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Abstract

This work is focused on the spatio-temporal monitoring of winter wheat inoculated with various levels of yellow

rust inoculum during the entire growth season. A dedicated workflow is devised to obtain time-series five-bands

(visible-infrared) aerial imageries with a multispectral camera and an Unmanned Aerial Vehicle. A number of spectral

indices are drawn so that the sensitive ones can be identified by statistical dependency analysis; particularly, their

discriminating capabilities are evaluated at different stages for both wheat pixel segmentation and yellow rust severity.

Then the spatial-temporal changes of sensitive bands/indices are evaluated and analysed quantitatively. A validation

field experiment was designed in 2017-2018 by inoculating wheat with one of the six levels of yellow rust inoculum.

Five-bands RedEdge camera on-board DJI S1000 was used to capture aerial images at eight time points covering the

entire growth season at an altitude of about 20 meters with a ground resolution of 1-1.5 cm/pixel. Experimental

results via spatio-temporal analysis show that: (1) various bands/indices should be used for wheat segmentation at

different stages; (2) no bands/indices differences are observed for yellow rust inoculated wheat plots in both incubation

stage (9 days after inoculation) and early onset stage (25 days after inoculation); (3) NIR and Red are the sensitive

bands for wheat yellow rust in disease stages (45 days after inoculation); and their normalized difference NDVI index

provides an even higher statistical dependency; (4) bands/indices’ sensitivity to yellow rust changes over time and

decreases in later Heading stage until being very low in Ripening stage (61 days after inoculation). This experimental

study provides a crucial guidance for future early spatio-temporal yellow rust monitoring at farmland scales.
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1. Introduction

Wheat is the most widely grown crop in the world; their demand is expected to increase by 60% with a predicted

world population of 9 billion in 2050. However, wheat is vulnerable to a number of diseases and pests such as yellow

rust, fusarium head blight, sharp eyespot, powdery mildew, aphid, etc. causing significant losses to farmers and
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threatening food security if not being controlled properly [1]. Timely, effective and precise disease control for wheat

crop is, therefore, of paramount importance to meet the world’s future food security and sustainability needs.

Conventional calendar-scheduled pesticide application for disease control generally does not consider disease de-

velopment and its spatial distribution, often leading to excessive use of pesticides and the associated harmful effects

[2]. Nowadays, decision-based crop management is gaining increasing research interests, where an automated and

non-destructive spatio-temporal crop monitoring is a prerequisite, enabling the early and precise disease control [3].

Considering the high cost and time/labour intensity in manual spatio-temporal information acquisition and process-

ing, low-altitude remote sensing technology is drawing increasing attention since it offers a practical (in terms of time,

effort and cost) solution to monitor the spatio-temporal status of crop canopy at field scales [4, 5, 6] Particularly, in

recent years Unmanned Aerial Vehicle (UAV) remote sensing with a user-defined spatial-temporal resolution and a

high flexibility is gaining a lot of popularity, and has gradually become an important complement for satellite and

manned-aircraft based remote sensing [7].

This work is, therefore, focused on the spatio-temporal monitoring of winter wheat inoculated with various levels

of yellow rust inoculum by using a small UAV and a state-of-the-art multispectral camera. The yellow rust disease

information can be applied to different applications such as providing map for site-specific application of fungicides,

assessing the resistance of various wheat species to rust disease, etc. Wheat yellow (or stripe) rust, caused by Puccinia

striiformis f. sp. tritici (Pst), is a common and destructive wheat disease worldwide, especially for regions with

cool climates. It may cause a substantial yield loss, especially when environmental conditions are favourable (e.g. a

temperatures of 5oC − 15oC, a moderate spring precipitation and a suitable wind direction for its spread). Yield

losses can be reduced by timely fungicide application at the early stage of disease development, and therefore a precise

spatio-temporal monitoring for yellow rust disease is crucial for its management.

Yellow rust disease inevitably results in certain physical and chemical changes on wheat leaves such as a reduction

of ChlorophyII content, a water loss due to an increased evaporation, and visual rust symptoms on wheat leaves. In

terms of visual symptom, it leads to the production of pustules that contain thousands of dry yellow-orange (early

stage) to reddish-brown (late stage) spores, leading to the breakdown of pigments [8]. The symptom will result in

certain changes in visible and NIR spectral ranges. Therefore, spectral sensors can be adopted to capture and monitor

these changes via their spectral bands/wavelengths or defined indices [5].

Until now, most studies on yellow rust (or other diseases) monitoring are focused on the leaf scale by using ground

level (or proximal sensing) methods via hyperspectral camera [1, 9], spectrograph [2], spectroscopy [10], spectrometer

[11, 12, 13] or spectrophotometer [14]. In these pioneering studies, the suitable wavelengths and narrow-band Spectral

Indices (SIs) for yellow rust have been initially investigated. For example, 543nm (Green), 630nm, 750nm and 861nm
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(NIR) are proved to be effective wavelengths [2] via in-field images by a spectrograph (460-900nm). Among twenty-two

narrow-band SIs from a spectrograph (450-1000nm), narrow-band Normalized Difference Vegetation Index (NDVI)

(R850 for NIR and R680 for Red) [15], Green Index (GI) [16] and Anthocyanin Reflectance Index (ARI) [17] are

shown to be sensitive [14]. ARI and Transformed ChlorophyII Absorption and Reflectance Index (TCARI) [18] were

also identified to be effective among ten indices in [11] by using a spectrophotometer (450-900nm). The authors in

[19] developed yellow rust index by ranking hyperspectral wavelengths using RELIEF-F filter. Sensitive wavelength

selection on ground is important, while remote sensing (relatively broad) bands/indices selection (in consideration of

spatial resolution) is more important for large-scale applications. It is noted that very little published information on

airborne or satellite remote sensing is available for yellow rust. In [20], narrow-band Photochemical Reflectance Index

PRI = (R531 − R570)/(R531 + R570), was proved to be highly correlated with rust disease severity by using airborne

hyperspectral imaging. Satellite remote sensing was also adopted in [21, 22] for the large-scale damage evaluation

caused by yellow rust disease. Very recently, there are also several studies on yellow rust monitoring with an UAV

at field scales. For example, in [23], RGB camera on-board an UAV is adopted to monitor yellow rust disease at

an altitude of 100 meters. It was shown that Red band is most effective among visible broad bands. Five-bands

multispectral camera on-board an UAV is adopted in [5], it was shown that both Red and NIR bands are effective

and their normalized difference NDVI provides a even better result. These studies, however, are mainly focused on

one-time monitoring of spatial disease distribution for yellow rust at disease stages, the temporal disease dynamics has

yet to be investigated. Temporal information is crucial for early disease (or stress) detection; this idea has recently

be exploited in wheat agronomy and breeding trials [4], dynamic grain yield prediction [24] and wheat senescence

rate evaluation [25], and should also be exploited for yellow rust monitoring. The following observations are drawn to

highlight the main research motivations:

(1) There is an urgent need for the spatio-temporal monitoring of wheat yellow rust to enable its precision manage-

ment at field scales;

(2) Existing studies on yellow rust monitoring are mainly focused on either ground-level wavelengths/indices selection

or airborne/satellite remote sensing for damage evaluation, which are not suitable for monitoring at field scales

due to either a limited coverage or a poor spatial resolution with a high operational complexity/cost [7];

(3) Spatial evaluation of yellow rust by using one-time monitoring is important [5, 23], however, a spatio-temporal

monitoring is more desirable.

Therefore, this work aims to evaluate the utility of multispectral camera and low-altitude UAV remote sensing

platform for the spatio-temporal monitoring of winter wheat inoculated with various levels of yellow rust inoculum.
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The specific objectives of this study are to (i) devise a dedicated workflow for crop spatio-temporal monitoring at

field scales by using an Unmanned Aerial Vehicle (UAV) and a five-band multispectral camera; (ii) identify effective

bands/indices for wheat segmentation at different wheat growth (rust development) stages; (iii) identity effective

spectral bands/indices for estimating yellow rust severity over time; (iv) investigate the temporal changes of suitable

bands/indices under various levels of yellow rust severity.

2. Materials

In this section, materials relevant to the research are introduced such as field experiments for yellow rust disease,

image acquisition by a five-bands multispectral camera on-board an UAV, and ground yellow rust severity data

measurement.

2.1. Field experiments

Field experiments were conducted during October/2017–June/2018 at Caoxinzhuang experimental station (Geo-

graphic coordinate information with latitude: 34o307′N , longitude: 108o090′E and altitude: 499 m a.s.l.) of Northwest

Agriculture and Forestry (A&F) University, Yangling, Shanxi Province, China (please refer to Fig 1 for the geographic

location). The experimental field was about 17 m wide and 70 m long. The climate information of the region and soil

characteristics of the experimental field are referred to Section 2.2 of our preceding work [5].

Figure 1: Location of the experimental wheat field.

Wheat variety Xiaoyan 22 was used in this study, which was highly susceptible to the race of yellow rust to be

inoculated but moderately resistant to other diseases. Wheat seeds were sown on 05/Oct/2017 at a rate of 30 g

4



seeds/m2 and with a row spacing of about 16 cm. As moisture is a vital factor for yellow rust disease development,

the whole field was irrigated twice by the flooding method on 10/Dec/2017 and 13/Mar/2018. Wheat seedlings were

inoculated on 23/Mar/2018 (before the jointing [elongation] stage) with the mixed Pst races (CYR 29, CYR 30, CYR

31, CYR 32, CYR 33), where the inoculation method was published previously [23]. In order to generate wheat plants

infected with different levels of yellow rust, six square plots of 2m × 2m (Fig 2), are inoculated with one of the six

levels of yellow rust inoculum: 0, 0.33g, 0.67g, 1.00g, 1.33g and 1.67g (note: inoculation experiment with different

levels of yellow rust inoculum was also done in the middle November of 2017 for the whole field, unfortunately, yellow

rust symptom did not appear in Spring of 2018 due to low temperatures often below -5oC in winter).

1.67g

1.33g

1.00g

0.67g

0.33g

0g

Level 5

Level 4

Level 3

Level 2

Level 1

Healthy

Wheat     Level of inoculum    label

Figure 2: Wheat field (left) with six square plots being inoculated with one of the six levels of yellow rust inoculum (middle) and its

corresponding label.

2.2. Imaging by UAV-Multispectral camera system

An UAV-camera system was developed to capture multispectral visible-infrared images for the wheat field at eight

time points covering the entire wheat growth season (Table 1). The UAV-camera system (Fig 3) mainly consists

of Spreading Wings S1000 Octocopter (DJI, Shenzhen, China) and the RedEdge multispectral camera (MicaSense

Inc., Seattle, USA). In particular, DJI S1000 is a professional Octocopter with the following key parameters: height

(386mm), diameter (1045mm), take-off weight (6kg–11kg) and hovering time (about 30 minutes). While RedEdge

camera (weight: 135g, size: 5.9cm × 4.1cm × 3.0cm, resolution: 1280 × 960 pixels) is an off-the-shelf professional

multispectral camera with five narrow bands including Blue, Green, Red, RedEdge and NIR. Their central wave-

lengths/bandwidth are 475nm&20nm (Blue), 560nm&20nm (Green), 668nm&10nm (Red), 717nm&10nm (RedEdge)

and 840nm&40nm (NIR), respectively.
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Figure 3: Image acquisition by an UAV-Camera system: DJI S1000 Octocopter (left), Downwelling light sensor (top-right), RedEdge

camera (middle-right) and panel for reflectance calibration (bottom-right).

The spectral radiance values are influenced by many factors [26] such as time of measurement, sampling size,

positioning of sensor, etc. In order to guarantee high-quality orthomosaic imageries for band reflectance and SI

calculation, the following measures were taken: (i) a gimbal was adopted to fix the camera downward attenuating

the adverse effects of UAV motion/vibration; (2) an overlap and sidelap of 75% was guaranteed by appropriately

designing the flight path and UAV speed (i.e. 1m/sec) by using DJI Ground Station 4.0, and camera triggering time

(1 s interval); (3) the UAV imaging period is fixed between 11am-14pm of the day; (4) the altitude of UAV is controlled

at a relatively low altitude (about 20 meters above ground) in comparison to previous studies of 50-100 meters [4, 23],

as a result, the orthomosaic image has a relatively high ground sampling distance of 1-1.5cm/pixel. While in order to

appropriately calibrate aerial images, Downwelling Light Sensor (DLS) and MicaSense’s Calibrated Reflectance Panel

(CRP) were adopted concurrently. In particular, an image of the CRP was taken at an altitude of 1 meter before and

after each flight. The details about UAV data acquisition during the entire wheat growth season are summarized in

Table 1. In Table 1, the GSDs are different in various data collections, one can unify the resolution by resampling the

image. This is not done in this work since the resolutions in the year of 2018 (in which year, yellow rust appeared)

are very close and have little effects on the results according to empirical test.

2.3. Ground yellow rust data collection

In addition to UAV remote sensing images, ground assessment for yellow rust severity was also conducted. The

ground yellow rust data were collected via visual inspection by plant pathologists of Northwest A&F University. Rust

assessment was conducted on 17/Apr/2018 (early onset of yellow rust, 25 days after rust inoculation) and 02/May/2018

(40 days after rust inoculation) for the upper-left 1m × 1m square of each inoculated wheat plot. For each wheat

plant in the 1m× 1m square, yellow rust severity was estimated for three leaves including top, middle and lower ones
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Table 1: UAV survey details during the winter wheat growth season in 2017-2018, where Days (sow) means the days after sowing and GSD

refers to the average ground sampling distance for the orthomosaic imagery.

Date Days (sow) Stage Altitude GSD (cm)

05/Oct/17 0 Seeding NA NA

11/Dec/17 67 Tillering 25 1.65

28/Dec/17 84 Overwintering 25 1.54

23/Mar/18 169 Stem extension 20 1.19

01/Apr/18 178 Stem extension 15 1.03

17/Apr/18 194 Stem extension 20 1.42

07/May/18 214 Heading 15 1.07

15/May/18 222 Heading 20 1.21

23/May/18 230 Ripening 20 1.13

following the Chinese yellow rust grade scale GB/T15795-2011 (see, left plot of Fig 4). A figure that shows the visual

symptom of yellow rust disease is displayed in the right plot of Fig. 4

Grade scale for the severity of wheat yellow rust disease

Healthy leaf

Yellow rust 

affected leaf

Figure 4: Left: grade scale of yellow rust severity [27]; Right: a phone-taken image showing the visual symptom of yellow rust disease.

The histograms along with trimean (i.e. mean excluding 5% outliers) for the yellow rust severity data of top leaves

(on 17/Apr/2018 and 02/May/2018) are shown in Fig 5. The actual disease severity is consistent with the level of

yellow rust inoculum received by the plot. The average disease severities for data on 17/Apr/2018 and 02/May/2018

are in the ranges of [0.3%, 2%] and [6.3%, 7.4%], respectively.

3. Methods

In this section, the methods are presented including spectral bands/indices calculation by Pix4DMapper software,

wheat pixel extraction for yellow rust inoculated plots and mutual information for statistical dependency analysis.
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Figure 5: Ground severity data for wheat plots under various levels of yellow rust inoculum: 17/Apr/2018 (left) and 02/May/2018 (right),

where L1–L5 denote Level 1–Level 5.

The overall workflow is displayed in Fig 6. In the following subsections, different components of the flowchart are

elaborated.

Aerial 

images
Wheat 

segmentation

Bands
RGB 

composite

Spectral 

indices 

Region 

labelling

Wheat 

in ROIs

Wheat segmentationSpectral bands/indices

MI 

ranking

Pix4D 

preprocessing

CRP

Figure 6: Overall flowchart including spectral bands/indices calculation, wheat pixel segmentation and Mutual Information (MI) based

statistical dependency analysis.

3.1. Spectral bands/indices calculation

In this work, commercial photogrammetry software, Pix4DMapper of version 4.3.31 (Educational Licence of 1500

EUR, Pix4D SA, Switzerland), is adopted to process the raw images in order to generate orthomosaic images for

calibrated bands and SVIs. The whole process includes initial processing (e.g. keypoint computation for image

matching), Point Cloud and Mesh generation (optional) and orthomosaic generation and index calculation (with

image calibration). In particular, in image calibration, both DLS for sun light information and the calibration panel

images are used (please also refer to the preceding work [5, 4] for more details). Then spectral bands and indices maps

are processed in Matlab 2017b/2018b for the follow-up analysis. SIs refer to various mathematical manipulations

combining the reflectance data at two or three spectral bands [28] in order to enhance spectral differences. Adopting

SI is a common technique in precision agriculture and has been applied in a wide range of areas such as weed mapping
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Table 2: A large number of SIs extracted from RedEdge five-bands multispectral imagery, where RE means RedEdge band. The formulae

of SIs are referred to the preceding work [5]

Category Name & Reference

Green-Red Nitrogen Reflectance Index (NRI) [31], Greenness Index (GI) [16]

Blue-Green-Red Green Leaf Index (GLI) [32], Normalized Excess Green (nexg) [33], Triangular

Greenness Index (TGI) [28]

Green-RE Anthocyanin Reflectance Index (ARI) [17]

Green-NIR Green NDVI (GNDVI) [34], Triangular Vegetation Index (TVI), ChlorophyII

Index-Green (CIG) [35]

Red-NIR Normalized Difference Vegetation Index (NDVI) [36], Soil Adjusted Vegetation

Index (SAVI) [37], Ratio Vegetation Index (RVI) [38], Optimized Soil Adjusted

Vegetation Index (OSAVI) [39]

RE-NIR Normalized Difference RedEdge Index (NDREI) [40], ChlorophyII Index-

RedEdge (CIRE) [35]

Blue-Red-NIR Enhanced Vegetation Index (EVI) [41]

Green-Red-RE Transformed ChlorophyII Absorption and Reflectance Index (TCARI) [18]

Green-Red-NIR ChlorophyII Vegetation Index (CVI) [42]

Red-RE-NIR Simplified Canopy ChlorophyII Content Index (SCCCI) [43]

[29], yellow rust monitoring [5], yield estimation [30], wheat stress assessment [4]. On the basis of literature review

and the available spectral bands on RedEdge multispectral camera, a large number of potential SIs are evaluated for

estimating yellow rust. To make it more clear, these SIs are categorized according to the spectral bands adopted in

index calculation in Table 2.

3.2. Wheat pixel segmentation for ROIs

Wheat pixel segmentation is performed before conducting SI analysis for yellow rust, since the images contain both

wheat and non-wheat pixels, which has adverse effects on reflectance data. It has also been shown in previous studies

that removing soil background from images can substantially improve the results for SIs [4, 44]. Wheat’s physical and

chemical contents usually change over time, and consequently an effective index for one stage may not be useful for

other stages. Therefore, a dedicated index for wheat segmentation should be selected for wheat at different stages.

With the aerial images by the UAV-Camera system in Section 2.2, image pre-processing was conducted by the

method in Section 3.1 to derive the bands reflectance and SIs. Then with the reflectance data of Red, Green and
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Blue (RGB) bands, the RGB composite image over time for the wheat field with image adjustment for intensity

enhancement is obtained (Fig 7). The wheat pixels in various inoculated plots are then extracted for an accurate

11/Dec/2017 28/Dec/2017 23/Mar/2018 01/Apr/2018 17/Apr/2018 07/May/2018 15/May/2018 23/May/2018

Figure 7: RGB composite (by using band reflectance) over time of the wheat field with image intensity adjustment.

spectral analysis [23]. This is achieved by three steps (Fig 6): 1. manually define the inoculated plot pixels in RGB

composite image; 2. extract the wheat pixels for the whole image; 3. take the intersection of inoculated plot pixels and

wheat pixels. The details are given as below. RGB composite of the orthomosaic image is generated in Matlab 2017b

by layer-stacking the calibrated Red, Green and Blue bands, where Matlab command “imadjust” is adopted to adjust

the image intensity (note: “imadjust” saturates the bottom 1% and the top 1% of all pixel values and therefore this

operation can increase the contrast of the image). Then Matlab App “imageLabeler” is used to label various yellow

rust inoculated wheat plots (termed inoculated plot pixels). As the labelled pixels in the aforementioned step by using

region labelling may contain non-wheat pixels such as soil (especially in early stages due to a low canopy cover value

[44]), wheat segmentation is further considered in the second step. There are a number of vegetation segmentation

approaches (please refer to the survey paper [45]); a very popular method is the index-based approach due to its

simplicity and effectiveness. In this approach, an index derived from spectral bands is defined to separate vegetation

pixels from non-vegetation pixels, where the threshold is chosen either manually or by Otsu’ algorithm [46].

Conventional indices for vegetation segmentation are mainly for RGB imagery [45], therefore, these indices are

constrained to the combinations of visible bands (i.e. visible-indices). In particular, green vegetation shows relatively

low values in Blue and Red bands while with a peak in Green band (i.e. Green peak phenomenon). Therefore, visible-

index NExG = 2*Green-(Red+Blue) [33] is widely used in conventional studies [47]. It should be noted that: (i) there

are five visible-infrared bands in this study and therefore more indices are available for vegetation segmentation; (ii)

different indices should be used at different wheat growth (rust development) stages, since the wheat’s physical and
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chemical contents change over time and as a result an useful index at one stage may become useless at other stages.

Therefore, in this study, the indices for wheat segmentation at different stages are chosen automatically by analysing

the temporal data.

In particular, some wheat pixels and non-wheat pixels are firstly labelled for the orthomosaic imageries at different

stages, then statistical dependency analysis in Section 3.3 is drawn to evaluate the relationship between various SIs

in Table 2 and wheat/non-wheat label. The SIs with the strongest statistical dependency are thus chosen as the

segmentation index for each stage. Then the threshold segmenting wheat pixels from non-wheat pixels is manually

determined by checking their corresponding index values. The wheat pixels in the yellow rust infected plots can be

extracted by taking the intersection of inoculated plot pixels and wheat pixels. To make the aforementioned process

comprehensive, wheat pixel segmentation for Region of Interest (ROIs) is summarized in Algorithm 1.

Algorithm 1: Wheat pixel segmentation for ROIs.

(a) Inoculated plot pixels: label various yellow rust inoculated wheat plots with RGB image composite and

Matlab App “imageLabeler”;

(b) Segmentation SIs: label wheat/non-wheat pixels for orthomosaic images at various wheat growth (rust devel-

opment) stages; conduct statistical dependency analysis between SIs and wheat/non-wheat label; return the SIs

with the strongest dependency as the segmentation indices;

(c) Wheat pixels: return wheat pixels by manually setting the threshold for segmentation SIs;

(d) Wheat pixels for ROIs: extract wheat pixels for ROIs by taking the intersection of inoculated plot pixels and

wheat pixels.

3.3. Statistical dependency analysis

Statistical dependency analysis is then adopted to select SIs for segmenting wheat pixels from non-wheat pixels

and also identify the effective bands/indices for yellow rust mapping. Mutual Information (MI) is preferred in this

study due to its simplicity and effectiveness. MI, different from Pearson correlation measuring the linear relationship,

measures the contribution of one variable (e.g. spectral bands/indices) towards reducing uncertainty about the value

of another variable (e.g. wheat/non-wheat label, yellow rust label) [48]. For two discrete random variables X,Y with

P (x), P (y), P (x, y) representing their marginal distributions and joint distribution, their MI value [48] is defined by

MI(X,Y ) =
∑

x∈X

∑
y∈Y

P (x, y)log

(
P (x, y)

P (x)P (y)

)
.

It is noted that in the aforementioned calculation feature quantization is generally applied to discretize continuous

variables into discrete bins [49]. And a higher MI value implies a higher statistical dependency, and MI(X;Y ) = 0 if
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and only if X and Y are independent random variables.

4. Results

In this section, the results are presented including wheat pixels extraction for yellow rust inoculated plots (Section

4.1), statistical dependency analysis between SIs and yellow rust severity label over time (Section 4.2), and spatio-

temporal variations of sensitive bands/indices (Section 4.3).

4.1. Wheat pixel extraction in ROIs

Based on the RGB composite images, wheat squares of interest can be easily extracted via manual labelling with

the “imageLabeler” in Matlab 2017b. Wheat segmentation is then considered. To select suitable segmentation indices

at different stages, MI values between SIs and wheat/non-wheat label are calculated (Fig 8). It follows from Fig 8

that: (1) at a given stage, the segmentation abilities (reflected by the MI values) of various SIs are quite different; (2)

the segmentation ability of a given index also varies at different stages. Therefore, the indices dedicated to particular

stages should be selected, which are chosen as the ones with the strongest statistical dependency. The segmentation

indices along with corresponding thresholds at various stages are summarized in Table 3. It is also noted from Table

3 that even the same indices are selected for different stages, their segmentation thresholds change. The wheat pixel
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Figure 8: MI statistical values between bands/SIs and wheat/non-wheat label for wheat segmentation over the entire wheat growth season.

segmentation for the aerial imagery on 17/Apr/2018 is taken as an example, where the results for region labelling,

wheat pixel segmentation and wheat pixels in plots of interest are shown in Fig 9 with “Un” being unlabelled pixels.

4.2. SI analysis for yellow rust

With wheat pixels in different squares being extracted, the statistical dependency between various bands/indices

and labels for yellow rust disease is then evaluated over time by using MI approach in Section 3.3. A higher MI value
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Table 3: Segmentation indices with corresponding thresholds at different wheat growth (rust development) stages

11/Dec/2017 28/Dec/2017 23/Mar/2018 01/Apr/2018

NDVI(0.5) GNDVI(0.44) NDVI(0.8) GNDVI(0.8)

17/Apr/2018 07/May/2018 15/May/2018 23/May/2018

NDVI(0.92) GNDVI(0.52) NDREI(0.22) Green(0.065)

Figure 9: Region labelling overlay on RGB image (left), Wheat pixel segmentation by using NDVI index (middle) and their intersection

as wheat pixel indices for wheat plots under various levels of yellow rust inoculum. Note: L0–L5 denote Level 0–Level 5.

means a stronger statistical dependency and therefore a better discriminating ability. The continuous bands/indices

are quantized into 12 discrete bins for MI calculation. The comparative results are shown in Fig. 10. The following

observations can be drawn from Fig 10.

(1) Before yellow rust inoculation (23/Mar/2018, 169 days after sowing), all spectral bands/indices have very low

MI values (i.e. lower than 0.1). This is because all wheat squares are healthy without yellow rust lesions yet.

(2) On 23/Mar/2018 (inoculation date), 01/Apr/2018 (rust incubation stage, 9 days after inoculation) and 17/Apr/2018

(early onset, 25 days after inoculation), the MI values are still very small (lower than 0.1). This means that at

inoculation, incubation and early onset stages, it is not possible to rely on a single spectral band or index to

monitor the status of yellow rust, although as shown in the left plot of Fig 5 visible yellow rust symptom has

already occurred at a severity level of 2% via ground leaf assessment on 17/Apr/2018.

(3) At the disease development stages (e.g. 07/May/2018, 15/May/2018, 23/May/2018), a number of spectral bands

and indices have high statistical dependencies with yellow rust severity level. Moreover, the level of statistical

dependency changes over time. For example, on 05/May/2018, the bands and indices having strong statistical

dependency are Red/NIR and NDVI/RVI, which are NIR and OSAVI on 15/May/2018. This means that the

selection of sensitive spectral bands/indices should take the disease development stage into account.
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Figure 10: MI statistical dependency values between bands/SIs and yellow rust labels for eight time points covering the wheat growth

season.

(4) By taking the component bands of various SIs in Table 2 into account, overall, the SIs (e.g. NDVI, SAVI,

RVI, OSAVI) comprised of Red and NIR bands generally outperform other indices. The changes in Red are

mainly due to the changes of wheat color induced by the pustules containing thousands of dry yellow-orange to

reddish-brown spores. While the changes in NIR reflects the internal changes of leaf structure induced by yellow

rust disease.

4.3. Spatio-temporal variations of sensitive bands/indices

It follows from Fig 10 that the sensitive bands for yellow rust are Red and NIR, and the sensitive indices are also

derived by these two bands (e.g. NDVI, SAVI, RVI, OSAVI). In this section, their temporal variations (note: NDVI

index is chosen as the sensitive index for the purpose of illustration) for wheat squares inoculated with various levels of

yellow rust inoculum are investigated quantitatively. Their trimean values over different survey time points covering

the wheat growth season are illustrated in Figs 11 and 12. The following observations can be drawn from Figs 11

and 12.

(i) On 18/Dec/2017 (84 days after sowing), an obvious increase and a slight decrease are observed in Red/NIR

reflectance and NDVI index in comparison to the ones on 11/Dec/2017 (67 days after sowing). The main

reason is that irrigation has been conducted on 10/Dec/2018 (so the moisture level is expected to increase on

11/Dec/2018) and the wheat is in the early stage of overwintering on 28/Dec/2018 (so the wheat vigor is expected

to be lower). This can also be observed by the RGB image in Fig 7.
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Figure 11: Temporal variations of Red and NIR band reflectance for wheat plots with various levels of yellow rust inoculum.
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Figure 12: NDVI temporal variations in various wheat plots.

(ii) From 23/Mar/2018 (169 days after sowing) to 17/Apr/2018 (194 days after sowing), the reflectance of Red (low)

and NIR (high) bands become relatively stable, and therefore the phenomenon of NDVI saturation (at a value

of 0.9) has been observed in Fig 12. More importantly, although visible yellow rust symptoms have already

been observed on ground on the top wheat leaf at a low level of 2% on 17/Apr/2018 (194 days after sowing and

25 days after yellow rust inoculation), no reflectance changes are observed in Red/NIR bands or SIs including

NDVI.

(iii) However, significant changes are observed in Red (an increased reflectance), NIR (a decreased reflectance) and

NDVI (a decreased value) on 07/May/2018 (214 days after sowing and 45 days after rust inoculation). The

changes among wheat squares inoculated by different levels of yellow rust inoculum are different and consistent

with the initial levels of inoculum, which facilitates selecting suitable SIs (e.g. NDVI) for yellow rust severity

monitoring.

(iv) The NDVI value keeps decreasing in the late Heading and the Ripening stages (e.g. on 15/May/2018 and

23/May/2018), along with this trend the differences among wheat plots inoculated with various levels of yellow
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rust inoculum become weaken, which makes the yellow rust severity monitoring more difficult. It can also be

observed that on 23/May/2018 (230 days after sowing and 61 days after inoculation) there is no significant

difference in NDVI value between healthy and yellow rust infected wheat pixels any more.

In addition to the temporal variations of different sensitive bands/indices, it would also be worthwhile to show

their spatial distribution. The spatio-temporal variation of NDVI index is taken as an example (Fig 13), where a

brighter pixel means a higher NDVI value. Some aforementioned observations (e.g. observations ii iii and iv) can also

be visually seen in Fig 13. In addition, NDVI difference can also be observed in various yellow rust infected wheat

plots, particularly for the data on 07/May/2018.

Figure 13: Spatio-temporal variations of NDVI index for the experimental wheat field including different wheat plots inoculated with

various levels of yellow rust inoculum.

5. Discussions

Wheat segmentation : Regarding vegetation segmentation, the classical and widely-used visible-index NExG

[33], relying on the Green peak phenomenon, is not effective at a later growth stage. This is because as shown in

Fig 14 the Green peak phenomenon no longer holds at a later growth stage (23/May/2018), although it is valid at

an early growth stage (23/Mar/2018), i.e. green reflectance of wheat pixels are higher than blue and red. Therefore,

various segmentation indices are selected in this study, which are dedicated to wheat growth (rust development) stages,

leading to satisfying results. It should also be highlighted that wheat segmentation is not easy for imaging systems

with a poor resolution such as hyperspectral camera on-board an UAV [50] or aircraft/satellite remote sensing.

Spatio-temporal monitoring : Different from many existing studies on UAV remote sensing for yellow rust (or

other diseases) monitoring where one-time monitoring is concerned [5, 23], in this work, an efficient workflow is devised

to dynamically monitor wheat yellow rust development over the entire wheat growth season. As a result, dedicated
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Figure 14: Reflectance (mean and 1 − σ region) data for wheat and soil pixels on 23/Mar/2018 and 23/May/2018, respectively.

indices are selected for wheat segmentation at different stages and the effectiveness of spectral bands/indices for yellow

rust are not only assessed via statistical dependency analysis but also dynamically and quantitatively analysed. This

is more desirable for the early and quantitative monitoring of crop [24, 4, 25] including wheat yellow rust in this study.

Bands/Indices changes: It is discovered that Red and NIR are effective spectral bands in the late disease stages,

however, no spectral bands are effective for rust disease assessment at the incubation stage (9 days after inoculation)

and early onset stage (25 days after inoculation, with a relatively low disease severity of 2%). This highlights the

challenges of early yellow rust disease monitoring by using the current UAV-camera remote sensing systems. It is also

discovered that yellow rust disease leads to an increase in Red and a decrease in NIR reflectance; and more importantly

the amount of reflectance’s increase or decrease is almost consistent with the level of yellow rust inoculation (or disease

severity). This is mainly because yellow rust disease leads to a reduction of ChlorophyII content and an increased

evaporation (i.e. an increased water loss or even yellow color on wheat leaves at late stages), which can be effectively

captured by multispectral images. Statistical dependency analysis via mutual information reveals that the normalized

difference between NIR and Red bands (i.e. the spectral index NDVI) is more effective than either NIR or Red band.

Considering that other stresses (e.g. nitrogen [51], water stress [52], etc.) may also have effects on NDVI values, the

main variables to be inferred should be determined beforehand [4] and more background information (e.g. climate

information, growth stage information) should also be taken into account in real-life agriculture applications. In

addition, time-series measurement information should also be carefully analysed, since valuable information can be

inferred such as the way in which the NDVI changes over time (i.e. trend information).

Disease early detection : It is generally challenging to detect yellow rust disease in early stages (e.g. incubation

stages) by using remote sensing approaches [5]. The possible reasons in this work are summarized as below. Firstly,

the multispectral image adopted in this work possesses five bands in the spectral range of visible and NIR spectrum,
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so the first reason may be due to the limited spectral range (i.e. short spectral range). Secondly, the spatial resolution

of the multispectral image in this work is over 1 cm, therefore, the subtle changes in small diseased areas may not

be effectively captured by the images due to a low spatial resolution (i.e. low spatial resolution). Thirdly, the

spectral resolution of the multispectral image is at 20nm, 10nm and 40nm respectively, which is far lower than that

of hyperspectral image (i.e. low spatial resolution). Therefore, corresponding measures should be taken in order to

address the problem of disease early detection.

Future research : Although a crop disease monitoring system is developed with a multispectral camera and an

UAV, and its performance has been validated by the spatio-temporal monitoring of wheat yellow rust during the entire

wheat growth season, there is still much room for further development. Some key aspects are summarized as follows:

(1) More frequent surveys will be performed in early disease stages so that the capability of UAV remote sensing for

early disease detection can be evaluated more accurately;

(2) A quantitative relationship between UAV remote sensing information (e.g. NDVI) and yellow rust disease severity

(e.g. ground severity label) will be established quantitatively, which can be achieved by designing morel levels

of yellow rust inoculum and taking the severity information over time into account;

(3) Hyperspectral camera on-board an UAV will be investigated for yellow rust monitoring in the incubation and

early lesion onset stages.

6. Conclusions

This work develops a dedicated workflow comprised of an UAV and a multispectral camera to monitor wheat yellow

rust disease both spatially and temporally during the entire growth season. A wheat yellow rust experiment is designed

by inoculating wheat plots with one of the six levels of yellow rust inoculum including an un-inoculated control. Aerial

five-bands multispectral images are obtained at eight key time points covering the entire wheat growth season with

the UAV-Camera system at an altitude of about 20 meters. Statistical dependency analysis via mutual information is

used to select the sensitive bands/indices for both wheat segmentation and yellow rust severity estimation. Temporal

analysis shows that various indices for wheat segmentation should be used to account for wheat canopy changes at

different stages. Red and NIR are the effective bands for yellow rust disease and their normalized difference NDVI

index provides a even better result in disease stages (early and middle). Some challenges have also been observed in

current UAV remote sensing system for the early monitoring of yellow rust disease, where no bands/indices are sensitive

at the incubation stage (9 days after inoculation) and early onset (25 days after inoculation with a disease severity

of 2% on top wheat leaves). Future research for early disease detection of yellow rust is also discussed. Although the
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system and workflow devised in this work are for yellow rust monitoring, it can find a wide ranges of applications (i.e.

drought, grass, nitrogen, biomass and pest assessment) in precision agriculture where spatial-temporal monitoring is

involved.
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