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Résumé — Un modèle de fracture dans un milieu poro-élastique — Nous présentons un modèle de

fracture dans un milieu poro-élastique. Il décrit la fracture comme une courbe ou une surface,

selon la dimension, l’épaisseur étant incorporée dans l’équation de l’écoulement dans la

fracture. La discrétisation utilise des éléments finis mixtes pour le fluide et des éléments finis

continus pour le déplacement du milieu. Le schéma est résolu par un algorithme qui découple,

d’une part, le calcul du déplacement de celui de l’écoulement, et d’autre part, le calcul de

l’écoulement dans le réservoir de celui dans la fracture. Le modèle est illustré par un essai

numérique.

Abstract — Modeling Fractures in a Poro-Elastic Medium — We present a fracture model in a

poro-elastic medium. The model describes the fracture as a curve or surface according to the dimen-

sion, the width of the crack being included into the equation of flow in the fracture. The discretization

uses mixed finite elements for the fluid and continuous finite elements for the porous medium’s dis-

placement. The numerical scheme is solved by an algorithm that decouples, on one hand, the compu-

tation of the mechanics from that of the fluid, and on the other hand, the computation of the flow in

the reservoir from that in the fracture. The model is illustrated by a numerical experiment.
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INTRODUCTION

In petroleum and environmental engineering, studies of

multiscale and multiphysics phenomena such as reser-

voir deformation, surface subsidence, well stability, sand

production, waste deposition, hydraulic fracturing, and

CO2 sequestration [1] require a clear understanding of

both the fluid flow and solid phase mechanical response.

Traditionally, fluid flow problems were focused on

reservoir flow whereas the influence of porous media

deformation on pore pressure was usually simplified

and approximated as a constant rock compressibility

that could not account for rock response especially in

naturally fractured and/or stress-sensitive reservoirs [2].

In this setting, models for narrow fractures can be

derived by treating the width as a small parameter e
and letting this parameter tend to zero. One approach

in this direction can be found in the theoretical analysis

of Morales and Showalter [3, 4], where only flow is con-

sidered, the crack has a flat basis and vertical height of

the order of e, and the pressure is continuous at the inter-

faces. The former reference deals with the divergence

form of Darcy’s law and the latter with the mixed form.

Another approach consists in treating the fracture as a

thin domain in the framework of domain decomposi-

tion. We refer the reader to the extensive work of Alboin

et al. [5] and Martin et al. [6] on Darcy flow.

To overcome the limitations of decoupled flow simu-

lation, solving the coupled fluid flow and mechanics

model in porous media setting has become more feasible

with emerging computational machine power.

In 1941, Biot [7] proposed the first three-dimensional

consolidation theory. Later, poro-elasticity and poro-

plasticity models for single phase, black oil, and compo-

sitional flow models were developed following Biot’s

work [2, 8-12].

There are three approaches that are currently

employed in the numerical coupling of fluid flow and

the mechanical response of the reservoir solid structure

[9, 12]. They have been referred to in the literature as

fully implicit, loose or explicit coupling, and iterative

coupling. The fully implicit involves solving all of the

governing equations simultaneously and involves careful

implementation with substantial local memory and com-

plex solvers. The loosely or explicitly coupled is less

accurate and requires estimates of when to update the

mechanic response. Iterative coupling is a sequential

procedure where either the flow or the mechanics is

solved first, followed by incorporating the latest solution

information. At each step, the procedure is iterated until

the solution converges within an acceptable tolerance.

This last approach appears to be more scalable on

emerging exascale computer platforms; it can also be

used as a preconditioner for the fully implicit coupling.

But of course, iterative coupling schemes must be care-

fully designed. For instance, two iterative coupling

schemes, the undrained split and the fixed stress split,

are of particular interest; they converge for slightly

compressible linearized flow [13]. In contrast, a Von

Neumann stability analysis shows that the drained split

and the fixed strain split iterative methods are not stable

for the same model problem [9].

Hydraulic fracking is one of the primary ways manu-

facturers retrieve natural gas. Hence, modeling fractures

in porous media, that are either naturally present or are

created by stimulation processes, is a high profile topic,

but it is also a source of additional and challenging com-

plexities. This work focuses on the simulation of the

time-dependent flow of a fluid in a deformable porous

medium that contains a crack. The medium in which

the crack is embedded is governed by the standard equa-

tions of linear poro-elasticity and the flow of the fluid

within the crack is governed by a specific channel flow

relation. The two key assumptions of this channel flow

equation are:

– the width of the crack is small compared to its other

relevant dimensions, and is such that the crack can

be represented as a single surface. The relevant kine-

matical data is the jump in the displacement of the

medium across the crack, i.e. the crack’s width;

– the permeability in the crack is much larger than in the

reservoir.

One advantage of treating the crack as a single surface

is that it alleviates the need for meshing a thin region,

thus avoiding all the complexities related to anisotropic

elements.

In this paper, we formulate a discretization that is

suitable for irregular and rough grids and discontinuous

full tensor permeabilities that are often encountered in

modeling subsurface flows. To this end, we develop a

multiphysics algorithm that couples Multipoint Flux

Mixed Finite Element (MFMFE) methods for the fluid,

both in the medium and in the crack, with continuous

Galerkin finite element methods (CG) for the elastic dis-

placement. The MFMFE method was developed for

Darcy flow in [14-16]. It is locally conservative with con-

tinuous fluxes and can be viewed within a variational

framework as a mixed finite element method with special

approximating spaces and quadrature rules. It allows for

an accurate and efficient treatment of irregular geome-

tries and heterogeneities such as faults, layers, and

pinchouts that require highly distorted grids and discon-

tinuous coefficients. The resulting discretizations are

cell-centered with convergent pressures and velocities

on general hexahedral and simplicial grids. The

MFMFE method is extended to poro-elasticity
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in [17]; the analysis is based on the technique developed

by Phillips and Wheeler in [18].

We solve the numerical scheme by an extension to dis-

crete fractures of the fixed stress splitting algorithm. Its

salient features at each time step are:

– we decouple the computation of the displacement

from that of the fluid flow until convergence;

– we decouple the computation of the fluid flow in the

reservoir from that of the flow in the crack until

convergence.

The model described here does not include crack

propagation, i.e. the crack front is stationary. However,

the work presented here can be viewed as a starting point

toward hydraulic fracture modeling in which non planar

crack propagation is simulated. Our future plans include

coupling the present software with the HYFRAC

boundary element method developed by Mear and dis-

cussed in [19], as well as treating multiple cracks or mul-

tiphase flow in the reservoir and non Newtonian flow in

the fracture.

This article is organized as follows. The modeling

equations are defined in Section 1. Section 2 summarizes

theoretical results on the linear model. The numerical

scheme and algorithm are described in Section 3. A

numerical experiment illustrating the model is presented

in Section 4. We end with some conclusions.

1 PROBLEM FORMULATION

Let the reservoir X be a bounded domain of Rd d ¼ 2 or 3,
with piecewise smooth Lipschitz boundary @X and exterior

normal n. Let the fracture C b X be a simple piecewise

smooth curve with endpoints a and b when d ¼ 2 or a sim-

ple piecewise smooth surface with piecewise smooth

Lipschitz boundary @C when d ¼ 3. To simplify,

we denote partial derivatives with respect to time by the

index t.

1.1 Equations in X\C

The displacement of the solid is modeled in XnC by the

quasi-static Biot equations for a linear elastic, homoge-

neous, isotropic, porous solid saturated with a slightly

compressible viscous fluid. The constitutive equation

for the Cauchy stress tensor rpor is:

rporðu; pÞ ¼ rðuÞ � a p I ð1:1Þ

where I is the identity tensor, u is the solid’s displace-

ment, p is the fluid pressure, r is the effective linear elas-

tic stress tensor:

r uð Þ ¼ k r � uð ÞI þ 2Ge uð Þ ð1:2Þ

Here, k > 0 and G > 0 are the Lamé constants,

a > 0 is the dimensionless Biot coefficient, and

eðuÞ ¼ ðruþruT Þ=2 is the strain tensor. Then the bal-

ance of linear momentum in the solid reads:

�r � rpor u; pð Þ ¼ f in XnC ð1:3Þ

where f is a body force. For the fluid, we use a linearized
slightly compressible single-phase model. Let pr be a ref-
erence pressure, qf > 0 the fluid phase density, qf ;r > 0 a
constant reference density relative to pr, and cf the fluid
compressibility. We consider the simplified case when qf
is a linear function of pressure:

qf ¼ qf ;r 1þ cf p� prð Þ� � ð1:4Þ

Next, let u� denote the fluid content of the medium; it

is related to the displacement and pressure by:

u� ¼ u0 þ ar � uþ 1

M
p ð1:5Þ

where u0 is the initial porosity, and M a Biot constant.

The velocity of the fluid vD in XnC obeys Darcy’s Law:

vD ¼ � 1

lf
K r p� qf gr g
� � ð1:6Þ

where K is the absolute permeability tensor, assumed

to be symmetric, bounded, uniformly positive definite

in space and constant in time, lf > 0 is the constant

fluid viscosity, g is the gravitation constant, and g is

the distance in the vertical direction, variable in space,

but constant in time. The fluid mass balance in XnC
reads:

ðqfu�Þt þr � ðqf vDÞ ¼ q ð1:7Þ

where q is a mass source or sink term taking into account

injection into or out of the reservoir. The equation

obtained by substituting (1.4) and (1.5) into (1.7) is line-

arized through the following considerations. The fluid

compressibility cf is of the order of 10�5 or 10�6, i.e. it

is small. The fraction p=M is small and the divergence

of u is also small. Therefore these terms can be neglected.

With these approximations, when dividing (1.7) by qf ;r,
substituting (1.6), and setting ~q ¼ q=qf ;r, we obtain:

1

M
þ cfu0

� �
pt þ ar � ut

�r � 1

lf
Kðr p� qf ;rgr gÞ

 !
¼ ~q ð1:8Þ
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Thus the poro-elastic system we are considering for

modeling the displacement u and pressure p in XnC is

governed by (1.1), (1.3) and (1.8).

1.2 Equation in C

The trace of p on C is denoted by pc and r is the surface

gradient operator on C, it is the tangential trace of the

gradient. These quantities are well defined for our prob-

lem. The width of the fracture is represented by a non-

negative function w defined on C; it is the jump of the

displacement u in the normal direction. Since the med-

ium is elastic and the energy is finite, wmust be bounded

and must vanish on the boundary of the fracture. We

adopt a channel flow relation for the crack in which

the volumetric flow rate Q on C satisfies [1]:

Q ¼ � w3

12lf
r pc � qf gr g
� �

and the conservation of mass in the fracture satisfies:

ðqf wÞt ¼ �r � ðqfQÞ þ qI � qL

Here, qI is a known injection term into the fracture,

and qL is an unknown leakoff term from the fracture into

the reservoir that guarantees the conservation of mass in

the system. Approximating qf by qf ;r in the time deriva-

tive, linearizing the diffusion term as in the previous sec-

tion, dividing by qf ;r, and setting ~qI ¼ qI
qf ;r

, ~qL ¼ qL
qf ;r

, yield

the equation in C:

wt �r � w3

12lf
r pc � qf ;rgr g
� � !

¼ ~qI � ~qL ð1:9Þ

In order to specify the relation between the displace-

ment u of the medium and the width w of the fracture,

let us distinguish the two sides (or faces) of C by the

superscripts þ and �; a specific choice must be selected

but is arbitrary. To simplify the discussion, we use a

superscript H to denote either þ or �. Let XH denote

the part of X adjacent to CH and let nH denote the unit

normal vector to C exterior to XH, H ¼ þ;�. As the

fracture is represented geometrically by a figure with

no width, then n� ¼ �nþ. For any function g defined

in XnC that has a trace, let gH denote the trace of g on

CH, H ¼ þ;�. Then we define the jump of g on C in

the direction of nþ by:

½g�C ¼ gþ � g�

The width w is the jump of u � n� on C:

w ¼ �½u�C � nþ

Therefore the only unknown in (1.9) is the leakoff term

~qL.
Summarizing, the equations in XnC are (1.3) and

(1.8), and the equation in C is (1.9); the corresponding

unknowns are u, p and ~qL. These equations are comple-

mented in the next section by interface, boundary and

initial conditions.

1.3 Interface, Boundary, and Initial Conditions

The balance of the normal traction vector and the con-

servation of mass yield the interface conditions on each

side (or face) of C:

ðrporðu; pÞÞHnH ¼ �pcn
H; H ¼ þ;� ð1:10Þ

Then the continuity of pc through C yields:

½rporðu; pÞ�Cnþ ¼ 0

The conservation of mass at the interface gives:

1

lf
½Kðr p� qf ;rgr gÞ�C � nþ ¼ ~qL ð1:11Þ

General conditions on the exterior boundary oX of X
can be prescribed for the poro-elastic system, but to sim-

plify, we assume that the displacement u vanishes as well

as the flux Kðr p� qf ;rgr gÞ � n. According to the above

hypotheses on the energy and medium, we assume that w
is bounded inC and vanishes on oC. Finally, the only ini-
tial data that we need are the initial pressure and initial

porosity, p0 and u0. Therefore the complete problem

statement, called Problem (Q), is: Find u, p, and ~qL sat-

isfying (1.1), (1.3), (1.8) inXnC and (1.9) inC, for all time

t 2�0; T ½, with the interface conditions (1.10) and (1.11)

on C:

�r � rpor u; pð Þ ¼ f

rpor u; pð Þ ¼ r uð Þ � a p I

1

M
þ cfu0

� �
pt þ ar � ut

�r � 1

lf
K r p� qf ;rgr g
� � !

¼ ~q

wt �r � w3

12lf
r pc � qf ;rgr g
� � !

¼ ~qI � ~qL

ðrpor u; pð ÞÞHnH ¼ �pcn
H; H ¼ þ;� on C
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1

lf
½Kðr p� qf ;rgr gÞ�C � nþ ¼ ~qL onC

where pc ¼ pjC and:

w ¼ �½u�C � nþ ð1:12Þ

with the boundary conditions:

u ¼ 0; K r p� qf ;rgr g
� � � n ¼ 0 on oX ð1:13Þ

w ¼ 0 on @C ð1:14Þ

and the initial condition at time t ¼ 0:

p 0ð Þ ¼ p0

2 THEORETICAL RESULTS

Problem (Q) is highly non linear and its analysis is out-

side the scope of this work. Therefore we present here

some theoretical results on a linearized problem where

(1.12) is substituted into the first term of (1.9) while the

factor w3 in the second term is assumed to be known.

Knowing w3 amounts to linearizing the nonlinear term

with respect to w, such as could be encountered in a

time-stepping algorithm.

2.1 Variational Formulation

It is convenient (but not fundamental) to generalize the

notation of Section 1.2 by introducing an auxiliary par-

tition of X into two non-overlapping subdomains Xþ

and X� with Lipschitz interface C containing C, XH

being adjacent to CH, H ¼ þ;�. The precise shape of

C is not important as long as Xþ and X� are both Lips-

chitz. Let CH ¼ oXHnC; for any funtion g defined in X,
we set gH ¼ gjXH , H ¼ þ;�. Let W ¼ H1ðXþ [ X�Þ, i.e.:

W ¼ v 2 L2 Xð Þ; vH 2 H1 XH
� �

;H ¼ þ;�� �
normed by the graph norm:

jvj jjW ¼ ð jvþj jj2
H1 Xþð Þ þ jv�j jj2H1 X�ð ÞÞ1=2

The space for the displacement is:

V ¼ fv 2 Wd; ½v�CnC ¼ 0; vHjCH ¼ 0;H ¼ þ;�g ð2:1Þ

with the norm of Wd:

jvj jjV ¼
Xd
i¼1

jvij jj2W
 !1

2

ð2:2Þ

The space for the pressure is more subtle: it is H1 in X,
but in C, it is:

H1
wðCÞ ¼ fz 2 H1=2ðCÞ; w3=2r z 2 L2ðCÞd�1g ð2:3Þ

equipped with the norm:

jzj jjH1
w Cð Þ ¼ ð jzj jj2

H1=2 Cð Þ þ jjw3=2r zjj2L2 Cð ÞÞ1=2 ð2:4Þ

where H1=2ðCÞ is the space of traces on C of H1ðXÞ func-
tions. Thus p belongs to the space:

Q ¼ q 2 H1 Xð Þ; qc 2 H1
w Cð Þ� �

; qc :¼ qjC ð2:5Þ

equipped with the graph norm:

jqj jjQ ¼ ð jqj jj2H1 Xð Þ þ jqcj jj2H1
w Cð ÞÞ1=2 ð2:6Þ

Finally, the space for the leakoff variable ~qL is H1
wðCÞ0,

the dual space of H1
wðCÞ, equipped with the dual norm.

Then, by multiplying (1.3), (1.8) and (1.9) with adequate

test functions, applying Green’s formula, using the inter-

face conditions (1.10) and (1.11), the boundary condi-

tions (1.13) and (1.14), substituting (1.12) into the first

term of (1.9), and assuming sufficiently smooth data,

we obtain the variational formulation: Find

p 2 H1ð0; T ;L2ðXÞÞ \ L1ð0; T ;QÞ, u 2 H1ð0; T ;V Þ, and

~qL 2 L2ð0; T ;H1
wðCÞ0Þ solution a.e. in �0; T ½ of:

2GðeðuÞ; eðvÞÞ þ kðr � u;r � vÞ � aðp;r � vÞ
þðpc; ½v�C � nþÞC ¼ ðf ; vÞ; 8v 2 V

ð2:7Þ

8h 2 Q;
�

1
M þ cfu0

�ðpt; hÞ þ aðr � ut; hÞ
þ 1

lf
ðKðr p� qf ;rgr gÞ;r hÞ ¼ ð~q; hÞ þ h~qL; hciC

ð2:8Þ

where the scalar products are taken in XnC,

�ð½ut�C � nþ; hcÞC þ w3

12lf
ðr pc � qf ;rgr gÞ;rhc

� 	
C

¼ h~qI � ~qL; hciC; 8h 2 Q

ð2:9Þ
with the initial condition at time t ¼ 0

pð0Þ ¼ p0 ð2:10Þ

2.2 Two Reduced Formulations

A first reduced formulation is obtained by summing (2.8)

and (2.9), thereby eliminating ~qL: Find p 2 H1
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ð0; T ; L2ðXÞÞ \ L2ð0; T ;QÞ and u 2 H1ð0; T ;VÞ, solution
of (2.10) and a.e. in �0; T ½ of (2.7) and for all h 2 Q:

�
1
M þ cfu0

	
ðpt; hÞ þ aðr � ut; hÞ � ð½ut�C � nþ; hcÞC

þ 1
lf
ðKðr p� qf ;rgr gÞ;r hÞ

þ w3

12lf
ðr pc � qf ;rgr gÞ;rhc

� 	
C
¼ ð~q; hÞ þ ð~qI ; hcÞC:

ð2:11Þ

Next, (2.7) can be viewed as an equation for the dis-

placement u as an affine function of p. More precisely,

we split u into two parts:

u ¼ �uþ u pð Þ
where, for f given in L2ðXÞd , �u 2 V solves for all v 2 V :

2G e �uð Þ; e vð Þð Þ þ k r � �u;r � vð Þ ¼ f ; vð Þ ð2:12Þ

and for p given in H1ðXÞ, uðpÞ 2 V solves for all v 2 V :

2GðeðuðpÞÞ; eðvÞÞ þ kðr � uðpÞ;r � vÞ
¼ aðp;r � vÞ � ðpc; ½v�C � nþÞC

ð2:13Þ

It is easy to prove that each of these two systems has a

unique solution. This leads to a second reduced problem:

Find p 2 H1ð0; T ; L2ðXÞÞ \ L2ð0; T ;QÞ solution of (2.10)

and:

8h 2 Q;
�

1
M þ cfu0

	
ðpt; hÞ þ aðr � ð�ut þ uðptÞÞ; hÞ

�ð½�ut þ uðptÞ�C � nþ; hcÞC þ 1
lf
ðKðr p� qf ;rgr gÞ;r hÞ

þ w3

12l ðr pc � qf ;rgr gÞ;rhc
� 	

C
¼ ð~q; hÞ þ ð~qI ; hcÞC

ð2:14Þ

where �u 2 H1ð0; T ;V Þ and uðpÞ 2 H1ð0; T ;VÞ are the

unique solutions of (2.12) and (2.13) respectively. The

advantage of (2.14) is that its only unknown is p.

2.3 Existence and Uniqueness

The analysis of Problem (2.7-2.10) relies on suitable

properties of H1
wðCÞ, that in turn depend on the regular-

ity of w. For the practical applications we have in mind,

w has the following properties when d ¼ 3; the statement

easily extends to d ¼ 2.
Hypothesis 1. The non negative function w is H1 in time

and is smooth in space away from the crack front, i.e.

the boundary @C. It vanishes on @C and in a neighborhood

of any point of @C, w is asymptotically of the form:

w x; yð Þ ’ x1=2f yð Þ ð2:15Þ
where y is locally parallel to the crack front, x is the dis-

tance to the crack, and f is smooth.

With this hypothesis, we can validate the integrations

by parts required to pass from Problem (Q) to its varia-

tional formulation (2.7-2.9) and we recover the leakoff

unknown ~qL from (2.11), thus showing equivalence

between all three formulations. This equivalence allows

to ‘‘construct” a solution of Problem (Q) by discretizing

(2.14) with a Galerkin method, more precisely by

approximating p in a truncated basis, say of dimension

m, of the space Q. This leads to a square system of linear

Ordinary Differential Equations of order one and of

dimension m, with an initial condition. A close examina-

tion of this system’s matrices shows that it has a unique

solution. Then reasonable regularity assumptions on the

data, Hypothesis 1, and the theory developed by [18],

yield a set of basic a priori estimates on the discrete pres-

sure, say pm, and displacement uðpmÞ. These are sufficient
to pass to the limit in the discrete version of (2.14), but,

as is the case of a poro-elastic system, they are not suffi-

cient to recover the initial condition on p. This initial

condition can be recovered by means of a suitable

a priori estimate on the time derivative p0m, but it requires
a slightly stronger regularity assumption on the data

(still fairly reasonable) and an assumption on the time

growth of w. It allows the time evolution of a crack,

but it cannot be used in the formation of a crack, since

it forbids an opening of a region that is originally closed.

More precisely, we make the following hypothesis.

Hypothesis 2. There exists a constant C such that:

a:e: inC��0; T ½; w0 � C w ð2:16Þ

With this additional assumption, we can prove exis-

tence and uniqueness of a solution of Problem (Q).

Theorem 1. If f is in H2ð0; T ; L2ðXÞdÞ, ~q in L2ðX��0; T ½Þ,
~qI inH1ð0; T ; L2ðCÞÞ, p0 inQ, and w satisfies Hypotheseses

1 and 2, then the linearized problem (2.7-2.10) has one

and only one solution p in H1ð0; T ; L2ðXÞÞ \ L2ð0; T ;QÞ,
u in H1ð0; T ;VÞ, and ~qL in L2ð0; T ;H1

wðCÞ
0 Þ. This solution

depends continuously on the data.

2.4 Heuristic Mixed Formulation

Amixed formulation for the flow is useful in view of dis-

cretization because it leads to locally conservative

schemes. The mixed formulation we present in this short

section is derived heuristically in the sense that it is writ-

ten in spaces of sufficiently smooth functions in the frac-

ture. As the discrete functions are always locally smooth,

all terms in the discrete formulation will make sense.

For the pressure in XnC, we define the auxiliary veloc-
ity z by:

z ¼ �Kr p� qf ;rgg
� � ð2:17Þ

520 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 69 (2014), No. 4



and for the pressure in C, we define a surface velocity f

by:

f ¼ �r pc � qf ;rgg
� � ð2:18Þ

Let:

Z ¼ fq 2 Hðdiv;Xþ [ X�Þ; ½q� � nþ ¼ 0 on CnC
q � n ¼ 0 on oXg

ZC ¼ fl 2 L2ðCÞd�1; r � ðw3lÞ 2 L2ðCÞg

In view of (1.13), (1.11), and the regularity in Theorem 1,

we have z 2 Z and we see that it must satisfy the essential

jump condition:

1

lf
½z�C � nþ ¼ �~qL onC ð2:19Þ

We use the same space V for u, but we reduce the regu-
larity of p and set:

Q ¼ L2 Xð Þ

As the trace of functions in Q are no longer meaningful,

we introduce an additional variable pc in the space:

HC ¼ L2 Cð Þ

and we assume that the leakoff term is in HC. Then the

mixed variational formulation reads (to simplify, we

do not specify the dependence of the spaces on time):

Find u 2 V , p 2 Q, pc 2 HC, ~qL 2 HC, z 2 Z, and

f 2 ZC such that (2.7), (2.10), and (2.19) hold:

2GðeðuÞ; eðvÞÞ þ kðr � u;r � vÞ � aðp;r � vÞ
þðpc; ½v�C � nþÞC ¼ ðf ; vÞ; 8v 2 V

pð0Þ ¼ p0

1

lf
½z�C � nþ ¼ �~qL on C

and for all h in Q:

1

M
þ cfu0

� �
pt; hð Þ þ a r � ut; hð Þ þ 1

lf
div z; hð Þ ¼ ~q; hð Þ

ð2:20Þ

for all hc in HC

�ð½ut�C � nþ; hcÞC þ 1

12lf
ðr � ðw3fÞ; hcÞC ¼ ð~qI � ~qL; hcÞC

ð2:21Þ

8q 2 Z ; K�1z; q
� � ¼ ðp;r � qÞ � ðpc; ½q�C � nþÞC

þ r qf ;rgg
� �

; q
� �

ð2:22Þ

8l 2 ZC; ðw3f; lÞC ¼ ðpc;r � ðw3lÞÞC
þ ðrðqf ;rggÞ;w3lÞC

ð2:23Þ

It follows from (2.22) that p belongs to H1ðXÞ and

pc ¼ pjC. Hence pc acts like a Lagrange multiplier that

enforces the continuity of the traces on C. Moreover,

when the solutions are sufficiently smooth, the mixed

and primitive formulations are equivalent. In addition,

~qL can be immediately eliminated by substituting (2.19)

into (2.21); this yields:

8hc 2 HC; �ð½ut�C � nþ; hcÞC þ 1
12lf

ðr � ðw3fÞ; hcÞC
� 1

lf
ð½z�C � nþ; hcÞC ¼ ð~qI ; hcÞC

ð2:24Þ

3 DISCRETIZATION

In this section, we present a space-time discretization of

the linearized problem (2.7), (2.10), (2.20), (2.22), (2.23),

(2.24) with a backward Euler scheme in time and

Galerkin finite elements in space for the displacement,

except in a neighborhood of the crack. The flow equation

is discretized by aMultipoint FluxMixed Finite Element

Method (MFMFE). In order to avoid handling curved

elements or approximating curved surfaces, we assume

that both oX and the crack C are polygonal or polyhe-

dral surfaces. We shall refer to this scheme as the

MFMFE-CG scheme. A convergence analysis of the

MFE-CG scheme for the poro-elasticity system without

a crack is done in [17], where two versions of the method:

one with a symmetric quadrature rule on simplicial grids

or on smooth quadrilateral and hexahedral grids, and

one with a non-symmetric quadrature rule on rough

quadrilateral and hexahedral grids are treated. Theoret-

ical and numerical results demonstrated first order con-

vergence in time and space for the fluid pressure and

velocity as well as for solid displacement. In the formu-

lation below, we restrict our attention to the symmetric

quadrature rule for the flow.

3.1 MFMFE Spaces

We first describe the interior discretization. Let X be

exactly partitioned into a conforming union of finite ele-

ments of characteristic size h, i.e. without hanging nodes.
For convenience we assume that the elements are
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quadrilaterals in 2D and hexahedra in 3D. Let us denote

the partition by Th and assume that it is shape-regular

[20]. For convenience, we also assume that Th triangu-

lates exactlyXþ andX�; in particular, no element crosses

C. The displacement, velocity and pressure finite element

spaces on any physical element E are defined, respec-

tively, via the vector transformation:

v $ v̂ : v ¼ v̂ � F�1
E

via the Piola transformation:

z $ ẑ : z ¼ 1

JE
DFE ẑ � F�1

E ð3:1Þ

and via the scalar transformation:

w $ ŵ : w ¼ ŵ � F�1
E

where FE denotes a mapping from the reference element

Ê to the physical element E, DFE is the Jacobian of FE,

and JE is its determinant. The advantage of the Piola

transformation is that it preserves the divergence and

the normal components of the velocity vectors on the

faces (edges) [21, see Chap.III, 4.4], [22]:

ðr � v;wÞE ¼ ðr̂� v̂; ŵÞÊ and ðv � ne;wÞe ¼ ðv̂ � n̂ê; ŵÞê
ð3:2Þ

which is needed for an Hðdiv;XÞ-conforming velocity

space as required by (3.3).

The finite element spaces V h, Zh and Qh on Th are

given by:

V h ¼ v 2 V ; vjE $ v̂; v̂ 2 V̂ðÊÞ; 8E 2 Th

� �
Zh ¼ z 2 Z; zjE $ ẑ; ẑ 2 ẐðÊÞ; 8E 2 Th

� �
Qh ¼ q 2 Q; qjE $ q̂; q̂ 2 Q̂ðÊÞ; 8E 2 Th

� � ð3:3Þ

where V̂ ðÊÞ, ẐðÊÞ and Q̂ðÊÞ are finite element spaces on

the reference element Ê. Note that since C is an open set

and V h is contained in V , the functions of V h are contin-

uous on oC, i.e. they have no jump on oC.
Let Pk denote the space of polynomials of degree k in

two or three variables, and let Q1 denote the bilinear or

trilinear polynomial spaces in two or three variables,

according to the dimension.

Convex Quadrilaterals

In the case of convex quadrilaterals, Ê is the unit square

with vertices r̂1 ¼ ð0; 0ÞT , r̂2 ¼ ð1; 0ÞT , r̂3 ¼ ð1; 1ÞT , and
r̂4 ¼ ð0; 1ÞT . Denote by ri, i ¼ 1; . . . ; 4 the corresponding

vertices of E. In this case, FE is the bilinear mapping

given as:

FE x̂; ŷð Þ ¼ r1 1� x̂ð Þ 1� ŷð Þ þ r2x̂ 1� ŷð Þ þ r3x̂ŷ

þ r4 1� x̂ð Þŷ
the space for the displacement is:

V̂ðÊÞ ¼ Q1ðÊÞ2

and the space for the flow is the lowest order BDM1 [23]

space:

ẐðÊÞ ¼ P1ðÊÞ2 þ r curlðx̂2ŷÞ þ s curlðx̂ŷ2Þ

Q̂ Ê
� � ¼ P0 Ê

� �
where r and s are real constants.

Hexahedra

In the case of hexahedra, Ê is the unit cube with

vertices r̂1 ¼ ð0; 0; 0ÞT , r̂2 ¼ ð1; 0; 0ÞT , r̂3 ¼ ð1; 1; 0ÞT ,
r̂4 ¼ ð0; 1; 0ÞT , r̂5 ¼ ð0; 0; 1ÞT , r̂6 ¼ ð1; 0; 1ÞT ,
r̂7 ¼ ð1; 1; 1ÞT , and r̂8 ¼ ð0; 1; 1ÞT . Denote by

ri ¼ ðxi; yi; ziÞT ; i ¼ 1; . . . ; 8, the eight corresponding ver-

tices of E. We note that the element can have non-planar

faces. In this case FE is a trilinear mapping given by:

FE x̂; ŷ; ẑð Þ ¼ r1 1� x̂ð Þ 1� ŷð Þ 1� ẑð Þ þ r2x̂ 1� ŷð Þ 1� ẑð Þ
þ r3x̂ŷ 1� ẑð Þ þ r4 1� x̂ð Þŷ 1� ẑð Þ þ r5 1� x̂ð Þ 1� ŷð Þẑ
þ r6x̂ 1� ŷð Þẑþ r7x̂ŷẑþ r8 1� x̂ð Þŷẑ

and the spaces are defined by:

V̂ðÊÞ ¼ Q1ðÊÞ3

for the displacement, and by enhancing the BDDF1

spaces [14] for the flow:

ẐðÊÞ ¼ BDDF1ðÊÞ
þ s2curlð0; 0; x̂2ẑÞT þ s3curlð0; 0; x̂2ŷẑÞT
þ t2curlðx̂ŷ2; 0; 0ÞT þ t3curlðx̂ŷ2ẑ; 0; 0ÞT
þ w2curlð0; ŷẑ2; 0ÞT þ w3curlð0; x̂ŷẑ2; 0ÞT
Q̂ðÊÞ ¼ P0ðÊÞ

ð3:4Þ

where the BDDF1ðÊÞ space is defined as [24]:

BDDF1ðÊÞ ¼ P1ðÊÞ3 þ s0curlð0; 0; x̂ŷẑÞT

þ s1curlð0; 0; x̂ŷ2ÞT þ t0curlðx̂ŷẑ; 0; 0ÞT

þ t1curlðŷẑ2; 0; 0ÞT þ w0curlð0; x̂ŷẑ; 0ÞT

þ w1curlð0; x̂2ẑ; 0ÞT
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In the above equations, si; ti;wi ði ¼ 0; . . . ; 3Þ are real

constants. In all cases, the Degrees of Freedom (DOF)

for the displacements are chosen as Lagrangian nodal

point values. The velocity DOF are chosen to be the nor-

mal components at the d vertices on each face. The

dimension of the space is dnv, where d is the dimension

and nv is the number of vertices in E. Note that, although

the original BDDF1 spaces have only three DOF on

square faces, these spaces have been enhanced in [14]

to have four DOF on square faces. This special choice

is needed in the reduction to a cell-centered pressure

stencil in a pure Darcy flow problem as described later

in this section.

3.2 A Quadrature Rule

The integration on a physical element is performed by

mapping to the reference element and choosing a quad-

rature rule on Ê. Using the Piola transformation, we

write ðK�1�; �Þ in (2.22) as:

ðK�1z; qÞE ¼ 1

JE
DFTEK

�1ðFEðx̂ÞÞDFE ẑ; q̂

� �
Ê

	 ðME ẑ; q̂ÞÊ

where:

ME ¼ 1

JE
DFTEK

�1 FE x̂ð Þð ÞDFE ð3:5Þ

Then, we denote the trapezoidal rule on Ê by

Trapð�; �ÞÊ:

Trapðẑ; q̂ÞÊ 	 Ê


 


k

Xk
i¼1

ẑðr̂iÞ � q̂ðr̂iÞ ð3:6Þ

where fr̂igki¼1 are the vertices of Ê. The quadrature rule

on an element E is defined as:

ðK�1z; qÞQ;E 	 TrapðME ẑ; q̂ÞÊ
¼ Ê


 


k
Pk
i¼1

ME r̂ið Þẑ r̂ið Þ � q̂ r̂ið Þ
ð3:7Þ

Mapping back to the physical element E, we have the

quadrature rule on E as:

ðK�1z; qÞQ;E ¼ Ê


 


k

Xk
i¼1

JEðr̂iÞK�1ðriÞzðriÞ � qðriÞ ð3:8Þ

and we define ðK�1z; qÞQ by summing (3.8) on all ele-

ments E of Th. As the trapezoidal rule induces a scalar

product on the above finite element spaces that yields a

norm uniformly equivalent to the L2 norm [14, 15], and

the tensor K is symmetric, bounded, and uniformly

positive definite, this quadrature rule also yields a

norm on these spaces uniformly equivalent to the L2

norm.

3.3. Discretization in the Fracture

SinceC is assumed to be polygonal or polyhedral, we can

map each line segment or plane face of C onto a segment

in the x1 line (when d ¼ 2) or a polygon in the x1 � x2
plane (when d ¼ 3) by a rigid-body motion that pre-

serves both surface gradient and divergence, maps the

normal nþ into a unit vector along x3, for exemple

�e3, and whose Jacobian is one. After this change in var-

iable, all operations on this line segment or plane face

can be treated as the same operations on the x1 axis or

x1 � x2 plane. To simplify, we do not use a particular

notation for this change in variable, and work as if the

line segments or plane faces of C lie on the x1 line or

x1 � x2 plane. LetSi, 1 � i � I , denote the line segments

or plane faces of C; to simplify, we drop the index i. Let
TS;h be a shape regular partition of S, for instance the

trace of Th on S (but it can be something else) let e
denote a generic element ofTS;h, with reference element

ê, and let the scalar and Piola transforms be defined by

the same formula as above, but with respect to e instead
of E. Then we define the finite element spaces on C by:

ZC;h ¼ z 2 ZC; zjSi
2 ZSi;h; 1 � i � I

n o

HC;h ¼ q 2 HC; qjSi
2 HSi;h; 1 � i � I

n o

with:

ZS;h ¼ z 2 ZC; zje $ ẑ; ẑ 2 ẐC êð Þ; 8e 2 TS;h

� �

HS;h ¼ q 2 HC; qje $ q̂; q̂ 2 ĤC êð Þ; 8e 2 TS;h

n o

where ẐCðêÞ and ĤCðêÞ are finite element spaces on the

reference element ê.
We approximate ðw3f; lÞS in (2.23) by first writing:

ðw3f; lÞe ¼
1

J e
wðFeðx̂ÞÞ3DFTeDFef̂; l̂

� �
ê 	 ðMef̂; l̂Þê

where:

Me ¼ 1

J e
wðFeðx̂ÞÞ3DFTeDFe ð3:9Þ
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and next applying the trapezoidal rule Trapð�; �Þê on ê:

Trapðf̂; l̂Þê 	
êj j
k

Xk
i¼1

f̂ðr̂iÞ � l̂ðr̂iÞ ð3:10Þ

where fr̂igki¼1 are the vertices of ê. Hence mapping back

to the physical element e, we approximate ðw3f; lÞe by:

ðw3f; lÞQ;e ¼
êj j
k

Xk
i¼1

J eðr̂iÞwðriÞ3fðriÞ � lðriÞ ð3:11Þ

and we obtain the approximation ðw3f; lÞQ by summing

over all elements of TS;h and over all S of C.

Let Ih denote the standard nodal Lagrange interpo-

lant on P1 or Q1. Then:

ðw3f; lÞQ ¼ ðIhðw3Þf; lÞQ

and the properties of the quadrature formula imply that:

8l 2 ZS;h; ðw3l; lÞ12Q ’ jjIhðw3
2ÞljjL2 Cð Þ

3.4 The Scheme

Let N 
 1 be a fixed integer, �t ¼ T=N the time step,

and ti ¼ i�t, 0 � i � N , the discrete time points. We

define the approximations f n of f ðtnÞ and ~qn of ~qðtnÞ
for almost every x 2 Xþ [ X� or X by:

f n xð Þ ¼ 1

�t

Z tn

tn�1

f x; tð Þd t; ~qn xð Þ ¼ 1

�t

Z tn

tn�1

~q x; tð Þd t

ð3:12Þ

Similarly, we define the approximation ~qnI of ~qI ðtnÞ for

almost every s 2 C by:

~qnI sð Þ ¼ 1

�t

Z tn

tn�1

~qI s; tð Þd t ð3:13Þ

On the other hand, we use point values for w in time,

i.e. define:

8s 2 C; wn sð Þ ¼ w s; tnð Þ

Then we propose an iterative algorithm for solving the

fully discrete version of (2.7), (2.10), (2.20), (2.22), (2.23),

(2.24) that uses the quadrature rule of Sections 3.2 and

3.3. A flowchart of the scheme is given in Figure 1. It uses

the Fixed Stress split iterative algorithm of Mikelić and

Wheeler [25]. The mean stress is given by

�r ¼ 1
3

P3
i¼1r

por
ii , where rpor is defined by (1.1). Thus the

discrete mean stress reads:

�rh ¼ a2

cr
r � uh � aph

where:

cr ¼ 3a2

3kþ 2G

For a given displacement and mean stress, the algorithm

decouples sequentially the computation of the flow in the

reservoir from that in the fracture.

Recall that the given initial pressure p0 is sufficiently

smooth and has a trace, say p0c , on C; this is the initial

pressure in C.

– At time t ¼ 0, let p0h ¼ Phðp0Þ and p0c;h ¼ �Phðp0cÞ where
Ph and �Ph are suitable approximation operators from

Q into Qh andHC into HC;h respectively. Then the ini-

tial displacement is approximated by discretizing the

elasticity equation (2.13) in XnC: Find u0h 2 V h solu-

tion for all vh 2 V h of:

2G e u0h
� �

; e vhð Þ� �þ k r � u0h;r � vh
� �

¼ aðp0h;r � vhÞ � ðp0c;h; ½vh�C � nþÞC þ ðf 0; vhÞ
ð3:14Þ

This gives the initial mean stress:

�r0h ¼
a2

cr
r � u0h � ap0h

– Marching in time. For any n, 0 � n � N � 1, knowing
unh, p

n
h, �r

n
h and pnc;h, the discrete functions at time tnþ1

are computed iteratively by two nested loops:

– Starting functions:

pnþ1;0
h ¼ pnh; u

nþ1;0
h ¼ unh; p

nþ1;0
c;h ¼ pnc;h; �r

nþ1;0
h ¼ �rnh

– Outer loop. For l ¼ 0; 1; . . ., knowing unþ1;l
h , �rnþ1;l

h ,

and pnþ1;l
c;h compute iteratively intermediate functions

pnþ1;j
h , znþ1;j

h , fnþ1;j
h , and pnþ1;j

c;h , for j ¼ 1; 2; . . . ; jm by

the inner loop written below. Set:

pnþ1;lþ1
h :¼ pnþ1;jm

h ; pnþ1;lþ1
c;h :¼ pnþ1;jm

c;h

and compute the displacement unþ1;lþ1
h 2 V h by solv-

ing for all vh 2 V h:

2Gðeðunþ1;lþ1
h Þ; eðvhÞÞ þ kðr � unþ1;lþ1

h ;r � vhÞ
¼ aðpnþ1;lþ1

h ;r � vhÞ � ðpnþ1;lþ1
c;h ; ½vh�C � nþÞC

þðf nþ1; vhÞ
ð3:15Þ
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Update the mean stress by:

�rnþ1;lþ1
h ¼ a2

cr
r � unþ1;lþ1

h � apnþ1;lþ1
h

and test the difference in porosities (see Eq. 1.5):

ar � unþ1;lþ1
h � unþ1;l

h

� 	
þ 1

M
pnþ1;lþ1
h � pnþ1;l

h

� 	

If it is larger than the tolerance, increment l and

return to the outer loop. Otherwise, set:

unþ1
h : ¼ unþ1;lþ1

h ; pnþ1
h ¼ pnþ1;lþ1

h ; pnþ1
c;h : ¼ pnþ1;lþ1

c;h ;

�rnþ1
h ¼ �rnþ1;lþ1

h

increment n and return to the marching in time.

– Inner loop. Set:

pnþ1;0
c;h : ¼ pnþ1;l

c;h

– For j ¼ 0; 1; . . ., knowing �rnþ1;l
h , unþ1;l

h , and pnþ1;j
c;h , com-

pute pnþ1;jþ1
h 2 Qh and znþ1;jþ1

h 2 Zh solution of:�
1
M þ cfu0

	
1
�t ðpnþ1;jþ1

h � pnh; hhÞ þ 1
lf
ðdiv znþ1;jþ1

h ; hhÞ
¼ ð~qnþ1; hhÞ � cr

a
1
�t ð�rnþ1;l

h � �rnh; hhÞ; 8hh 2 Qh

ð3:16Þ

8qh 2 Zh; ðK�1znþ1;jþ1
h ; qhÞQ ¼ ðpnþ1;jþ1

h ;r � qhÞ
�ðpnþ1;j

c;h ; ½qh�C � nþÞC þ ðrðqf ;rggÞ; qhÞ
ð3:17Þ

Compute f
nþ1;jþ1
h 2 ZC;h and pnþ1;jþ1

c;h 2 HC;h solution

for all hc;h in HC;h of:

� 1
�t ð½unþ1;l

h � unh�C � nþ; hc;hÞC
� 1

lf
ð½znþ1;jþ1

h �C � nþ; hc;hÞC
þ 1

12lf
ðr � ðwðtnþ1Þ3fnþ1;jþ1

h Þ; hc;hÞC
þbðpnþ1;jþ1

c;h � pnþ1;j
c;h ; hc;hÞC ¼ ð~qnþ1

I ; hc;hÞC

ð3:18Þ

ðwðtnþ1Þ3fnþ1;jþ1
h ; lhÞQ ¼ ðpnþ1;jþ1

c;h ;r � ðwðtnþ1Þ3lhÞÞC
þðrðqf ;rggÞ;wðtnþ1Þ3lhÞC; 8lh 2 ZC;h

ð3:19Þ

where b > 0 is a stabilizing factor to be adjusted. Test the

difference pnþ1;jþ1
c;h � pnþ1;j

c;h . If it is less than the tolerance,

set:

jm: ¼ jþ 1; pnþ1;jm
h : ¼ pnþ1;jþ1

h ; pnþ1;jm
c;h : ¼ pnþ1;jþ1

c;h

and return to the outer loop.

For given pressures, (3.14) and (3.15) have a unique

solution. It is easy to prove that (3.16-3.17) determine

pnþ1;jþ1
h and znþ1;jþ1

h , and that (3.18-3.19) determine

Ihðwðtnþ1Þ3=2Þfnþ1;jþ1
h and pnþ1;jþ1

c;h , owing in particular

to the stabilizing term with factor b. Two remarks are

in order regarding the algorithm. Equation (3.15) utilizes

discontinuous spaces of functions on C and weakly

imposes a traction boundary condition: pnþ1;lþ1
c;h . Com-

puting the solution relies on the work of Liu in [26].

The system (3.18-3.19) is solved in Section 4 below by

means of a mimetic formulation [27], which is closely

related to a mixed finite element method when using

quadrilateral elements.

4 NUMERICAL EXPERIMENT

We provide the following numerical example as a simple

illustration of the model and its predictive capability.

Following the flowchart in Figure 1, we have imple-

mented the fixed stress iterative coupling scheme with

the inner iteration between reservoir flow and fracture

flow into the IPARS reservoir simulation code.

The domain is taken to be the cube X ¼ ð0; 10Þ3m,

with a square fracture C centered on the plane

y ¼ 5f gm of size 7:5� 7:5m. The domain is discretized

into 5� 6� 5 structured hexahedral elements. There

are uniform mesh widths of 2m in the x and z directions,
and mesh widths of 2:475; 2:475; 0:05; 0:05; 2:475;f
2:475gm in the y direction.

Start Start

EndTime step n+1

Fixed stress iter. l

Res.-frac. iter j

Solve reservoir flow
system (3.16)-(3.17)

Solve res.-frac. flow
with fixed stress

Solve mechanics
system (3.15) No

No

End

Yes
Yes

Solve fracture flow
system (3.18)-(3.19)

δφ

δp

n+1,l

n+1,l,j

< TOL ?

< TOL ?

Fixed stess iterative coupling
of poroelasticity with fracture

Reservoir-fracture flow
with fixed stress

Figure 1

Flowcharts for outer iteration (left) and inner iteration

(right) with fixed stress iterative coupling of poroelasticity

with fracture.
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The initial fluid pressure in both the reservoir and

fracture is taken to be p0 ¼ 3:5� 106 Pa. The external

fluid boundary conditions are set to be p ¼ p0 on @X,
which will allow fluid to escape as pressure rises. The

external mechanical boundary conditions are such that

the bottom face is completely pinned: u ¼ 0m; the

four lateral faces are traction free: rporn ¼ 0 psi;
and the top face has an overburden traction of

rporn ¼ �3:8; 0; 0ð Þ � 106 psi. The stabilization parame-

ter is taken to be b ¼ 1:0� 10�4. The remaining input

parameters are summarized in Table 1. The Lamé con-

stants are given by k ¼ Em=½ð1þ mÞð1� 2mÞ� and

G ¼ E=½2ð1þ mÞ�. Fluid is injected into the center of

the fracture with a constant rate of qI ¼ 1 000 kg � s�1,

which will induce a pressure gradient in the fracture

and leak off into the domain. Both the leak off rate qL
and the fracture pressure pc are unknowns determined

by the coupling of the reservoir and fracture flow mod-

els. The fluid pressure computed in the fracture plane

is shown in Figure 2. The pressurized fracture also

induces a traction on C, which creates a discontinuity

in the displacement field, allowing the calculation of a

dynamic width, which is shown in Figure 3.

CONCLUSIONS

We have studied the numerical approximation of a

fracture model in a poroelastic medium, where the

fracture is represented as a curve or surface and its

width is incorporated into the flow equation in the

fracture. We have used a MFMFE method for the flow

in the reservoir and a Mimetic Finite Difference

(MFD) method in the fracture, and a Continuous

Galerkin (CG) method for the geomechanics. The

scheme was solved by a fixed stress split iterative cou-

pling for the flow and mechanics and an iterative algo-

rithm coupling the flow in the reservoir and in the

crack. A numerical experiment illustrated the relevance

of the mechanical model and the efficiency of the

numerical method and algorithm.
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4.46E+06
4.34E+06
4.22E+06
4.09E+06
3.97E+06
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3.72E+06
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Figure 2

Computed fluid pressure in the fracture plane and a perpen-

dicular plane on (top) the first time step, and (bottom) the

final time step.

TABLE 1

Input parameters for the numerical example in Si units

Parameter Quantity Value

K Reservoir permeability diagð5; 20; 20Þ � 10�15

m2

u0 Initial porosity 0.2

l Fluid viscocity 1� 10�3 Pa�s

c Fluid compressibility 5:8� 10�7 Pa�1

qf ;r Reference fluid density 897 kg�m�3

g Gravitational acceleration 0 m�s�2

E Young’s modulus 7:0� 1010 Pa

m Poisson’s ratio 0:3

a Biot’s coefficient 1:0

M Biot’s modulus 2:0� 108 Pa

T Total simulation time 20 s

�t Time step 1 s
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5 Alboin C., Jaffré J., Roberts J.E., Serres C. (2002) Modeling
fractures as interfaces for flowand transport inporousmedia,
Chen Z., Ewing R.E. (eds), Fluid flow and transport in porous
media: mathematical and numerical treatment, Contemporary
Mathematics 295, 13-24, American Mathematical Society.
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