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Abstract. In 2000, Walter Wyss looked into the fractional version of the Black-Scholes equation for the first time. He gave a
solution of the fractional Black-Scholes equation by using the Greens function [14]. In this paper, Lie symmetry analysis of a time
fractional Black-Scholes equation with Riemann-Liouville derivative is performed. The operators admitted are obtained and finally
an example of the invariant solution of the equation is discussed.

1. INTRODUCTION

The Black-Scholes equation is given by

ut +
1
2
σ2x2uxx + rxux − ru = 0 (1)

where u = u(t, x) is the price of a derivative, x is the price of a stock, σ is the constant volatility of the underlying
asset, r is the constant risk-free interest rate and t is time in years, ut = ∂u/∂t, ux = ∂u/∂x and uxx = ∂2u/∂x2, was first
introduced by Fischer Black and Myron Scholes in 1973 [1]. Robert C. Merton then published his paper [2] expanding
the mathematical understanding of the option pricing model. The main idea of the model is to hedge the option by
buying and selling the underlying asset in the right moment to minimize risk.

The story of fractional calculus started on the day when Leibniz wrote a letter to LHopital in 1695. The idea
of a derivative of order one half was brought out. His question was left unanswered for the next hundred years until
Lacroix presented the first definition of fractional derivative based on the usual expression for the nth derivative of
the power function in 1819. Fractional calculus had finally gained the attention it deserved when numerous fractional
differential operators were introduced by the Grunwald-Letnikow, Riemann-Liouville, Hadamard, Caputo, Riesz.

In 2000, Walter Wyss gave a complete solution of a fractional Black-Scholes equation by using the Green’s
function [14]. In his work, he replaced the first derivative in time by a fractional derivative in time of order α, 0 < α ≤
1. His proof was solely done on the basis of mathematical content.

Lie group analysis was named after Sophus Lie, a Norwegian mathematician. It is one of the most powerful tool
to find the analytical solution of partial or ordinary differential equation [3,4]. The application of Lie group analysis
to fractional calculus, on the other hand, is relatively underrated. Gazizov et al, in 2007, formulated the prolongation
formulae for fractional derivative[5]. Huang and Zhdanov then gave an explicit form of the finding in [5] in their paper
later in 2014 [6]. The methods of Lie have been applied to linear and nonlinear partial differential equation with some
success, for example see [11,12,13].

In this paper, we performed the Lie symmetry analysis upon the time fractional Black-Scholes equation

Dα
t u +

1
2
σ2x2uxx + rxux − ru = 0 (2)
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where 0 < α < 1 and Dα
t u is the Riemann-Liouville fractional derivative of order α with respect to time, t.

The paper is organized as follows. In section 2, the definition and the elements of Lie symmetry analysis of
fractional differential equations are discussed. In section 3, we determine the operators admitted by the equation (2)
and finally the group-invariant solution is constructed in section 4. Section 5 contains concluding discussion.

2. PRELIMINARIES

Among all the fractional differential operators that were introduced, the Riemann-Liouville fractional partial derivative
is most recognized and applied. Riemann and Liouville defined

Dα
t u(t, x) =

1
Γ(m − α)

∂m

∂tm

∫ t

0

u(ξ, x)
(t − ξ)α+1−m dξ, (3)

where 0 < m − 1 < α ≤ m,m ∈ N. Dα
t u(t, x) is the partial derivative of the function u(t, x) respect to t of order α. Here

Γ(α) denotes the Euler’s Gamma function.
Consider a fractional differential equation (FDE) of the form

Dα
t u = F(t, x, u, ux, uxx), (0 < α < 1). (4)

Recall the point transformations of variables u, t, and x:

ū = f (u, t, x; ε), t̄ = g(u, t, x; ε), x̄ = h(u, t, x; ε)

with a continuous parameter ε are said to be symmetry transformations of equation (4) if they satisfy the initial
condition

ū|ε=0 = u, t̄|ε=0 = t, x̄|ε=0 = x,

and leave the equation (4) invariant after the transformation.
The transformations generate a continuous group G that has the identity, inverse and the compositions of every

transformations. Generating the symmetry group G is equivalent to determining its infinitesimal transformations

ū = u + εη(u, t, x) + o(ε2), t̄ = t + ετ(u, t, x) + o(ε2), x̄ = x + εξ(u, t, x) + o(ε2). (5)

The symmetry group G is known as the group admitted by equation (4). The generator of the group G, which is
also known as the infinitesimal operator of the group G, is introduced as

X = η(u, t, x)∂u + τ(u, t, x)∂t + ξ(u, t, x)∂x, (6)

where
η =

dū
dε

∣∣∣∣∣
ε=0
, τ =

dt̄
dε

∣∣∣∣∣
ε=0
, ξ =

dx̄
dε

∣∣∣∣∣
ε=0
.

When the infinitesimal transformations are applied to partial derivatives ux, uxx, equations (5) are extended to the
derivative of u respect to x by some classical theory [7]:

ūx̄(t̄, x̄) = ux(t, x) + εηx + o(ε2),

ūx̄x̄(t̄, x̄) = uxx(t, x) + εηxx + o(ε2),
(7)

where ηx and ηxx are given by the prolongation formulae:

ηx = Dxη − uxDxξ − utDxτ,

ηxx = Dxη
x − uxxDxξ − uxtDxτ.

(8)

Here Dx = ∂x + ux∂u + uxx∂ux + . . . is the total derivative.
Gazizov et al in [5] examined the transformation of the form (5) that conserve the structure of the fractional

derivative operator (3) and the infinitesimal transformation of fractional derivative is introduced:

Dα
t̄ ū(t̄, x̄) = Dα

t u(t, x) + εηα + o(ε2), (9)
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where ηα is the prolongation formula:

ηα = Dα
t (η) + ξDα

t (ux) − Dα
t (ξux) + Dα

t (uDt(τ)) − Dα+1
t (τu) + τDα+1

t (u). (10)

Huang and Zhdanov later gave the explicit form of (10) in their work [6] as

ηα =

∞∑
n=1

[(
α

n

)
∂n

t ηu −

(
α

n + 1

)
Dn+1

t (τ)
]
∂α−n

t u −
∞∑

n=1

(
α

n

)
Dn

t (ξ)∂α−n
t (ux) + ∂αt η + (ηu − αDt(τ))∂αt u − u∂αt ηu + µ (11)

where

µ =

∞∑
n=2

n∑
m=2

m∑
k=2

(
α

n

)(
n
m

)
tn−αUk

k!Γ(n + 1 − α)
∂n−m+kη

∂tn−m∂uk .

Here the infinitesimal η is linear in the variable u and µ = 0 because
∂kη

∂uk = 0 for k ≥ 2. Using the above results, we
derive the Lie symmetries admitted by the equation (2) in the next section.

3. LIE SYMMETRIES OF A FRACTIONAL BLACK-SCHOLES EQUATION

Recall the time fractional BS equation

Dα
t u +

1
2
σ2x2uxx + rxux − ru = 0

where 0 < α < 1, σ and r are two different scalars that represent volatility and interest rate respectively. The invariance
condition of the equation (2) is

ηα +
1
2
σ2x2ηxx + σ2xuxxξ + rxηx + ruxξ − rη = 0. (12)

Substituting the derivatives ηx, ηxx, which can be obtained in many text books, say [8], and ηα from (11) into
the equation (12) and equating the coefficients of of ut, ux, uxx, uxt, utuxx, uxuqxx, u2

x, ∂
α−n
t u and ∂α−n

t ux to zero gives the
following system of determining equations:

1
2
σ2x2τxx + rxτx = 0,

σ2x2ηxu −
1
2
σ2x2ξxx + rαxτt − rxξx + rξ = 0,

1
2
αxτt − xξx + ξ = 0,

τx = τu = ξu = ξt = 0
1
2
σ2x2ηuu − σ

2x2ξxu − rxξu = 0,(
α

n

)
∂n

t ηu −

(
α

n + 1

)
Dn+1

t (τ) = 0, n = 1, 2, 3, . . . .

The determining equations above are easily integrated to yield the following general solution

η =

(
c1α

2σ2

(1
2
σ2 − r

)
ln x + c3

)
u + B(x, t), ξ =

1
2

c1αx ln x + c2x, τ = c1t + c4.

The transformations of variables should retain the structure of the Riemann-Liouville fractional derivative operator,
thus

τ(u, t, x)|t=0 = 0.

That is, τ = c1t. Hence, the symmetry group of the fractional Black-Scholes equation is spanned by the vector fields

X1 = t
∂

∂t
+

1
2
αx ln x

∂

∂x
+

α

2σ2

(
1
2
σ2 − r

)
u ln x

∂

∂u
, X2 = x

∂

∂x
, X3 = u

∂

∂u
, X∞ = B(x, t)

∂

∂u
.
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4. GROUP INVARIANT SOLUTIONS
The group invariant solutions of fractional differential equations is defined similairly as the partial differential equa-
tions. The function u = u(x, t) is an invariant solution of a fractional differential equation corresponding to its in-
finitesimal operator (6) if and only if it fulfils the invariant surface condition

τ(u, t, x)ut + ξ(u, t, x)ux = η(u, t, x).

Suppose ξ and τ are not both zero, then the above invariant surface condition can be solved by the method of charac-
teristics:

dx
ξ

=
dt
τ

=
du
η
. (13)

If p(u, t, x) and q(u, t, x) (with qu , 0) are two functionally independent first integral of (13), the general solution of
the invariance surface condition is

q = F(p). (14)

This solution is now substituted into the fractional differential equation (4) to determine the function of F.

Example

Consider the infinitesimal operator X2 we obtained earlier, the characteristic equations are

dt
0

=
dx
x

=
du
0
. (15)

The equations (15) give the similarity variables t and u. It is more convenient if we write it as u = g(t). Inserting it
into the equation (2) yields the following fractional ordinary differential equation

Dα
t g(t) = rg(t). (16)

Using Laplace transform [9], the solution of equation (16) is

u(x, t) = g(t) = k1tα−1Eα,α(rtα), (17)

where k1 = D−(1−α)g(0) and Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
is the Mittag-Leffler function [10].

Here we should mention the solution (17) that we suggested in the example is a one-variable function in t.
This solution is true in the mathematical perspective. However, the lack of variable x in the solution is trivial in
the financial point of view. The comparison of the equation (17) with the classical solution of the Black-Scholes
equation is superflous. The diagrams below show the differences between the classical solution of Black-Scholes and
our solution (17).

Figure 1 shows the graphs of price of a call and put option against time to expirity using S 0 = E = 30, r =

0.1, σ = 0.2, where S 0 is the initial stock price and E is the strike price in the classical Black-Scholes equation. Figure
1 also shows the graphs of our suggested solution (17), using the same parameters, with α = 0.5 and α = 0.8 and
k1 = 1.

The inifinitesimal operator X1 will generate a much more complicated invariant solution. We are still working on
it and the result will be reported later somewhere.

5. CONCLUSION
In this paper, we performed a Lie group analysis on a fractional Black-Scholes equation. We gave the infinitesimal
operators and a solution. Another solution admitted by the second generator will be studied later.
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FIGURE 1. Price of a put option, call option, our suggestions with α = 0.8 and α = 0.5 against time to expirity using S 0 = E =

30, r = 0.1, σ = 0.2.
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