A
T1 + T̄1

− δ2A
T2 + T̄2

+ q̃r21 + 2q̃r22)
2,

(28)

which are vanished at vacuum. Together with the charges of moduli in (9), the real compo-

nents of Kähler moduli Ti ≡ TRi + iθi can be uniquely determined at vacuum

1

2a〈TR1〉
= (n + 1)r21 + nr22,

1

2b〈TR2〉
= (n+ 1)r21 + nr22 +

cn

b
r22.

(29)

Even though the U(1)a gauge symmetries are broken after field stabilization, the approx-

imate discrete symmetry S2 is sustained. The symmetry breaking factor is very small,

c ≪ b, therefore the VEVs of Ti satisfy a〈TR1〉 ≃ b〈TR2〉 ≡ r/2 which is guaranteed by the

approximate S2 symmetry.

The imaginary components θi remain free in the perturbative potential, so actually they

only appear in the potential through non-perturbative effects.

IV. INFLATION POTENTIAL

Field stabilization is happened at scale much higher than the inflation scale. After sta-

bilization, we get the following effective superpotential

W = w0 + Aφ
1

m

1 e
−(aT1+bT2) +Bφ

1

n

2 e
−(aT1+bT2+cT2), (30)

where w0 = w⋆ + 2c0λ2, and there is a positive cosmology constant term 4c20λ2e
〈K〉, which is

necessary to uplift the AdS vacua to Minkowski or dS vacua.

DenotingWnp = Aφ
1

m

1 e
−(aT1+bT2)+Bφ

1

n

2 e
−(aT1+bT2+cT2) ≡ w1+w2, we have WT1

= −aWnp,

WT2
= −bw1 − (b+ c)w2 ≃ −bWnp. The F-term scalar potential includes

D1WD1̄W̄K11̄ =a2(T1 + T̄1)
2WnpW̄np

+ a(T1 + T̄1)(w0(Wnp + W̄np) + 2WnpW̄np) +WW̄,
(31)
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and

D2WD2̄W̄K22̄ =b2(T2 + T̄2)
2WnpW̄np

+ b(T2 + T̄2)(w0(Wnp + W̄np) + 2WnpW̄np) +WW̄.
(32)

Therefore, parts of the moduli contributions on F-term potential are

VT ∝ 2r2WnpW̄np + 2r(w0(Wnp + W̄np) + 2WnpW̄np) + 2WW̄, (33)

in which we have used the approximate S2 symmetry 〈aTR1〉 ≃ 〈bTR2〉 ≡ r/2.

For the matter fields φi, we have

Wφ1
=

w1

mφ1
,

Wφ2
=

w2

nφ2
,

(34)

where the terms proportional to Xi are ignored. The F-term potential contains

Vφ1
= Wφ1

W̄φ̄1
+ φ1Wφ1

W̄ + φ̄1WW̄φ̄1
+ φ1φ̄1WW̄

=
1

m2r21
w1w̄1 +

1

m
(Ww̄1 + w1W̄ ) + φ1φ̄1WW̄,

(35)

and

Vφ2
=Wφ2

W̄φ̄2
+ φ2Wφ2

W̄ + φ̄2WW̄φ̄2
+ φ2φ̄2WW̄

=
1

n2r22
w2w̄2 +

1

n
(Ww̄2 + w2W̄ ) + φ2φ̄2WW̄.

(36)

Terms like φiφ̄iWW̄ will be dropped in the following discussions as they are several orders

smaller than others.

F-term potential is separated into two parts: these independent of axions V1 and these

depending on axions V2. For the axion-independent part, it is

V1 =e
K{ 1

m2r21
w1w̄1 +

2

m
w1w̄1 +

1

n2r22
w2w̄2 +

2

n
w2w̄2

+ 2r2(w1w̄1 + w2w̄2) + 4r(w1w̄1 + w2w̄2)− (w2
0 + w1w̄1 + w2w̄2) + 4c20λ2}

=eK{( 1

m2r21
+

2

m
+ 2r2 + 4r − 1)w1w̄1

+ (
1

n2r22
+

2

n
+ 2r2 + 4r − 1)w2w̄2 − w2

0 + 4c20λ2 + 8c0λ2w0},

(37)

while the axion-dependent part is

V2 =e
K{(4c0λ2

w0
+

1

m
+ 2r − 1)w0(w1 + w̄1) + (

4c0λ2
w0

+
1

n
+ 2r − 1)w0(w2 + w̄2)

+ (
1

m
+

1

n
+ 2r2 + 4r − 1)(w1w̄2 + w2w̄1)}.

(38)
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Terms proportional to 4c0λ2 in V1 and V2 are obtained from the matter field stabilization.

To fit with observations, the parameters are taken as m ∼ O(10), c0 ∼ O(10−2), λ2 ∼
10−2, w0 ∼ 10−3, and r ∼ O(10). Hence, we have 1/m ∼ 4c0λ2/w0 ≪ r. Besides, according

to Eq. (29), r = 2aTR1 ≃ 1/2mr21, the factor 1/m2r21 ≃ 2r/m ≪ r2 is insignificant. The

lower order terms will be dropped in the preliminary estimation.

Employing the formula of w1 and w2 in the above equations and ignoring the lower order

terms, we rewrite scalar potentials as follows

V1 =
1

4TR1TR2
{(2r2 + 4r − 1)A2r

2

m

1 e
−2r

+ (2r2 + 4r − 1)B2r
2

n

2 e
−2r − w2

0 + 4c20λ2},
(39)

and

V2 =
1

2TR1TR2
{(2r − 1)w0Ar

1

m

1 e
−rcos(aθ1 + bθ2)

+ (2r − 1)w0Br
1

n

2 e
−rcos(aθ1 + bθ2 + cθ2)

+ (2r2 + 4r − 1)ABr
1

m

1 r
1

n

2 e
−2rcos(cθ2)},

(40)

where we have used e〈znz̄n〉 ≃ 1.

A and B are parameters that depend on the details of non-perturbative effects. Here we

may simply assume they are close to each other, and Ar
1

m

1 e
−r ≃ Br

1

n

2 e
−r ∼ 10−4.

At the global minimum, the scalar potential V1 + V2 decreases to

〈V1 + V2〉 =
1

4〈TR1TR2〉
(4c20λ2 − w2

0 − 4(2r − 1)w0Ar
1

m

1 e
−r). (41)

Without uplifting term from matter field stabilization, the non-perturbative superpotential

with no-scale-type Kähler potential admits an AdS vacuum, as expected. The constant term

4c20λ2 elevates the AdS vacuum to Minkowski vacuum under a constraint

4c20λ2 = w2
0 + 4(2r − 1)w0Ar

1

m

1 e
−r, (42)

and the scalar potential can be simplified as

V = 2Λ4
1 + Λ4

2 + Λ4
1cos(aθ1 + bθ2)

+ Λ4
1cos(aθ1 + bθ2 + cθ2) + Λ4

2cos(cθ2).
(43)

Giving w0 = 2 × 10−3, TRi = 20, r = 10, Ar
1

m

1 e
−r ≃ 2 × 10−4, we have Λ4

1,2 ≈ 10−8 which

agree with the BEICEP2 observations.
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Because the kinetic terms of Kähler moduli are non-canonical, the field transformations

are needed to determine the physical axion decay constants. The kinetic terms are

LK =
1

(Ti + T̄i)2
∂µTi∂

µTi =
1

4T 2
Ri

(∂µTRi∂
µTRi + ∂µθi∂

µθi). (44)

Taking field re-scale θi →
√
2TRiθi, and using aTR1 = bTR2 = r/2, we get

V = 2Λ4
1 + Λ4

2 + Λ4
1cos(

r√
2
(θ1 + θ2))

+ Λ4
1cos(

r√
2
(θ1 + θ2 +

c

b
θ2)) + Λ4

2cos(
c√
2b
rθ2),

(45)

where the axions θi now have canonical kinetic terms. Redefining the axions ϕ1,2 = (θ1 ±
θ2)/

√
2, we get

V = 2Λ4
1 + Λ4

2 + Λ4
1cos(rϕ1)

+ Λ4
1cos((1 +

c

2b
)rϕ1 −

c

2b
rϕ2) + Λ4

2cos(
c

2b
r(ϕ1 − ϕ2)).

(46)

The effective mass of axion ϕ1 is

mϕ1
= rΛ2

1 ≈ 10−3 ≫ H, (47)

where H is the Hubble constant during inflation, and its value is about 10−4 in Planck units

based on the BICEP2 results. Therefore, axion ϕ1 is frozen out during inflation, and another

axion ϕ2 drives the observed inflationary process if its decay constant f = 2b/cr is of order

O(10). Although r ∼ O(10), we have c ≪ b, so we can easily get a large effective decay

constant f ∼ 10 by adopting a small S2 symmetry breaking factor c/b ∼ 10−2.

V. CONCLUSIONS

We have proposed a concrete model to realize aligned axion inflation [16] for natural

inflation with moduli stabilization based on two anomalous U(1) gauge symmetries. String

theory provides abundant axion landscapes, and the natural inflation driven by aligned ax-

ions are expected to be true of certain choices in the axion landscapes [17–21]. For the axions

as imaginary components of Kähler moduli, generally they appear in the potential through

non-perturbative effects. Inflation driven by these axions needs subtle moduli stabilization

since it requires to fix real components of moduli while keep axions sufficient light.
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Similar to Refs. [11, 12], we employed the anomalous U(1) gauge symmetries for moduli

stabilization. Kähler moduli transform non-trivially under gauge symmetries U(1)X×U(1)A,
and lead to moduli-dependent FI terms in D-term potential associated with U(1)X ×U(1)A.
The condensation hidden sectors SU(n)×SU(m) are assumed to have massive fundamental

representations, from which the gaugino condensations introduce race-track type superpo-

tential and cancellable D-terms. Since the D-terms depend on real components of Kähler

moduli only, their cancellations at vacuum state lead to strong stabilizations on the real com-

ponents of Kähler moduli. The axions, which are imaginary components of Káhler moduli,

remain light.

We introduced renormalizable matter couplings for matter field stabilization. Prior to

D-term moduli stabilization, the matter fields have to be stabilized and obtain non-zero

VEVs. This is done by Higgs-like matter couplings. Gauge symmetries U(1)X × U(1)A

are spontaneously broken by VEVs of charged matter fields, besides, the continuous shift

symmetries of Kähler moduli are spontaneously broken into discrete shift symmetries. Field

stabilization in this model also provides a natural mechanism for uplifting the AdS vaccum

to Minkowski or dS vaccum, i.e., it introduces large positive vaccum energy, which is suitable

for elevating the AdS vaccum arising from non-perturbative superpotential.

We showed that the alignment of axions in the KNP mechanism corresponds to an ap-

proximate S2 symmetry between two Kähler moduli. The S2 symmetry is approximate as

it is explicitly broken by a small factor c. Different from the U(1) sectors, the discrete S2

symmetry is sustained after spontaneously gauge symmetry breaking and field stabilization.

After field stabilization, the potential is determined by two axions through non-perturbative

effects. The decay constants of the two axions, which are determined by the moduli stabi-

lization and canonical field transformation, are close to fi = 1/r, just about the string scale.

In consequence of S2 symmetry, the potential forms a steep direction along θ1+ θ2, while its

orthogonal direction θ1− θ2 is flat, and is suitable for inflation by taking small S2 symmetry

broken factor c.
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