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Abstract

Dot1l encodes histone H3 K79 methyltransferase Dot1a. Mice with Dot1l deficiency in renal Aqp2-expressing cells (Dot1lAC)
develop polyuria by unknown mechanisms. Here, we report that Aqp5 links Dot1l deletion to polyuria through Aqp2. cDNA
array analysis revealed and real-time RT-qPCR validated Aqp5 as the most upregulated gene in Dot1lAC vs. control mice.
Aqp5 protein is barely detectable in controls, but robustly expressed in the Dot1lAC kidneys, where it colocalizes with Aqp2.
The upregulation of Aqp5 is coupled with reduced association of Dot1a and H3 dimethyl K79 with specific subregions in
Aqp5 59 flanking region in Dot1lAC vs. control mice. In vitro studies in IMCD3, MLE-15 and 293Tcells using multiple
approaches including real-time RT-qPCR, luciferase reporter assay, cell surface biotinylation assay, colocalization, and co-
immunoprecipitation uncovered that Dot1a represses Aqp5. Human AQP5 interacts with AQP2 and impairs its cell surface
localization. The AQP5/AQP2 complex partially resides in the ER/Golgi. Consistently, AQP5 is expressed in none of 15 normal
controls, but in all of 17 kidney biopsies from patients with diabetic nephropathy. In the patients with diabetic nephropathy,
AQP5 colocalizes with AQP2 in the perinuclear region and AQP5 expression is associated with impaired cellular H3 dimethyl
K79. Taken together, these data for the first time identify Aqp5 as a Dot1a potential transcriptional target, and an Aqp2
binding partner and regulator, and suggest that the upregulated Aqp5 may contribute to polyuria, possibly by impairing
Aqp2 membrane localization, in Dot1lAC mice and in patients with diabetic nephropathy.
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Introduction

In addition to glucosuria, polyuria is the earliest clinical renal

symptom in untreated or poorly controlled diabetes [1] and is not

considered as a simple result of an osmotic diuresis due to the large

solute load of urinary glucose [2,3]. However, the molecular

mechanism(s) by which polyuria develops beyond glucosuria is not

fully understood.

Aquaporins (AQPs) are members of the water channel family.

Aqp1- 4 are important for maintenance of normal urinary

concentration and implicated in the renal water disorders [4–7].

Reduced expression and/or apical localization of Aqp2 under

pathological conditions (i.e. nephrosis, hypokalemia, and Aqp2

mutations) results in polyuria. In contrast, nephrotic syndrome and

congestive heart failure due to abnormal secretion of vasopressin

increase apical Aqp2 levels, leading to excessive water reabsorp-

tion and hyponatremia (reviewed in [8]).

Aqp5 is expressed in eyes, salivary glands, lung and sweat glands

[9–11]. A selective defect in lacrimal gland Aqp5 trafficking is

responsible for Sjögren’s syndrome characterized by dry eye and

mouth [12]. While Aqp5 and Aqp2 are the closest homologs and

share 66% sequence identity, Aqp5 is undetectable in normal

mouse kidney by Northern analysis and immunoblotting (IB) [13].

Disruptor of telomeric silencing (Dot1) was first discovered in

yeast to affect telomeric silencing [14]. Dot1 and its mammalian

homologs (Dot1l) encode a methyltransferase specific for histone

H3 K79 [15–17]. Dot1l is critical in embryogenesis [18],

hematopoiesis [19,20], cardiac function [21], and leukemogenesis
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[20,22,23]. Dot1l transcripts are abundant in mouse kidney and

contain five alternative splicing variants (Dot1a-e) [17]. Dot1a

binds Af9 and represses several aldosterone-upregulated genes

including aENaC and preproendothelin-1 [24–26]. Under basal

conditions, Dot1a-Af9 binds specific subregions of aENaC

promoter, promotes H3 di-methyl K79 (H3m2K79), and inhibits

transcription [24,27]. Aldosterone reduces Dot1a and Af9 and

induces Sgk1 that impairs Dot1a interaction with Af9 by

phosphorylating Af9 [28]. Despite these observations, the role of

Dot1l in renal water homeostasis has not been described.

Recently, we have reported generation of a Dot1l conditional

knockout line using the LoxP-Cre system (Dot1lf/f), which

inactivate most of Dot1l function including the methyltransferase

activity upon Cre-mediated recombination [23]. This line was

used to generate connecting tube/collecting duct (CNT/CD)-

specific Dot1l-deficient (Dot1lf/f Aqp2:Cre or Dot1lAC) mice by

crossing them with Aqp2:Cre mice [29], which drive Cre

recombinase expression under the control of regulatory elements

of the mouse Aqp2 gene. Generation and characterization of

Dot1lAC have been detailed in our recent manuscript [30].

Compared to Dot1lf/f controls, Dot1lAC mice have polyuria without

severe impairment in maintaining normal electrolyte and acid-

base balance [30]. In this report, we provide strong in vivo and in

vitro evidence for the first time demonstrating that Dot1a

downregulates Aqp5 and Aqp5 interacts with Aqp2 and impairs

Aqp2 membrane localization. We also observed upregulated

AQP5 and decreased H3m2K79 in kidney biopsies from patients

with diabetic nephropathy (DN). The polyuria phenotype in

Dot1lAC mice and in patients with DN may be partially attributable

to upregulated Aqp5.

Results

Dot1lAC mice displayed polyuria without impaired Aqp2
expression

Generation of Dot1lAC mice and description of their polyuria

phenotype on a normal pellet Na+ diet are detailed in our related

manuscript [30]. Briefly, we used a Dot1l conditional knockout line

(Dot1lf/f) [23] and an Aqp2Cre line [29] to inactivate Dot1l and thus

abolish histone H3 K79 methylation in Aqp2-expressing cells,

which are located in the CNT/CD [30].

To further confirm the polyuria phenotype, we performed

additional metabolic analysis. Dot1lAC vs. Dot1lf/f littermates after

24-h water deprivation (n = 14 mice/group) showed significantly

increased normalized (to body weight) and slightly decreased urine

osmolarity (Figure 1A–B). Excretion of Na+ and K+ was 155616%

and 146617% of Dot1lf/f mice, respectively, in Dot1lAC after the

24-h water deprivation. There were subtle, but not significant

differences in all other urinary parameters ([Na+], [K+], [creati-

nine], [Na+]/[creatinine], [K+]/[creatinine]) tested between the

two groups (Figure S1). The absolute urine volume was also

significantly increased by 73%, 63% and 465% in Dot1lAC vs.

Dot1lf/f mice in fed state, after 24-hour water deprivation, and after

Streptozotocin (STZ)-induced diabetes, respectively (Figure S2).

Microarray analysis identified Aqp5 as the most
upregulated gene in Dot1lAC mice

To assess the effect of Dot1l inactivation on global gene

expression and to identify the molecular defects leading to

polyuria, we performed gene expression microarray analysis of

Dot1lAC vs. Dot1lf/f mice (n = 4 mice/group), using the dual-color

Agilent 4X44K Whole Mouse Genome Array system. With a

minimal two-fold difference between the two genotypes as an

arbitrary cut-off, we found 1359 up- and 627 down-regulated

genes, respectively, in Dot1lAC vs. Dot1lf/f mice (Table S1 and S2).

However, all of the known Aqps except Aqp5 had no or only

subtle changes in their mRNA levels (Figure 1C). Real-time RT-

qPCR validated that the two genotypes were indistinguishable in

the expression of Aqp2 and Aqp3, two important water channels

in the Aqp2+ principal cells, where Dot1l deletion occurs

(Figure 1D). Immunoblotting analysis (IB) confirmed comparable

Aqp2 protein levels between the two groups (Figure 1E).

Aqp5 is the closest homolog of and adjacent to Aqp2 in the

genome. Dot1lAC and Dot1l+/+ Aqp2Cre mice have two copies of the

Aqp2Cre transgene, which carries the adjacent Aqp5 [29]. If Aqp5

expression were solely copy-number-dependent, Aqp5 would be 2-

fold higher in these animals than in Dot1lf/f mice. Unexpectedly,

microarray analyses revealed Aqp5 as the most upregulated gene,

with 26-fold higher mRNA level in Dot1lAC than in Dot1lf/f mice

(Figure 1C). Real-time RT-qPCR unearthed an even bigger

difference (105-fold). Aqp5 mRNA level was also significantly

increased in Dot1l+/+ Aqp2Cre vs. Dot1lf/f mice. However, such

increase was much less prominent, compared to Dot1lAC mice

(Figure 2A). Subsequent agarose gel analysis revealed a single band

from each of these RT-qPCR reactions (Figure 2B). Sequencing

analyses of a regular RT-PCR product from Dot1lf/f mice

Figure 1. Dot1lAC mice displayed polyuria without impaired
Aqp2 expression. (A–B). Dot1lf/f and Dot1lAC mice deprived of water
for 24 h (n = 14 mice/group) were subjected to 24-h urine analyses as
indicated. For additional measurements, see Figure S1. *P,0.05 vs.
Dot1lf/f. (C) Dot1lAC vs. Dot1lf/f mice (n = 4 mice/group, see Materials and
Methods) have only subtle changes in the expression of all known Aqps
as indicated except for Aqp5. Shown are the fold changes revealed by
cDNA array anlalysis. (D) Real-time RT-qPCR for expression of Aqp2 and
AQP3 in kidney of mice fed the normal Na+ pellet diet, with b-actin as
internal control. n = 6 mice/group. (D) IB for Aqp2 expression, with b-
actin as internal control. n = 4 mice/group.
doi:10.1371/journal.pone.0053342.g001
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confirmed the identity of Aqp5 (Figure 2C). This very low level of

Aqp5 mRNA may explain why Aqp5 was undetectable by

Northern and IB [13] and by immunofluorescence (IF) in normal

mouse kidney (Figure 2D).

Aqp5 is co-expressed with Aqp2 in Dot1lAC mice
As shown in Figure 2D and Figure S3 and S4, IF with goat anti-

Aqp2 (as the marker of PCs in which Dot1l deletion occurs) and

rabbit anti-Aqp5 antibodies revealed that Dot1lf/f mice had robust

Aqp2 and undetectable Aqp5 throughout the whole kidney. Very

faint Aqp5 staining can be seen in Dot1l+/+ Aqp2Cre mice.

Nevertheless, Aqp5 was readily detected and coexpressed with

Aqp2 in most, but not all of the PC in Dot1lAC mice. The lack of

Aqp5 in some of PC may result from absence of Cre expression

[30], leaving Dot1l intact. Substantial Aqp5 was also visible in

some of Aqp22 cells, which are most likely the intercalated cells

derived from the canonical Aqp2-expressing cells as detailed in our

related manuscript [30]. The affinity-purified anti-Aqp5 antibody

was produced using a synthetic peptide corresponding to residues

of 251–265 of rat Aqp5. This sequence is identical to mouse Aqp5

and has no significant homology to mouse Aqp2. This may explain

why the Aqp5 antibody lacks the cross reactivity with mouse Aqp2

(Figures 2D, S3, S4). The anti-Aqp5 antibody has been used to

detect Aqp5 in different species including mouse [31] and duckling

[32].

Aqp5 is expressed in developing Dot1lAC kidneys
To identify when Aqp5 is expressed during kidney development,

we examined Aqp2 and Aqp5 co-expression in the kidneys from 3-

, 11-, and 20-day old pubs. Like in adult Dot1lf/f mice, Aqp5

remained undetectable in all of the developing Dot1lf/f kidneys

(Figure S4). In Dot1lAC mice, Aqp5 was barely discernable at day 3,

but became prominent at day 11 and day 20 in some Aqp2+ and

Aqp22 connecting tube/collecting duct cells, as observed in the

adult stage (Figure S4).

Figure 2. Aqp5 is significantly upregulated and coexpressed with Aqp2 in the kidney of Dot1lAC mice on the normal Na+ pellet diet.
(A) Real-time RT-qPCR for expression of Aqp5 in kidney of mice fed the normal Na+ pellet diet, with b-actin as internal control. n = 6 mice/group. +/
+AC: Dot1l+/+Aqp2:Cre (B) As in A, agarose gel analysis of the final RT-qPCR products of Aqp5 and b-actin. (C) Sequencing of a regular RT-PCR product
from a Dot1lf/f mouse kidney. A part of the tracing file showing Aqp5 sequence encoding aa 47–55 (GenBank#: EDL04123.1) is given. (D)
Representative IF images showing Aqp5 (green) expression in Aqp2+ (red) cells in mice as indicated. OM and IM: outer and inner medulla. *: An IC
without Aqp5 expression, possibly due to lack of Aqp2Cre-mediated Dot1l ablation. Arrow: PC with strong Aqp2 and weak Aqp5, highlighting the
lack of cross reactivity of the two antibodies. Aqp5+Aqp22 cells are most likely the intercalated cells derived from the Aqp2-expressing progenitor
cells or mature PC [30]. Arrowhead: Colocalization of Aqp5 with Aqp2, which is amplified in the inserts. Scale bar: 50 mM. For more images with lower
magnification, see Figure S3.
doi:10.1371/journal.pone.0053342.g002
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AQP5 is pathologically expressed and colocalizes with
AQP2 at the perinuclear region in patients with DN

While polyuria in DN is clearly due to glucosuria, we

hypothesize that abnormal co-expression of AQP5 with AQP2

occurs in patients with DN, which may make the polyuria

phenotype even more prominent. Accordingly, we investigated

AQP5 and AQP2 expression by IF in kidney biopsies from 17

patients with DN and 15 with minimal change disease (MCD).

Since these MCD samples had no significant pathological changes

in the tubules, as revealed by Hematoxylin-Eosin staining

(Figure 3A), they were considered as ‘‘normal’’ controls. All of

the MCDs had undetectable AQP5, with AQP2 primarily seen at

the apical side (Figure 3A). Unlike MCDs, all DN samples showed

various tubular abnormalities including dilated lumen, epithelial

thinning, nuclear irregularity, eosinophilic cytoplasm, severe

tubular basement membrane thickening, interstitial fibrosis, and

mononuclear cell infiltrate (Figure 3, B–D). We focused on the

tubules containing at least one AQP5+ or AQP2+ cell. The tubules

containing only AQP2+- AQP5+- or double positive cells were

categorized as AQP2+AQP52, AQP22AQP5+, and AQ-

P2+AQP5+, respectively. The AQP22AQP52 tubules were

excluded from analyses because of the uncertainty of their

identities. In the AQP2+AQP5+ tubules, these two proteins were

typically colocalized as large discrete foci near the perinuclear

region (Figure 3, B & C). In AQP22AQP5+ tubules, however,

AQP5 distribution was broader and more homogenous

(Figure 3D). The detection of AQP2+AQP52 and AQP22AQP5+

tubules/cells demonstrated the specificity of each antibody used.

To evaluate the relative abundance of the three types of tubules,

we counted their numbers in each field containing at least one

AQP5+ or AQP2+ cell. Among 135 images from the 17 DN

samples, 587 tubules were counted, yielding 79.6% AQ-

P2+AQP5+, 16% AQP2+AQP52, and 6.4% AQP22AQP5+. A

single image containing 12 AQP2+AQP5+ tubules is shown in

Figure 3B. Our data for the first time strongly suggest that AQP5

is pathologically expressed in renal PC and may inhibit AQP2

membrane localization by ‘‘trapping’’ it near the perinuclear

region in DN patients (Figure 3B and 3C).

AQP5 expression is inversely correlated with H3m2K79 in
DN patients

To test the hypothesis that the pathological expression of AQP5

is associated with loss of H3m2K79 in DN patients, similar double

IF was conducted to examine coexpression of AQP5 and

H3m2K79. We chose H3m2K79 as an indicator of DOT1L

function because all available antibodies against DOT1L failed to

detect the target protein specifically by IF ([33] and data not

shown) and Dot1l is solely responsible for H3m2K79 in mouse

kidney [30]. Moreover, H3m2K79 was used to assess inactivation

of Dot1l function and thus disrupted Dot1l expression in the Dot1l-

deficient embryos [18], in the heart of the cardiac-specific Dot1l

knockout mice [21] or in the peripheral blood nucleated cells of

Dot1lf/f Vav-Cre mice [34].

All MCDs had strong H3m2K79 staining and apparently no

AQP5 throughout the biopsies. However, all of the DN samples

significantly reduced H3m2K79 labeling throughout the whole

biopsies in some cases or focally in others. Most of the AQP5+ cells

displayed weak or no H3m2K79 labeling at all in their nuclei

(Figure 4, A–D). Within the tubules containing AQP5+

H3m2K792 cells, some cells apparently were negative for both

antibodies (AQP52 H3m2K792). This suggests that loss of

H3m2K79 is not always associated with ‘‘de-silencing’’ AQP5.

To more accurately assess the inverse correlation between AQP5

and H3m2K79, we measured their pixel intensities in 256 cells from

all of the DN samples (see Materials and Methods). The data were

best fit with a curve Y = 133.122.221X+0.021X222.16X3, which

yielded a determination coefficient (R2) = 0.749 (Figure 4E).

Therefore, our data strongly suggest an inverse correlation between

the two parameters in DN patients, that MCDs express high

H3m2K79 without detectable AQP5 labeling, and that the

undetectable H3m2K79 is not due to a general defect in protein

synthesis and/or stability since robust Aqp5 expression can occur in

the same cells in the patients with DN.

Dot1lAC vs. Dot1lf/f mice displayed impaired Dot1a
binding and reduced H3m2K79 at the Aqp5 59 regulatory
region

To determine if Dot1l regulates Aqp5 transcription through

modulation of H3m2K79 at the Aqp5 59 flanking region,

chromatin immunoprecipitation (ChIP) assay coupled with real-

time qPCR was pursued. We focused on the 6.5 kb region that

spans from the very end of the last exon (exon 4) of Aqp2 to the

translation start site ATG of Aqp5. The whole region was divided

into 12 subregions named A-L (Figure 5, A–B). ChIP with anti-

Dot1l or anti-H3m2K79 detected substantial signals in F, I, K and

L, with the strongest binding in F in Dot1lf/f mice. Such signals

were significantly attenuated, but still detectable in Dot1lAC mice,

possibly due to the fact that deletion of Dot1l occurs only in Aqp2-

expressing cells, rather than in all cells in the kidney. All other

subregions showed no or weak ChIP signals in both genotypes.

These observations collectively reinforce the specificity of Dot1l

and H3m2K79 antibodies that have been used by others and us

[24,27,28,35,36]. Our data also suggest that the association of

Dot1a and H3m2K79 with some, but not all of the subregions is

not simply due to non-specific DNA binding activity as reported

for hDOTL1(1–416) in vitro [37]. Furthermore, ChIP with

normal rabbit IgG yielded barely detectable background signals

(data not shown). These data suggest that Dot1l downregulates

Aqp5 mRNA expression, possibly by modulating H3m2K79 at the

Aqp5 promoter.

Dot1a decreases Aqp5 expression in M1 and MLE-15 cells
To further evaluate whether Dot1a inhibits Aqp5 promoter

activity in cultured cells, mouse cortical collecting duct M1 cells

were transfected with two Dot1a-specific siRNAs: siRNA#1 and

siRNA#2. Real-time RT-qPCR revealed that cells transfected

with these two siRNAs increased Aqp5 mRNA to 964% and

1014% of control (Figure 6A). Since M1 cells have a very low basal

level of Aqp5 expression, overexpression of Dot1a apparently

further reduced Aqp5 mRNA abundance. This was envisioned by

non-specific rather than specific amplification, which made the

real-time RT-qPCR measurements unreliable. Accordingly, we

chose mouse lung epithelial MLE-15 cells that robustly express

Aqp5 to more accurately investigate the effect of Dot1a

overexpression. Dot1a-overexpressing vs. control cells showed

significantly decreased expression of endogenous Aqp5 and

activity of a luciferase reporter driven by a 4.3-kb upstream

fragment of rat Aqp5 [38]. Luciferase activity was progressively

decreased with increasing amounts of Dot1a constructs (Figure 6,

B–D). Sequential deletion analysis revealed that the fragment

beginning at 2385 bp was apparently capable of and sufficient for

Dot1a-mediated downregulation (Figure 6E). However, the

smallest construct starting at 2139 displayed just background

luciferase activity with or without Dot1a overexpression. There-

fore, Dot1a attenuates Aqp5 expression, possibly by direct or

Aqp5 as a New Dot1a Target and Aqp2 Regulator
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indirect binding to the Aqp5 promoter and modulating H3m2K79

associated with the Aqp5 promoter in M1 and MLE-15 cells and in

mouse kidney.

AQP5 coimmunoprecipitates with AQP2
Colocalization of Aqp5 with Aqp2 in Dot1lAC kidney and in

patients with DN suggests interactions between these proteins. To

solidify this finding, we conducted co-immunopreciptation assays

with green fluorescence protein (GFP)-AQP2 and FLAG-AQP5

expressed in 293T cells. FLAG-AQP5 was immunoprecipitated

from its transfectants, but not from FLAG Vec-transfectants,

confirming specificity of the FLAG antibody used for immuno-

precipitation (Figure 7A). Co-immunoprecipitation of GFP-AQP2

and FLAG-AQP5 occurred when they were co-expressed.

Replacing one of them with the corresponding vector abolished

the coimmunoprecipitation (Figure 7, A–B). In all cases, GFP-

AQP2 and FLAG-AQP5 fusions were expressed at comparable

levels among transfections (Figure 7, C–D).

AQP5 impairs AQP2 cell surface expression
Colocalization of AQP5 with AQP2 at the perinuclear region in

patients with DN suggests that AQP5 may reduce AQP2 cell

surface abundance. To test this hypothesis, we performed cell

surface biotinylation assays using FLAG-AQP2 and Myc-AQP5

expressed in IMCD3 cells. Compared with Myc vector, Myc-

AQP5 significantly decreased plasma membrane-associated

FLAG-AQP2 to about 44% (Figure 7E). When biotin labeling

was omitted, plasma membrane-associated FLAG-AQP2 became

undetectable, confirming the specificity of biotinylation (Figure 7E).

AQP5 and AQP2 colocalize and partially reside in the ER/
Golgi in IMCD3 cells

Like in patients with DN (Figure 3, B & C), colocalization of

AQP2 and AQP5 as large discrete foci in the perinuclear region

was also observed when they were co-expressed as GFP and red

fluorescence protein (RFP) fusions in IMCD3 cells and examined

by confocal microscopy. The colocalization was apparently not a

result of overexpression because neither GFP-AQP2 nor RFP-

AQP5 colocalized with overexpressed RFP or GFP alone,

Figure 3. AQP5 is pathologically expressed and colocalizes with AQP2 at the perinuclear region in patients with DN. (A–D)
Representative IF images of kidney biopsies from a patient with MCD showing no detectable AQP5 (A), from two patients with DN showing AQP5
colocalization with AQP2 at perinuclear region (B–C), and from a patient with DN showing diffuse AQP5 without AQP2 in the same cells (D). There are
12 AQP2+AQP5+ tubules in B. Three detached cells are shown in the insert. Hematoxylin/eosin staining verified no significant pathological changes in
the tubules of the MCD samples, but various tubular abnormalities in all of the DN samples (see text for details). (E) Summary of the relative
abundance of the three types of tubules from 17 patients with DN. Scale bar: 50 mM.
doi:10.1371/journal.pone.0053342.g003
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respectively (Figure 8, A–C). Furthermore, over 95% of transfect-

ed cells were doubly transfected. GFP-AQP2 seldom formed large

discrete foci in the absence of RFP-AQP5. Based on these two

observations, we wanted to determine if AQP2/AQP5 complexes

are localized in the ER/Golgi.

IMCD3 cells were co-transfected with GFP-AQP2, Myc-AQP5

and DsRed-ER as endoplasmic reticulum marker [39]. Alterna-

tively, the cells were transfected without DsRed-ER and stained

with an antibody specific for the cis-Golgi marker GM130.

Confocal microscopy revealed that GFP-AQP2/Myc-AQP5

complex evidenced by large discrete foci partially colocalized with

the markers, suggesting that some of the complexes were targeted

to and/or retained in ER and cis-Golgi compartments (Figure 8, D

& E).

Discussion

In this report, we uncover a new mechanism by which Dot1l

regulates water homeostasis, and identify Aqp5 as a potential novel

target of Dot1a, a binding partner of Aqp2, a negative trafficking

regulator of Aqp2, and thus the potential missing component

linking disrupted Dot1l to polyuria.

We provide evidence showing that Aqp5 is a new Dot1a-

regulated gene. Genetic inactivation, and siRNA-mediated deple-

tion of Dot1l led to endogenous Aqp5 upregulation. The reverse

correlation of AQP5 expression with H3m2K79 in DN further

suggests the importance of H3m2K79 in this regulation. In

contrast, Dot1a overexpression inhibited expression of endogenous

Aqp5 and all but the smallest Aqp5 promoter-luciferase constructs.

These results suggest that exogenously expressed constructs and

the endogenous Aqp5 responded similarly to changes in Dot1a

abundance. Unlike the 2389 construct, the 2139 construct

apparently lacks Dot1a-mediated repression and basal promoter

activity, indicating the existence of a critical ‘‘Dot1a-responsible’’

cis-element and elements essential for the minimal promoter

activity between 2389 and 2139 region.

TNFa and lipopolysaccharide inhibit Aqp5 expression in

salivary and parotid gland cells, respectively [40,41]. TNFa-

mediated repression involves suppression of histone H4 acetylation

[40]. Lipopolysaccharide enhances NF-kB, but not AP-1 binding

at the Aqp5 promoter [41]. Interestingly, the AP-1 and NF-kB sites

reside in subregions K and L, which were shown to bind Dot1l

and H3m2K79 in ChIP assays (Figure 5). Therefore, it would be

interesting to know how the binding of these transcription factors

is coordinately regulated in the Aqp5 promoter, and to investigate

if the 4 subregions (F, I, K and L) are critical to an insulator

element between Aqp2 and Aqp5. Dot1a may also indirectly inhibit

Aqp5 expression by upregulating another factor that represses

Aqp5. In either case, upregulation of Aqp5 may contribute to the

polyuria phenotype in Dot1lAC mice and in DN patients.

Aqp5 promotes outflow of water in the lacrimal and salivary

glands. Since Aqp5-mediated water transport in secretory epithelia

occurs in the secretory direction in response to an osmotic

gradient, water transport via Aqp5 in kidney would also move

down an osmotic gradient. Thus, like Aqp2, Aqp5 would be

expected to mediate water uptake. Obviously, the polyuria

phenotype does not support this hypothesis. Identification of

Aqp5 as a negative regulator of Aqp2 apical localization offers a

clue for an opposite role.

Apical positioning of Aqp2 involves multiple complex pathways

that can be constitutive or cAMP- and cGMP-dependent. Protein-

protein interactions play an important role in these pathways.

Several Aqp2-binding proteins have been identified [42–49]. The

physiological and pathophysiological significance of these interac-

tions is largely unknown.

In contrast, the importance of the interaction between WT

AQP2 and some AQP2 mutants is clearly demonstrated in

autosomal dominant nephrogenic diabetes insipidus (NDI). All

dominant mutations identified so far occur within the C-terminus

of AQP2. The AQP2 mutants form heterotetramers with WT

AQP2 and thus prevent WT AQP2 from reaching the plasma

membrane. The WT AQP2 is retained either in the Golgi, late

endosomes, lysosomes, or the basolateral plasma membrane [50].

In several aspects, AQP5 seems to behave like the AQP2 mutants.

First, the high sequence homology with 66% amino acid identity

offers a potential molecular basis for AQP2-AQP5 interaction.

Such interaction may interfere with their homotetramer formation

and facilitate hybrid arrangement. Secondly, the C-termini of

AQP2 and AQP5 are important for trafficking, but not for

Figure 4. AQP5 expression is inversely correlated with
H3m2K79 in DN. (A–D) Representative IF images of kidney biopsies
from a patient with MCD showing strong H3m2K79 and undetectable
AQP5 (A) and from two patients with DN showing significantly reduced
H3m2K79 in most of the cells with some of them robustly expressing
AQP5 (B–D). The boxed area in B was amplified and shown in C. The
presence of large discrete foci was exclusively used to score AQP5
positive staining. If an AQP5+ cell has a clear DAPI-stained nucleus as
shown in C and D, they are numbered. (E) The pixel intensities of AQP5
and H3m2K79 measured simultaneously, using ImageJ64. Arrowheads
in D indicate ignored AQP5+ spots due to absence of a nucleus showing
the status of H3m2K79. Scale bar: 50 mM.
doi:10.1371/journal.pone.0053342.g004
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tetramer formation [51]. They are not conserved between the two

proteins, mimicking the difference between the WT and mutant

AQP2 forms.

Our finding that AQP5 is readily detectable and colocalizes

with AQP2 at the perinuclear region suggests that the apical

localization of AQP2 may be impaired and contributory to the

deterioration of glucosuria-induced polyuria in patients with DN.

Earlier studies show that compensatory Aqp2 protein abundance

increases in rats with streptozotocin-induced diabetic mellitus [52–

54], which apparently differs from the present results. All of these

animals studies were conducted in a relatively short period ranging

from day 5 to day 21 following STZ treatment [52–54]. While

diabetic mellitus was clearly induced, no pathological data were

shown in any of these studies to demonstrate tubular abnormalities

as seen in the patients with DN, raising the possibility that renal

pathological changes in these diabetic rats, particular in terms of

tubular aberration, are not comparable with those in the patients

with DN. It is likely that the increased Aqp2 expression is a result

of compensatory mechanism in the early stages of the diseases

progression. Such a compensatory mechanism may be lost in the

advanced stage of DN development.

As an aldosterone downregulated gene [24,27,28], Dot1l may

also links excessive aldosterone to polyuria via Aqp5 and Aqp2.

Long-term aldosterone infusion decreases Aqp2 apical localization

and causes polyuria in several animal models [36,55,56]. It is

worthy to determine if Dot1a is really downregulated and Aqp5

upregulated in these experimental conditions.

Although our data strongly support the formation and

localization of AQP2/AQP5 complex in the ER/Golgi as the

potential underlying mechanism by which Aqp5 plays an

inhibitory role in Aqp2 membrane localization and thus in the

development of polyuria, conclusive demonstration requires

blocking Aqp5 in Dot1lAC mice. Genetic inactivation using

Aqp52/2 mice, pharmacological blocking with Aqp5-specific

inhibitors, and siRNA-mediated in vivo depletion of Aqp5 offer

three different strategies. To our knowledge, there are currently no

Aqp5-specific inhibitors. Since extensive filtration and uptake of

siRNA take place in the proximal tubule cells, but not in the distal

Figure 5. ChIP demonstrates impaired binding of Dot1l and H3m2K79 at specific subregions of Aqp5 59 regulatory region.
Chromatin from Dot1lf/f and Dot1lAC mice on the normal Na+ pellet diet (n = 6 mice/group) was immunoprecipitated by the rabbit antibodies specific
for Dot1l (A) and H3m2K79 (B), followed by real-time qPCR with primers amplifying subregions A-L covering almost the whole region between the
end of Aqp2 exon 4 and the translation start site ATG of Aqp5 as shown at the bottom. There is a 525-bp gap between J and K, which cannot be
reliably amplified and was excluded from further analysis. Relative ChIP efficiency was defined as the immunoprecipitated amount of materials
present as compared to that of the initial input sample. *: P,0.05 vs. Dot1lf/f within the same subregion.
doi:10.1371/journal.pone.0053342.g005
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tubule cells [57], where Dot1l-deletion-dependent Aqp5 expression

occurs, siRNA-mediated in vivo knockdown of Aqp5 may not be

effective.

Materials and Methods

Ethics Statement
All animal studies were performed in accordance with NIH

Guides for the Care and Use of Laboratory Animals and were

approved by the University of the University of Texas Health

Science Center at Houston Animal Welfare Committee. For

kidney biopsy studies, approval of the protocol (11-0144) was

obtained from the University of Texas Health Science Center at

Houston Institutional Review Board. No participants were

specifically recruited for this project to collect the kidney biopsy

samples. Kidney archival biopsy residual specimens from patients

with the diagnosis of DN and patients with MCD were exclusively

used. The Institutional Review Board determined that this project

is qualified for exempt status according to 45 CFR 46.101(b),

CATEGORY #4: Research, involving the collection or study of

existing data, documents, records, pathological specimens, or

diagnostic specimens, if these sources are publicly available or if

the information is recorded by the investigator in such a manner

that subjects cannot be identified directly or through identifiers

linked to the subjects. Accordingly, the written or verbal informed

consent of the ‘‘participants’’ to participate in this study was

waived. The Department of Pathology and Laboratory Medicine,

University of Texas Medical School at Houston provided the PI

with these archival kidney biopsy samples as unidentified

materials. MCDs without obvious tubular abnormalities were

selected and used to serve as ‘‘normal’’ controls.

Reagents
Primary antibodies used were rabbit antibodies for H3 di-

methyl K79 (ab3594, abcam), goat anti-Aqp2 (sc-9882, Santa

Cruz), rabbit anti-Aqp5 (A4979, Sigma), rabbit anti-Dot1l (A300-

953A, Bethyl), mouse anti-GM130 (610822, BD Sciences), and

chicken anti-Aqp2 LC54 (from Dr. James B. Wade, Univ of

Maryland). DsRed-ER and GFP-Dot1a have been described

[17,39]. Kits for cell surface protein isolation and chromatin

immunopreciptation were purchased from Pierce and Millipore,

respectively. All of the Aqp5 promoter-luciferase constructs and

MLE-15 cells have been detailed in our previous work [38].

Human AQP2 and AQP5 were amplified with EST clones

BC042496 and BC032946, respectively, cloned into various

vectors at EcoRI/XhoI to generate FLAG-, Myc-, GFP-, and

RFP-tagged fusions. Sequence authenticity of each construct was

verified by sequencing.

STZ treatment
Two-month-old male Dot1lf/f and Dot1lAC mice received 5

consecutive daily intraperitoneal injections of STZ-Na-Citrate

solution (50 mg/kg), according to the Low-Dose Streptozotocin

Induction Protocol (Mouse) established by Animal Models of

Diabetic Complications Consortium (http://www.diacomp.org/

shared/protocols.aspx?model = 9). Blood glucose was monitored

with a glucometer, using a one-drop blood sample collected

through the tip of the tail. Once the blood glucose level reaches

.200 mg/dl, mice were considered as diabetic and maintained for

additional three months. Detailed characterization of diabetic

Dot1lf/f and Dot1lAC mice will be reported elsewhere.

Metabolic balance studies
All experimental mice were 2–5 months old, and sex- and age-

matched. After acclimation for 3–7 days to Tecniplast metabolic

cages (Exton) with free access to water and normal Na+ (0.4%) diet

(fed state), mice were subsequently subject to water deprivation for

24 h. Twenty-four-hour urine samples were collected and

analyzed as we reported before [36]. In brief, twenty-four-hour

urine in fed state was collected daily for at least three consequtive

days. For each mouse, the urine data from multiple days were

pooled to calculate the final average to represent that mouse and

counted as 1 (n = 1). To minimize circadian effects, urine

collection were conducted around 5:00 p.m. each day. For water

deripvation studies, water deprivation and urine collection were

conducted samultaneiously for 24 hours. For STZ-induced

diabetic mice, twenty-four-hour urine collection was conducted

in three consequtive days at the end of the experiment (three

months after blood glucose reached .200 mg/dl). To ensure

complete and accurate urine collection, bladder voiding was

conducted before the collection started and urine discarded. At the

Figure 6. Dot1a represses Aqp5 mRNA expression in mouse
cortical collecting duct M1 and mouse lung epithelial MLE-15
cells. (A–B) Real-time RT-qPCR showing that siRNA-mediated depletion
of Dot1la in M1 cells increases endogenous Aqp5 expression (A) and
that overexpression of Dot1a decreases endogenous Aqp5 expression
in MLE-15 cells (B). (C) Luciferase assays showing that overexpression of
Dot1a reduces expression of a luciferase reporter driven by a 4.3-kb
(24300 in E) promoter of rat Aqp5 in MLE-15 cells. (D) As in C, except
that various amounts of Dot1a plasmid were used for transfection. (E)
Luciferase assay showing that Dot1a represses Aqp5 promoter-
luciferase constructs as indicated. The relative positions of the Dot1l-
and H3m2K79-binding subregions of mouse Aqp5 in ChIP assays were
shown at the bottom. The percentages of identities between rat and
mouse were also indicated. Note: Dot1a-mediated repression was
eliminated in the 2139 construct.
doi:10.1371/journal.pone.0053342.g006
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end of collection time point, bladder voiding was repeated and the

urine collected. To minimize vaporization and thus urine volume

loss, a fixed amount of corn oil was added to each of the containers

so that the collected urine samples were covered by the oil during

the collection period.

Urine measurements
Urinary [Na+], [K+], and [creatinine] were measured with an

analyzer (Roche Cobas Integra 400 plus) in the Clinical Pathology

Laboratory, Department of Veterinary Medicine and Surgery,

University of Texas MD Anderson Cancer Center as described

[36]. Urine osmolarity was determined by vapor pressure (Wescor

Vapro Vapor Pressure Osmometer 5520, Scimetrics, Houston,

TX, USA) [36].

Microarray analysis
Microarray experiments were carried out using the dual-color

Agilent 4X44K ‘‘Whole Mouse Genome Array’’ system (Agilent)

and the manufacturer’s protocol followed. Detailed protocol can

be found at Agilent website: www.Agilent.com. Briefly, total

kidney RNA of Dot1lf/f and Dot1lAC mice (n = 4 mice/genotype)

was isolated using Trizol (Invitrogen). Equal amounts of total RNA

from each mouse of the same genotype were mixed to represent

the corresponding genotype. 200 ng of the mixed RNAs was used

and labeled with either Cy3- or Cy5-CTP. After 17 hr

hybridization at 65uC, the arrays were washed and scanned with

Agilent’s dual-laser based scanner. Then, Feature Extraction

software GE2-v5_95 was used to link a feature to a design file and

determine the relative fluorescence intensity between the two

samples. Genelists were created using pValue information from

the internal replicates within the microarray. Data were deposited

to Gene Expression Omnibus, with access number GSE40090.

Immunofluorescence and confocal staining
Mouse kidney tissues were fixed in 4% paraformaldehyde

overnight at 4uC and embedded in paraffin. After boiling in

antigen-retrieval buffer, paraffin sections were blocked with 5%

BSA/0.5% Triton X-100 in PBS. Each primary antibody was

diluted in 5% BSA/0.5% Triton X-100 in PBS and incubated

overnight at 4uC. Following four 5-minute washes in PBS, the

sections were incubated with Dylight 594-AffiniPure goat anti-

chicken IgG (Jackson ImmunoResearch LABORATORIES, Inc.),

Alexa Fluor 488–conjugated goat anti-rabbit IgG or Alexa 594-

conjugated goat anti-mouse IgG (Invitrogen), depending on the

Figure 7. AQP5 coimmunoprecipitates with AQP2 and impairs its cell surface localization in IMCD3 cells. (A–D) Co-IP showing human
AQP5 interacts specifically with human AQP2. AQP5 and AQP2 were expressed as FLAG- or GFP- fusions in 293T cells, and analyzed by IP-IB with
antibodies as indicated. (E) Representative IBs of biotinylation assay showing that AQP5 impairs cell surface localization of AQP2. FLAG-AQP2 and
Myc-AQP5 were expressed separately or in combination in IMCD3 cells, biotinylated, and analyzed by IB with antibodies as indicated. *: unknown
protein.
doi:10.1371/journal.pone.0053342.g007
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species from which the primary antibody was generated. Nuclei

were visualized using DAPI (1:1000). The sections were mounted

in VECTASHIELD HardSet Mounting Medium (H-1400,

VECTOR LABROTORIES), and examined under an epifluor-

escence microscope (Olympus IX71) and confocal microscope

(510 Meta, Zeiss LSM) as previously described [26,58].

For in vitro experiments, transfected IMCD3 cells with the

plasmids as indicated in figure legends were fixed with 4% fresh

prepared paraformaldehyde for 20 min, washed with PBS

365 min, and incubated in permealization buffer (0.1% Triton

6100, 5% Glycine in PBS) for 15 min. After 365 min washing

with PBS, cells were blocked with Serum-free Protein Block (Dako)

for 1 hr. Incubation of the primary and secondary antibodies,

DAPI staining, mounting and microscopic examination were

conducted as described above.

Quantification of pixel intensity of AQP5 and H3m2K79
immunofluorescence staining in patients with DN

Kidney biopsies were immunostained under identical condi-

tions. All digital images were acquired using the same settings

including the same exposure time and amplification. Tubules with

at least one AQP5+ cell were included for this analysis. All other

AQP52 tubules were excluded from the analyses. Among AQP5+

tubules, only AQP52H3m2K79+, AQP5+H3m2K792, and

AQP5+H3m2K79+ cells were considered. AQP52 H3m2K792

cells were excluded as we already pointed out that loss of

H3m2K79 might not always be associated with AQP5 expression.

Spots of positive AQP5 staining without a clear DAPI-stained

nucleus were excluded due to uncertainty of their H3m2K79

status. Under these restricted criteria, the pixel intensities over

background of both AQP5 and H3m2K79 staining in the selected

cells were quantified using ImageJ64 software.

Figure 8. AQP5 and AQP2 colocalize and partially reside in the ER/Golgi compartments in IMCD3 cells. (A–C) Representative confocal
microscopy images showing colocalization of RFP-AQP5 and GFP-AQP2 (A), lack of colocalization when GFP-AQP2 (B) and RFP-AQP5 (C) was
coexpressed with RFP and GFP alone, respectively. (D) Representative confocal microscopy images showing AQP5-AQP2 complex partially locates in
the ER in IMCD3 cells. IMCD3 cells were co-transfected with the plasmids as indicated and examined by confocal microscopy. DsRed-ER was used as
an endoplasmic reticulum (ER) marker [39] and shown in red. GFP-AQP2 is shown in green. Myc-AQP5 was not directly detected, but can be inferred
by its interaction and colocalization with AQP2 as large discrete foci seen in A. AQP2 alone seldom forms large discrete foci. In addition, more than
95% of transfected IMCD3 cells were always doubly transfected. Therefore, the presence of the large discrete foci is indicative of AQP2-AQP5
complex. (E) As in D except that DsRed-ER was omitted and cells were stained with an antibody specific for GM130, a cis-Golgi marker. Scale bar:
40 mM.
doi:10.1371/journal.pone.0053342.g008
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Cell surface biotinylation assay
This assay was done using the cell surface protein isolation kit

(Pierce), following the manufacturer’s instructions. Briefly, tran-

siently transfected IMCD3 cells were biotinylated with Sulfo-

NHS-SS-Biotin in cold PBS at 4uC for 30 min and the reaction

stopped by addition of Quenching solution. Cells were washed

with cold TBS and lysed with Lysis buffer containing proteinase

inhibitor cocktail at 4uC for 30 min. Cell lysates were centrifuged

for 2 min at 10,000 g. Supernatants were incubated with

NeutrAvitin Agarose for 60 min at room temperature. Beads

were washed four times with Wash buffer. Bound proteins were

eluted by heating for 5 min at 95uC in 26 SDS-PAGE loading

buffer (2% SDS, 0.0625 M Tris pH 6.8, 20% glycerol, 0.01%

bromophenol blue, 5% b-mercaptoethanol). Samples were ana-

lyzed by immunoblotting with antibodies as indicated in the figure

legends.

Immunoblotting, luciferase assay, real-time RT-qPCR, and
ChIP assay

These assays were conducted according to our published

protocols [24,25,28,36], For ChIP, a modified protocol described

in our recent publication [33] was utilized. The sequences of the

primers were listed in Table S3 and S4.

Statistical analysis
Quantitative data are presented as mean6SEM. Student’s t-test

was used with the statistical significance set at P,0.05.

Supporting Information

Figure S1 Additional urine metabolic analyses of Do-
t1lAC and control mice after water deprivation for 24 h.
Dot1lf/f (f/f) and Dot1lAC (AC) mice were fed the normal Na+ diet

(0.4% Na+) in metabolic cages, deprived of water for 24 h, and

analyzed for the parameters as indicated. n = 14 mice/group.

*P,0.05 vs. Dot1lf/f.

(DOC)

Figure S2 Absolute urine volumes. Dot1lf/f (f/f) and Dot1lAC

(AC) mice with free access to water and regular diet (A), after 24-hr

water deprivation (B), and after blood glucose reaching 200 mg/dl

induced by STZ injection (C) were analyzed for the absolute urine

volume. In each case, n = 4–14 mice/genotype. *P,0.05 vs.

Dot1lf/f.

(DOC)

Figure S3 Additional IF images showing that Aqp5 was
significantly upregulated in the kidney of Dot1lAC mice
on the normal Na+ pellet diet. (A–B) Representative IF

images showing Aqp5 (green) expression in Aqp2+ (red) cells in

mice as indicated. Note: Some cells displayed Aqp5+ Aqp22

phenotype. These cells are most likely the intercalated cells derived

from the Aqp2-expressing progenitor cells or mature PC [30]. OM

and IM: outer and inner medulla. Detection of Aqp5+ Aqp22 and

Aqp52 Aqp2+ cells demonstrates the specificity of the two

antibodies. Scale bar: 50 mM.

(DOC)

Figure S4 Aqp5 is expressed in the developing Dot1lAC

kidneys. Representative IF images showing detectable Aqp5 in

some Aqp2+ and Aqp22 connecting tube/collecting duct cells of

Dot1lAC mice at day 11 and day 20, but not at day 3. Aqp5 is not

detectable in Dot1lf/f mice at all stages as indicated. Scale bar:

100 mM.

(DOC)

Table S1 Upregulated Genes in Dot1lAC vs. Dot1lf/f mice. Total

kidney RNA of Dot1lf/f and Dot1lAC mice (n = 4 mice/genotype)

was subjected to microarray analyses. There were 1359 genes

represented by 1423 unique probes. These genes were upregulated

with at least $2-fold higher mRNA levels in Dot1lAC vs. Dot1lf/f

mice.

(DOC)

Table S2 Downregulated genes in Dot1lAC vs. Dot1lf/f mice. As in

Table S1, total kidney RNA of Dot1lf/f and Dot1lAC mice (n = 4

mice/genotype) was subjected to microarray analyses. There 627

genes represented by 680 unique probes. These genes were

downregulated with at least $2-fold lower mRNA levels in Dot1lAC

vs. Dot1lf/f mice.

(DOC)

Table S3 Primers for real-time RT-qPCR and Dot1a-specific

siRNA. Listed are sequences of the primers used for real-time RT-

qPCR and Dot1a-specific siRNA. F: Forward. R: Reverse.

(DOC)

Table S4 Primers for ChIP in Aqp5 59 flanking region. Listed

are sequences of the primers in Aqp5 59 flanking region. These

primers were used in chromatin immunoprecipitation coupled

with real-time qPCR analyses. F: Forward. R: Reverse.

(DOC)
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