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A MULTISCALE ENRICHMENT PROCEDURE FOR NONLINEAR
MONOTONE OPERATORS

Y. EFENDIEV, J. GALVIS, M. PRESHO, J. ZHOU

ABSTRACT. In this paper, multiscale finite element methods (MsFEMg) domain de-
composition techniques are developed for a class of nanp@blems with high-constrast
coefficients. In the process, existing work on linear protd¢6, 7, 8] is extended to treat a
class of nonlinear operators. The proposed method reghieesolutions of (small dimen-
sion and local) nonlinear eigenvalue problems in order sesyatically enrich the coarse
solution space. Convergence of the method is shown to teléte dimension of the coarse
space as well as a change in the coarse mesh size. In additeoshown that the coarse
mesh spaces can be effectively used in two-level domainndgosition preconditioners.
A number of numerical results are presented to complemerdnhlysis.

1. INTRODUCTION

Many fundamental modeling problems in engineering and igbysxhibit multiscale
behavior. In particular, the partial differential equasowhich are used to describe the
physical nature of such systems often involve coefficierttgckvvary over many length
scales. Many of these problems have high contrast coefficeemd nonlinearities (e.g.,
Forchheimer flow, nonlinear elasticity, etc.) which make tlevelopment of multiscale
methods increasingly challenging. In this paper, we sthydevelopment of multiscale
methods for nonlinear high-contrast elliptic equations.

In the past few decades, various multiscale solution tegles have been developed to
capture the effects of small scales on a coarse grid [1, 20,911, 12]. In this paper, we
follow the MsFEM framework where multiscale basis funct@me constructed on a coarse
grid. These coarse mesh basis functions are coupled viabaldlarmulation in order to
compute the solution. In recent years MSFEMs have been@ateio systematically enrich
initial coarse spaces to converge to the fine-grid soluffoB]. It has also been shown that
the use of these coarse spaces in two-level domain decotigposiethods yields robust
precondioners for the iterative procedure (see e.g., [6, Bktending these methods to
nonlinear problems requires the development of genechkreichment strategies in non-
Hilbert setting and coupling algorithms which we addresthis paper.

In this paper, we develop MsFEM and domain decompositiorafatass of nonlin-
ear monotone operators with high-constrast coefficient& rfon-linearity of the operator
presents additional difficulties that must be considerddreeconstructing the enriched
coarse spaces mentioned above. Of particular importartbe imethod we use to obtain
the nonlinear eigenpairs which are used in the enrichmeetgolure. Literature on methods

for the numerical computation of eigenpairs is often focuse linear eigen problems or
1
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on finding the eigenfunction corresponding to a single (¢hg smallest or largest) eigen-
value [4, 14]. However, we emphasize that the multiscaleeknrent necessitates the use
of a number of eigenpairs corresponding to the nonlinearadpewhere many nice prop-

erties enjoyed by linear eigen problems are no longer alail&ince the characterization
and method proposed in [17, 18] for finding multiple nonlinegenpairs cannot solve

our problem, it is particularly important that we developm®new characterization and

method for finding multiple nonlinear eigenpairs leadingtdve our problem. Once the

appropriate spaces are constructed we compare MsFEM wilhdpectral basis functions

with MSFEM that uses linear basis functions. Our numerieabtts show that one can ob-
tain more accurate solutions when local spectral basidifumeare used. In particular, the
high-conductivity features are captured more preciseth Vacal spectral basis functions

that identify and separate the high-contrast regions.

For added breadth, we propose the use of these coarse spdesslevel domain de-
composition preconditioners. Our approaches borrow tha idaas for nonlinear iterative
methods from [3, 5, 13, 15]. The number of iterations requlyg domain decomposition
preconditioners is typically affected by the contrast immhedia properties localized within
each coarse grid block. With an appropriate choice of cogyaees, one can show that the
number of iterations is independent of contrast (see [8lifi@ar problems). In this paper,
we extend the methods developed for linear problems to ineatiproblems.

In order to confirm our theoretical findings we present a nurnbaumerical examples.
In particular, we present the convergence results for MslEBNesponding to the addition
of more eigenvectors in the coarse space enrichment andrgeha the coarse mesh
size. Our results are consistent with our theoretical figslithat make some assumptions.
In particular, we show that the convergence behave# 85\*, where H is the coarse
mesh size and\* is the smallest eigenvalue such that the correspondingnesgéor is
not included in the coarse space. For two-level domain deosition preconditioners
designed in the paper, we show that the number of iteratsinslepdendent of the contrast.

The rest of the paper is organized as follows. In Sect. 2 wedlnice the model problem
as the motivation for the solution technique we considelSéct. 3 we describe the non-
linear eigenvalue problem and describe the proposed cgaidsolution technique. Sect. 4
is devoted to a detailed explanation of the eigenvalue céatipn, and in Sect. 5 we address
two-level solvers. A variety of numerical results are preged in Sect. 6, and we offer some
concluding remarks in Sect. 7.

2. PRELIMINARIES AND MOTIVATION
We consider, € W, 7 (D), p > 2,
—div(k(z,Vu)) = f,
wherer = (k;). We assume that(z, £) is monotone or§ € R%and satisfies
[6(- &) = 6, &) < CL+ & + &) 76 - &
(F(w, &) = KW, &)) - (&1 — &) = C(1+ [&] + &)1 lé — &7

For simplicity of the analysis we assume= p andx(-,0) = 0. Under these conditions,
the solution exists and is unique [19].

2.1)
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The corresponding variational formulation is to find: 1, (D) such that

/ k(z,Vu) - Vv = / fu, forall v € W, (D).
D D

One can write a corresponding minimization problem wheessthiution can be thought as

inf  F(u) where ﬁ(u):/DH(x,Vu)—/Dfu and 0 (-, &) = k(- €).

ueW, P (D) 0&;

We define an energy “norm” by the notation

el py = /D (e, V).

Next, we describe the finite element approximation of thetsmh. We let7” denote
a fine triangulation, and denote b§* = V(D) the usual finite element discretization of
piecewise linear continuous functions with respecfto We also letl/)*( D) denote the
subset ofl’"(D) with vanishing values o®D. Similar notation,V"(Q), V{(€2), is used
forQ C D.

The discrete fine-scale problem is defined to find V" such that

(2.2) u = arg min F( )

veVh

or (F'(u),v) = 0, forallv € V", whereF (u) = [, (I(x, Vuy) — fuy) or

(2.3) (F'(u),v) = /D/ﬁ(x, Vup) Vo, — /vah =0, forallve V™

I;xample 1. One of the main examples we will study is the heterogenedaplacian. If
= [p s(@)|VolP — [}, fu, we have

(ﬁ’(u),v}:/D/Q(x)\VuP_?VuVU—/DfU.

The corresponding differential equation is to fing: W, ”(D) such that
(2.4) —div(k(z)|VulP~*Vu) = f.

We introduce the coarse triangulati@i¥ and assume that” is a refinement of . We
denote by{y;} X, the vertices of the coarse meEW and define respectively the neighbor-
hoodw; of the nodeyl and the neighborhoady of the coarse elemett by

(2.5) Wi = U{Kj eT" yie K;}, wi= U{wj €T y; € K;}.

Throughout this paper, the notation< b means that < Cb where the constart' is
independent of the mesh size and the contrast (which we el&ydhe physical parameter
n). The constan€’ may depend op and some other geometrical parameterg 6t
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Coarse Grid

FIGURE 1. Coarse and fine grid

3. MULTISCALE TECHNIQUE

In this section, we discuss our multiscale technique whislves the construction of
a linear space of multiscale basis functions on a coarse ghd construction starts with
initial set of multiscale basis functions that will be emméd using a localized eigenvalue

problems. More precisely, the dominant eigenmodes arephatt by initial partition of

unity functions{y; }.\, that are subordinated to the coverifig,} ", .

3.1. Initial partition of unity. First, we introduce some basic initial multiscale finite-ele
ment spaces defined as one basis function per coarse node.

e Alinear initial partition of unity,? is defined as usual linear basis functions
e A multiscale initial partition of unityx " is defined by

(3.6) —div(k(z, VX)) =0 inK cw;, xM=x)indK, forall K € w;.
e We can also use energy minimizing basis functions that dreeateby

(3.7) Xfmf:argminZ/ (x, Vx;)

subject toy |, x; = 1 with Supgx;) C w;, i =1,..., N, (see [16]).
3.2. Eigenvalue problem and space enrichment. In each patcly; we define
GV (u) = Z Ixeully ), and  G*(u) = |ully,, forallue Vi (wy).
k, wi (wi#0
Next, we define

i (u) = g;gz; forallu # 0,u € V"(w;).

To compute our multiscale space, we want to define a coarse Bpj&.;) (a space with a
minimum dimension) such that for amyc V"(w;) there exists,, € V,(w;) satisfying
AV (U — Uo) > Ag.
A coarse space is constructed in the following way. For eathhav;, we identify a
spectral problem and dominant eigenvectors

1,7 and denoteV(w;) = Spar{yy", ..., 7}
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The multiscale basis functions for the pam;mre constructed by

vc(wl) Spar{X 7 R Xz 77Z)
Then, a coarse space is given by

¢ = UVC(CL)Z)
and the corresponding coarse problem is defined by
(3.8) u = arg min F( ).

veV e
3.2.1. Motivation of the eigenvalue problenwe letu € V"(D), and define an interpolant
in w;, [“u, such thatl*u € Spar{yy", ... ¢} and A\ (u — [“u) > ). Letv be the
approximation ofu over D, and defined as = ), x;/*“*u. Givenu, we can write

(3.9) [l UHV(D = ZGM — 1"

The eigenvalue problem is motivated by the fact that we wokédto boundG: (u — [*“:u)
by a term independent of and /“*u. In this paper, we will bound+ (v — I“u) by
GY¥i(u — I¥u). The latter motivates the eigenvalue problem.

4. EIGENVALUE COMPUTATION

In this section we describe a solution technique for solnoglinear eigenproblems
which are motivated by the previous section. First, wé/etw;) be the space spanned by
the basis functions of the finite element megh localized to a coarse neighborhoogd
Now we assume the homogeneous conditionté) = [t~ x(-, &) Vi # 0. Then we have

1
I, ¢) = ]—)n(~,§)-§, G (tu) = [LPG¥ (), G (tu) = [UPGS (u),

(G=) (tu) = [H"HG) (w), (G (bu) = [t (G (u), A= (tu) = X (u) Wt # 0.

We denoteds(w;) = {v € A(w;) : G¥i(v) = 1} forall A(w;) C Vh(wl) We define the

smallest eigenvalue by;" and the corresponding eigenvectgr* = arg min \**(u)
uEV (wi)

and\y’ = \@i (Y77 .

We reiterate that the eigenvalue problem is used in ordeystesatically enrich our
coarse solution space. As such, we formulate two importarthé context of multiscale
enrichment) sets of inequalities below.

Main Problem: For a threshold\**: > A" > 0, find a minimum subspace (called
coarse spacé)‘(w;) C V"(w;) such that

(4.10)  C(w)G¥(u) > G (u — I¥"u) > X' Gy (u — [¥u)  forallu € Vi (w),

where/“iu € V¢(w;) andC(w;) > 0 depends om, but is independent of andx.
Sub-Problem: Given A\*~i > \¢*, find a maximum subspadé” (w;) C V"(w;) such
that

(4.11) G¥(u) > X1 G¥i(u) forallu e UM (w;).
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In the simplified case when = 2 (a self-adjoint linear problem), the sub-problem be-
comes equivalent to finding the smallest eigenvaltie> \*: to the linear eigenproblem

(4-12) (G) () = X4 (G5 (w),
which can be characterized by the Rayleigh-Ritz method (RRM
A= min A (u) = Gwl_ (u)7
LS (g GXZ (U>

a standard orthogonal subspace minimization method (gee[£9]). It is important to
note that in the case when> 2, (G**)'(u) = A*(G%¢)"(u) is nonlinear and\;" obtained
by RRM is not strictly optimal although the orthogonalityis well-defined here.

To develop a new method, we first note that )’ (u) = \“/(G%*)’(u) can be character-
ized by the Courant-Fischer-Weyl (CFW) max-min princiged [19]). The sub-problem
can be solved as to find the first”~ > A\“* where

4.13 AT = max min A (u), k=2,...,n,
( ) k Aw;)ESp (wi)  ueA(w:) (u)
and S;.(w;) denotes the set of alt — 1 co-dimensional subspaces W' (w;). We let
A (w;) € Sk(w;) be such that
ALT = min A (u).

u€A, (wi)
Then);”™ < \;Y] and the optimality can be stated by
(4.14) G (u) > NG (u)  forallu € A (w;),

where the inequality will be violated ik, is replaced by anp\“ > X\,;~. We note
that CFW (4.13) was originally established for solving tiveear problem(G¥:)' (u) =
(G (u) (see e.g., [19]). For our problem we first establish the dwlityn of the non-
linear analogue in (4.13). The sub-problem solvabilitytéted in the following theorem.

Theorem 2. Sub-problem (4.13) is solvable.
Proof. We refer the interested reader to the Appendix. O

We note that the max-min problem (see Eq. (4.13)) still catveonumerically imple-

mented, because we cannot coverkalt 1 co-dimensional subspaces. Thus, we need to

develop a numerically implementable max-min charactéana
It can be shown that the solutions of

Y= ar max min A\ (u) = arg min A\ (u),
k gA(wi)GSk(wi) u€A(w) ( ) guEAk(wi) ( )

correspond to the critical points af, i.e.,
() () = 0 01 (G=) (%) = X () (G (),
since

(A () = (G2 ()] G () = X (W) (G ()] = 0.
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*,wi) *,Ws

Equivalently,( A\« (1, ) is a desired eigensolution of the nonlinear eigenproblem

(4.15) (G¥)' (u) — X (G5) (u) = 0.
To reduce the choices of max in (4.13) we consider RRM
. : . G (u)
(4.16) 0w — arg min Ni(u)=——=k=1,2,...
g el b €S (wi) (v G¥' (u)

for p-Laplacian (see (2.4)) and choose the inner product

(4.17) (u,v), = / [k(x)Vu(z) - Vou(z) + k(z)u(z)v(z)] de.

i

wherek = k), H?|Vx;|P. We also denote

(u,v) = / k(x)u(z)v(z)de.

ThenV<(w;) = [¢17, ..., ¢}, ] represents a coarse space and

(4.18) G¥i(u) = A ()G (u) forallu € Ve(w;)*

or

(4.19) G¥i(u— I¥u) > A(Yp )G (u — %) forallu € V' (w;).

But such\( 2"‘”) Is not optimal forp > 2, and to improve it, we use RRM as a prediction
and then a max-min method as a correction. The detailed stéps nonlinear eigenprob-
lem solution technique is presented in the algorithm below.

A Prediction-Correction Max-Min Method (PCMM) : Setk = 2.
Step 0: Let (i, 1) be the eigensolutions to

—div(r () Vi) = ()i (o)

(9;7/1 =0, x€ 0w ||Yn| =1
Step 1: (Prediction) Do
L= arg min A (w).

w€[p | & ESK (ws)

Step 2: (Correction) With the initial guess,, i.e., writey,;*" = i, wwi]+¢”wi i1
k

K[y K[y
and use)’., ., € [}, ..., as an intial guess do
k[, Yy |
DY —arg  max min A (v)

u€[Py syt ls VEM[U " e ] s €S (wi)
and denote
P =arg min A (v).
OIS [ (/MO ik B P
Step 3: (Check)
If X2 (*") > X57 > Ai(¢,]) (succeeded) go to Step 4;
Else setc = k + 1 and check itk = n (failed) stop, else go to Step 1.
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Step 4: We have optimality of solutions obtained by the method (sge &.20), (4.21),
and (4.22))

Upon completion of the algorithm we dendté(w;) = [, [/%", ..., ¥+ We note
that reaching Step 4 of the PCMM algorithm yields the optitpaonditions

(4.20) G (¥p™) = MH(Ur)GE (W), o € W [ T,
(4.2 (X)) (vy") = 0,
(4.22) G¥i(u) = X (pe )G (u) forallu € [y, [We, ..., v ]t] € Sk(wy),

*,W5 .

at least for all such close toy,“*; and the above inequality will be violatedf (¢, ")

0,w;

is replaced by any > \“i(u,*) or " is replaced by any other € [¢}", ..., ;"]

5. DOMAIN DECOMPOSITION ITERATION FOR THE FINESCALE SOLUTION

We will also use the coarse spaces constructed via the solotiocal nonlinear eigen-
value problem in a two-level (nonlinear) domain decompaosiimethod. We focus in
Schwarz subspace minimization algorithms. We refer trex@sted reader to [3, 5, 13, 15]
for more discussion on nonlinear domain decomposition otsh

In order to describe the two-level domain decomposition mieoduce some notation.
We use the overlapping decomposition generated by the egaig neighborhoods, i.e.,
the decompositiofiw; }Y,. More general overlapping decomposition can be consicesed
well. We useV ¢ (w;), the set of finite element functions with supportinand zero trace
on the boundaryw;. In general, one can use a general coarse space. We alse tgnot
RT : V¢ w;) — V" the extension by zero operator.

We define the local problems as follows. Fifdu) € V¢ (w;) such that
(5.23) P(u) =arg min F(u— R v;)

v, €EVE (w;)
or, equivalently for the cases considered in this paper,
(5.24) (F'(u— RTPu),RT2) =0, forallz e VC(w).

Note that ifu is the solution of the original problem, thétu = 0. Starting with an initial
guessyy € V(D), we introduce the nonlinear one level subspace iteratifinetby

N
(5.25) Unst = tn + Y 4R} Pi(un) =y + Pig(u,).
=1
Hereq;,7 = 1,..., N are constants such th@f\il «; = 1 and we introduced the notation

Pi(u) = ZL a;RT P,(u,). Note that, wherF" is linear, this iteration corresponds to the
one level additive Schwarz solver. It is known that this solg not robust with respect to

the contrast (even for linear problems). To get more roliesations a coarse problem is
added. The nonlinear two level subspace iteration is

(526) Up+1 = Up + (1 - Oéo)PlL(un) + Oéopo(u) = U, + PQL(un).
whereP,u is the solution of the coarse problem (3.8) and o < 1.
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Remark 3. When the resulting equationF” (u), v) is a linear equation. it is well known
that the converge of the Schwarz methods can be accelemtgdpby using a precondi-
tioned Krylov subspace method to solve the equatigh= 0 where the preconditioned
operator corresponds to the operatét;, = M,,'F’ where M,,' is the two level pre-
conditioner. In the nonlinear case we can also acceleratedbnverge of the method by
considering a (qQuase-)Newton method for the equation

(5.27) Py (u) = 0.

6. A FULLY RESOLVED METHOD AND ITS NUMERICAL RESULTS

In this section, to verify and implement the proposed emnieht approach in Sect. 3, as
well as the nonlinear eigenpair computations describecett. &, we consider multiscale
p-Laplacian equation with the high contrast in the coeffitsen

(6.28) —div(k(z)|VulP?Vu) = f forz € D,

wherer(x) is a high contrast (i.e5max(z)/kmin(x) = 1 Wheren is large), heterogeneous
coefficient. We note that this is a special case of (2.3) where

(ﬁ’(u),v):/D/ﬁ(w)\VuP’QVUVU—/va,

with the energy “norm’|

V) = /Dn(;t)\Vv\p. Denote

(6.29) [¥y = arg r‘r/u(n )/ k(z)|Vu — Vol?, Yu € V(w;).
veVe(w; Wi

Theorem 4. The main problem is solvable.

Proof. (Sketch) Due to a page limit, we provide only a sketch of th@ophere. After
solving the sub-problem, we only need to establish the frstjuality in the main prob-
lem. Since norms o ¢(w;) are equivalent, by the definition (6.29) 6f: and the Holder
inequality, the inequality can be proved first on a subsét'@fv;) wherex(z) = ¢. We
show that the constants involved have upper bounds depgodidim (1 “(w;)) but inde-
pendent of: andx. The inequality can be proved next bii(w;) for a piecewise constant
with a corresponding partition df(w;), and finally onV“(w;) for generalx by a limiting
process. O

In order to solve Eq. (6.28) we employ a Picard iteration ghel
(6.30) —div(k(z)|Vu, 1|P2Vu,) = f forxze D,

where the subscript denotes the iteration index. Singe> 2, we havew,”(D) C
Wy*(D) = HY(D) ¢ Wy4(D) and H}(D) is dense inW,(D), for numerical com-
putation we use the variational form of Eq. (6.30)

(6.31) an_1(un,v) = f(v) forall ve Hy(D),
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with usual bilinear forms. This equation has a matrix fodn u,, = b, where for all
u,,v € V(D) we have

(6.32) ugAn_lvz//<¢|Vun_1|p_2Vuan and va:/fv.
D D

A solution is taken as := ux when||uy — uy_1|| (in some norm) is sufficiently small.

6.1. The p-Laplacian: Multiscale method. Using the coarse mesh’’ we introduce
coarse basis function§b;} ¥, where N. denotes the number of coarse bases. In this
paper the basis functions are supported indtheeigborhoods, however, an important con-
sideration is that there may be multiple basis functionseachw,. Given these coarse
scale basis function;, we define the coarse-grid operator Ay, ; = RyA,_1 R} where

RI = [®,...,®pn].

In the expression above, tligs denote coarse-scale basis functions defined on a fine grid.
For the discrete problem, they are simply vectors. Giverctiese space, we define the
multiscale finite element solution as the finite elementgutipn of the fine-scale solution
into the coarse spadé®. In particular, the multiscale iterates are obtained byiag|

(6.33) Ao n—1uon = fo,
where f, = RE'b. Equivalently, one may write the multiscale approximationthe coarse
grid asug ,, = Z ¢;®;, where the; are obtained through the variational foa | (ug ,,, v) =

(f,v). We note that once, is determined (i.e., when the coarse-scale Picard iteratio
converges), we have access to the corresponding fine-qualexamation of the solution
through a basis reconstruction.

6.2. Eigevalue computations. In this subsection we offer some results from the proposed
non-linear eigenpair algorithm found in Sect. 4. To begia,mesent Fig. 2 as a represen-
tative example of a high-contrast coefficietitr). See the left hand size of Fig. 2 for an
illustration of the coefficient defined on a global computasl domainD = [0, 1. For the
examples in this sectiom,(z) is posed on a global mesh witld0 fine elements, and the
coarse discretization is chosen to contdirelements. The coefficient has a minimum value
of kmin(z) = 1 and the values in high-contrast regions are constructed fhe uniform
distributionZ/[10%, 10°]. In addition, the coefficient is constructed such that 2 fightrast
regions occur in each coarse element (or equivalently, B-bantrast regions per coarse
neighborhood). See the right hand size of Fig. 2 for an faigin of a coarse neighbor-
hood. We note that a fixed coefficient sample (resulting frieerandom generation above)
is used for the numerical results in this section.

Throughout this section it is important to note that althotige analysis from Sect. 4
requires an eigenpair correction for the cases when 2, the predicted values suffice
for the target application in this paper. As the the two-lewex-min procedure in the
correction step requires a relatively large number of titéaations to ensure convergence,
we choose the more efficient alternative of omitting theectron step. Of course, this gain
in efficiency must occur without a significant compromiseha accuracy of the computed
eigenpairs. To formally validate this choice we first notattthe convergence criteria
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FIGURE 2. A high-contrast coefficient posed onl@) element fine mesh
(left); A coarse neighborhood fromi& element coarse mesh (right)

N (¢*) = 0is equivalent td|w,| — 0. As such, if we ensure thitu, || is sufficiently small
after the prediction step of the PCMM algorithm we can be danmii that our computed
eigenpairs closely capture the “exact” values. For thippse, we use a convergence
criterion such thafjw,|| < h whereh is the fine mesh size. For the examples in this paper
the algorithm typically exits whefjw, | ~ O(10~*), which is one order of magnitude
smaller than our fine mesh. A max-min correction or a funaidtewton’s method may
be used for more stringent convergence, however, detadledecgence results regarding
the proposed algorithm will likely constitute a future pightion.

We offer Fig. 3 as an example of the eigfunction/eigenvaklevior corresponding to a
weight coefficient:(z) and energy coefficieni(x) (such as used in (4.17)). For this partic-
ular example, we limit ourselves to a fixed neighborhepdith a rescaled horizontal axis.
We use the algorithm in Sect. 4 with numerous valugsrainging from2.0 < p < 2.8 and
plot three eigenfunctions; (x) for k£ = 2, 3,4 in the top row, along with the coefficients
and corresponding eigenvalues in the bottom row. The fighosvs that the eigenfunc-
tion behavior is quite similar for varying values. As expected, we see that the eigen-
functions are constant in the high contrast regions of tHd &ad maintain the imposed
zero-Neumann boundary conditions. In addition, we noté tth& computed eigenvalues
from the PCMM algorithm for the case when= 2.0 are nearly indistinguishable from
those obtained from a standard linear eigenpair computafibese results serve as further
validation that prediction step of the non-linear algantiields suitable eigenpairs for the
examples herein.

6.3. Enriched multiscale solutions. In this subsection we present a number of results
verifying the enrichment procedure described in Sect. 3élgn, we offer a series of fully
resolved solutions to Eq. (6.28) in Fig. 4. The solutionsatained through solving the
equation on a one-dimensional domdin= [0, 1] with zero Dirichlet conditions using a
variety of p values such that.0 < p < 2.8. We note that the solutions in Fig. 4 are the
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* *
P5(z) nes)
0.01 0.01
0.0 0.0
-0.01 . . . . -0.01 . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x T
k() K(z) Eigenvalues
2-10° 2:10° 0.1 e
-8~ Reference /‘/
.2232 P
1-10° 1-10% —e-p—24 //
—-®-p=26 /
-9 p=238 . -
5-10% 5.10% 4 -~
Vv
7 e
AT
0-10° : : . . 0-10° ) ! . . 0.0 ,__,!.ggg—.__—-—-—-!——-————-‘?
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3 4
x x Index

FIGURE 3. Eigenfunctions corresponding to a high contrast coefiicior
2.0 < p < 2.8 (top); High contrast coefficients and eigenvalues (bottom)

benchmarks for our multiscale error comparisons. In orderonstruct the coarse space

Fully Resolved Solutions

0.06 |

0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

FIGURE 4. Solutions to (6.28) fop = 2.0,2.2,2.4,2.6, 2.8

we start with an initial coarse spaé"@ = spar{y;}, where{y;}*, is a partition of
unity subordinated to the coverifg;} such thaty; € V(D). We define the summed,
pointwise energy: as

(6.34) F=rYy H'|Vyl,
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and solve the Neumann eigenvalue problem (motivated byestit 2) using the algorithm
from Sect. 4 ineachcoarse neighborhoad;. We denote the non-linear eigenvalues and
eigenvectors by{\;*} and {¢;"}, respectively. We then define the set of coarse basis
functions asby choosing; eigenvectors that correspond to leading eigenvalues.

For the numerical results we consider two sets of partitminsnity {x;} in which the
enrichment procedure will be employed. In particular, we aiset of linear functiongy?}
as well as a set of standard multiscale basis funct{off8} as initial partitions of unity.
See the left hand side of Fig. 5 for an illustration of a lingartition of unity, and the right
hand side for a multiscale partition of unity.

Linear Partition of Unity Multiscale Partition of Unity

1.0 1.0

08 0.8
= 0.6 = 0.6
= =
04 04t
0.2 0.2
0.0 0.0 -

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X xr

FIGURE 5. Linear partition of unity (left); Multiscale partitionfanity (right)

For the comparisons in this section we use the relative gresrgr
(6.35) lu = umsllv(p) / [lwllvipy x 100 %,

whereu denotes the fully resolved solution angs denotes a multiscale solution computed
within an enriched multiscale space. For the tables we usgian of the form MSFEM#n,
wherem denotes the number of additional basis functions that ard imsthe coarse space
construction. For example, MSFEM+2 denotes a coarse spheesW,; = 3 total basis
functions are used. While a linear partition of unity yiells understandably crude ap-
proximation to the fine scale solution (the errors are tylpidarger than50%), we note
that the errors do indeed decrease as we include more erggioios in the coarse space
construction. We also refer back to Fig. 3 and emphasizewthah a linear partition of
unity is usedx has 4 inclusions and 4 channels within each coarse neigbbdrhlhus,
the fact that we obtain 4 small eigenvalues on each coargélm@ihood is consistent with
what we expect from the the Raleigh Quotient.

Aside from the linear case above, we are particularly istexkin computing multiscale
solutions that result from a multiscale partition of unifyhat is, a partition of unity that
is obtained through a process of computing localized basistions in which we use the
original global operator on each coarse subdomain (se8.BY).(See Table 1 for a variety
of relative errors resulting from the enrichment procediive note that the initial basis set
offers a more accurate solution due to the fact that thealrptartition of unity is obtained
through a series of localized solves (as opposed to simplynaisig linear behavior). More
importantly, we see that the errors significantly decreaseainclude more bases in the
multiscale space construction. Table 1 shows a situaticgrevarrors aroun@’% may be
decreased to values that are typically less tHarwhen 4 basis additional basis functions
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are used in each coarse neighborhood. In particular, aschedimmore basis functions in
the enriched space, we encounter a noticeable error declthe multiscale solution. At

| P | 20| 22]24]|26] 28]
Relative Energy Error (%)
MsFEM+0| 7.50| 7.02| 6.80| 6.77| 6.97
MsFEM+1| 7.37| 6.95| 6.75| 6.73| 6.94
MsFEM+2| 0.62| 0.36| 0.49| 0.98| 1.76
MsFEM+3| 0.05| 0.17| 0.41| 0.89| 1.75
MsFEM+4| 0.04| 0.11] 0.29| 0.62| 1.14
TABLE 1. Energy errors for a variety @f0 < p < 2.8 and enriched coarse
spaces constructed frommaultiscalepartition of unity

this point we also consider the quantities that govern ther édrtounds that are presented
in Appendix A. See Table 2 for a variety afin,, A7’ , values as used in the analysis
in the Appendix. We note that as; increases, the eigenvalues increase, and the bound
in Eq. (A.43) will correspondingly decrease. In other worthe analysis suggests (and
the results validate) that keeping more basis functiongHercoarse space construction
will indeed vyield a decreasing global error. In addition, eansider the affect that the
coarse mesh siz€ has on the convergence. The analysis in the Appendix (spg/e43)
also suggests that a decreasé/iwill yield smaller errors. To validate this result, we offer
Table 3 to for a comparison of energy errors obtained for #se evhert/ = 0.1 (the coarse
mesh size used throughout the bulk of the results), as wédirdbe case whe/ = 0.05

is refined. As the analysis suggests, we see a noticeabieel@cithe errors when a finer
coarse mesh is used for the computations. Furthermore, imeags the convergence rate
(from (A.43)) to lie within the range.0 < /2 < 2.6. We note that these values are
recovered through computing the slope(s) from the assmtlag-log plot of the mesh size
versus error when th&, values are comparable.

| P | 20 | 22 | 24 | 26 | 28 |
min,, A7 (XHP)
MsFEM+0| 1.26e2| 2.18e2| 3.74e2| 6.37e2| 1.07e3
MsFEM+1| 5.40e2| 1.07e3| 2.10e3| 4.10e3| 7.93e3
MsSFEM+2 | 1.35e3| 2.84e3| 5.96e3| 1.24e4| 2.59¢e4
MsSFEM+3| 2.70e3| 6.38e3| 1.50e4| 3.50e4| 8.09¢e4|
MsSFEM+4 | 4.44e3| 1.06e4| 2.54e4| 6.02e4| 1.42e5
TABLE 2. Scalednin,, A7’ values as described in Appendix A for a va-
riety of 2.0 < p < 2.8 and coarse basis configurations constructed from a
multiscalepartition of unity

To finish this section, we consider the domain decomposdigorithm in Sect. 5. In
particular, we treat an enriched multiscale solutigp as a domain decomposition pre-
conditioner and consider the convergence of the algoritBee Table 4 for a variety of
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| D |20 22[24]26] 28]
H=0.1 Relative Energy Error (%)
MsFEM+0| 7.50| 7.02| 6.80| 6.77| 6.97
MsFEM+1| 7.37| 6.95| 6.75| 6.73| 6.94
MsFEM+2| 0.62| 0.36| 0.49| 0.98| 1.76

H =0.05 Relative Energy Error (%)
MsSFEM+0|1.42|1.35|1.38| 1.69| 2.53
MsFEM+1| 0.07| 0.22| 0.53| 1.10| 2.04
MsFEM+2| 0.03| 0.06| 0.15| 0.26| 0.40
TABLE 3. Energy error values as described in Appendix A fofa=
0.05,0.1 and coarse basis configurations constructed franukiscalepar-
tition of unity

convergence results for the algorithm. We note that a shgpgiiterion of
1 Aug — fIlfe / | Auge — fllf < 107,

where|| - ||; denotes the discretenorm with1/p+1/¢ = 1, is used to assess convergence
of the domain decomposition algorithm. In particular, wquiee that the initial residual

is reduced by a factor afo—* for convergence. The results in Table 4 correspond to three
separate constrast configurations. In particular, we Iré@lx .. () / Kmin () = 1, Where

7 is assumed to be large. The benchmark example throughswggtiion uses a coefficient
wheren,., = 10° (refer back to Fig. 2), and we construct two related coefiitsiavhere
the contrast is both increased and decreased by the sanre Brden Table 4 we see in
all cases that 62 or less iterations are required for the dodexomposition algorithm to
reach convergence. Furthermore, the numerical results 8tad the number of iterations
required to reach convergence do not depend on the confrée problem. However, an
increase ofy does require more iterations for convergence. While, ireggnwe expect
that varying the contrast will affect the iterative convamnge rates, these results suggest
that the domain decomposition procedure is independerdrafast for this problem.

\ P 12.0]/2.2]2.4]2.6]2.8]
MsFEM+1| Number of Iterations
Nmax = 10% | 44| 49 | 53 | 58 | 62
Nmax = 10° | 44 | 49 | 53 | 58 | 62
Nmax = 109 | 44 | 49 | 53 | 58 | 62
TABLE 4. Convergence results for the domain decomposition dhgari
multiscalepartition of unity

7. CONCLUDING REMARKS

In this paper, we developed multiscale finite element metlipts FEM) and domain de-
composition techniques for a class of nonlinear problentls tngh-constrast coefficients.
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In doing so, we extended existing work on linear problemgéatta class of nonlinear
operators. As the systematic coarse space enrichmentesdbe solutions of a nonlinear
eigenvalue problem, a detailed method for computing nealireigenvalues was intro-
duced. Convergence of the method was shown to relate to thendion of the coarse
space as well as a change in the coarse mesh size. We alsodsthawéhe coarse mesh
spaces can be effectively used in two-level domain decortipogpreconditioners, and a
number of representative numerical results were offeredmaplement the analysis. In the
future we hope to address more rigorous convergence prepeftnonlinear eigenvalue al-
gorithms, as well as apply the proposed method to time degemaioblems and equations
with random coefficients.

APPENDIX A. PROOFS

Proof. (Theorem 2)
By CFW (4.13), Sub-problem (4.11) is equivalent to

(A.36) ALT = max min A“(u), k=2, ...,n.
A(wi)esk(wi) UEAs(wi)

SinceV"(w;) is finite-dimensionalAs(w;) is compact. Thug:“i (u) attains its maximum
andG¥i (u) attains its nonzero minimum ofs(w;) and we have the inequalities

MaXyeBg(w;) G ()

AT < AT = max min  A(u) < +oo, forallk =2,...,n.

A(w;) €Sk (wi)  ucAg(w;) - minuGBS(wi) G;z (u)

For eachk, there arg{ 4, (w;)} C Si(w;), ¥ = arg  min A\ (u), such thab\“i[¢)« ] >

" u€[Am (@i)ls
Aifyrei]. Since{y;“"} C Bg(w;), there are); ™" € Bg(w;), {¢*} C {}+} such that
zﬁ%“"i — @Z)Z’wi with

Yl — ar max min M\ (u) =arg min A\ (u).
F gA(wi)esk(wi) u€As(w;) () gueA;(wi) ()

Thus the solvability of (4.13) is established.
We next set\;” = A(¢, ") and note that we havg’ < A ;. We letk, be the smallest
k such that\;’ > A*“:. Then

(A37) A (u) > A0 > A or G¥'(u) > APGYH(u),  forallu € Ay (w).

So the solvability of the sub-problem is established. O

APPENDIXA. CONVERGENCE OFMSFEM
We write in eachy;
(A.38) —div(k(z)|V(u — I“u)[P°V (u — [“u)) = g,

whereg is the residual in the approximation antd « is the local approximant iw;. The
assumption og will be imposed later on. Multiplying both sides of (A.38) R§(u— I“u)
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and re-arranging the terms, we have

/ XV (1 — T90)?

C A .
g/ kIVXilP|(u — I¥u) |p+05/ kXY |V (u— I9u) P + \/ gxt (u — I“u)],
whereC' is independent of contrast. From here, we get Capicolliuadty
039) [ Ve s [ vl - op | [ ot )

Next, taking into account that MSFEM solutiany, provides a minimal energy, we have
(A.40)

| V=P = [ AVt )P 23 [ AVl - 1
Z/ '€|Xi\p\v(u—fwiu)|pﬁz/ H|in|p|u—f”iup+2\/ glxilP(u — I¥)

Using the fact tha >, x|V, [P (u — Iu)P < smi— [ K|V (u — I“u)[?, we have

Li+1
> ITETEDS / Zaww-ww

"4

1
AP /nm - I \HZ / IETCEl
)‘L~+1 ; )‘
- )\ / Rl |V (= TP
i L+l
< S [t e 5 [ bt o
i L+l 5 L+l

1 w; w;
= E(Z/wmwmu—f o+ 301 [ bt u)\),

whereA, = min,, A7 +1/aL L anday | = fwi K|V (u — I¥u)|P/ fwi kY xalPIVi(u —
1) [P that represents the error concentration near the bousdafie;. Applying this
inequalityn times, we have

S [ AVl
1 n . n .
< (1) S [ A e (5 3l Z\/gmm—w )
1" p Wi, |P n (1AL P\—4/P 4
™ | KV lu = a4+ (M) 1 > ] UslIVxal)/Pg

A
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Considering", [ k|Vxi[Plu—I<ul? <3, [ 37 k| Vxi|Plu—TulP < [ 6]Vul?, we
have the following convergence rate for MSFEM.

_ A
(AM)AﬁW@—uMPjALEAMVW—I%MW+OMW(%?fT)+Q}L

whereR = ), fwi(|m||vxi\p)*q/pgq is assumed to be bounded. More precisely,
Assumption.We assume that there exists a global functién(, G? < C such that
L, (k|Vxi[P) P g7 < H /., G? Note that becaus®x; behaves ag7 ', | = ¢ is an
appropriate choice.
With this assumption, we have the following convergence fat MSFEM.

1 n{1—AT"
(A.42) /DIQ|V(UJ—UH)‘;D5 AZ_H/DH‘VUV-F <(A*) <ﬁ) +1) Hl/D\GP’.

Choosing\, sufficiently large and assuming, «|Vu|* and [,, G* are bounded and choos-

ing in eachu;, n = —5' 2240, we obtain

12
(A.43) QLMV@—U@Pj(i ).

Note that one can also use the eigenvalue problem that pomrds to Rayleigh Quotient
Jo, X7 IVeI?
T, IV alPlol

This will simplify the analysis and one can perform it in Bguatch.
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