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ABSTRACT

We show that one may pass from bulk to boundary thermodynamic quantities for ro-

tating AdS black holes in arbitrary dimensions so that if the bulk quantities satisfy the

first law of thermodynamics then so do the boundary CFT quantities. This corrects recent

claims that boundary CFT quantities satisfying the first law may only be obtained using

bulk quantities measured with respect to a certain frame rotating at infinity, and which

therefore do not satisfy the first law. We show that the bulk black hole thermodynamic

variables, or equivalently therefore the boundary CFT variables, do not always satisfy a

Cardy-Verlinde type formula, but they do always satisfy an AdS-Bekenstein bound. The

universal validity of the Bekenstein bound is a consequence of the more fundamental cosmic

censorship bound, which we find to hold in all cases examined. We also find that at fixed

entropy, the temperature of a rotating black hole is bounded above by that of a non-rotating

black hole, in four and five dimensions, but not in six or more dimensions. We find evi-

dence for universal upper bounds for the area of cosmological event horizons and black-hole

horizons in rotating black-hole spacetimes with a positive cosmological constant.
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1 Introduction

There has been much progress recently in constructing solutions of the supergravity equa-

tions describing rotating and charged black holes in n-dimensional anti-de Sitter back-

grounds [1–9]. A primary motivation for this work was the elucidation of the thermody-

namics of these black holes, with a view to comparing it with that of the dual conformal

field theories [10–12] on the boundary of the spacetime, which approaches AdS with radius

of curvature l.1 In particular the correct energies and angular momenta for Kerr-AdS black

holes, measured with respect to a frame that is non-rotating at infinity, were calculated in

all dimensions in [13], where it was also demonstrated that these quantities satisfy the first

law of thermodynamics,

dE = TdS +ΩidJi . (1.1)

This resolved some of the apparent ambiguities in earlier work, that had focused on energies

and angular velocities measured with respect to a particular frame rotating at infinity, which

we shall denote with primes throughout this paper.2 As shown in [13], these do not satisfy

the first law of thermodynamics:

dE′ 6= T ′dS′ +Ωi′dJ ′
i , (1.2)

since the asymptotic rotation rate in this frame depends on the black-hole rotation param-

eters.

In a recent paper, Cai et al. [14] noticed that by passing from the bulk quantities (E′, J ′
i)

to the dual CFT quantities (e′, j′i, . . .) on the boundary, and by including an additional

pressure term p′ and suitably-defined volume term v′, the equation

de′ = t′ds′ + ωi′dj′i − p′dv′ (1.3)

holds. They interpreted this equation as the first law for the dual CFT, and furthermore

they made the surprising claim that no such analogous CFT thermodynamic variables can

be introduced that are dual to the unprimed bulk quantities, and which satisfy the first law.

de = tds+ ωidji − pdv . (1.4)

1In n = 5 dimensions, the dual boundary conformal field theory is N = 4 supersymmetric SU(N)

Yang-Mills theory, where N2 = πc3l3/(2~G5).
2Not all quantities measured in the rotating coordinate system are changed from their values in the

asymptotically static frame, but for clarity we denote all quantities measured in the rotating frame with

primes in the present discussion.
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One purpose of this paper is to refute this surprising claim, and on the contrary to demon-

strate that following the perfectly standard transcription rules relating bulk and boundary

quantities, the first law (1.4) does indeed hold. We also raise questions as to whether the

interpretation of the primed quantities given in [14] is physically correct.

A remarkable feature of [14], following earlier work in [15, 16], is the observation that

the primed bulk quantities satisfy a Cardy-Verlinde [18] type formula,

S′ =
2πl

n− 2

√
E′

c(2E
′ − E′

c) ,

E′
c = (n− 1)E′ − (n − 2)(T ′S′ +Ωi′J ′

i) , (1.5)

whereas the unprimed quantities measured with respect to a non-rotating frame at infinity

do not. This has motivated us to re-examine the old question of whether or not AdS black

holes satisfy some sort of possibly modified Cardy-Verlinde formula, and a Bekenstein-type

bound of the form3

E ≥ (n − 2)S

2πl
. (1.6)

The existence of the Bekenstein bound is a necessary but not sufficient condition for

the validity of a Cardy-Verlinde formula. In fact, we find that while there appears to be

no universal formulation of a modified Cardy-Verlinde formula that will cover all of the

charged and rotating AdS black holes that we know of, we do find that a Bekenstein bound

holds in all cases.

In fact, the Bekenstein bound follows from a stronger and more fundamental inequality,

the cosmic censorship bound, which takes the form

E ≥ (n− 2)A

16πl

[
l
( A

An−2

)−
1

n−2
+

1

l

( A

An−2

) 1
n−2

]
, (1.7)

where A is the area of the event horizon, or more generally, in time-dependent cases, the

area of the outermost apparent horizon, and An−2 is the volume of the unit (n− 2)-sphere.

We show that the recently-constructed exact solutions for rotating and charged AdS black

holes give strong support for the conjectured cosmic censorship bound.

As well as lower bounds for the energy in terms of the entropy, it is well known that

there are interesting upper bounds for the temperature as a function of entropy, for black

holes in asymptotically flat spacetimes. It turns out that these may be generalised to the

3Note that the Bekenstein bound does not contain Newton’s constant, and so it makes sense for any

thermodynamic quantity in an AdS background. However, in this paper our concern is solely with black

holes.
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static anti-de Sitter case, taking the form

4πT ≤ (n− 3)
( A

An−2

)−
1

n−2
+ (n− 1)l−2

( A

An−2

) 1
n−2

, (1.8)

in n dimensions. That is, the temperature is never greater than the value it would have in

the Schwarzschild-AdS solution with the same entropy. We investigate whether the bound

extends to stationary black holes, finding that it is obeyed by all Kerr-AdS black holes in

four and five dimensions, but not in dimensions six or higher.

The uncharged rotating black hole solutions are of course valid also if the cosmological

constant is taken to be positive, corresponding to sending l2 → −l2. In this case, an

additional, cosmological, horizon is present. We verify that these solutions support the

general conjecture that the area AC of the cosmological horizon satisfies

AC ≤ An−2 l
2 , (1.9)

and the black hole horizon satisfies the inequality

AH ≤ An−2 l
n−2

(n− 3

n− 1

)n−2
2

. (1.10)

The plan of the paper is as follows. In section 2 we establish a general equivalence

between bulk and boundary thermodynamics, and explain our disagreement with some of

the work in [14]. In section 3, we review the Cardy-Verlinde formula and its consequence,

the AdS-Bekenstein bound, explaining why it is saturated at the Hawking-Page phase tran-

sition. We show that a simple modification holds for Reissner-Nordström-AdS black holes,

and gives rise to a strengthened form of the Bekenstein bound. We also show that in all di-

mensions rotating black holes without charge satisfy the AdS-Bekenstein bound. In section

4, we examine a large number of examples of rotating and/or charged black holes, find-

ing that despite the failure in general of the Cardy-Verlinde formula, the AdS-Bekenstein

bound, or its strengthened electrostatic form, holds. In section 5 we discuss how the AdS-

Bekenstein bound may be regarded as a consequence of the AdS cosmic censorship bound,

and demonstrate in all the examples we have checked that the AdS cosmic censorship bound

does indeed hold, in some cases strengthened by an electrostatic contribution. Section 6

discusses upper bounds for the temperature of AdS black holes, in terms of their entropy.

We find that rotating black holes in four and five dimensions always have a temperature that

is less than that of the Schwarzschild-AdS solution with the same area. However, rotating

black holes of dimension six or higher do not satisfy such a bound. Section 7 contains a

brief discussion of the areas of the cosmological and black-hole horizons for rotating black
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holes with positive cosmological constant. We collect for the reader’s convenience, in an

appendix, the pertinent formulae for Kerr-AdS black holes in arbitrary dimensions. Our

conclusions are contained in section 8.

2 Bulk and Boundary Thermodynamics

The purpose of this section is to show that there is a universal rule allowing one to pass

between bulk and boundary quantities in such a way that if one set of quantities satisfies

the first law of thermodynamics, then so will the other.

2.1 Tolman or UV/IR scaling transformations

It is quite generally true that if an arbitrary thermodynamic system satisfies the first law

of thermodynamics without a pressure term,

dE = TdS +ΩidJi +ΦidQi , (2.1)

then associated with it is a second system, with pressure equal to the energy density divided

by the spatial dimension, which satisfies the first law with pressure term:

de = tds+ ωidji + φidqi − pdv . (2.2)

Actually, since the first system need have no natural dimension associated to it, the spatial

dimension (n− 2) of the second system can be arbitrary. The thermodynamic quantities of

the second system, denoted by lower-case letters, are related to those of the first system by

e = l
yE , ωi = l

yΩ
i , φi =

l
yΦi , t = l

yT ,

s = S , ji = Ji , qi = Qi ,
(2.3)

with

v = An−2 y
n−2 , p =

e

(n− 2) v
, (2.4)

where An−2 is the volume of the unit (n − 2)-sphere. Here, y is to be thought of as the

radius of the second system, and l is an arbitrary constant, which in our application is

related to the cosmological constant, so that Rµν = −(n− 1)l−2 gµν . Note that in (2.3) the

intensive quantities (T,Ωi,Φi) are scaled, as is the energy E, whilst the extensive quantities

(S, Ji, Qi) are not scaled.

As it stands, the above result is a mathematical triviality. However, in the case we are

considering, where the first system is a rotating charged black hole in an AdSn background,

5



it allows us to relate the bulk thermodynamic quantities associated with the black hole to

the boundary quantities associated with the dual conformal field theory. The quantities

(E,T, S,Ωi, Ji,Φi, Qi) are all evaluated with respect to a coordinate frame (t, y, µ̂i, ϕi) that

is non-rotating and asymptotically spherical at infinity.4 In these coordinates, the metric

of the rotating black hole approaches the AdS metric

ds̄2 = −(1 + y2l−2)dt2 +
dt2

1 + y2l−2
+ y2

N+ǫ∑

k=1

(dµ̂2
k + µ̂2

kdϕ
2
k) , (2.5)

in n = 2N+ǫ+1 dimensions, where ǫ = (n−1) mod 2 (see [13], and appendix A, for a more

detailed discussion). Note that the radial coordinate y is related to the Fefferman-Graham

coordinate z ∼ l2/y for which the metric asymptotes to −l2dt2/z2+ l2dz2/z2+ l4/z2dΩ2
n−2.

The Killing vector ∂/∂t is normalised so that near infinity

g(
∂

∂t
,
∂

∂t
) → −y2

l2
, (2.6)

and this fixes the normalisation of the quantities (E,T,Ωi,Φi). A boundary conformal field

theory living on a surface y =constant will thus occupy the volume v given in (2.4). The

intensive quantities (t, ωi, φi) of the CFT are then given by the standard Tolman redshifting

factor, or, in the language of the AdS/CFT correspondence, the UV/IR connection, which

coincides with our formulae in (2.3). The pressure p is that expected of a conformally-

invariant system, the trace of whose energy-momentum tensor should vanish. One reason

why the extensive quantities S, Ji and Qi cannot scale under the UV/IR connection is that

they are subject to quantisation conditions, and are given by integers.

The upshot of the above discussion is that the introduction of the pressure term is a

triviality, which ensures that if the first law of thermodynamics holds in the bulk, then it

holds also in the boundary CFT.

2.2 Relation to earlier work

Although for us the introduction of the pressure term is, as we have explained above, a

triviality, because our bulk quantities satisfy the first law of thermodynamics, it is less

transparent if bulk thermodynamic variables are chosen that do not satisfy the first law.

As we showed in [13], the way to obtain bulk thermodynamic quantities for black holes

that satisfy the first law is by calculating them with respect to a frame that it non-rotating

4The time coordinate t should not be confused with the CFT temperature t — it should be clear from

the context which is which.
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at infinity. The energy measured in this frame can be derived [13] using the Ashtekar-

Magnon-Das conformal definition of mass in AdS backgrounds [21, 22]. It has also been

shown [23] that the same expression can be derived from the superpotential of Katz, Bičák

and Lynden-Bell [24]. A further calculation leading to the same expression for the energy

was given recently in [25].

There are, of course, infinitely many frames one could choose that do rotate, with

different rotation rates, at infinity. One popular choice is the asymptotically-rotating coor-

dinate system in which Carter first wrote the Kerr-AdS black hole in four dimensions [26].

Analogous rotating frames were introduced in five dimensions by Hawking, Hunter and

Taylor-Robinson [1], and in all higher dimensions in [2]. In these papers, the metrics are

given in a coordinate system which is rotating with angular velocity

Ωi
∞ =

ai
l2

(2.7)

with respect to an asymptotically static frame, where ai are the rotation parameters. (See

appendix A for a summary of the salient details of the Kerr-AdS metrics. In the appendix,

the metrics are given in an asymptotically static coordinate system.)

The geometrical significance of this particular rotating frame is that with respect to it

the Kerr-Schild congruence, which was used to construct the solution, is non-rotating at

infinity. However, this in itself does not appear to endow it with any privileged dynamical

significance. Nevertheless one can certainly, as has been done in some of the literature,

associate with it energies and angular velocities, which we shall denote by primes, that are

given in terms of the unprimed non-rotating thermodynamic quantities by [13]

E′ = E − ai
l2

Ji , Ωi′ = Ωi − ai
l2

, (2.8)

with all the other quantities being the same in the primed and the unprimed frame.5 Note

that

E′ − Ωi′J ′
i = E − ΩiJi = E′ − Ωi′Ji . (2.9)

5The reason why Ji = J ′
i is that “passing to the rotating frame” means in effect choosing a new timelike

Killing field from which E′ is constructed, but retaining the same angular Killing fields from which the

Ji are constructed. In other words, one introduces the new rotating coordinates (t′, ϕ′
i), related to the

asymptotically static coordinates (t, ϕi) by t′ = t, ϕ′
i = ϕi − ail

−2t, and associates the energy E′ with the

Killing vector ∂/∂t′ = ∂/∂t + ail
2∂/∂ϕi, as opposed to the energy E associated with ∂/∂t. Thus passing

to a rotating frame is not the same as performing an asymptotic SO(n − 1, 2) transformation; it is merely

picking a new basis for the Lie algebra so(n− 1, 2).
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Throughout the rest of this paper, we shall use the symbols E′ and Ωi′ to denote energies

and angular velocities measured with respect to the asymptotically rotating frames for which

(2.7) holds.

Although E′ appears to have no special physical significance, it turns out that it provides

a useful bound for the true energy E, in other words

E ≥ E′ , (2.10)

with equality if and only if the black hole is non-rotating.

As we noted in [13],

dE′ 6= TdS +Ωi′dJi . (2.11)

However, Klemm et al. [15, 16] discussed the thermodynamics of rotating AdS black holes

with a single non-vanishing rotation parameter, and obtained an extended system involving

a chemical potential µ and number N , satisfying the first law. More recently, Cai et al. [14]

have introduced thermodynamic quantities which in our notation we shall write as e′, t′, s′,

ωi′, j′i, p
′, v′, given by

v′ =
An−2 r

n−2

∏
j Ξj

, p′ =
e′

(n− 2) v′
, (2.12)

e′ = l
rE

′ , ωi′ = l
r Ω

i′ , t′ = l
rT , s′ = S , j′i = Ji . (2.13)

and they have shown that these satisfy the first law

de′ = t′ds′ + ωi′dj′i − p′dv′ . (2.14)

Note that the formula (2.12) for v′ is not as we defined in (2.4), but rather has the

additional factor
∏

i Ξi in the denominator. This is needed in order to get the first law

(2.14) in the primed variables to work out, to compensate for the failure of the bulk primed

quantities to satisfy the first law. It is also not difficult to see that if one chooses a different

rotation rate at infinity, replacing the right-hand side of (2.7) with some general functions

of the rotations ai, then one cannot in general find a formula for v′ of the form (2.12) with

the factor
∏

i Ξi replaced by a suitable function of the ai. To that extent, the fact that the

primed CFT quantities satisfy the first law (2.14) is no entirely fortuitous. Nevertheless,

it seems to us that it is the unprimed CFT quantities given by (2.3) and (2.4) that most

closely correspond to the physical situation that motivated the work in [1]. In other words,

the relevant CFT should rotate, relative to a frame non-rotating at infinity, with the same

angular velocity as that of the black hole in the bulk theory.
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One could pass to a frame that is co-rotating with the black hole, i.e. one whose angular

velocity with respect to the frame that is non-rotating at infinity is equal to Ωi, given by

(A.7). The associated Killing vector

K =
∂

∂t
+Ωi ∂

∂ϕi
(2.15)

(expressed using the asymptotically non-rotating coordinates in (A.2)) coincides on the

horizon with its null generator, and is, provided |ai| < l, everywhere timelike outside the

horizon. This has the desirable feature that local energy densities measured with respect to

this Killing vector are everywhere positive [17]. However, it has the distinct disadvantage

that when considering any energy exchange between the rotating black hole and its envi-

ronment, one must change to a new rotating frame because in general Ωi changes. It is for

this reason that the first law of thermodynamics does not hold with respect to the primed

quantities. More generally, one could consider a Killing vector of the form

K̃ =
∂

∂t
+ Ω̃i ∂

∂ϕi
. (2.16)

A simple calculation shows that on the horizon,

g(K̃, K̃) = gij(Ω̃
i − Ωi)(Ω̃j − Ωj) , (2.17)

where gij = g(∂/∂ϕi, ∂/∂ϕj), and thus we see that for any angular velocity Ω̃i that differs

from Ωi, the associated Killing vector K̃ is spacelike on (and therefore in the neighbourhood

of) the horizon. In particular, this applies to the choice Ω̃i = Ωi
∞ = ai/l

2. Thus to use the

primed frame would neither achieve positivity of the local energy density nor a simple form

for the first law. It seems, therefore, that neither it, nor any other frame that is rotating

at infinity (other than, possibly, the frame that is rotating with the angular velocity of the

black hole) has any particular merit or advantage over the frame that is non-rotating at

infinity. Of course physical results cannot depend upon an arbitrary choice of frame.6 It is

clear that we can describe a rigidly-rotating gas either as being at rest in a rotating frame,

or moving in a non-rotating frame. The choice which seems to us the most straightforward

and simple is the latter. Similarly, the calculations in [19] need not have been done using

the primed quantities, and we disagree with the assertion in [19] that it is necessary to use

the primed quantities in order “to extract data useful to a dual CFT.” As we have seen

above, this is a trivial matter using the non-rotating frame.
6It should be emphasised that the different expressions for the energy and angular velocity in different

frames is not the result of the coordinate transformation per se, but of using the transformed time coordinate

when defining the energy and angular velocity.
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Using the primed energy E′ is precisely analogous to using the kinetic energy of a

particle with respect to a rotating frame, such as that of the earth. It can be done, but it

is then necessary to consider the contributions to the energy and the equations of motion

due to the centrifugal and Coriolis forces. If the particle is freely moving on the rotating

platform, and the rotation rate is changed, the kinetic energy with respect to the rotating

frame will obviously change, while it will clearly be constant with respect to an inertial

frame. There would seem to be no merit in introducing an artificially time-dependent

rotating frame merely to describe straight-line motion in inertial coordinates. If instead of

free particles we considered a gas in a state of rigid rotation, we would have a situation

rather more analogous to that of the CFT. The gas would exert a pressure on its container,

which in principle could be measured in any rotating frame, but the two that are most

relevant are surely the rigid rotating frame co-rotating the gas, or the one that is non-

rotating with respect to an inertial coordinate system. As we have explained earlier, if the

rotation rate changes with time, it is the latter which is more convenient. Choosing to use

the energy E′ in the rotating black-hole problem is the equivalent of using a frame that is

neither non-rotating at infinity nor is it rotating at the angular velocity of the black hole

horizon. Furthermore, in previous work where the energy E′ has nevertheless been used,

the necessary corrections to compensate for the changes in the rotation rate of the primed

frame have been omitted.

In [14], the CFT is assumed to be on a surface of large r in Boyer-Lindquist coordinates,

and the spatial volume is supposed to be the volume of that surface. It should be noted

that although this spatial surface has the topology of an (n − 2)-sphere it does not have

an SO(n − 1) isometry group even asymptotically at large r. If one nevertheless chooses

this r =constant boundary one must face up to the fact that the temperature will be space

dependent and there will be no conventional thermodynamic interpretation where a global

temperature is well defined.

For example, in four dimensions the Kerr-AdS metric at large r approaches the form

ds24 =
r2∆θ

l2 Ξ

[
− dt2 + l2

{Ξ dθ2

∆2
θ

+
sin2 θ

∆θ
(dφ+ al−2 dt)2

}]
, (2.18)

where

∆θ = 1− a2

l2
cos2 θ , Ξ = 1− a2

l2
. (2.19)

Defining a new coordinate θ̂ by tan θ̂ = (tan θ)/
√
Ξ, it can be seen that the 2-metric enclosed

in braces is nothing but the standard unit 2-sphere, whose volume is of course 4π. The metric

in the square brackets is that of a three-dimensional rotating Einstein universe. The CFT

10



metric is in fact conformal to this, and with respect to this metric the spatial volume is

2πr2

Ξ

∫ π

0
dθ̂ sin θ̂∆θ =

4πr2l

a
√
Ξ
arcsin(a/l) . (2.20)

This is not equal to 4πr2/Ξ, which is the value given in [14]. We are thus unsure as to

precisely which spatial volume the quantity 4πr2/Ξ in [14] is supposed to be. Similar

remarks apply to all the higher-dimensional expressions for v′ given in [14] and reproduced

in (2.12).

A striking feature of the work in [14] is the finding that the quantities e′, t′, s′, ωi′, j′i, p
′

and v′ satisfy a suggested formula of E. Verlinde [18], which itself was based on an attempt

to incorporate Bekenstein’s conjecture [20] of some sort of bound relating entropy, energy

and radius. This has motivated us to look in more detail at the general question of such

formulae and bounds, which we shall do in the next section.

3 The Cardy-Verlinde Formula and the Bekenstein Bound

3.1 The ideal Cardy-Verlinde gas

According to a proposal of E. Verlinde, a CFT living on an (n − 1)-dimensional Einstein

Static Universe (ESU) of radius y and hence metric

ds2 = −dt2 + y2dΩ2
n−2 , (3.1)

where dΩ2
n−2 is the canonical round metric on Sn−2 should have

• A pressure, energy and volume related by

p =
1

n− 2

e

v
, v = An−2y

n−2 , (3.2)

• An entropy s given by

s =
2πy

n− 2

√
ec(2e− ec) , (3.3)

where ec is a measure of the extent to which the energy e is non-extensive and given

by

ec := (n− 2)(e − ts− ωj − φq + pv) . (3.4)

Subsequent work [27] showed that for free field theory, the Cardy-Verlinde formula does

not hold exactly, but it agrees, up to a constant factor, in the high-temperature limit. That

is, at large T one has Ec ∝ T n−3, and E ∝ T n−1, and hence S ∝ T n−2. However the factor
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of proportionality is wrong. Nevertheless, it is still possible that it, or some modified form,

may hold in the strongly-interacting case that is relevant for the AdS/CFT correspondence.

In this limit, it is more convenient to discuss bulk, rather than boundary, quantities. As

we have emphasised in section 2.1, one can freely translate back and forth between the two

descriptions. Using the Tolman redshifting formula, or the UV/IR relation between lower

case and capital letter quantities, one sees that (3.3) may be re-written in terms of bulk

quantities as

S =
2πl

n− 2

√
Ec(2E − Ec) , (3.5)

where Ec is given by

Ec := (n− 2)
[
(1 +

1

n− 2
)E − TS − ΩJ − ΦQ

]
. (3.6)

and we identify E as the conformal generator of J0n ∈ so(n − 1, 2) associated to the

asymptotically-static Killing field ∂
∂t ,

E = ln−3J0n . (3.7)

For later purposes, we re-write (3.6) as7

Ec = (n− 1)E − (n − 2)[TS +ΩJ − ΦQ] . (3.8)

From now on we shall primarily be concerned with the Cardy-Verlinde formula in terms

of “bulk,” that is black hole, quantities. However, it is worth remarking that in some papers

the anti-de Sitter radius l is replaced by r+, where typically r+ is the radius of the horizon in

Schwarzschild or, in the rotating case, Boyer-Lindquist coordinates. In effect this amounts

to setting y = r+ in the redshifted CFT form. However, unless r+ >> l, this cannot be

regarded as a legitimate application of the UV/IR relation, since if r+ ∼ l then −gtt is not

well approximated by y/l.

7The symbol := means that the quantity on the left-hand side is defined by the expression on the right-

hand side. In particular we shall, for the sake of clarity, always stick with this primary definition of ec, and

the analogous blue shifted quantities Ec. If we need to modify the definition we will indicate any modified

quantity by a circumflex, thus êc. The importance of this cannot be over-emphasised. If one does not stick to

the primary definition (3.8), then the question of the existence or non-existence of such a formula becomes

completely meaningless, since one could always define ec in such a way that the Cardy-Verlinde formula

became a trivial identity!
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3.2 Anti-de Sitter Bekenstein bound and Hawking-Page transition

The (strict) Cardy-Verlinde formula (3.5) may be regarded as a formula for the energy E

in terms of the entropy S and non-extensive energy Ec:

E =
1

2
Ec +

1

2Ec

[(n− 2)S

2πl

]2
. (3.9)

Minimization with respect to Ec leads to the lower bound

2πlE ≥ (n− 2)S . (3.10)

which we shall refer to as the Anti-de Sitter Bekenstein Bound, regardless of whether it

arises from a Cardy-Verlinde formula. Clearly the anti-de Sitter Bekenstein bound is a

necessary, but not sufficient condition for the existence of a Cardy-Verlinde formula.

This lower bound for the energy in terms of the entropy, or alternatively upper bound

for the entropy in terms of the energy, is attained when

E = Ec =
(n− 2)S

2πl
. (3.11)

Note that for E > (n−2)S
2πl there are two values of Ec satisfying the Cardy-Verlinde formula

(3.9), whilst if E < (n−2)S
2πl , there are none.

The calculation above may be re-organised as follows. The thermodynamic potential Ψ

of the bulk black hole is given by

Ψ = E − TS − ΩJ − ΦQ . (3.12)

Thus

Ec = E + (n − 2)Ψ , 2E − Ec = E − (n− 2)Ψ . (3.13)

The Cardy-Verlinde formula can be cast in the Pythagorean form

E2

(n− 2)2
=

S2

4π2l2
+Ψ2 . (3.14)

We see from (3.14) that the Bekenstein bound is attained if and only if the thermody-

namic potential vanishes,

Ψ = 0 . (3.15)

If one accepts the quantum statistical relation between thermodynamic potential and Eu-

clidean action I,

Ψ = TI , (3.16)
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then the Bekenstein bound is attained when the Euclidean action vanishes. In the black

hole case, this indicates that the Euclidean black hole solution with large energy E no longer

has smaller action than that of flat space, and a type of phase transition is indicated, as was

first discussed by Hawking and Page [28] in the case of AdS4 black holes, and by Witten [29]

in the case of AdS5 black holes.

The bound (3.10) resembles the controversial universal bound suggested by Beken-

stein for systems in flat Minkowski spacetime, except that Bekenstein’s putative univer-

sal Minkowski bound contains an undefined radius. In the AdS-Bekenstein Bound (3.10),

this radius is taken to be that of AdSn. However, for large radius we can use the Tolman

redshifting formulae (which are of course valid only for large radius since we are using an

approximate form for the metric near the boundary), and we may just as well write

2πye ≥ (n− 2)s , (3.17)

where now the radius is that of Sn−2. For clarity, we shall call this latter bound the Spherical

Bekenstein Bound or the Sn−2-Bekenstein bound.

Note that neither the AdSn Bekenstein bound nor the Sn−2 Bekenstein bound, like that

in Bekenstein’s original and rather imprecise Minkowski-spacetime bound, contain Newton’s

constant or make any specific reference to gravity. Moreover, the AdSn Bekenstein bound

(3.10) reduces, in the Minkowski limit l → ∞, to the undemanding requirement that the

energy be non-negative.

3.3 Non-rotating Reissner-Nordström black holes

Remarkably, the Cardy-Verlinde formula is satisfied by Schwarzschild-AdS black holes in

arbitrary dimensions. However, it is violated by Reissner-Nordström-AdS black holes. Nev-

ertheless, a simple minimal modification does hold, namely

(n− 2)S

2πl
=

√
Ec(2E − Ec − ΦQ) , (3.18)

or in Pythagorean form,

(E − 1
2ΦQ)2 =

((n− 2)S

2πl

)2
+

( Ψ

(n− 2
+ 1

2ΦQ
)2

. (3.19)

The minimally modified Bekenstein bound becomes

E ≥ 1
2ΦQ+

(n − 2)S

2πl
, (3.20)

with equality if and only if

(n− 2)Ψ + 1
2ΦQ = 0 , (3.21)
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or

(n− 2)TI + 1
2ΦQ = 0 . (3.22)

Because ΦQ ≥ 0, we see that the AdSn Bekenstein bound holds for Reissner-Nordström-

AdS black holes.

3.4 Rotating black holes without charge

As observed in [14], the Cardy-Verlinde formula does not hold for rotating black holes in

any dimension n ≥ 4, if one uses the thermodynamic quantities defined with respect to a

non-rotating frame at infinity. Remarkably, however, is was found in [14] (see [15, 16] for

earlier discussions) that in all dimensions it does hold if one uses the quantities defined with

respect to a frame that rotates with angular velocities −ai/l
2 at infinity. Because E ≥ E′,

one obtains an inequality,

E ≥ E′ =
1

2
Ec +

1

2Ec

[(n− 2)S

2πl

]2
, (3.23)

whence

E ≥ (n − 2)S

2πl
. (3.24)

In other words, although the conserved quantities measured with respect to a frame non-

rotating at infinity do not satisfy the Cardy-Verlinde formula, they do satisfy the Bekenstein

bound.

In fact, one does not need to pass to the quantities E′ and Ωi′ to establish that rotating

AdS black holes satisfy the AdSn Bekenstein bound. From (A.12), we have

S =
An−2ml

4(
∏

j Ξj)

r+/l

1 + r2+/l
2

(3.25)

and hence, since x/(1 + x2) ≤ 1
2 , we have

S ≤ An−2ml

4(
∏

j Ξj)
, (3.26)

with equality if and only if r+ = l. From results in [13], the Euclidean action for the

n-dimensional Kerr-AdS black hole is given by

I =
βAn−2m

8π(
∏

i Ξi)

l2 − r2+
l2 + r2+

, (3.27)

where β is the inverse Hawking temperature. Thus we see that r+ = l corresponds to the

Hawking-Page transition, where the Euclidean action vanishes.

15



From (A.10) and (A.11) we have

E ≥ An−2m(n− 2)

8π (
∏

j Ξj)
, (3.28)

since Ξi ≤ 1, with equality if and only if the black hole is non-rotating, i.e. if and only if all

ai = 0. Combining (3.26) and (3.28) gives the AdSn Bekenstein bound (3.24), with equality

if and only if the black hole is non-rotating, and at the Hawking-Page transition.

4 Further Examples

From the previous work, it is natural to wonder whether a simple modification of the Cardy-

Verlinde formula, involving the use of E′, and the electrostatic term ΦQ, continues to hold

for more complicated black holes with, for example, more than one charge, or the recently-

constructed solutions representing rotating black holes with one or more charge, and one

or more rotation parameters. In this section we shall study the various cases, and find that

while no universal simple modified Cardy-Verlinde formula appears to exist that covers all

these cases, we do find in many cases we have studied that

E′
c(2E

′ − E′
c − ΦiQi) ≥

((n− 2)S

2πl

)2
, (4.1)

which implies the electrostatic form of the AdSn Bekenstein bound,

E ≥ 1
2ΦiQi +

(n− 2)S

2πl
. (4.2)

4.1 Non-rotating black holes with multiple charges

Modifications of the Cardy-Verlinde formula for multi-charge non-rotating black holes in

gauged supergravities have been discussed in [16, 30]. Here, we give a related discussion,

focussing in particular on the electrostatic AdS-Bekenstein bound, which we show to be

satisfied in all the four, five and seven-dimensional examples that we consider.

4.1.1 Four-dimensional multi-charge black holes

The general four-charge solutions in four-dimensional gauged supergravity are given by

ds24 = −(
∏

i

Hi)
−1/2 f dt2 + (

∏

i

Hi)
1/2 [f−1 dρ2 + ρ2 dΩ2

2] ,

Ai = (1−H−1
i )

√
qi + µ

qi
dt , Xi = (

∏

j

Hj)
1/4 H−1

i ,

Hi = 1 +
qi
ρ
, f = 1− µ

ρ
+ g2ρ2

∏

i

Hi , (4.3)
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where Xi = e
1
2~ai·~ϕ, where ~ϕ denotes the three canonically-normalised scalar fields, the ~ai

are constant vectors satisfying ~ai · ~aj = 4δij − 1, and the Lagrangian is given by

e−1L =
1

16π
R− 1

8π
(∂ϕ)2 − 1

16π

∑

i

X−2
i F 2

i +
g2

16π

∑

i<j

XiXj . (4.4)

(We use units where G = 1. See [31] for a more extensive discussion of the notation and

conventions that we are using.) Note that in order for the solution to be real, and free of

naked singularities, we must have qi ≥ 0.

Straightforward calculations give

E = 1
2µ+ 1

4

∑

i

qi , Qi =
√
qi (µ + qi) ,

Ec = 1
4

∑

i

(ρ+ + qi) ,

2E − Ec −
∑

i

ΦiQi = 1
4ρ+(µ− ρ+)

∑

i

1

(ρ+ + qi)
,

S =
π

g

√
ρ+(µ − ρ+) , (4.5)

where ρ+ is the radius of the horizon, i.e. the largest root of f(ρ) = 0.

One observes that unless the charges are equal, qi = q, the minimally modified Cardy-

Verlinde formula (3.18) fails. However, using the fact that the arithmetic mean is never less

than the harmonic mean, one finds that

E − 1
2

∑

i

QiΦi ≥ 1
2Ec +

g2S2

2π2Ec
. (4.6)

Thus although the Cardy-Verlinde formula is violated,

S 6= π

g

√
Ec(2E −Ec −

∑

i

ΦiQi) , (4.7)

nevertheless, the electrostatic AdS-Bekenstein bound still holds,

E ≥ 1
2

∑

i

QiΦi +
gS

π
, (4.8)

despite the fact that the scalar fields, and hence also the potential −g2
∑

i<j XiXj , are space

dependent. In these cases 1/g is only the asymptotic value of the anti-de Sitter radius.

4.1.2 Five-dimensional multi-charge black holes

The general three-charge solutions in five-dimensional gauged supergravity are given by

ds25 = −(
∏

i

Hi)
−2/3 f dt2 + (

∏

i

Hi)
1/3 [f−1 dρ2 + ρ2 dΩ2

3] ,
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Ai = (1−H−1
i )

√
qi + µ

qi
dt , Xi = (

∏

j

Hj)
1/3 H−1

i ,

Hi = 1 +
qi
ρ2

, f = 1− µ

ρ2
+ g2ρ2

∏

i

Hi , (4.9)

where Xi = e
1
2~ai·~ϕ, where ~ϕ denotes the two canonically-normalised scalar fields, and the

relevant Lagrangian is given by

e−1L =
1

16π
R− 1

8π
(∂ϕ)2 − 1

16π

∑

i

X−2
i F 2

i +
g2

4π

∑

i

X−1
i . (4.10)

(We again use units where G = 1.) Again we must have qi ≥ 0 in order to have a real

solution with no naked singularities.

After straightforward calculation, we find that

E = 3
8πµ+ 1

4π
∑

i

qi , Qi =
1
4π

√
qi(µ+ qi) ,

Ec = 1
4π

∑

i

(ρ2+ + qi) ,

2E − Ec −
∑

i

ΦiQi = 1
4π ρ2+ (µ − ρ2+)

∑

i

1

ρ2+ + qi
,

S =
π2

2g
ρ+ (µ − ρ2+)

1/2 , (4.11)

where ρ+ is the largest root of f(ρ) = 0. Again we see that the minimally-modified Cardy-

Verlinde formula (3.18) fails unless the qi are all equal. Again, using the fact that the

arithmetic mean is never less than the harmonic mean, we obtain the inequality

Ec(2E − Ec −
∑

i

ΦiQi) ≥
(3gS
2π

)2
, (4.12)

and hence we derive the minimally-modified AdS-Bekenstein bound

E − 1
2

∑

i

ΦiQi ≥
3gS

2π
. (4.13)

Note that again, 1/g is only the asymptotic AdS radius.

4.1.3 Seven-dimensional multi-charge black holes

The non-rotating multi-charge black-hole solutions of maximal gauged supergravity in seven

dimensions take the form

ds27 = −(H1H2)
−4/5 f dt2 + (H1H2)

1/5 [f−1 dρ2 + ρ2 dΩ2
5] ,

Ai = (1−H−1
i )

√
qi + µ

qi
dt , Xi = (H1H2)

2/5 H−1
i ,

Hi = 1 +
qi
ρ4

, f = 1− µ

ρ2
+ g2ρ2 H1H2 , (4.14)
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with the charges carried by the U(1)×U(1) gauge fields in the abelian subgroup of SO(5).

Straightforward calculations show that

E = 5
16π

2µ+ 1
4π

2
∑

i

qi , Qi =
1
4π

2
√

qi(µ+ qi) ,

Ec = 1
8π

2 (5ρ4+ +
∑

i

qi) ,

2E − Ec −
∑

i

ΦiQi = 1
8π

2
[
5(µ− ρ4+) + 3

∑

i

qi − 2
∑

i

qi(µ+ qi)

ρ4+ + qi

]
,

S =
π3

4g
ρ2+ (µ− ρ4+)

1/2 . (4.15)

The verification that these solutions satisfy the electrostatic AdS-Bekenstein bound is

slightly more complicated than for the four-dimensional and five-dimensional cases. This is

presumably related to the fact that unlike in n = 4 and n = 5, in these seven-dimensional

solutions the scalar fields are non-constant even when the charges are set equal. In fact the

easiest way to verify the Bekenstein bound is by performing a direct calculation of

X ≡ E − 1
2

∑

i

ΦiQi −
5Sg

2π
, (4.16)

and verifiying that X is non-negative. We find that

X =
1

ρ2+

[
5ρ6+(gρ+−1)2+q1q2g

2+3(q1+q2)ρ
2
+(1+g2ρ2+)−10

√
(ρ4+ + q1)(ρ4+ + q2)

]
. (4.17)

Using the Maclaurin-Cauchy inequality

∏

i

bqii ≤
∑

i

bi qi , where
∑

i

qi = 1 , (4.18)

we may deduce that

√
(ρ4+ + q1)(ρ

4
+ + q2) ≤ 1

2(2ρ
4
+ + q1 + q2) , (4.19)

and hence we see that

X ≥ 1

ρ2+

[
5ρ6+(gρ+ − 1)2 + q1q2g

2 + (q1 + q2)ρ
2
+[3(gρ+ − 5

6 )
2 + 11

12 ]
]
, (4.20)

which proves that X ≥ 0 and hence the Bekenstein bound is satisfied.

4.1.4 Relation to previous work

A more complicated modification of the Cardy-Verlinde formula has been proposed, in terms

of the parameters qi and µ which appear in the multi-charge metrics [30]. This modification
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incorporates the idea that the pressure of the associated conformal field theory should be

reduced by its electrostatic self-repulsion. However, when re-expressed in terms of the

fundamental thermodynamic variables E, Φi, Qi, T and S, the modification takes on a

rather complicated form, which appears to be a somewhat ad hoc construction designed to

ensure the continued validity of the Cardy-Verlinde formula in these particular examples.

The modified Cardy-Verlinde formula in [30] is given by

S =
2π

(n − 2)g

√
Êc(2E − 2Eq − Êc) , (4.21)

where

Êc = Ec − Eq , Eq =
An−2 (n− 3)

16π

∑

i

qi . (4.22)

This implies

E = 1
2Êc +

1

2Êc

( (n− 2)gS

2π

)2
+ Eq , (4.23)

and hence, minimising with respect to Êc, one again obtains the AdS-Bekenstein bound

E ≥ Eq +
(n− 2)gS

2π
≥ (n− 2)gS

2π
. (4.24)

It is interesting to compare Eq, given in (4.22), with
∑

iΦiQi, which is given by

An−2 (n− 3)

16π

∑

i

qi(µ+ qi)

ρn−3
+ + qi

, (4.25)

from which it follows that
∑

ΦiQi ≥ Eq, since ρn−3
+ ≤ µ.

4.2 Rotating charged black holes

Various solutions for charged rotating black holes in gauged supergravities have been ob-

tained. In this section, we study the generalised Bekenstein bounds for these cases.

4.2.1 Four-dimensional Kerr-Newman-AdS black holes

One might have hoped that, at least for the four-dimensional Kerr-Newman-AdS solution,

a simple modification of the Cardy-Verlinde formula would work. However, one finds that

the minimally-modified Cardy-Verlinde formula, even in in terms of of quantities measured

with respect to the canonically rotating frame, fails. Explicitly

E′
c(2E

′ − E′
c − ΦQ) =

( S

πl

)2
+

16a2Q2

l2
, (4.26)
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where a is given in terms of the extensive quantities by

a =

√
E′2l4

4J2
+ l2 − E′l2

2|J | . (4.27)

Note that

E′
c(2E

′ −E′
c − ΦQ) ≥ (

S

πl
)2 (4.28)

whence

E′ ≥ 1
2ΦQ+ 1

2E
′
c +

S2

2π2l2E′
c

≥ 1
2ΦQ+

S

πl
. (4.29)

But since E ≥ E′, we have

E ≥ 1
2ΦQ+

S

πl
. (4.30)

In other words, once again, despite the fact that the Cardy-Verlinde formula fails to hold,

the electrostatic AdS4-Bekenstein bound still holds.

4.2.2 Four-dimensional rotating black holes with pair-wise equal charges

The solution four rotating black holes in four-dimensional gauged supergravity with four

charges that are set pairwise equal was given in [6]. The thermodynamic quantities were

evaluated in [32], where it was shown that the conserved energy, angular momentum and

charges are given by

E =
2m+ q1 + q2

2Ξ2
, J =

a(2m+ q1 + q2)

2Ξ2
,

Q1 = Q2 =

√
q1(2m+ q1)

4Ξ
, Q3 = Q4 =

√
q2(2m+ q2)

4Ξ
, (4.31)

where the parameters qi are related to the boost parameters δi in [6,32] by qi = 2m sinh2 δi.

We find that

E′
c(2E

′ − E′
c −

∑

i

ΦiQi) = (
S

πl
)2 +

Xg2

4Ξ r+
, (4.32)

where

X = 2a2(q1 + q2)(a
2 + a2g2q1q2 + g2q21q

2
2)

+[q1q2(q1 − q2)
2 + a4g2(q21 + 6q1q2 + q22)

+a2((q1 − q2)
2 + 2q21 + 2q22 + 3g2q31q2 + 3g2q32q1 + 10g2q21q

2
2)]r+

+(q1 + q2)(2a
2 + 2a4g2 + (q1 − q2)

2 + a2g2(q21 + q22) + 10a2g2q1q2]r
2
+

+[(q1 − q2)
2 + 3a2g2(q21 + q22) + 10a2g2q1q2]r

3
+

+2a2g2(q1 + q2)r
4
+ . (4.33)

21



Since the parameters q1 and q2 must be positive, the positivity of X is manifest. Hence we

obtain the Bekenstein bound

E ≥ 1
2

∑

i

ΦiQi +
Sg

π
. (4.34)

4.2.3 Five-dimensional rotating black holes with charges

The solution for a rotating black hole in five-dimensional minimal gauged supergravity,

with independent rotation parameters in the two orthogonal planes in the transverse space,

was obtained recently [9]. The solution can equivalently be viewed as a solution of SO(6)-

gauged supergravity, with three equal charges carried by the U(1)3 abelian subgroup. The

thermodynamic quantities were also evaluated in [9], and it was shown that the energy,

angular momenta and charge are given in terms of the parameters m, a and b in the metric

by by

E =
πm(2Ξa + 2Ξb − ΞaΞb) + 2πqabg2(Ξa + Ξb)

4Ξ2
aΞ

2
b

,

Ja =
2πma+ πqb(1 + a2g2)

4Ξ2
aΞb

,

Jb =
2πmb+ πqa(1 + b2g2)

4Ξ2
bΞa

,

Q =
π
√
3q

4ΞaΞb
, (4.35)

where g = 1/l. We find that

E′
c(2E

′ − E′
c − ΦQ) =

(3Sg
2π

)2
+

π2g2qX

16Ξ2
aΞ

2
b [(r

2
+ + a2)(r2+ + b2) + abq] r+

, (4.36)

where X is given by

X = q3a2b2 + q2ab(18a2b2 + 15(a2 + b2)r2+ + 4a2b2r2 + 9r4)

+q(r2+ + a2)(r2+ + b2)(18a2b2 + 9(a2 + b2)r2+ + 10a2b2g2r2+)

+6ab(r2+ + a2)(r2+ + b2)2(1 + g2r2+) . (4.37)

Since X is manifestly positive, at least when q, a and b are positive, we therefore obtain

the Bekenstein bound

E ≥ 1
2ΦQ+

3Sg

2π
. (4.38)

The bound is saturated if a = b = q = 0.

A further solution for charged rotating five-dimensional black holes was obtained in [8],

which corresponds to a case where the three charges carried by the U(1)3 ∈ SO(6) gauge
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fields are still all non-zero, but with two of them being equal, and the third related to the

first two in a specific way. Thus the solutions in [8] have four independent parameters,

namely the mass, the two rotations, and a parameter characterising the charges. For these

solutions we find

Ec(2E
′ −Ec −

∑

i

ΦiQi) =
(3Sg

2π

)2
+

π2g2qX

16Ξ2
aΞ

2
br

2
+[(r

2
+ + a2)(r2+ + b2) + qr2+]

, (4.39)

where X is given by

X = 3(a2 + b2)(r2+ + a2)(r2+ + b2)(1 + g2r2+) + q3r2+(3a
2b2g2 + 2r2+ + (a2 + b2)g2r2+)

+q(r2+ + a2)(r2+ + b2)[3a2b2 + (a2 + b2)r2+(8 + 7g2r2+) + g2r2+(a
4 + b4 + 11a2b2) + 2r4+]

+q2r2+[5a
2b2 + (a2 + b2)(7r2+ + 4a2b2g2 + 5g2r4+) + 2g2r2+(a

4 + b4 + 8a2b2)] . (4.40)

This is manifestly positive when q is positive, and so again the AdS-Bekenstein bound (4.38)

is satisfied.

5 The Cosmic Censorship Bound

So far, we have established that for many of the stationary black hole solutions we have

examined, the electrostatic AdSn Bekenstein bound (4.2) is satisfied. In this section, we

shall propose that this is a consequence of a more basic and more general lower bound for

the energy E of any initial data set for the Einstein equations with negative cosmological

constant, coupled to a matter system that satisfies the dominant energy condition. This

Cosmic Censorship Bound is expressed in terms of the area A of the outermost apparent

horizon of that initial data set. In the case that there is no charge, the postulated lower

bound reads

E ≥ (n− 2)A

16πl

[
l
( A

An−2

)−
1

n−2
+

1

l

( A

An−2

) 1
n−2

]
. (5.1)

Some consequences of this bound, which is a more global extension of Hawking’s varia-

tional principle for black holes [34], are:

(1) If l → ∞, then (5.1) reduces to a bound first proposed in n = 4 dimensions by Penrose,

who observed that it is a necessary condition for the cosmic censorship hypothesis [33].

(See [35,36].)

(2) The proposed bound (5.1) implies a generalisation of the AdSn Bekenstein bound, to

the non-stationary case. Noting that the quantity in square brackets in (5.1) must

be greater than or equal to 2, we have a generalisation of Bekenstein’s bound to the
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time-dependent case when one may no longer equate entropy with 1/4 of the area of

an apparent horizon:

E ≥ (n− 2)A

8πl
. (5.2)

(3) The cosmic censorship bound (5.1) is attained for the case of a Schwarzschild-anti-de

Sitter black hole, and we propose that this is the only case for which it is saturated.

The strongest physical argument in favour of (5.1) is as follows. Consider an initial

data set with total energy Einitial, a single outermost apparent horizon of area Ainitial, and

vanishing total angular momentum and charge. According to standard lore, this should

settle down to a stationary state described by a Schwarzschild-de Sitter black hole with

total energy Efinal and event-horizon area Afinal, where

Efinal =
(n− 2)Afinal

16πl

[
l
(Afinal

An−2

)−
1

n−2
+

1

l

(Afinal

An−2

) 1
n−2

]
. (5.3)

Assuming cosmic censorhip, the apparent horizon lies inside the event horizon, and since,

in the time symmetric case, the apparent horizon is a minimal surface, its area gives a lower

bound for the area of the event horzion. Now applying Hawking’s theorem stating that the

area of the horion is non-decreasing, we obtain

Afinal ≥ Ainitial , (5.4)

In anti-de Sitter spacetime, unlike in asymptotically-flat spacetimes, the total energy is

constant, and therefore

Efinal = Einitial . (5.5)

It follows that

Einitial ≥
(n− 2)Ainitial

16πl

[
l
(Ainitial

An−2

)−
1

n−2
+

1

l

(Ainitial

An−2

) 1
n−2

]
. (5.6)

If the initial value set had non-vanishing charge or angular momentum, it would be

expected to settle down to the relevant stationary solution carrying those charges or angular

momenta. However, he energy due to the charge or angular momentum could be extracted

by dropping particles carrying charge or angular momentum into the black hole. In this

process, the area of the event horizon cannot decrease, but the energy may. Thus we expect

the energy of the black hole with charge or angular momentum to be less than that of a

Schwarzschild-AdS black hole with the same event-horizon area.

We shall now review some of the additional evidence for this form of the cosmic censor-

ship bound, and provide some further support for it.
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In the case of n = 4 dimensions and time-symmetric initial data, Jang and Wald’s

extension [37] of Geroch’s [38] suggested method of proof of the positive mass theorem for

asymptotically-flat metrics using the inverse mean-curvature flow may be extended [39,42]

to cover the case of asymptotically anti-de Sitter metrics. Furthermore, if one does so one

obtains precisely the proposed lower bound (5.1). The Geroch-Jang-Wald proposed method

of proof has been made into a rigorous theorem by Huisken and Ilmanen [40,41]. It seems

plausible, but there is as yet no rigorous proof, that their methods will extend to the anti-de

Sitter case.

There is no general proof of the original asymptotically-flat cosmic censorship inequality

in higher dimensions. In [43], it is shown to hold in the case of a collapsing shell, using the

obvious generalisation of the four-dimensional calculations in [44].

There exists a natural generalisation of the inverse mean-curvature flow to higher-

dimensional time-symmetric initial-value sets [42]. This might yield a proof of the higher-

dimensional inequality if on each level surface

∫
[R̄− (n− 2)(n − 3)]dA ≥ 0 , (5.7)

where R̄ is the Ricci scalar of the (n − 2)-dimensional metric on the level surface, and the

integration is over this surface.

In the static spherically-symmetric case, the inequality (5.1) may be proved as follows.

We write the metric as

ds2 = −e2ν(r)
(
1− 2m(r)

rn−3

)
dt2 +

(
1− 2m(r)

rn−3

)−1
dr2 + r2dΩ2

n−2 . (5.8)

There is an horizon of area A = An−2 r
n−2
+ at r = r+, where

rn−3
+ = 2m(r+) . (5.9)

The Einstein equations

Rµν − 1
2Rgµν = 8πTµν (5.10)

(where we include the contribution of the cosmological constant in Tµν) imply

dm

dr
=

8π

n− 2
rn−2 Tt̂t̂ , (5.11)

where the hats indicate components in an orthonormal frame. We have

Tµν = T cosmic
µν + Tmatter

µν , (5.12)
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where T cosmic
µν is the contribution from the cosmological term. As r tends to infinity,

m(r) −→ m− rn−1

2l2
, (5.13)

where l is the asymptotic de Sitter radius. We may integrate (5.11) from the horizon to

infinity, to obtain

m = 1
2r

n−3
+ +

rn−1
+

2l2
+

8π

n− 2

∫ ∞

r+

dr rn−2 Tmatter
0̂0̂

+

∫ ∞

r+

drrn−2
[n− 1

2l2
+

8π

n− 2
T cosmic
t̂t̂

]
.

(5.14)

If T cosmic
t̂t̂

is constant and Tmatter
t̂t̂

satisfies the positive-energy condition, we obtain the

cosmic censorship bound, which will be saturated if and only if Tmatter
t̂t̂

= 0, i.e. for the

Schwarzschild-de Sitter metric.

If T cosmic
t̂t̂

is not constant, because of the presence of varying scalar fields, we still obtain

a lower bound for m if the integrand is positive. Unfortunately, in the gauged supergravities

we have considered the integrand is in fact negative, because the potential is in general more

negative than its negative value at its vanishing-scalar stationary point. However, even in

this case the cosmic censorship bound may continue to hold, because kinetic energy term

for the scalars is positive. Indeed, this is what happens in the examples we have examined.

5.1 Cosmic censorship for Kerr-AdS black holes in arbitrary dimension

It is straightforward to show that the general Kerr-AdS black holes in arbitrary spacetime

dimension n satisfy the cosmic censorship bound (5.1). First, we note that one can charac-

terise the Kerr-AdS metrics by their rotation parameters ai, together with the radius r+ of

the outer horizon. The mass parameter m appearing in the metric (A.2) is then solved for

using V (r+) = m. It is then helpful to introduce a new parameterisation in terms of yi and

z instead of ai and r+, where

yi ≡
r2+ + a2i
r2+ Ξi

, z =
r+
l
. (5.15)

Clearly we must have have yi ≥ 1, z ≥ 0, and

r+ = zl , a2i =
(yi − 1)z2l

(1 + z2yi)
, Ξi =

1 + z2

1 + z2yi
. (5.16)

We begin by considering the case when n = 2N + 1 is odd. From (A.4), (A.10) and

(A.12), the energy E is given by

E =
rn−3
+ An−2 (

∏
j yj)

16π

(
n− 2 + 2z2

∑

i

yi

)
, (5.17)
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whilst the right-hand side of (5.1) is given by

(n − 2)rn−2
+ (

∏
j yj)

16π l

[
z(
∏

i

yi)
1

n−2 +
1

z
(
∏

i

yi)
−

1
n−2

]
, (5.18)

and so to show that the cosmic censorship bound is satisfied, we must show that

(n− 2)
[
1− (

∏

i

yi)
−

1
n−2

]
+ z2

[
2
∑

i

yi − 1− (n− 2)(
∏

i

yi)
1

n−2

]
≥ 0 . (5.19)

The first bracketed term in (5.19), i.e. the term independent of z, is manifestly positive

since yi ≥ 1. For the terms at order z2 we may use the Maclaurin-Cauchy inequality (4.18)

to show that

(
∏

i

yi)
1

n−2 ≤ 1

n− 2

∑

i

yi +
n− 3

2(n− 2)
. (5.20)

Substituting this into the second bracketed term in (5.19) shows that

2
∑

i

yi − 1− (n − 2)(
∏

i

yi)
1

n−2 ≥
N∑

i=1

(yi − 1) ≥ 0 , (5.21)

and hence the cosmic censorship bound is proved.

In the case of even dimensions n = 2N +2, an analogous calculation shows that cosmic

censorship is satisfied if

(n− 2)
[
1− (

∏

i

yi)
−

1
n−2

]
+ z2

[
2
∑

i

yi − (n− 2)(
∏

i

yi)
1

n−2

]
≥ 0 . (5.22)

Again using (4.18), we can show that

(
∏

i

yi)
1

n−2 ≤ 1

n− 2

∑

i

yi +
1
2 (5.23)

and so since yi ≥ 1, the inequality (5.22) can indeed be seen to hold.

5.2 Cosmic censorship for four-dimensional charged rotating black holes

The cosmic censorship bound (5.1) can be generalised in the case of charged black-hole

solutions [42,45]. In four dimensions, it becomes

E ≥ A

8πl

[
l
( A

4π

)−1/2
+

1

l

( A

4π

)1/2
+ lQ2

( A

4π

)−3/2]
, (5.24)

with equality being attained for the Reissner-Nordström-AdS solution. Calculating E2

minus the square of the right-hand side of (5.24) for the Kerr-Newman-AdS solution, we

find

E2 − (RHS)2 =
4(1 + g2r2+)[a

2 + q2 + r2+ + g2r2+(r
2
+ + a2)]2

Ξ4r2+(r
2
+ + a2)

, (5.25)

which is manifestly positive, thus demonstrating that the inequality (5.24) is obeyed in this

case.
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5.3 Cosmic censorship for five-dimensional charged rotating black holes

For solutions of five-dimensional minimal gauged supergravity, the generalised cosmic cen-

sorship bound can be written as

8E

3π
≥

( A

2π2

)2
3
+ g2

( A

2π2

)4
3
+

16Q2

3π2

( A

2π2

)−
2
3
, (5.26)

with equality being attained in the case of the non-rotating Reissner-Nordström-AdS black

hole. From the results obtained in [9], we find that the inequality (5.26) translates into the

requirement that

2
3h[3 + z2(y1 + y2)] +

1
3y1y2[3− z2 + 2z2(y1 + y2)]

+
h2(1 + z2)

3(y1 − 1)(y2 − 1)
[3− z2 + 2z2(y1 + y2)]− (y1y2 + h)

2
3 − z2(y1y2 + h)

4
3

−h2(y1y2 + h)−2/3

(y1 − 1)(y2 − 1)
(1 + z2y1)(1 + z2y2) ≥ 0 , (5.27)

where

y1 =
r2+ + a2

r2+ Ξa
, y2 =

r2+ + b2

r2+ Ξb
, z = gr+ , h =

abq

r4+ Ξa Ξb
, (5.28)

with yi ≥ 1, z > 0, h ≥ 0. We have studied (5.27) numerically and find that it appears to

be satisfied for all allowed values of the parameters (y1, y2, z, h), and thus it appears that

the generalised cosmic censorship bound is obeyed by the five-dimensional charged rotating

AdS black holes obtained in [9].

6 An Upper Bound for the Temperature?

It is well known that the presence of matter with a positive energy density tends to reduce

the temperature of a black hole, because of the redshift produced by the gravitational field

of the matter. It is also well known that charged or rotating black holes tend to have a

smaller temperature for the same entropy than their neutral or non-rotating versions. A

general explanation for this observation was provided by Visser in the static spherically-

symmetric case in four dimensions with no cosmological term [46]. In this section we shall

generalise Visser’s observation, and apply it to the Hawking-Page transition.

For the spherically-symmetric static metric (5.8), the Einstein equations imply

dm

dr
=

8πrn−2 Tt̂t̂

(n− 2)
(6.1)

dν

dr
=

8πrn−2 (Tt̂t̂ + Tr̂r̂)

(n− 2)[rn−3 − 2m(r)]
, (6.2)
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where the hats indicate components in an orthonormal frame.

The surface gravity is

κ = 2πT =
1

2r+
eν(r+)

(
n− 3− 2r4−n dm

dr

)
) . (6.3)

This becomes

κ = 2πT =
1

2r+
eν(r+)

[
(n− 3)− 16πr2+

(n− 2)
(T cosmic

t̂t̂
+ Tmatter

t̂t̂
)
]
. (6.4)

If T cosmic
t̂t̂

is constant, then (6.4) becomes

κ = 2πT =
1

2r+
eν(r+)

[
(n− 3) + (n − 1)g2r2+ − 16πr2+

(n− 2)
Tmatter
t̂t̂

]
. (6.5)

If the matter satisfies the dominant energy condition then

Tmatter
t̂t̂

≥ |Tmatter
r̂r̂ | ≥ 0 . (6.6)

Moreover

ν(r) = −
∫ ∞

r

8πr′n−2 (Tmatter
t̂t̂

+ Tmatter
r̂r̂ )

(n− 2)[r′n−3 − 2m(r′)]
dr′ . (6.7)

Thus ν(r) will be non-positive and

4πT ≤ (n − 3)

r+
+ (n− 1)g2r+ . (6.8)

If T cosmic
t̂t̂

is not constant, one might expect the kinetic term for the scalars to compensate

for any extra positive contribution from −T cosmic
t̂t̂

, and the inequality to continue to hold.

In the Schwarzschild-AdS case the inequality (6.8) becomes an equality. The minimum

value of the right-hand side occurs at

r+ =
1

g

√
n− 3

n− 1
, (6.9)

at which

T =
g
√

(n− 1)(n− 3)

2π
. (6.10)

This lower bound for the temperature is associated with the Hawking-Page phase transition.

Below this temperature, there is no black-hole solution, whilst above it, there are two. The

Hawking-Page transition itself occurs at r+ = 1/g, for which T = (n − 2)g/(2π). For

temperatures greater than (6.10) but smaller than than (n− 2)g/(2π), both Schwarzschild-

AdS solutions have larger Euclidean action than that of anti-de Sitter spacetime.
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The general inequality (6.8) for spherically-symmetric black holes may be recast in the

form

4πT ≤ (n− 3)
( A

An−2

)−
1

n−2
+ (n− 1)g2

( A

An−2

) 1
n−2

, (6.11)

where A is the area of the outer horizon. Equality is achieved in the case of Schwarzschild-

AdS black holes.

One might think that when the inequality is expressed in the form (6.11), it would

continue to hold for rotating as well as non-rotating black holes. In other words, one might

conjecture that the minimum temperature, as a function of entropy, is always less than or

equal to the minimum temperature of the Schwarzschild-AdS case. In fact, we find that

the bound (6.11) is obeyed bay all Kerr-AdS black holes in n = 4 and n = 5 diemnsions.

However, counterexamples can be found for Kerr-AdS black holes in all dimensions greater

than or equal to 6.

To discuss the situation in arbitrary dimensions, it is again helpful to use the parame-

terisation introduced in (5.15). In odd dimensions n = 2N +1, showing that the inequality

(6.11) is obeyed is equivalent to showing that

(n− 3)(
∏

i

yi)
−

1
n−2 − 2

∑

i

y−1
i + 2 + (n− 1)[(

∏

i

yi)
1

n−2 − 1] z2 ≥ 0 . (6.12)

This must hold for the z0 and z2 terms independently. It is clearly true for the z2 terms,

since yi ≥ 1, and so checking the temperature bound for odd-dimensional Kerr-AdS black

holes amounts to checking whether

(N − 1)(

N∏

i=1

yi)
−

1
2N−1 ≥

N∑

i=1

y−1
i − 1 (6.13)

for all yi ≥ 1. It is straightforward to see that in five dimensions, for which N = 2, the

function

(y1y2)
−1/3 − 1

y1
− 1

y2
+ 1 (6.14)

is non-negative for all yi ≥ 1, since it can be written in the manifestly non-negative form

(y1y2)
−1

{
(y1 − 1)(y2 − 1) + [(y1y2)

2/3 − 1]
}
. (6.15)

This shows that all Kerr-AdS black holes in five dimensions obey the temperature bound

(6.11). However, if N ≥ 3 it is clear that the inequality in (6.13) can be violated for valid

choices of the parameters yi. For example, we can take y1 = y2 = 1, thus ensuring that the

right-hand side of (6.13) is at least 1, and then choose the remaining yi large enough so that

the left-hand side of (6.13) is less than 1. Clearly if z, which is independently specifiable
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and subject only to the restriction z ≥ 0, is chosen to be sufficiently small, then the order

z2 terms in (6.12) will not be sufficiently positive to overwhelm the negative contribution

from the terms at order z0, and so (6.12) will be violated.

In even dimensions n = 2N+2, the analogous calculation shows that for these Kerr-AdS

black holes the temperature inequality (6.11) is equivalent to

(n− 3)(
∏

i

yi)
−

1
n−2 − 2

∑

i

y−1
i + 1 + (n− 1)[(

∏

i

yi)
1

n−2 − 1] z2 ≥ 0 . (6.16)

Again, the terms at order z2 are clearly positive, and so showing that (6.16) is satisfied is

equaivalent to showing that

(N − 1
2 )(

N∏

i=1

yi)
−

1
2N ≥

N∑

i=1

y−1
i − 1

2 . (6.17)

Clearly this inequality is always obeyed in four dimensions, corresponding to N = 1, since

the function

1
2y

−1/2
1 − 1

y1
+ 1

2 = 1
2y

−1
1 [(y1 − 1) + (y

1/2
1 − 1)] (6.18)

is manifestly non-negative for all y1 ≥ 1. Thus all Kerr-AdS black holes in four dimensions

obey the temperature bound (6.11). It is clear, however, that the inequality (6.17) can be

violated for valid choices of the parameters, yi ≥ 1, if N is greater than or equal to 2 (i.e. in

even dimensions n greater than or equal to 6). For example, we could take y1 = 1, and then

by taking the remaining yi large enough, the left-hand side of (6.17) can be made arbitrarily

small, while the right-hand side exceeds 1
2 . By also taking z sufficiently small, this means

that (6.16) can be violated when N ≥ 2.

More generally, one can see that in all dimensions n ≥ 6, there exist regions in the (yi, z)

parameter space for which the inequalities (6.12) or (6.16) are violated, and using (5.16)

these can be translated back into regions in the parameter space for (ai, r+) for which the

temperature inequality (6.11) is not obeyed.

It is also worth remarking that similar conclusions are obtained if we consider asymp-

totically flat, rather than asymptotically AdS, rotating black holes. From (5.15) we see that

the asymptotically flat case, which arises when g = 0, corresponds to taking z to zero. We

saw above that in the asymptotically AdS case there were terms in the inequality that were

of order z2, and terms of order z0. The former were always consistent with the inequality,

and it was the z0 terms, which are the ones that survive in the g → 0 limit, that had to

be investigated in more detail. Thus the conclusions for asymptotically-flat rotating black

holes are the same as those for asymptoticallty-AdS rotating black holes, namely that vi-
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olations of the temperature inequality (6.11) can occur in all dimensions 6 and higher, in

cases where some of the rotations are small and some are large.

Finally, we should emphasise that our finding of violations of the inequality (6.11) does

not contradict or threaten any cherished beliefs. The inequality was derived for static

solutions, and, although commonly such considerations can lead to conjectured inequalities

that have a wider range of applicability, as in the case of the cosmic censorship bound (5.1),

there is no a priori reason why it should do so in this case. The result could, perhaps, be

viewed as a salutary reminder that a conjecture that holds up well in low dimensions may

run into trouble in higher dimensions.

7 Cosmological Event Horizons

In this section we take the cosmological constant to be positive, thus

Rµν =
n− 1

l2
gµν . (7.1)

In order to obtain the necessary formulae one makes the substitution l2 → −l2.

In the case of pure de Sitter spacetime, dSn, one has m = ai = 0 and there is a

cosmological horizon [47] at r = l. If m > 0, this is at

r = rC ≤ l . (7.2)

Inside the cosmological horizon there will, in general, be a black hole horizon, at r = rH

say.

If the spacetime dimension n is even, then the area of the cosmological horizon AC is

easily seen to be bounded above by the value in pure dSn,

AC ≤ An−2l
n−2 . (7.3)

(For the four-dimensional case, see [39, 48].) In some sense, Smax = 1
4An−2l

n−2 represents

the largest amount of information that can ever be lost through the cosmological horizon.

By manipulations similar to those in the case of a negative cosmological constant, one

may convince oneself that

(
AC

An−2
)
n−3

n−2

(
1− 1

l2
(
AC

An−2
)

2

n−2

)
≤ (

AH

An−2
)
n−3

n−2

(
1− 1

l2
(
AH

An−2
)

2

n−2

)
(7.4)

with equality only for the Kottler, i.e. Schwarzschild-de Sitter, solution. In the Reissner-

Nordström-de Sitter case, one can do more, and obtain

(
AC

An−2
)
n−3

n−2

(
1− 1

l2
(
AC

An−2
)

2

n−2

)
− ΦCQ ≤ (

AH

An−2
)
n−3

n−2

(
1− 1

l2
(
AH

An−2
)

2

n−2

)
− ΦHQ , (7.5)
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where ΦC and ΦH are the electrostatic potentials of the cosmological horizon and black

hole horizon. Actually, only the potential difference between the two horizons enters the

inequality, as must be the case by gauge invariance.

An interesting question is whether there is an upper bound to the area of a black hole

in a background de Sitter spacetime [49]. For the Schwarzschild-de Sitter solution, there is

such an upper bound, which occurs when the two horizons coincide. This happens when

rC = rH = l

√
n− 3

n− 1
. (7.6)

It is natural therefore to conjecture that more generally,

AH ≤ An−2l
n−2

(n− 3

n− 1

)1
2 (n−2)

. (7.7)

It is easy to check that this is true for the Reissner-Nordström-de Sitter solution in any

dimension. The radius r at which the two horizons coincide is easily seen to be less than

l
√

n−3
n−1 and so the area of a charged black hole in a background de Sitter spacetime is indeed

never greater than An−1l
n−2(n−3

n−1)
n−2.

In the rotating case the black hole and cosmological horizons coincide when m, con-

sidered as a function of r, has a vanishing derivative. One may check that this happens

at

rC = rH < l

√
n− 3

n− 1
. (7.8)

We have verified that the inequality (7.7) is satisfied for rotating black holes in a variety

of cases. These include the general Kerr-de Sitter metrics in four and six dimensions; the

Kerr-de Sitter metrics with equal angular momenta in five and seven dimensions, and the

Kerr-de Sitter metrics with equal angular momenta in all even dimensions.

Here, we shall just present the proof for the case of Kerr-de Sitter metrics with equal

angular momenta in all even dimensions n = 2N + 2. From the formulae collected in the

appendix, and setting ai = a, we can show that the condition for double root rC = rH can

be expressed as

l2 =
r2H [(n − 1)r2H − a2]

(n− 3)r2H − a2
, (7.9)

whilst the area of the horizon is given by

AH = An−2 l
n−2

(r2H + a2

l2 + a2

)n−2
2

. (7.10)

It is straightforward to see that

r2H + a2

l2 + a2
=

n− 3

n− 1
− 2a2

(n− 1)[(n − 1)r2H − a2]
≤ n− 3

n− 1
, (7.11)

thus proving that these Kerr-AdS black holes indeed satisfy the bound (7.7).

33



8 Conclusions

In this paper, we have studied the relation between the thermodynamics of the bulk variables

describing rotating black holes in gauged supergravities, and the corresponding variables in

the boundary CFT. We have shown that by using the standard UV/IR connection between

the bulk and the boundary, bulk quantities that satisfy the first law of thermodynamics are

mapped into boundary quantities that likewise satisfy the first law of thermodynamics. An

important point when considering rotating AdS black holes is that the natural conformal

boundary at large distance is defined with respect to a coordinate frame in which the metric

is asymptotically static and asymptotically spherical.

Our results have clarified some previous puzzling claims in the literature, including in

particular the assertion that to get boundary quantities that satisfy the first law one must

start from bulk quantities that do not. This assertion was based on calculations performed

in a specific frame that is rotating and non-spherical at infinity, with an angular velocity

that depends on the rotation parameters of the black hole. In our opinion this is not a

convenient or natural frame to use, and we believe that this is why it led to apparently

puzzling conclusions.

In this context, it is perhaps worth remarking that in much of the literature on the

subject of rotating AdS black holes, there is a tendency to refer to just two choices of

frame, namely the frame that is asymptotically static, and the frame with rotation rates

given by (2.7) at infinity. In our opinion, the discussion of whether the thermodynamic

quantities such as energy should be defined with respect to the former or the latter frame

is misplaced. In reality there are infinitely many different frames that could be chosen,

with arbitrary choices of asymptotic rotation rates. Asymptotically static frames enjoy a

preferred status, and, as we showed in [13], the quantities defined in an asymptotically

static frame satisfy the first law of thermodynamics. Frames whose asymptotic rotation

rates depend upon the black-hole rotation parameters (such as the frame specified by (2.7))

seem to be particularly unnatural from the point of view of thermodynamic discussions,

since one would need to include extra terms to compensate for the changing centrifugal and

Coriolis contributions to the energy. Furthermore, if physical results (such as the energy)

depend upon the choice of frame (in the sense that they depend upon the choice of timelike

Killing vector used to define the energy, etc.), then a justification is called for as to why

some specific frame, rather than one with some other rate of rotation, has been chosen. We

have argued that for thermodynamic discussions, at least, the asymptotically static frame

is the physically natural one.
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Some of the results in [14,16] show that in a different context, namely the discussion of

the Cardy-Verlinde formula, there is a significant merit to considering the energy function

E′ defined with respect to the frame with asymptotic angular velocity given by (2.7). It

was shown in five dimensions in [16], and in higher dimensions in [14], that the Cardy-

Verlinde formula (3.5) holds for rotating AdS black holes, provided that one uses energies

and angular velocities measured with respect to the frame with angular velocities given

by (2.7) at infinity. As far as we are aware, there is no a priori reason why a frame with

this particular angular velocity should be singled out in this context, but the observation is

certainly an interesting one.

Results had also been obtained for modifications to the Cardy-Verlinde formula when

applied to non-rotating charged black holes [15, 16, 30]. The recent construction of black

holes that have both rotation and charge has provided a wider spectrum of examples where

the Cardy-Verlinde formula can be tested, and we have reported some results in the present

paper. It seems that there is no natural and universal modification which encompasses all

the cases. Nevertheless, as we have shown, there is a closely related and physically more

significant result that does always hold for all the rotating charged black holes, namely

the existence of an AdS-Bekenstein bound (3.10), and its electrostatic generalisation (4.2).

The AdS-Bekenstein bound is itself a consequence of a more fundamental cosmic censorship

bound, and we have explicitly demonstrated for many of the rotating and charged black

holes that this bound is indeed satisfied.

We have also examined the question of whether there is an upper bound for the tem-

perature as a function of entropy for black holes in AdS backgrounds. In four and five

dimensions, we found that the temperature of a rotating AdS black hole is always less than

that of the Schwarzschild-AdS black hole of the same entropy. In six or more dimensions,

by contrast, we find that for certain choices of the rotation parameters, the rotating AdS

black hole can have a higher temperature than the Schwarzschild-AdS black hole of the

same entropy. Finally, we discussed area inequalities for rotating black holes with a positive

cosmological constant, for which there is a cosmological horizon as well as a black hole

horizon.
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A General Kerr-AdS Black Hole in Arbitrary Dimensions

In this appendix, we collect some general results on rotating asymptotically AdS black holes

in arbitrary dimension n. The solution was obtained in n = 4 in [26], in n = 5 in [1], and

in n ≥ 6 in [2, 3]. Results on the thermodynamics of the arbitrary-dimension rotating AdS

black holes were obtained in [13].

The metrics have N ≡ [(n − 1)/2] independent rotation parameters ai in N orthogonal

2-planes. We have n = 2N + 1 when n is odd, and n = 2N + 2 when n is even. Defining

ǫ ≡ (n− 1) mod 2, so that n = 2N + 1 + ǫ, the metrics can be described by introducing N

azimuthal angles φi, and (N + ǫ) “direction cosines” µi obeying the constraint

N+ǫ∑

i=1

µ2
i = 1 . (A.1)

In Boyer-Lindquist type coordinates that are asymptotically non-rotating, the metrics are

given by [2, 3]

ds2 = −W (1 + r2 l−2) dt2 +
2m

U

(
W dt−

N∑

i=1

ai µ
2
i dϕi

Ξi

)2
+

N∑

i=1

r2 + a2i
Ξi

µ2
i dϕ

2
i

+
U dr2

V − 2m
+

N+ǫ∑

i=1

r2 + a2i
Ξi

dµ2
i −

l−2

W (1 + r2 l−2)

(N+ǫ∑

i=1

r2 + a2i
Ξi

µi dµi

)2
, (A.2)

where

W ≡
N+ǫ∑

i=1

µ2
i

Ξi
, U ≡ rǫ

N+ǫ∑

i=1

µ2
i

r2 + a2i

N∏

j=1

(r2 + a2j) , (A.3)

V ≡ rǫ−2 (1 + r2 l−2)

N∏

i=1

(r2 + a2i ) , Ξi ≡ 1− a2i l
−2 . (A.4)

They satisfy Rµν = −(n− 1) l−2 gµν .

The constant-r spatial surfaces at large distance are inhomogeneously distorted (n− 2)-

spheres. Making the coordinate transformations

Ξi y
2 µ̂2

i = (r2 + a2i )µ
2
i , (A.5)

where
∑

i µ̂
2
i = 1, the metrics at large y approach the standard AdS form

ds̄2 = −(1 + y2l−2)dt2 +
dt2

1 + y2l−2
+ y2

N+ǫ∑

k=1

(dµ̂2
k + µ̂2

kdϕ
2
k) , (A.6)

with round (n − 2)-spheres of volume An−2 y
n−2 at radius y, where An−2 is the volume of

the unit (n− 2)-sphere.
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The angular velocities of the horizon, measured relative to the frame that is non-rotating

at infinity, are given by

Ωi =
(1 + r2+ l−2) ai

r2+ + a2i
, (A.7)

and the angular momenta are

Ji =
maiAn−2

4πΞi (
∏

j Ξj)
, (A.8)

where

An−2 =
2π(n−1)/2

Γ[(n− 1)/2]
(A.9)

is the volume of the unit (n − 2)-sphere. As shown in [13], the energy of the black hole,

again measured in the asymptotically static frame, is given by

n= odd : E =
mAn−2

4π (
∏

j Ξj)

( N∑

i=1

1

Ξi
− 1

2

)
(A.10)

n= even : E =
mAn−2

4π (
∏

j Ξj)

N∑

i=1

1

Ξi
(A.11)

The area of the event horizon is given by

A = An−2 r
ǫ−1
+

∏

i

r2+ + a2i
Ξi

. (A.12)

The Euclidean action was also calculated in [13], and found to be given by

I =
βAn−2

8π
∏

i Ξi

(
m− rǫ+ l−2

∏

j

(r2+ + a2j )
)
, (A.13)

where β is the inverse of the Hawking temperature, which is given by

n = odd : 2πT = r+ (1 + r2+ l−2)
∑

i

1

r2+ + a2i
− 1

r+
, (A.14)

n = even : 2πT = r+ (1 + r2+ l−2)
∑

i

1

r2+ + a2i
− 1− r2+ l−2

2r+
. (A.15)

The traditional asymptotically-rotating Boyer-Lindquist coordinate system, where the

angular velocities at infinity are given by (2.7), is related to the coordinates in (A.2) by

defining

ϕ′
i = ϕi − ail

−2t , t′ = t . (A.16)

The energy E′ calculated in the asymptotically-rotating frame, i.e. using the timelike Killing

vector ∂/∂t′, is given by [13]

E′ = E − 1

l2

∑

i

aiJi =
(n− 2)mAn−2

8π(
∏

j Ξj)
. (A.17)
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