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Abstract
Diabetic retinopathy (DR) is the leading cause of blindness among American adults above 40

years old. The vascular complication in DR is a major cause of visual impairment, making find-

ing therapeutic targets to block pathological angiogenesis a primary goal for developing DR

treatments. MicroRNAs (miRs) have been proposed as diagnostic biomarkers and potential

therapeutic targets for various ocular diseases including DR. In diabetic animals, the expres-

sion levels of several miRs, includingmiR-150, are altered. The expression of miR-150 is signif-

icantly suppressed in pathological neovascularization in mice with hyperoxia-induced

retinopathy. The purpose of this study was to investigate the functional role of miR-150 in the

development of retinal microvasculature complications in high-fat-diet (HFD) induced type 2

diabetic mice. Wild type (WT) and miR-150 null mutant (miR-150-/-) male mice were given a

HFD (59% fat calories) or normal chow diet. Chronic HFD caused a decrease of serummiR-

150 inWTmice. Mice on HFD for 7 months (bothWT andmiR-150-/-) had significant decreases

in retinal light responses measured by electroretinograms (ERGs). The retinal neovasculariza-

tion in miR-150-/--HFDmice was significantly higher compared to their age matchedWT-HFD

mice, which indicates that miR-150 null mutation exacerbates chronic HFD-induced neovascu-

larization in the retina. Overexpression of miR-150 in cultured endothelial cells caused a signifi-

cant reduction of vascular endothelial growth factor receptor 2 (VEGFR2) protein levels.

Hence, deletion of miR-150 significantly increased the retinal pathological angiogenesis in

HFD induced type 2 diabetic mice, which was in part through VEGFR2.

Introduction
Obesity associated type 2 diabetes has reached epidemic proportions in the past few decades
(http://win.niddk.nih.gov/statistics/index.htm; provided in the public domain by the National
Institute of Diabetes and Digestive and Kidney Diseases). Fluctuations in systemic glucose
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levels lead to serious complications such as diabetic retinopathy (DR), diabetic nephropathy,
and diabetic neuropathy [1–3]. In diabetic retinopathy, microvascular complications often lead
to leakage of blood into the eyes and ultimately cause retinal degeneration and distorted vision.
Besides controlling systemic glycemic levels, intra-ocular anti-vascular endothelial growth fac-
tor (VEGF) injections are now the first-line gold standard treatment for DR macular edema
and vascular complications [4,5]. While 70% of DR patients respond well to the current anti-
VEGF therapies, about 30% are unresponsive [6–13], and often these non-responders are iden-
tified months after the treatments have started. In addition, side-effects such as sustained eleva-
tion of intra-ocular pressure, retinal detachments and tears, and ocular hemorrhage [14,15]
become greater risks of blindness and can outweigh the benefits of anti-VEGF treatments.
Hence, identifying the mechanistic development and discovering new strategies for treatment
of DR are critical needs.

MicroRNAs are short non-coding RNAs that form complexes with RNA binding proteins
to suppress the expression of targeted genes via post-transcriptional mechanisms [16]. Micro-
RNAs exhibit specific temporal and spatial expression following environmental stimulation
[17], and they repress gene expression through complementary binding to the 3'UTR region of
mRNAs. Because the expression of miRNAs can be cell or tissue specific, miRNAs have been
used as diagnostic biomarkers or potential therapeutic targets [18–20]. In the retina, a single
point mutation of miR-204 causes inherited retinal dystrophy [21]. In streptozotocin-induced
diabetic rats, the expression levels of 86 miRNAs are altered in the retina, implying that these
miRNAs might be involved in the pathogenesis of DR, and they could also serve as novel thera-
peutic targets for DR treatment [22–26].

Among these miRNAs that are altered in the diabetic retina, miR-150 is highly expressed in
retinal vascular endothelial cells [27]. MiR-150 was first known as a circulating miRNA that is
secreted into macrovesicles by blood cells and monocytic cells [28–30]. It regulates the develop-
ment of B cells and production of hematopoietic progenitor cells [28–30]. MiR-150 expression
or secretion is up-regulated by oxidative stress and down-regulated in hypoxic conditions
[31,32] suggesting that it could be a biomarker coordinating cell to cell communication in the
vascular system. The expression of miR-150 is significantly suppressed in pathological neovas-
cularization in mice with hyperoxia-induced proliferative retinopathy [33]. This observation
suggests that miR-150 is involved in neovascular complications in ocular diseases. Hence, we
postulate that miR-150 might contribute to the pathogenesis of DR vascular complications.

We previously showed that obesity-induced early diabetes has a detrimental impact on reti-
nal light sensitivity and health [34]. Mice under chronic high-fat-diet (HFD) not only become
obese, they also develop a stable hyperglycemia with a progressively increased hyperinsuline-
mia over time, indicating the progressive worsening of insulin resistance [35]. These obese
mice frequently develop chronic inflammation within adipose tissues [36–38], which is a sig-
nificant factor contributing to systemic insulin resistance [38–42] and hyperglycemia [35], two
hallmarks of type 2 diabetes. Unlike other diabetic mouse models derived from monogenic dis-
orders or chemical destruction of β-cells, the HFD-induced diabetic mouse model is widely
used in studies on pathophysiology of obesity and type 2 diabetes, such as mechanisms of
impaired glucose tolerance and insulin resistance, as well as other diabetic complications
[35,43], and it is more clinically relevant to obesity-associated type 2 diabetes in humans
[35,43]. These HFD-induced diabetic mice also have structural and functional deficits in the
retina similar to certain characteristics found in other DR animal models, including defects in
the inner retinal light responses, lesions in the retinal vasculature, and thickness of Bruch's
membrane [44]. Furthermore, mice fed with a HFD containing 42% fat calories for 12 months
have significantly greater numbers of atrophic capillaries and pericyte ghosts compared to
mice fed with a normal diet [45]. Because HFD-induced DR in mice is characterized by its
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slow-onset that mirrors the pathophysiology of human type 2 diabetes-associated DR, the
HFD-induced DR mouse model is a suitable model for type 2 diabetes-associated non-prolifer-
ative DR in humans [45].

As shown in our previous study, mice under a HFD (59% fat calories) for 3 months not only
become obese with insulin resistance and systemic hyperglycemia, their retinal light sensitivi-
ties decrease [34]. In this report, we extended our study and examined HFD-induced DR in
mice after they were fed with a HFD for 7 months. We further examined the HFD-induced DR
in miR-150 null mutant (miR-150-/-) mice and determined the functional role of miR-150 in
neovascularization under diabetic conditions, as well as the downstream target(s) of miR-150
by using ERG recordings for retinal light responses, morphological staining for retinal vascula-
ture, and other biochemical / molecular assays.

Materials and Methods

Animals
The C57BL/6J mouse strain was used in this study for its robust development of severe obesity,
hyperglycemia, and hyperinsulinemia under the HFD regimen compared to other mouse
strains [46]. Male C57BL/6J mice (wild type; WT) were purchased from Harlan (Houston, TX,
USA). B6(C).MiR-150tm1Rsky/J (miR-150-/-) mice were originally purchased from the Jack-
son Laboratory (Bar Harbor, ME, USA). All animal experiments were approved by the Institu-
tional Animal Care and Use Committee of Texas A&M University. Mice were housed under
temperature and humidity-controlled conditions with 12:12 hour light–dark cycles. All mice
were fed with laboratory chow and water ad libitum. Starting at 5 weeks of age, mice were fed
either a HFD (59.4% fat calories, 18.1% protein calories, and 22.5% carbohydrates calories;
TestDiet1, St. Louis, MO, USA) or normal standard laboratory chow (controls; 10% fat calo-
ries, 20% protein calories, and 70% carbohydrates calories; Research Diets, Inc., New Bruns-
wick, NJ, USA) for 27 weeks. Their body weight and food intake were monitored throughout.
Blood was taken from the tail vein and glucose levels measured by the Clarity Plus Blood Glu-
cose Monitoring System (Diagnostic Test Group, Boca Raton, FL, USA).

Electroretinogram (ERG)
Mice were dark adapted for a minimum of 6 hours and anesthetized with an intraperitoneal
injection of Avertin (2% 2,2,2-tribromoethanol, 1.25% tert-amyl alcohol; Thermo Fisher Scien-
tific, Grand Island, NY, USA) solution (12.5 mg/ml) at a dosage of 500 μl per 25 g bodyweight.
Mice were placed on a heating pad to maintain body temperatures at 37°C. The ground elec-
trode was placed on the tail, the reference electrode was placed under the skin in the cheek area
below the eye, and the threaded recording electrode conjugated with a mini contact lens
(OcuScience, Henderson, NV, USA) was placed on the surface of the cornea. A drop of Gonio-
visc (Hub Pharmaceuticals, Rancho Cucamonga, CA, USA) was applied on the surface of the
cornea to keep it moist and to maintain proper contact between the cornea and the recording
electrode. A portable ERG device (OcuScience) was used for the ERG recordings. The scotopic
ERG recordings were carried out sequentially at light intensities of 0.1, 0.3, 1.0, 3.0, 10, and 25
cds/m2. A 1-minute recovery period was allowed between different intensities. Responses to
four light flashes were averaged for the final ERG measurement at the lower light intensities
(0.1, 0.3, 1.0, and 3.0 cds/m2), while only one light flash was applied for the higher light intensi-
ties (10 and 25 cds/m2). For the photopic ERG recordings, mice were first adapted to the back-
ground light at 30 cds/m2 for 10 minutes followed by exposure to a series of light stimulations
from 0.1 to 25 cds/m2 with 32 flashes (0.5-second interval) at each light intensity. Responses to
32 light flashes were averaged for the final ERG measurement. The amplitudes and implicit
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time of a- and b-waves and oscillatory potentials (OPs) were recorded and analyzed by using
the ERGView 4.4 software (OcuScience).

Cell Culture andWestern Immunoblot Analysis
Human umbilical vein endothelial cells (HUVECs, Cell Applications, San Diego, CA, USA)
were seeded onto 24-well plates in endothelial cell growth medium (Cell Applications) and
allowed to adhere overnight. The cells were transfected with a miR-150 expression vector (Gen-
eCopoeia, Rockville, MD, USA) using an in vitro transfection kit (Signagen Lab, Rockville,
MD, USA) and harvested 60 hours later. Human retinal endothelial cells (HRECs; Cell Sys-
tems, Kirkland, WA, USA) were maintained in EGM™-2MV BulletKit™ culture medium
(Lonza, Allendale, NJ, USA). The cells were transfected with a miR-150 expression vector
(GeneCopoeia) using the Lipofectamine LTX & PLUS reagent (Thermo Fisher Scientific) and
harvested 60 hours after transfection. The cells were homogenized in RIPA buffer supple-
mented with a protease inhibitor mixture containing 1mMNaF and 1mMNaVO3. The cell
lysates were centrifuged, and the supernatants were denatured with 2X SDS sample buffer.
Samples were separated on 10% sodium dodecyl sulfate–polyacrylamide gels by electrophoresis
and transferred to nitrocellulose membranes. The primary antibodies used in this study were
anti-VEGFR2 (Cell Signaling Technology, Denver, MA, USA), anti-pan actin (Cell Signaling
Technology), and anti-GAPDH (Cell Signaling Technology). Blots were visualized by using
appropriate secondary antibodies conjugated to horseradish peroxidase (Cell Signaling Tech-
nology) and an enhanced chemiluminescence detection system (Thermo Fisher Scientific). Rel-
ative protein expressions for all proteins involved in this study were reported as a ratio to pan-
actin. Band intensities were quantified by densitometry using Scion Image (National Institutes
of Health, Bethesda, MD, USA). Each experiment was repeated four times (n = 4).

Trypsin Digestion of Mouse Retinas and Hematoxylin and Eosin (H&E)
Staining
Mice were deeply anesthetized by isoflurane and quickly decapitated to minimize pain and dis-
tress. Mouse eyes were excised and fixed with Zamboni's fixative (American Matertech Scien-
tific Inc, Lodi, CA) for 2 hours at 4°C. The retinas were isolated and washed with distilled
water overnight at room temperature. Trypsin digestion was performed to isolate the retinal
vasculature according to a previous description [47]. Briefly, the retinas were incubated with
3% trypsin (BD Biosciences, Franklin Lakes, NJ, USA) for 1–1.5 h at 37°C, followed by gentle
washing with distilled water until tissue debris no longer fell off the retinas. The remaining reti-
nal tissues containing retinal blood vessels were carefully transferred to a glass-slide and flat-
tened. The retinal vasculature was stained with heamatoxylin and eosin (H&E) using a staining
kit (VitroView H&E Stain Kit, GeneCopoeia) or immunostained with the anti-VEGFR2 anti-
body conjugated with Alexa-488 (Cell Signaling) at 1:100 dilution.

Immunofluorescent Staining and Quantification of Retinal Vasculature
For the analyses of retinal blood vessels, mouse eyes were dissected out at the end of the 27
week feeding regimen and fixed in Zamboni's fixative (VWR) for 2 hours at 4°C. The retinas
were isolated and stained overnight at 25°C with FITC-conjugated Isolectin B4 (Sigma,
St. Louis, MO, USA) in PBS containing 0.1% Triton X-100 and 1 mM Ca2+. Following 2 hours
of washes, retinas were cut on the peripheral edge and flat-mounted with the photoreceptor
side down onto microscope slides (VWR Scientific) in ProLong Antifade reagents (Thermo
Fisher Scientific). Images were captured at 5x magnification on a Zeiss Digital Imaging Work-
station (Zeiss, Thornwood, NY, USA), and whole retinal images were stitched together with
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the Image Composite Editor (Microsoft, Seattle, WA, USA). The vascular area (percentage, %)
was quantified using Image J software (NIH, Bethesda, MD, USA) by the following procedure:
in a selected retinal region, the total pixel-number of the selected area was first measured.
Within the selected retinal region, the pixel-number of any green fluorescence-positive area
was measured. The vascular area (%) was calculated by dividing the pixel-number of the fluo-
rescence-positive area by the total pixel-number of the selected retinal region. There were 4
peripheral and 4 central areas from each whole retina randomly selected, analyzed, and aver-
aged. The density of microaneurysm-like structures and the capillary vessel bifurcation joints
(both together referred to as “microaneurysms”) were counted from 4 peripheral regions of
each retina using the fluorescent images captured under 10X magnification. The number of
microaneurysms was counted by Image J software. The microaneurysm particles (larger than 9
square pixels with circularity between 0.00–1.00) were highlighted and counted by adjusting
the threshold. Each experimental group had retinas from 6–8 mice (n = 6–8).

Quantitative Real Time PCR (Q-PCR)
Blood was collected from the mouse ocular vein and kept at room temperature for 30 minutes
followed by centrifugation at 2000 g for 10 minutes at 4°C. 400–500 μl serum was transferred to a
new tube and used for the purification of miRNAs (Direct-zol™ RNA Kit; Zymo Research, Irvine,
CA, USA). Real time PCR reactions were performed by TaqMan miRNA assay kits (Thermo
Fisher Scientific). Specific primers and probes for mmu-miR-150-5p (5’UCUCCCAACCCUU
GUACCAGUG 3’) were purchased from Life Technologies/Thermo Fisher. Taqman Q-PCR
master mix (Thermo Fisher Scientific) was used for PCR amplification (40 cycles). All experi-
ments were repeated five times (n = 5). A standard curve was generated with known quantities of
miRNA (1 ×, 2 ×, 4 ×, 5 ×, 8 ×, and 10 × dilutions). The cycle values corresponding to the log val-
ues of the standard curve were used to generate an equation for linear regression. The cycle values
from the sample miRNAs were fit into the equation to quantify miRNA levels. Cel-miR-39 (Life
Technologies/Thermo Fisher) was used as the spike-in control.

Statistics
All data are presented as mean ± standard error of the mean (SEM). Student’s t-test and one- or
two-way ANOVA followed by Tukey's post hoc test for unbalanced n were used for statistical anal-
yses. Specifically for the animal studies, the 2-way ANOVA followed by Tukey's post hoc test for
unbalanced n were used to determine the statistical significance among all 4 groups (WT-normal
diet, WT-HFD, miR-150-/--normal diet, and miR-150-/--HFD), as well as whether there was an
interaction between the two factors: HFD regimen and miR-150 null mutation (miR-150-/-). A
statistical significance in the interaction between HFD and miR-150-/- would indicate that miR-
150-/- exacerbated the HFD-caused effects. Throughout, p< 0.05 was regarded as significant.

Results

Compared to the WT, deletion of miR-150 did not alter the systemic body
weight and blood glucose level in HFD-induced obese mice
While overexpression of miR-150 in the mouse retina is able to block neovascularization in
hyperoxia-induced retinopathy mice [33], it is unclear how miR-150 might affect retinal func-
tion under diabetic conditions. We examined both neuronal and vascular changes in the retina
of age matched wild type (WT) and miR-150-/- mice fed with a HFD for 27 weeks to determine
the functional role of miR-150 in DR pathogenesis. We monitored the body weight and sys-
temic blood glucose levels of WT and miR-150-/- mice under normal chow and HFD
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conditions. By the end of the HFD regimen, both WT and miR-150-/- HFD mice had twice the
body weights of mice fed with a normal chow diet (WT: HFD vs normal chow, 51.8 ± 2.0 g vs
25.5 ± 2.7 g; miR-150-/-: HFD vs normal chow, 45.4 ± 2.2 g vs 28.7 ± 2.0 g; Fig 1A). There was
no statistically significant difference in the interaction between miR-150 deletion and HFD reg-
imen in regards to body weight, as the body weights between WT and miR-150-/- mice in the
same diet were similar (2-way ANOVA analysis). Both WT and miR-150-/- HFD mice dis-
played significantly higher blood glucose levels in a non-fasted state compared to mice fed with
normal chow, but there was no statistically significant difference in the interaction between
miR-150 null mutation and HFD regimen in systemic glycemia, which indicated that hypergly-
cemia was mainly induced by chronic HFD (2-way ANOVA analysis; WT-normal diet:
114.8 ± 16.5 mg/dl; WT-HFD: 267.8 ± 37.5 mg/dl; miR-150-/--normal diet: 122.4 ± 12.9 mg/dl;
miR-150-/--HFD: 298.2 ± 23.6 mg/dl; Fig 1B). Since miR-150 is largely present in the blood
after it is expressed and secreted from the spleen, mesenteric lymph nodes, and the thymus
[30], we next determined whether the serum level of miR-150 was altered by HFD. The serum
level of miR-150 was significantly suppressed in HFD mice compared to mice fed with a nor-
mal diet (student’s t-test; the relative abundance of miR-150/ miR-39 for Normal is
0.02819 ± 0.00199, and for HFD is 0.02032 ± 0.00194. n = 5 for each group. Fig 1C). Therefore,
miR-150 levels were influenced by diet, which could play a crucial role in the pathogenesis of
DR.

The retinal light responses were decreased in miR-150-/- HFDmice
We further examined whether the retinal light responses were compromised in miR-150-/- null
mutant mice at the end of a HFD regimen for 27 weeks. Using electroretinogram (ERG)
recordings, we measured the retinal light responses under scotopic or photopic conditions in
the following 4 experimental groups: WT with normal chow diet (WT-Normal; n = 10), WT
with HFD (WT-HFD; n = 6), miR-150-/- with normal chow diet (miR-150-/--Normal; n = 6),
and miR-150-/- with HFD (miR-150-/--HFD; n = 10). ERG a- and b-waves and oscillatory
potentials (OPs) were recorded and analyzed at various light intensities under scotopic or phot-
opic conditions. The ERG a-wave represents the activities of hyperpolarization of photorecep-
tors upon light stimulation, and the b-wave represents the light-evoked inner retinal responses,
which reflects the summation of responses from bipolar, Müller, and amacrine cells [48,49].
The OPs reflect the inner retinal responses with the currents largely generated from amacrine
cells [49]. Severely reduced or abolished OPs are found in patients with advanced DR [50].
Mice were dark adapted for at least 6 hours before the scotopic ERG recordings. For the phot-
opic ERG recordings, mice were first exposed to 30 cd.s/m2 background light for 10 minutes
followed by exposure to various light-intensity stimulations. In general, the average ERG a-
and b-wave amplitudes of mice with normal chow diet were higher than those of HFD-mice
(Fig 2 and Tables 1 and 2), which echoed our previous finding that HFD mice have significant
decreases of ERG a- and b-wave responses compared to mice fed with normal chow [34]. MiR-
150-/- mice (both the normal chow and HFD groups) had lower ERG a-wave amplitudes (sco-
topic and photopic) compared to the WT mice (both the normal chow and HFD groups), indi-
cating that miR-150 deletion might negatively impact photoreceptor light responses (Fig 2A
and 2B). However, there was no statistically significant difference in the interaction between
the two factors, HFD regimen and miR-150 null mutation, on ERG a-waves (2-way ANOVA),
even though miR-150-/- mice fed with HFD had the lowest a- and b-wave amplitudes under
both scotopic and photopic conditions compared to the other three experimental groups. In
scotopic and photopic b-waves (Fig 2C and 2D), HFD-mice (both WT and miR-150-/- groups)
had significantly decreased amplitudes compared to mice fed with normal chow (both WT and
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miR-150-/- groups). MiR-150 deletion did not have any impact on ERG b-wave amplitudes,
suggesting that miR-150 deletion did not affect inner retinal physiology. In addition, there was
no statistically significant difference in the interaction between the two factors, miR-150 null
mutation and HFD regimen (2-way ANOVA). The implicit time of a- and b-waves under sco-
topic and photopic conditions showed similar statistical comparisons among all four groups
(data not shown).

The amplitudes of OPs (the summation of OP1, OP2, OP3, and OP4; ƩOP1-4) were signifi-
cantly decreased in HFD-mice (both WT and miR-150-/-) compared to the mice fed with nor-
mal chow (Fig 2E and 2F, Tables 1 and 2). However, because the photopic OP amplitudes were
too small to be analyzed at lower light intensities, we were only able to obtain photopic OPs
from 3, 10, and 25 cd.s/m2, while we were able to analyze scotopic OPs from all light intensities
tested in this study (from 0.1 to 25 cd.s/m2). Deletion of miR-150 itself did not affect OPs.
There was no statistically significant difference in the interaction between the two factors, miR-
150 null mutation and HFD regimen (2-way ANOVA). These results indicated that HFD had a
detrimental impact on the inner retina, and deletion of miR-150 did not further aggravate the
decreased retinal light responses in HFD-induced diabetic mice.

Deletion of miR-150 exacerbates HFD-induced DRmicrovascular
complications
Even though miR-150 mutation did not exacerbate HFD-induced decreases of retinal light
responses, we further examined whether deletion of miR-150 affected neo-microvasculature by
fluorescent staining of retinal blood vessels. Mice fed with HFD for 27 weeks had a significant
increase in retinal vascular densities measured in central and peripheral retinas (Fig 3A and
3B). To better observe the changes in retinal vasculature, we performed trypsin-digestion on
mouse retinas to isolate the retinal vasculature. The retinal neurons and other nonvascular cells
were washed out after trypsin digestion, and the retinal vasculature was visualized by H&E
staining. Retinal capillary vasculature is composed of retinal endothelial cells and pericytes.
The endothelial cells have an elongated shape (Fig 3A) and form the tube of capillaries, while
pericytes with a rounded shape (white arrowheads, Fig 3A) wrap around the endothelial cells
and sustain the blood–retina barrier. We observed several defects of retinal vasculature from
the mice fed with HFD (Fig 3A), including the loss of pericytes and the formation of acellular
capillaries (red arrowheads), both of which occur in early human DR. Thus, mice under HFD
for 27 weeks had developed DR.

Deletion of miR-150 itself did not seem to cause any vascular abnormality in the mouse retina,
but miR-150-/- mice fed with HFD had significantly increased vasculature networks (Fig 3A). In
addition to the pericyte loss and the formation of acellular capillaries, we also identified microa-
neurysm-like structures (endothelial cell-extrusion from existing capillaries) in the HFD-mouse
retinal vasculature. As these microaneurysm-like structures (white circles; Fig 3A) were smaller
compared to human DRmicroaneurysms, it is possible that these structures could be newly
formed branch points (bifurcations), or they could develop into larger structures that resemble

Fig 1. Systemic status of WT andmiR-150 null mutant (miR-150-/-) mice with normal chow diet or HFD.
Wild type (WT) and miR-150-/- mice were fed with a normal chow diet (Normal) or HFD for 27 weeks. (A) The
body weights and (B) blood glucose levels measured at the end of 27 weeks are presented. (A and B) There
is a statistically significant difference between the HFD and Normal groups, but there is no statistical
difference betweenWT-HFD and miR-150-/--HFD. There is no statistical interaction between miR-150 null
mutation and HFD regimen (2-way ANOVA). n = 5 for each group. (C) Wild type mice fed with HFD have a
significant decrease of miR-150 expression compared to mice fed with normal diet (Normal; student’s t-test).
*p < 0.05. miR-39 was used as the internal spike-control. The relative abundance of miR-150 / miR-39 for
Normal is 0.02819 ± 0.00199, and for HFD is 0.02032 ± 0.00194. n = 5 for each group.

doi:10.1371/journal.pone.0157543.g001
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the human DRmicroaneurysms in a later stage of DR. However, we observed these bifurcations
and microaneurysm-like structures (“microaneurysms”) mostly in HFDmouse retinal vascula-
ture but rarely in mice fed with normal chow, and the density of these microaneurysms was sig-
nificantly higher in HFD-mice compared to mice fed with normal chow (Fig 3C). Moreover,
there was a statistically significant difference in the interaction between miR-150 mutation and
HFD regimen in vascular area and microaneurysms (# p<0.05; 2-way ANOVA; Fig 3B and 3C)
indicating that miR-150-/- mice are more sensitive to HFD-induced diabetic insults during the
development of DR vascular complications compared to the WT. Thus, deletion of miR-150
accelerated the pathological neovascularization in HFD-induced diabetic retina.

Vascular endothelial growth factor receptor 2 (VEGFR2) is a
downstream target of miR-150
Angiogenic factors including VEGF, fibroblast growth factor (FGF), platelet-derived growth
factor (PDGF), and angiopoietins promote endothelial cell proliferation and vascular tube for-
mation through their respective receptors [51]. Vascular endothelial growth factor receptor 2
(VEGFR2) is one of the principal receptors of VEGF, which mediates VEGF centric signaling
[51]. Upregulation of VEGF has been observed in hypoxia-induced retinopathy, diabetic reti-
nopathy, and age-dependent macular degeneration [52]. Since deletion of miR-150 increased
microvascular density and angiogenesis in mouse retina under diabetic conditions, we sus-
pected that miR-150 might regulate VEGF signaling. To determine whether miR-150 was able
to regulate the VEGFR2 level in endothelial cells, we transfected human umbilical vein endo-
thelial cells (HUVECs) with a miR-150 expression vector and detected the protein levels of
VEGFR2. Myeloblastosis (c-Myb) is one of the known targets of miR-150 [10,53–55] and as
such was used as a positive control. Overexpression of miR-150 (hsa-miR-150) in HUVECs
caused a decrease of VEGFR2 (0.55 ± 0.03 fold) and c-Myb (0.46 ± 0.04 fold) compared to the
control transfected with a scramble microRNA (Scramble, 1.00 ± 0.09 fold; Fig 4A). A similar
result was observed in the transfected human retinal microvascular endothelial cells (HRECs).
Overexpression of miR-150 in HRECs inhibited VEGFR2 level (0.51 ± 0.10 fold) compared to

Fig 2. Scotopic and photopic light responses are decreased inWT andmiR-150-/- mice fed with HFD. All mice were dark
adapted for at least 6 hours before ERG recordings. (A) The average scotopic ERG a-wave amplitudes recorded frommiR-150-/-

with HFD (miR-150-/--HFD) are significantly lower compared to theWT fed with normal chow diet (WT-Normal; *) or miR-150-/- fed
with normal chow diet (miR-150-/--Normal; #). There is no statistical difference betweenWT fed with HFD (WT-HFD) and miR-150-/--
HFD. HFD-mice (both WT and miR-150-/- groups) had significantly smaller (v) a-wave amplitudes compared to mice fed with a
normal chow (both WT and miR-150-/- groups). The miR-150-/- mice (both normal chow and HFD groups) had significantly smaller
(w) a-wave amplitudes compared to theWTmice (both normal chow and HFD groups). (B) The averaged photopic ERG a-wave
amplitudes recorded fromWT-HFD are significantly lower thanWT-Normal (*) at 3 and 10 cd.s/m2 light intensities. The photopic a-
wave amplitudes recorded frommiR-150-/--HFD are significantly lower thanWT-normal (#) at 3, 10, and 25 cd.s/m2 light intensities.
HFD-mice (bothWT and miR-150-/- groups) had significantly smaller (v) amplitudes compared to mice fed with a normal chow (both
WT and miR-150-/- groups). (C) The average scotopic ERG b-wave amplitudes recorded frommiR-150-/--HFD are significantly lower
compared to WT-Normal (*) or miR-150-/--Normal (#). There is no statistical difference betweenWT-HFD and miR-150-/--HFD. HFD-
mice (both WT and miR-150-/- groups) had significantly smaller (v) a-wave amplitudes compared to mice fed with a normal chow
(bothWT and miR-150-/- groups). The miR-150-/- mice (both normal chow and HFD groups) had significantly smaller (w) a-wave
amplitudes compared to the WTmice (both normal chow and HFD groups). (D) The averaged ERG photopic b-wave amplitudes
recorded fromWT-HFD are significantly lower thanWT-Normal (*) and miR-150-/--Normal (#) at 1 and 10 cd.s/m2 light intensities.
The photopic b-wave amplitudes recorded frommiR-150-/--HFD are significantly different from the other 3 groups (&) at 25 cd.s/m2

light intensities. HFD-mice (bothWT and miR-150-/- groups) had significantly smaller (v) amplitudes compared to mice fed with a
normal chow (both WT and miR-150-/- groups). (E) The averaged scotopic oscillatory potential amplitudes [as a summation from
OP1 to OP4; Ʃ(OP1-4)] recorded from HFD-mice (both WT-HFD and miR-150-/--HFD) are significantly lower (*) than mice fed with a
normal chow (both WT-Normal and miR-150-/--Normal) at 0.1, 0.3, 10, and 25 cd.s/m2 light intensities. (F) The averaged photopic
oscillatory potential amplitudes [Ʃ(OP1-4)] recorded from HFD-mice (bothWT-HFD and miR-150-/--HFD) are significantly lower (*)
than mice fed with a normal chow (bothWT-Normal and miR-150-/--Normal) at 25 cd.s/m2 light intensities. (A-F) Overall, there is no
statistical significance of interaction between two factors: miR-150 null mutation and HFD regimen (2-way ANOVA). p < 0.05
(denoted as *, #, &, v, w). Data of scotopic and photopic ERG a- and b-waves and OPs are listed in Tables 1 and 2.

doi:10.1371/journal.pone.0157543.g002
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the control scramble (1.00 ± 0.21 fold; Fig 4B). In addition, we found that the VEGFR2 level in
the miR-150-/- mouse retinas was higher than the age matched WT mouse retinas (under both
normal chow and HFD; Fig 4C). The presence of VEGFR2 in the retinal vasculature obtained
from the miR-150-/- under HFD was higher than that of the WT (Fig 4C). Thus, the ability of
miR-150 to regulate angiogenesis is in part through VEGFR2.

Discussion
Previously, we observed that obesity-induced type 2 diabetic conditions decrease retinal light
sensitivities [34]. Mice fed with a HFD for only 3 months developed chronic insulin-resistance

Table 1. Dark-adapted (scotopic) retinal light responses (Data for Fig 2A, 2B and 2E).

Light Intensity cd�s/m2 WT-Normal WT-HFD miR-150-/--Normal miR-150-/--HFD

Scotopic a-wave amplitude (μV)

0.1 56.5±7.0 42.6±5.6 46.6±8.5 29.1±4.4 *

0.3 100.8±9.7 76.1±7.8 90.6±14.0 64.1±7.0 *

1 124.2±10.5 91.3±6.7 103.8±13.0 80.2±6.6 *

3 139.3±11.4 105.8±8.3 115.5±12.6 109.2±20.9

10 197.7±13.6 145.9±13.2 179.6±18.7 126.4±11.4 *

25 206.2±14.1 175.6±13.9 187.3±18.5 131.2±7.9 *, #

Scotopic b-wave amplitude (μV)

0.1 375.3±22.9 339.9±34.1 383.9±48.8 258.3±22.4 *, #

0.3 456.8±24.0 352.3±27.8 459.2±50.8 327.7±23.4 *, #

1 481.7±24.5 392.3±31.2 482.8±48.5 353.6±21.9 *, #

3 498.4±26.8 404.1±32.7 488.4±45.7 356.0±18.0 *, #

10 582.8±29.4 456.0±39.1 603.7±55.7 415.5±28.2 *, #

25 588.7±32.4 478.8±38.0 611.0±54.3 415.7±23.6 *, #

Scotopic Oscillatory Potentials: ƩOP (1–4) amplitude (μV)

0.1 266.2±12.9 193.4±19.7^ 197.6±13.8 207.2±17.6^

0.3 316.3±11.8 211.0±21.5^ 326.9±16.3 248.3±11.4^

1 296.9±14.0 240.5±19.1 297.8±23.0 249.8±18.4

3 261.4±20.4 218.2±19.0 262.34±24.5 220.0±16.8

10 368.9±13.9 288.3±16.5^ 369.5±14.3 301.7±7.1^

25 374.7±15.7 312.1±14.6^ 364.0±16.24 308.9±12.0^

Scotopic ERG a-wave:

* denotes miR-150-/—HFD significantly different from WT-Normal.

# denotes miR-150-/—HFD significantly different from miR-150-/—Normal.

There is a significant difference between mice with normal chow (both WT and miR-150-/-) and HFD-mice (both WT and miR-150-/-), indicating the impact

of HFD on the scotopic ERG a-wave.

There is a significant difference between WT (both normal chow and HFD) and miR-150-/-, indicating the impact of miR-150 null mutation on the scotopic

ERG a-wave.

Scotopic ERG b-wave:

* denotes miR-150-/--HFD significantly different from WT-Normal.
# denotes miR-150-/--HFD significantly different from miR-150-/--Normal.

There is a significant difference between mice with normal chow (both WT and miR-150-/-) and HFD-mice (both WT and miR-150-/-), indicating the impact

of HFD on the scotopic ERG b-wave.

Scotopic ERG Oscillatory Potentials:

^ denotes both WT-HFD and miR-150-/—HFD significantly different from both WT-Normal and miR-150-/—Normal, indicating the impact of HFD on

scotopic ERG OPs.

doi:10.1371/journal.pone.0157543.t001
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and glucose intolerance with significantly increased adiposity, which are signs of type 2 diabe-
tes [34]. In this study, we found that the serum miR-150 level was significantly suppressed in
WT HFD-induced type 2 diabetic mice (Fig 1). By using the miR-150 null (miR-150-/-) mouse
model, we were able to reveal how miR-150 contributed to the pathogenesis of DR vascular
complications in HFD-induced type 2 diabetes. Deletion of miR-150 in mice mildly affected
photoreceptor light sensitivities (as shown by ERG a-waves), but it did not have any significant
impact on the inner retinal light sensitivities (shown in ERG b-waves and OPs) or general reti-
nal vasculature. However, under HFD-induced diabetic conditions, miR-150-/- mice had a sig-
nificant increase in retinal vasculature and microaneurysms compared to the WT-HFD mice
(Fig 3), even though retinal light responses were similar. Thus, deletion of miR-150 does not
further exacerbate the neural retina as much as ocular vasculature under diabetic insults. This
observation might be due to the fact that normally the neural retina has very low expression of
miR-150 compared to the hematologic and endothelial cells in the blood vessels [27,31], so

Table 2. Light-adapted (photopic) retinal light responses (Data for Fig 2C, 2D and 2F).

Light Intensity cd�s/m2 WT-Normal WT-HFD miR-150-/--Normal miR-150-/--HFD

Photopic a-wave amplitude (μV)

0.3 5.1±0.6 4.3±0.6 2.9±0.6 4.0±0.8

1 6.7±1.1 5.6±0.7 5.7±0.3 4.6±0.4

3 12.4±1.7 7.3±0.9 * 8.8±0.8 7.4±0.5 #

10 18.6±2.1 11.6±1.1 * 14.0±1.4 12.2±0.8 #

25 26.7±2.9 21.6±2.3 21.8±1.3 14.8±1.2 #

Photopic b-wave amplitude (μV)

0.3 20.4±1.6 13.3±2.3 13.6±1.7 15.9±2.0

1 37.6±3.2 21.8±2.9 *, # 40.2±4.6 29.4±2.1

3 63.2±4.6 33.8±4.8 66.5±6.7 46.7±3.4 &

10 97.8±8.9 62.3±8.6 *, # 101.2±10.5 72.9±5.0

25 141.5±12.0 84.6±13.0 140.0±12.7 100.6±5.8 &

Photopic Oscillatory Potentials: ƩOP (1–4) amplitude (μV)

3 6.63±0.69 6.03±0.37 7.40±0.86 5.44±0.87

10 11.3±1.4 9.92±0.47 11.7±1.2 8.81±0.90

25 18.8±1.8 15.1±0.9^ 19.4±1.8 14.0±1.2^

Photopic ERG a-wave:

* denotes WT-HFD significantly different from WT-Normal.

# denotes miR-150-/—HFD significantly different from WT-Normal.

There is a significant difference between mice with normal chow (both WT and miR-150-/-) and HFD-mice (both WT and miR-150-/-), indicating the impact

of HFD on the photopic ERG a-wave.

There is a significant difference between WT (both normal chow and HFD) and miR-150-/-, indicating the impact of miR-150 null mutation on the photopic

ERG a-wave.

Photopic ERG b-wave:

* denotes WT-HFD significantly different from WT-Normal.

# denotes WT-HFD significantly different from miR-150-/—Normal.

& denotes miR-150-/—HFD significantly different from all other 3 groups.

There is a significant difference between mice with normal chow (both WT and miR-150-/-) and HFD-mice (both WT and miR-150-/-), indicating the impact

of HFD on the photopic ERG b-wave.

Photopic ERG Oscillatory Potentials:

^ denotes both WT-HFD and miR-150-/--HFD significantly different from both WT-Normal and miR-150-/--Normal, indicating the impact of HFD on photopic

ERG OPs.

doi:10.1371/journal.pone.0157543.t002
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under chronic diabetic stress, deletion of miR-150 has a much higher pathological impact on
ocular vasculature than neural retina.

In DR, intra-ocular anti-VEGF injections and anti-inflammatory therapies are the standard
treatments for DR macular edema and vascular complications [1,4,5]. Several microRNAs
including circulating miRNAs have been reported to play a critical role in pathological angio-
genesis by targeting angiogenic factors including VEGF, FGF, PDGF, or angiopoietins. For
example, under hyperglycemic conditions, miR-93 and miR-200b regulate VEGF levels in the
kidney and retina, respectively [56,57]. MiR-126, miR-31, miR-150, and miR-184 are involved
in ischemia-induced retinal neovascularization. MiR-126 enhances the action of VEGF and
FGF by repressing the expression of Spred-1, an intracellular inhibitor of angiogenic signaling
[58]. Downregulation of miR-31, miR-150, and miR-184 in ischemic retina stimulates ocular
neovascularization by increasing VEGF and PDGF [32]. Among these miRNAs mentioned
above, miR-150 and miR-126 are circulating miRNAs present in the plasma, platelets, erythro-
cytes, and nucleated blood cells of blood [59,60]. Our data presented in this report show that
miR-150, a circulating miRNA but also expressed in retinal endothelial cells [27], contributes
to the pathogenesis of DR vascular complications. Our work broadens the knowledge of circu-
lating miRNAs during DR pathogenesis.

In a mouse model of oxygen-induced proliferative retinopathy, miR-150 is a suppressor of
pathological ocular neovascularization [33]. However, whether VEGF, the most potent angio-
genic factor, is a direct target of miR-150 remains controversial [33,34,61–64]. Our results sug-
gest that the suppression of angiogenesis by miR-150 is in part through VEGFR2, a principal
receptor of VEGF that mediates specific intracellular signaling cascades leading to prolifera-
tion, migration, survival, and permeability of vascular endothelial cells [65]. One question that
remained is whether VEGFR2 is a direct downstream target of miR-150. We performed a
miRNA target prediction search using several on-line algorithms including Targetscan (http://
www.targetscan.org), PicTar (http://pictar.mdc-berlin.de), and miRanda (http://www.
microrna.org) to determine whether miR150 could target the 3’-untranslated region (UTR) of
VEGFR2. However, the gene encoding VEGFR2 (KDR) is not listed as a potential candidate for
miR-150 because of a lack of compatible paired sequences. Conversely, the miRNAs predicted
to target the 3’-UTR (1479 bp) of mouse VEGFR2 gene do not include miR-150. Therefore, we
concluded that VEGFR2 is not a direct downstream target of miR-150. The down-regulation of
VEGFR2 by miR-150 could be indirect and mediated by other known miR-150 targets, such as
c-Myb, Early growth response 2 (Egr2), or Glycoprotein nonmetastatic melanoma protein B
(GPNMB) [10,53–55]. Among those candidates targeted directly by miR-150, c-Myb has been
verified as a consensus target in several studies [10,29,66]. Our result showed that the c-Myb
level was decreased in the endothelial cells transfected with miR-150. C-Myb is a

Fig 3. Deletion of miR-150 exacerbates HFD-induced DR neovascularization andmicroaneurysms. (A) Upper two rows: the whole
mount retinal vasculature was stained with FITC-labeled isolectin-B4. The first row: the fluorescent images from 4 experimental groups
were taken at 5X (scale bar = 400 μm). The highlighted regions (yellow square) were magnified at 10X and displayed in the second row.
The second row: the fluorescent images from 4 experimental groups were taken at 10X (scale bar = 100 μm). Lower two rows: the mouse
retinas were trypsin-digested and the retinal vasculatures were stained with hematoxylin and eosin. The third row: the whole retinal
vasculature images are shown (scale bar = 400 μm). The fourth row: magnified images of retinal vasculature (from the third row) are
shown (scale bar = 100 μm). White arrowheads indicate the pericytes, the red arrowheads indicate the acellular capillaries, and the white
circles indicate the microaneurysm-like (vascular extrusion) structures. (B) Wild type and miR-150-/- mice fed with HFD have significantly
higher (*) vasculature in central and peripheral retinal areas compared to mice fed with normal chow diet (Normal). There is a statistical
significant difference in the interaction between miR-150 null mutation and HFD regimen (2-way ANOVA; #). (C) Wild type and miR-150-/-

mice fed with HFD have significantly higher (*) densities of microaneurysm-like structures (microaneurysms per 0.6 mm2 retinal area)
compared to mice fed with normal chow diet (Normal). There is a statistical significant difference in the interaction between miR-150 null
mutation and HFD regimen (2-way ANOVA; #). WT-Normal: n = 6; WT-HFD: n = 8; miR-150-/--Normal: n = 6; miR-150-/--HFD: n = 8.
p < 0.05 (denoted as *, #).

doi:10.1371/journal.pone.0157543.g003
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transcriptional factor that binds to a 5’-YAACKG-3’ sequence in the promoter region and reg-
ulates the expression of a group of genes involved in cell lineage and fate- determination in the
immune system. The gene encoding VEGFR2 (Vegfr2) has four c-Myb binding sites in its pro-
moter region, so Vegfr2 can be turned on by c-Myb [67]. Over-expression of c-Myb increases
the population of hemogenic endothelial cells during embryonic development [68]. Therefore,
c-Myb is the most likely downstream target of miR-150 that regulates the VEGFR2 expression
in endothelial cells.

However, there are other direct targets of miR-150 that could also contribute to the regula-
tion of VEGFR2 expression. Egr2 induces VEGF and VEGFR2 expression in Schwann cells
and possibly upregulates expression of both during embryonic development and angiogenesis
[69,70]. Therefore, downregulation of Egr2 by miR-150 inhibits VEGFR2 activation. GPNMB
is a glycoprotein with the ability to induce endothelial cell migration [71]. MiR-150-/- null neo-
nates display an increased capillary network, decreased inflammation, and less alveolar damage
after hyperoxia-induced lung injury due to concurrent induction of GPNMB expression [55].
GPNMB increases the expression of neuropilin-1 (NRP-1) that forms a complex with VEGFR2
to enhance tumor cell-intrinsic VEGF signaling and primary breast tumor growth [72]. All of
the above support the notion that even though VEGFR2 might not be a direct target of miR-
150, deletion of miR-150 enhances angiogenesis under pathological conditions in part through
the up-regulation of VEGFR2.

In addition to anti-VEGF therapies, anti-inflammatory treatments have also been used to
treat DR [1,4,5]. The miR-150-/- mice display exacerbated obesity-associated tissue inflamma-
tion and systemic insulin resistance [73], indicating that miR-150 might be involved in the
chronic ocular tissue inflammation that leads to the development of DR. We previously showed
that mice fed with a HFD for only 3 months display an increase of inflammation in the retina
[34]. Since HFD-induced diabetes exacerbated the DR neovascularization in miR-150-/- mice
more than in WT (Fig 3), and overexpression of miR-150 significantly down-regulated
VEGFR2 in endothelial cells (Fig 4), we postulate that chronic obesity-induced suppression of
miR-150 may lead to the inflammation in ocular tissues and further aggravate the DR neovas-
cularization through up-regulating VEGF/VEGFR2. Because the pathogenesis of DR neovascu-
larization is complex, and the development of DR vascular complication is chronic, it is our
interest to investigate the role of miR-150 in pathological angiogenesis at different stages of DR
development. Nonetheless, miR-150 might be a potential new therapeutic target to reduce the
retinal vascular complications caused by DR or other retinal degenerative diseases because of
its functional association with inflammation and neovascularization.
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