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We study the relation between single-mode nonclassicality and two-mode entanglement in a beam-
splitter. We show that not all of the nonclassicality (entanglement potential) is transformed into
two-mode entanglement for an incident single-mode light. Some of the entanglement potential
remains as single-mode nonclassicality in the two entangled output modes. Two-mode entanglement
generated in the process can be equivalently quantified as the increase in the minimum uncertainty
widths (or decrease in the squeezing) of the output states compared to the input states. We use
the nonclassical depth and logarithmic negativity as single-mode nonclassicality and entanglement
measures, respectively. We realize that a conservation relation between the two quantities can be
adopted for Gaussian states, if one works in terms of uncertainty width. This conservation relation
is extended to many sets of beam-splitters.

PACS numbers: 03.67.Bg, 03.67.Mn, 42.50.Dv, 42.50.Ex

I. INTRODUCTION

Quantum entanglement is an essential source for quan-
tum information processing [1]. Entanglement between
two-mode Gaussian states [2, 3] is of considerable inter-
est because of its availability and controllability in experi-
ment, and its applications such as quantum teleportation
[4] and dense coding [5].

Entanglement of two-mode Gaussian states can be gen-
erated in an experiment via a nonlinear optical device,
such as a parametric down converter [6]. On the other
hand, a beam splitter (BS) as a linear passive device
has been studied extensively to generate quantum entan-
glement [7–16]. In particular, Kim et al. [10] studied
the properties of different input states, such as squeezed
states, in order to have the output fields to be entangled.
They conjectured that nonclassicality of input fields is a
necessary condition for entangling the output via a BS,
which was proved by Wang [17]. Wolf et al. [11] proved a
necessary and sufficient condition for entangling bipartite
Gaussian states with passive optical devices and found a
close relation between input squeezing and output en-
tanglement of the Gaussian state. Furthermore, Tahira
et al. [13] investigated the generation of Gaussian entan-
glement from a single-mode squeezed state mixed with a
thermal state at a BS, where detailed experimental con-
ditions are analyzed.

Recently, a new measure for nonclassicality, entangle-
ment potential, is introduced by Asbóth et al. [18] based
on its inherent relation with the two-mode entanglement.
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Entanglement potential is the maximum amount of two-
mode entanglement extractable from a single mode non-
classical state using linear optical devices. More recently,
Vogel and Sperling [19] arrived at a more intimate con-
nection between nonclassicality and two-mode entangle-
ment. The rank of the two-mode entanglement that a
nonclassical state can generate is equal to the number
of terms needed in the coherent state expansion of this
nonclassical state. It is also pointed out in [20] that such
a connection can exist in many-particle entanglement.
With these results, an interesting question arises: is there
a way to quantify single-mode nonclassicality and two-
mode entanglement so that the summation of the two
quantities is conserved via linear passive devices, such as
a BS?

In this paper, we address this question for arbitrary
two-mode Gaussian states. First, we show that not all
of the nonclassicality, present in an input single-mode
state, is converted to two-mode entanglement even for
the optimum BS mixing angle (see Fig. 2). We calculate
the remaining single-mode nonclassicalities by partially
tracing the two output modes. This wipes out the two-
mode entanglement and enables the calculation of single-
mode nonclassical depths.

Second, we realize an interesting relation between the
generated two-mode entanglement and the change in the
logarithm of the initial and final nonclassical depths (or
uncertainty widths). The change in the logarithm of the
initial and final uncertainity widths [see Eq. (11)] displays
the same behavior with the logarithmic negativity mea-
sure [21–23] for the generated two-mode entanglement
(Fig. 4). We use this observation for treating nonclassi-
cality and entanglement with an equal footing, relying on
the soul of the entanglement potential [18, 19]. Hence,
a conservation relation for the sum of single-mode non-
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FIG. 1: (Color online). A nonclassical Gaussian state
ρNCS is mixed with a vacuum state at a BS, generating
an output state ρ12. Each output mode of the bipartite

state after the BS is given by ρ1 = Tr2(ρ12) and
ρ2 = Tr1(ρ12), respectively.

classicality and generated two-mode entanglement can be
deduced.

This paper is organized as follows. In Sec. II, we start
with the basic theory of input and output states at a
BS. In Sec. IIB, we introduce the definition for the en-
tanglement depth. In Sec. III, we show that nonclassi-
cality in an input single-mode state cannot be extracted
completely using only a single beam-splitter. When the
two-mode entanglement is wiped out via partial trace op-
eration, nonclassical depths of the output modes do not
vanish. In Sec. IV, we outline the relation between the
nonclassical depth and the uncertainty width of a single-
mode state. We define the generated two-mode entan-
glement as the difference between input and output non-
classcialities in a BS. We show that this definition is qual-
itatively equivalent to the logarithmic negativity measure
of entanglement. It enables us to convert the logarithmic
negativity for the two-mode entanglement to single-mode
nonclassicality and vice versa. A conservation relation of
nonclassicality and entanglement is derived at a BS. We
illustrate this relation with examples and extend the re-
lation to many sets of BSs. A summary of this paper is
given in Sec. V. In the appendices, detailed derivations
are provided.

II. INPUT AND OUTPUT GAUSSIAN STATES
OF A BS

A. Input-output relation

We consider a lossless BS with two single mode Gaus-
sian fields as input. The complex amplitudes β1, β2 of
the output fields are related to those α1, α2 of the input
fields as [24] (

β1
β2

)
= M

(
α1

α2

)
, (1)

where

M =

(
cos θ sin θeiϕ

− sin θe−iϕ cos θ

)
, (2)

is the beam splitter transformation matrix with the
transmittance cos2 θ and the phase difference ϕ between
the reflected and the transmitted fields.

For a single-mode Gaussian state, the characteristic
function of the state is given by

χ(αi, α
∗
i ) = exp

(
−1

2
x†iVixi

)
, (3)

where x†i = (α∗i , αi), and Vi is the covariance matrix of
the single-mode state (i = 1, 2). For two separable single-
mode Gaussian states, the characteristic function of the
states is given by

χin(α1, α
∗
1, α2, α

∗
2) = χ(α1, α

∗
1)χ(α2, α

∗
2)

= exp

(
−1

2
y†Viny

)
, (4)

where y† = (α∗1, α1, α
∗
2, α2) and Vin =

(
V1 0
0 V2

)
is the

input covariance matrix. For a general input two-mode

Gaussian V1 =

(
a b
b∗ a

)
and V2 =

(
c d
d∗ c

)
. A physical

quantum system implies a2 ≥ |b|2 + 1
4 , c2 ≥ |d|2 + 1

4 from
uncertainty principle [25].

By expressing the characteristic function in terms of
the output complex amplitudes β1, β2 using the transfor-
mation Eqs. (1), (2), (4) the output covariance matrix is
given by a unitary transformation of Vin as

Vout = U†(θ, ϕ)VinU(θ, ϕ) =

(
A C
C† B

)
, (5)

where U(θ, ϕ) is related to M and it is given by

U(θ, ϕ) =


cos θ 0 − sin θeiϕ 0

0 cos θ 0 − sin θe−iϕ

sin θe−iϕ 0 cos θ 0
0 sin θeiϕ 0 cos θ

 .

(6)

The expressions of matrices A, B, and C are given in
Appendix A.

B. Single-mode nonclassicality

For any quantum state ρ, it can be represented in the
Glauber-Sudarshan representation as

ρ =

∫
P (α, α∗) |α〉 〈α| d2α, (7)

where |α〉 is a coherent state and P (α, α∗) is the Glauber-
Sudarshan P function defined as

P (α, α∗) =
1

π2

∫
e

1
2 |β|

2−iβα∗−iβ∗αχ(α, α∗)d2β. (8)
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If the P function of a quantum state is positive-definite,
then the state is defined as a classical state. Otherwise,
it is nonclassical. There are many nonclassicality quan-
tifications proposed for a single-mode state [18, 26–29].
We first consider the nonclassicality depth [27]. For a
non-positive-definite P function, a convolution of the P
function

R(τ, η, η∗) =
1

πτ

∫
e−1/τ |α−η|

2

P (α, α∗)d2α (9)

may become a positive-definite function as a classical
probability distribution. For a given P function, the min-
imum value of τ such that R function becomes positive-
definite is defined as the nonclassical depth. It is a mea-
sure of nonclassicality ranging between 0 and 1. Partic-
ularly, the nonclassicality depth is a continuous measure
for a Gaussian state in the range of [0, 12 ]. For the covari-
ance matrix V1, the nonclassical depth is given by

τ = max{0, 1/2− λ1min} (10)

where λ1min = a − |b| is the minimum eigenvalue of
V1. Therefore, for any single-mode nonclassical Gaussian
state, τ > 0 or a− |b| < 1

2 .
For a single-mode Gaussian state, the degree of squeez-

ing can also be used as a quantification of nonclassi-
cality [11]. If a Gaussian state is squeezed, the mini-
mum uncertainty of its phase-space quadratures, which
equals to the minimum eigenvalue λmin of its covariance
matrix, is smaller than 1

2 [30]. Therefore, we consider
the quantity Nnoncl = − log2(2λmin) as the nonclassi-
cality of a single-mode Gaussian state. For a coher-
ent state, Nnoncl = 0. For a pure squeezed state with
squeezing parameter r [30], we find Nnoncl = 2r. For
a thermal state with average thermal photon number n,
Nnoncl = − log2(2n+ 1) < 0.

III. EXTRACTING THE NONCLASSICALITY
COMPLETELY

A. Calculation of the remaining nonclassicality

Operation of the beam-splitter transforms the density

matrix as ρ12 = MBSρ
(in)
1 ⊗ ρ(in)2 M

†
BS, where MBS is the

BS operator and ρ
(in)
1,2 are the density matrices for the

input states of the BS. In order to study the nonclas-
sicality of each output modes, we define ρ1 = Tr2(ρ12)
and ρ2 = Tr1(ρ12) for each of the output modes from the
output state ρ12. We further define a separable output
system as ρ̃12 = Tr2(ρ12) ⊗ Tr1(ρ12), see Fig. 1, where
two-mode entanglement is wiped out [31]. We show that
the covariance matrix of ρ̃12 after the tracing operation

on the output state is Ṽout =

(
A 0
0 B

)
, as should be ex-

pected. Covariance matrices for single-mode states (A,
B) are unaffected. The derivation is provided in Ap-
pendix A.

0 0.25 0.5
0

0.005

0.01

0.015

0.02

0.025

θ
BS

/π

 

 

E
N

τ

FIG. 2: Nonclassicality of the input single-mode state
transforms in to two-mode entanglement in a

beam-splitter. When the amount of extracted two-mode
entanglement (EN ) increases, the nonclassicality in the

output states (τ) decreases. Not all of the
nonclassicality could be converted to two-mode

entanglement even for the optimum BS mixing angle.

After this partial trace operation, we calculate the re-
maining nonclassical depth in the separable two-mode
system, namely ρ1 = Tr2(ρ12) and ρ2 = Tr1(ρ12). We
use the definition introduced in Ref.s [12, 32] to calculate
the nonclassical depth for a two-mode Gaussian system.
In Fig. 2, we plot the two-mode entanglement generated
at the output of the BS and the remaining nonclassical-
ity for different BS mixing angles. The nonclassicality
is converted to two-mode entanglement in the BS, and
there remains weaker nonclassicality as the strength of
the two-mode entanglement increases.

B. Depleting all nonclassicality

We observe that not all of the nonclassicality is trans-
formed to two-mode entanglement in Fig. 2. There re-
mains nonclassicality in the two output modes. One
naturally raises the question if we can transform all of
the nonclassicality in to two-mode entanglement. For
this reason, we put the separable state ρ̃12 = Tr2(ρ12)⊗
Tr1(ρ12) —after recording and wiping out the generated
entanglement— into following BSs [31] to extract more
of the entanglement potential. Since the two states are
separable, i.e. ρ1 = Tr2(ρ12) and ρ2 = Tr1(ρ12), we

mix them in the second BS as ρ(BS2)

12 = MBS2
ρ̃12M

†
BS2

.
In Fig. 3a, we plot the extracted two-mode entanglement

after the second BS, E
(BS2)

N . We perform the partial trace

operation again, ρ̃(BS2)

12 = Tr2(ρ(BS2)

12 )⊗Tr1(ρ(BS2)

12 ), to ob-
tain the remaining nonclassicality after the second BS,
τ2, as plotted in Fig. 3b. We perform the similar proce-
dure for two more BSs. There remains no nonclassicality
after the third BS, τ3 = 0. This is also confirmed by plac-
ing a fourth BS where no two-mode entanglement can be
extracted, E(BS4)

N = 0. Comparing Fig. 3a and Fig. 3b,
we observe that the nonclassical depth before a BS, τi−1,
has parallel behavior with the two-mode entanglement
extracted from this BS, E

(BSi)

N .
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FIG. 3: (color online) The two mode output state of the
first BS is partial traced and put in to a second BS,

ρ̃(BS2)

12 = Tr2(ρ(BS2)

12 )⊗ Tr1(ρ(BS2)

12 ), in order to extract the
remaining nonclassicality as entanglement. We repeat

the same procedure for four BSs. The nonclassical
depth before a BS, τi−1, displays parallel behavior with

the two-mode entanglement extracted from this BS,
E

(BSi)

N . Nonclassicality depletes at the fourth BS.

Even though we calculated the nonclassical depth of a
two mode state using the definition of Ref.s [12, 32] for a
qualitative (behavior) comparison, in the preceding sec-
tions we arrive a more useful definition for quantitative
purposes.

IV. CONSERVATION RELATION OF
SINGLE-MODE NONCLASSICALITY AND

TWO-MODE ENTANGLEMENT

We consider, in general, two single-mode Gaussian
states mixed at a BS. The nonclassicalities of the in-
put modes are N in1

noncl = − log2(2λ1min) and N in2
noncl =

− log2(2λ2min), where λmini is the minimum eigenvalue
of Vi. After the BS, the nonclassicalities of the out-
put modes are Nout1

noncl = − log2(2λ̃1min) and Nout2
noncl =

− log2(2λ̃2min), where λ̃1min (λ̃2min) is the minimum
eigenvalue of matrix A (B).

After the BS, two-mode entanglement can be gener-
ated from input nonclassical single-mode states. Since a
BS is a linear device, which does not create extra non-
classicality, therefore we quantify the difference between
input nonclassicality and output nonclassicality as the
degree of two-mode entanglement generated via a BS.
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FIG. 4: (Color online). Output entanglement from
mixing a nonclassical state with a vacuum at a BS

quantified by two measures of degree of entanglement.
(a) For constant nonclassicality, the relation of the

degree of entanglement vs θ for different purities of the
input nonclassical state. (b) At optimal BS angle, the

monotonic relation of the degree of entanglement vs the
inverse of the minimum eigenvalue.

This quantity is denoted as

SN = N in1
noncl +N in2

noncl −Nout1
noncl −Nout2

noncl

= log2

λ̃1minλ̃2min

λ1minλ2min
. (11)

We show in the following with several examples that this
quantification of entanglement is equivalent to the loga-
rithmic negativity [21]. Then we generalize this relation
to class of Gaussian states mixed at a BS.

A. A single-mode nonclassical state mixing with a
vacuum

1. Conservation relation of nonclassicality depth in a BS

We first consider a simple case when a single-mode
nonclassical Gaussian state is mixed with a vacuum at a
BS. The covariance matrix of the two single-mode input
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state is given by Vin =

(
V1 0
0 V2

)
, where V1 =

(
a b
b∗ a

)
and V2 =

(
1/2 0
0 1/2

)
. Here a is real and b is complex

in general. The eigenvalues of the matrix V1 are λ1min =
a − |b|, λ1max = a + |b|, and u ≡ 1

2
√
λ1minλ1max

is the

purity of the state [33]. The eigenvalues of V2 are λ2min =
λ2max = 1

2 .
We show an interesting equation of nonclassical depth

before and after the BS. Before the BS, the single-mode
nonclassical state has a nonclassical depth τ . After mix-
ing the nonclassical state with a vacuum at the BS, the
nonclassical depth is calculated from matrices A and B
for each output mode. The corresponding nonclassical-
ity depths are given by τ̃1 = τ cos2 θ and τ̃2 = τ sin2 θ.
Therefore, we obtain

τ = τ̃1 + τ̃2, (12)

which is equivalent to

λ1min + λ2min = λ̃1min + λ̃2min, (13)

where λ̃1min and λ̃2min are minimum eigenvalues of A and
B, respectively. The conservation relation of nonclassi-
cality depth holds for any nonclassical Gaussian state
mixed with a vacuum state. Another interesting ques-
tion arises: if the nonclassicality is conserved before and
after the BS in such a way, where does the entanglement
comes from after the BS?

2. Conservation relation of nonclassicality and
entanglement

In the following, we show that the quantification of
two-mode entanglement in Eq. (11) is equivalent to the
logarithmic negativity and therefore the conservation re-
lation of single-mode nonclassicality and two-mode en-
tanglement can be obtained.

A number of separability conditions [21, 25, 34–36]
have been proposed to test the entanglement of a bipar-
tite system based on partial transposition [37, 38]. For
a two-mode Gaussian state, there are necessary and suf-
ficient conditions [21, 25, 34] which can be used as mea-
sures for two-mode entanglement. Here we consider the
logarithmic negativity defined in Ref. [21]. For the out-
put covariance matrix Vout, the logarithmic negativity is
given by [21]

EN = max

{
0,−1

2
log2

(
S −

√
S2 − 16Det[Vout]

)}
,(14)

where S = 2(Det[A]+Det[B]−2Det[C]) and Det[Vout] =
Det[Vin] = 1

4λ1minλ1max = 1
16u2 . Then we obtain the

expression S in terms of the nonclassical depth τ , the
purity u, and the BS angle θ as

S = (1− τ)

(
1

2u2(1− 2τ)
+

1

2

)
− τ

(
1

2u2(1− 2τ)
− 1

2

)
cos(4θ) (15)

From Eq. (14), we find that the condition for the two-
mode Gaussian state to be entangled is

S >
1

2
+ 8Det[Vout]. (16)

By rearranging the expression of S, we obtain an equiv-
alent condition of Eq. (16) as

S −
(

1

2
+ 8Det[Vout]

)
= C

(
(1− 2τ̃1)(1− 2τ̃2)

1− 2τ
− 1

)
> 0, (17)

where C = 1
u2τ −

1−2τ
τ ≥ 2. Therefore, we find that the

quantification of two-mode entanglement in Eq. (11) is

SN = log2

(1− 2τ̃1)(1− 2τ̃2)

1− 2τ

= log2

[
S −

(
1
2 + 8Det[Vout]

)
C

+ 1

]
. (18)

As can be seen from the above expression, SN > 0
is a necessary and sufficient condition for a two-mode
Gaussian entanglement to exist, which is equivalent to
the condition of the logarithmic negativity. When S ≤
1
2 +8Det[Vout], SN ≤ 0 which gives us a quantitative mea-
sure of how far the system is away from entanglement.

To see the validity of SN numerically, we plot the de-
gree of entanglement using both SN and EN in Fig. 4
by either varying the transmittance or the single-mode
nonclassicality. We observe similar qualitative trends of
both the measures. We also observe that SN is indepen-
dent of the purity u of the nonclassical state, while EN

increases with u except for θ = 0, π/4, π/2.
Next we rewrite the relation Eq. (11) to obtain a con-

servation relation between the initial nonclassicality be-
fore the BS and the sum of the degree of entanglement
and the remaining nonclassicality after BS as

N in1
noncl +N in2

noncl = Nout1
noncl +Nout2

noncl + SN, (19)

This is the main result of our paper. The initial single-
mode nonclassicality equals to the sum of output single-
mode nonclassicality and output two-mode entanglement
generated via the BS.

We plot the curves of N in
noncl = N in1

noncl + N in2
noncl,

Nout
noncl = Nout1

noncl + Nout2
noncl and SN in Fig. 5 to show this

conservation relation using an example of a nonclassical
state with λ1min = 0.335.

B. A single-mode nonclassical Gaussian state
mixing with a thermal state

Next we consider a pure nonclassical state with covari-

ance matrix V1 =

(
a b
b∗ a

)
mixing with a thermal state

with a covariance matrix V2 =

(
n+ 1

2 0
0 n+ 1

2

)
, where
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FIG. 5: (Color online). N in
noncl, N

out
noncl and SN vs the

BS angle θ for a nonclassical state mixing with a
vacuum state.

Nnoncl
in

Nnoncl
out

SN

0 π

4

π

2

0.0

0.5

1.0

1.5

θ

E
nt
an
gl
em
en
t

λ1min=0.1, n=0.5

FIG. 6: (Color online). N in
noncl, N

out
noncl and SN vs the

BS angle θ for a pure nonclassical state mixing with a
thermal state.

n is the average number of thermal photon. The input

matrix is given by Vin =

(
V1 0
0 V2

)
. Here the eigenvalues

of V1 satisfy λ1minλ1max = a2 − |b|2 = 1
4 and the eigen-

values of V2 are λ2min = λ2max = n + 1
2 . After the BS

unitary transformation U(θ, ϕ), we obtain the expression
of S as

S = (λ1min + n+
1

2
)(

1

4λ1min
+ n+

1

2
)

+ (λ1min − n−
1

2
)(

1

4λ1min
− n− 1

2
) cos(4θ). (20)

The determinant of the output matrix Det[Vout] =
Det[Vin] = 1

4 (n + 1
2 )2. We find the same expression as

in the previous case

SN = log2

λ̃1minλ̃2min

λ1minλ2min

= log2

[
S −

(
1
2 + 8Det[Vout]

)
C

+ 1

]
, (21)

where in this case C = 2(2n+ 1) 1−2λ1min(2n+1)
2n+1−2λ1min

. In order

to have C > 0 we require 2λ1min(2n + 1) < 1 which is
the condition for entanglement to appear as discussed in
Refs. [11, 13].

For the input nonclassical state, N in1
noncl =

log2( 1
2λ1min

) > 0. For the input thermal state,

N in2
noncl = − log2(1 + 2n) < 0, which means anti-

squeezing and it is less nonclassical than a coher-
ent state. Therefore the total nonclassicality of
the input states are N in

noncl = N in1
noncl + N in1

noncl =
− log2 (2λ1min(2n+ 1)) > 0. The remaining nonclassi-
cality in the output states are Nouti

noncl = log2( 1
2λ̃imin

) with

λ̃1min(2min) = λ1min(2min) cos2 θ + λ2min(1min) sin2 θ.
With the definitions of SN and Nnoncl, we obtain the

same conservation relation as in Eq. (19) as

N in1
noncl +N in2

noncl = Nout1
noncl +Nout2

noncl + SN. (22)

We observe that, for optimal transfer of entanglement at
the output, θ = π/4 [11, 13], Nout1

noncl, N
out2
noncl < 0 for n ≥ 1

2

since λ̃1min(2min) = n
2 + 1

4 + λ1min

2 > 1
2 . Therefore, the

output separable system ρ̃12 has negative nonclassicality
which means they are anti-squeezed.

We plot N in
noncl, N

out
noncl and SN in Fig. 6 and the re-

lation Nout
noncl + SN = N in

noncl can be seen quantitatively
from the figure. We also observe that more degree of
entanglement than the input nonclassicality is obtained
around θ = π/4 due to the mixing with a thermal state.

C. Generalization of the conservation relation

Next we show that the quantification of entanglement
SN can be generalized to any Gaussian states that satisfy
the following two constraints:
(i) at least one of the input states is a pure state, i. e.,
the product of the two eigenvalues of the single-mode in-
put state covariance matrix equals to 1

4 ;
(ii) to make C positive, the eigenvalues of the input
state satisfy the following conditions: λ1min < λ2min <
λ2max < λ1max, or λ2min < λ1min < λ1max < λ2max, or
λ2min = λ1min and λ1max = λ2max.

We consider the case of mixing two general Gaussian
states at a BS with at least one of them being a pure

state. The input matrix is given by Vin =

(
V1 0
0 V2

)
where V1 =

(
a b
b∗ a

)
and V2 =

(
c d
d∗ c

)
. Without loss

of generality, we require that the product of the eigen-
values of V1 satisfies λ1minλ1max = a2 − |b|2 = 1

4 . The



7

Nnoncl
in

Nnoncl
out

SN

0 π

4

π

2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

θ

E
nt
an
gl
em
en
t

λ1min=0.1, λ1min=0.335

FIG. 7: (Color online). N in
noncl, N

out
noncl and SN vs the

BS angle θ for a pure nonclassical state mixing with
another nonclassical state.

eigenvalues of V2 are λ2min = c−|d|, λ2max = c+ |d|, and
λ2minλ2max ≥ 1

4 . When |b| = 0 and c − |d| < 1
2 , this re-

duces to the first case of mixing a nonclassical state with
a vacuum state. When |d| = 0, this reduces to the second
case of mixing a pure nonclassical state with a thermal
state. When a−|b|, c−|d| < 1

2 , this is the case of mixing
a pure nonclassical state with another nonclassical state.

As shown in Ref. [12], the phase of the BS ϕ plays a
role since b and d are nonzero in general. For b, d 6= 0, we
require ϕ = arg(b)/2 − arg(d)/2 to have a conservation
relation of the minimum eigenvalues before and after the
BS between the initial system and the output separable
system, i. e.,

λ1min + λ2min = λ̃1min + λ̃2min. (23)

After the BS, the output matrix Vout is given in the Ap-
pendix A. In general, we find

S = (λ1min + λ2min)(λ1max + λ2max)

+ (λ1min − λ2min)(λ1max − λ2max) cos(4θ), (24)

and

S −
(

1

2
+ 8Det[Vout]

)
= C

(
λ̃1minλ̃2min

λ1minλ2min
− 1

)
. (25)

Here the expression of C is generalized as

C ≡ 8λ1minλ2min
λ1max − λ2max

λ2min − λ1min
. (26)

Applying the constraint (ii), we find that C is positive-
definite. Therefore the quantification SN in Eq. (11)
is equivalent to the logarithmic negativity for any two
single-mode Gaussian states satisfying the two con-
straints. Then we derive the conservation relation as

N in1
noncl +N in2

noncl = Nout1
noncl +Nout2

noncl + SN. (27)

FIG. 8: (Color online). A nonclassical state ρNCS is
mixed with a vacuum state at a BS, generating an

output state ρ12. Each output mode ρ1 or ρ2 is mixed
with a vacuum state at another BS generating two sets
of output bipartite Gaussian states ρ1112 and ρ1212. This

process can be extended further with more BSs.

The detailed derivation is provided in the Appendix A.
We see that the sum of single-mode nonclassicality and
two-mode entanglement is conserved before and after a
BS under the unitary transformation U(θ, ϕ).

As an example of mixing two nonclassical states, a
quantitative conservation relation between N in

noncl, N
out
noncl

and SN is plotted in Fig. 7 for λ1min = 0.1 and
λ2min = 0.335.

D. Extension to infinite number of BSs

As shown in Sec. IV A, after the first BS, we find that
there is nonclassicality remaining in each of the output
modes ρ1 and ρ2 for an initial nonclassical state mixed
with a vacuum state. Therefore, we can send each output
mode after the first BS, ρ1 (ρ2), to another BS mixing
with a vacuum state to generate two sets of two-mode
Gaussian entangled state as shown in Fig. 8. The gen-
erated entanglement and the remaining nonclassicality
after the second set of BSs will be equal to the input non-
classicality before the set BSs. Then we can send each
output mode after the second set of BSs to the third set
of BSs mixing with a vacuum state separately. In this
way, the nonclassicality is split further and after each
set of BSs we create certain degree of entanglement. In
each step, two conservation relations Eqs. (13), (19) are
satisfied. After infinite number of steps, there is some
nonclassicality in each of the output single-mode state
and by adding them up, we find total remaining nonclas-
sicality is given by

N tot
noncl = (1− 2λ1min) log2 e, (28)
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which is independent on the angles of the BSs. Here e
is the Euler number. We can add all the entanglement
generated in each step to obtain the total entanglement
as

Stot
N = log2

(
1

2λ1min

)
− (1− 2λ1min) log2 e. (29)

A simple proof is provided in the Appendix B. By ex-
tending our procedure to many sets of BSs, we find that
both the quantifications of single-mode nonclassicality
and two-mode entanglement are additive.

V. CONCLUSION

In this paper, we study the relation between the single-
mode nonclassicality and two-mode entanglement cre-
ated at a BS. We show that the input single-mode non-
classicality cannot be transferred completely into the out-
put two-mode entanglement and there is remaining non-
classicality in the output modes. The more the gener-
ated entanglement, the less the remaining nonclassicality
is. We use the logarithm of the minimum eigenvalue of
a single mode covariance matrix (minimum uncertainty
width) as its nonclassicality.

We also define the difference between the input non-
classicality and the output nonclassicality as a degree
for two-mode entanglement, which is generated from two
single-mode Gaussian states mixed at a BS. This quan-
tification has a qualitative correspondence with the loga-
rithmic negativity. The sum of nonclassicality and entan-
glement is shown to be conserved before and after a BS
using these quantifications. We generalize this conserva-
tion relation to a class of two-mode Gaussian states. Ex-
tension of many sets of BSs are discussed in the context
of this conservation relation. Our work may stimulate a
further interest in the unification of nonclassicality and
entanglement.
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Appendix A: Derivation of the conservation relation
between entanglement and nonclassicality in a BS

For a general input two-mode Gaussian covariance

Vin =

(
V1 0
0 V2

)
with V1 =

(
a b
b∗ a

)
and V2 =(

c d
d∗ c

)
. After the BS,

Vout = U†(θ, ϕ)VinU(θ, ϕ) =

(
A C
C† B

)
, (A1)

where the matrices A, B, and C are given by

A =

(
a cos2 θ + c sin2 θ b cos2 θ + d sin2 θe2iϕ

b∗ cos2 θ + d∗ sin2 θe−2iϕ a cos2 θ + c sin2 θ

)
,

(A2)

B =

(
a sin2 θ + c cos2 θ b sin2 θe−2iϕ + d cos2 θ

b∗ sin2 θe2iϕ + d∗ cos2 θ a sin2 θ + c cos2 θ

)
,

(A3)

C =

(
(a− c)eiϕ be−iϕ − deiϕ

b∗eiϕ − d∗e−iϕ (a− c)e−iϕ
)

sin θ cos θ.

(A4)

The elements of the covariance matrix are defined [25] as
Voutij = 1

2Tr
(
(vivj + vjvi)ρ12

)
where vi are position and

momentum operators of the two-mode system defined as
v1 = x1, v2 = p1, v3 = x2 and v4 = p2.

For the output separable system ρ̃12 = Tr2(ρ12) ⊗
Tr1(ρ12), the elements of its covariance matrix are

Ṽoutij = 1
2Tr
(
(vivj + vjvi)ρ̃12

)
. For i = 1, 2 and j = 3, 4,

Ṽoutij =
1

2

(
Tr1(viρ1)Tr2(vjρ2) + Tr2(vjρ2)Tr1(viρ1)

)
= 0 (A5)

for zero-mean Gaussian states. For i, j = 1, 2

Ṽoutij =
1

2
Tr1
(
(vivj + vjvi)ρ1

)
= Voutij . (A6)

Similar relation holds for i, j = 3, 4. Therefore,

we prove that Ṽout =

(
A 0
0 B

)
. The minimum

eigenvalues of A and B are given by λ̃1min(2min) =

λ1min(2min) sin2 θ+λ2min(1min) cos2 θ using the phase con-
dition ϕ = arg(b)/2− arg(d)/2. Therefore we obtain the
first conservation relation between the minimum eigen-
values, i. e.,

λ1min + λ2min = λ̃1min + λ̃2min. (A7)

We obtain the express of S as
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S = 2(Det[A] + Det[B]− 2Det[C])

= 2(a cos2 θ + c sin2 θ)2 − 2(|b| cos2 θ + |d| sin2 θ)2 + 2(a sin2 θ + c cos2 θ)2 − 2(|b| sin2 θ + |d| cos2 θ)2

− 4(a− c)2 sin2 θ cos2 θ + 4(|b| − |d|)2 sin2 θ cos2 θ

= 2(a2 − |b|2 + c2 − |d|2)− 8(a2 − |b|2 + c2 − |d|2 − 2ac+ 2|b||d|) sin2 θ cos2 θ

= 2(a2 − |b|2 + c2 − |d|2)− (a2 − |b|2 + c2 − |d|2 − 2ac+ 2|b||d|)
(
1− cos(4θ)

)
= (λ1min + λ2min)(λ1max + λ2max) + (λ1min − λ2min)(λ1max − λ2max) cos(4θ)

= (λ1min + λ2min)(
1

4λ1min
+ λ2max) + (λ1min − λ2min)(

1

4λ1min
− λ2max) cos(4θ), (A8)

where we have used λ1minλ1max = a2 − |b|2 = 1
4 and

λ2min(2max) = c∓ |d|. With Det[Vout] = 1
4λ2minλ2max, we

obtain

S −
(

1

2
+ 8Det[Vout]

)
=
λ2min − λ1min

2λ1min
(1− 4λ1minλ2max) sin2(2θ). (A9)

Using C = 2λ2min
1−4λ1minλ2max

λ2min−λ1min
for λ1minλ1max = 1

4 , and
λ̃1minλ̃2min

λ1minλ2min
− 1 = (λ2min−λ1min)

2

4λ1minλ2min
sin2(2θ), we prove the

equality

S −
(

1

2
+ 8Det[Vout]

)
= C

(
λ̃1minλ̃2min

λ1minλ2min
− 1

)
. (A10)

Appendix B: Extension of infinite number of BSs

When mixing a nonclassical state with a vacuum at a
BS, we have

τ = τ̃1 + τ̃2. (B1)

At the second set of BSs, we split the nonclassical depth
further by mixing each subsystem with a vacuum state.
Then we have

τ̃1 = τ̃
(11)
1 + τ̃

(11)
2 , (B2)

and

τ̃2 = τ̃
(12)
1 + τ̃

(12)
2 . (B3)

After m+ 1 steps, there are 2m+1 single-mode Gaussian
state generated and the nonclassical depth of each state

is given by τ̃
(mj)
1 , τ̃

(mj)
2 , where j = 1, 2, . . . , 2m. As m→

+∞, τ̃
(mj)
1 , τ̃

(mj)
2 will be infinitesimal independent of the

angles of the BSs at each step. Then the nonclassicality
of each state is

N
out(mj)1
noncl = − log2(1− 2τ̃

(mj)
1 ) = 2τ̃

(mj)
1 log2 e.(B4)

The sum of all the nonclassicality after m+ 1 steps is

N tot
noncl =

2m∑
j=1

(N
out(mj)1
noncl +N

out(mj)2
noncl )

= 2

2m∑
j=1

(τ̃
(mj)
1 + τ̃

(mj)
2 ) log2 e

= 2τ log2 e = (1− 2λ1min) log2 e, (B5)

where the conservation relation of nonclassical depth is
used. Using the conservation relation between nonclassi-
cality and entanglement before and after a BS, we obtain

Stot
N = N in

noncl −N tot
noncl

= log2

(
1

2λ1min

)
− (1− 2λ1min) log2 e. (B6)
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