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a b s t r a c t

For linear stochastic time-varying systems,we investigate theproperties of theKalman filterwith partially
observed inputs. We first establish the existence condition of a general linear filter when the unknown
inputs are partially observed. Thenwe examine the optimality of the Kalman filter with partially observed
inputs. Finally, on the basis of the established existence condition and optimality result, we investigate
asymptotic stability of the filter for the corresponding time-invariant systems. It is shown that the results
on existence and asymptotic stability obtained in this paper provide a unified approach to accommodating
a variety of filtering scenarios as its special cases, including the classical Kalman filter and state estimation
with unknown inputs.

© 2014 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license
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1. Introduction

State estimation plays an important role in state space mod-
elling and control. It has been applied to a wide range of areas; see
Li (2009) and Liang, Chen, and Pan (2010) for some recent applica-
tions in network control systems, transportationmanagement, etc.

In the recent decades, state estimation for discrete-time linear
stochastic systemswith unknown inputs (also termed as unknown
input filtering (UIF) problem) has received considerable attention
since the original work of Kitanidis (1987) first appeared. Various
filterswere developed under different assumptions for the systems
with unknown inputs; see, e.g., Cheng, Ye, Wang, and Zhou (2009),
Darouach and Zasadzinski (1997), Darouach, Zasadzinski, and Xu
(1994), Fang and Callafon (2012), Gillijns and De Moor (2007),
Hsieh (2000, 2010) and Kitanidis (1987), amongmany others.Most
of these researches used the technique of minimum variance unbi-
ased estimation, hence leading to an unbiased minimum-variance
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filter (UMVF). Another important research line is state estimation
for descriptor systems (Hsieh, 2011, 2013). It has been recently
shown in Hsieh (2013) that any linear descriptor systems can be
transformed into a linear stochastic system with unknown inputs.
This shows a close link between these two kinds of problem. In
addition, various properties for these developed filters have been
investigated, including the existence condition (Darouach & Za-
sadzinski, 1997), asymptotic stability (Fang & Callafon, 2012), and
global optimality of the UMVF (Cheng et al., 2009 and Hsieh, 2010).

Recently, Li (2013) has developed a Kalman filter for linear sys-
temswith partially observed inputs, where the inputs are observed
not at the level of interest but rather the input information is avail-
able at an aggregate level. It has been shown that the developed
filter provides a unified approach to state estimation for linear sys-
tems with Gaussian noise. In particular, it includes two important
extreme scenarios as its special cases: (a) the filterwhere all the in-
puts are completely available (i.e. the classical Kalman filter; see,
e.g., Simon, 2006); and (b) the filter where all inputs are unknown
(i.e. the filter investigated in Kitanidis, 1987 and many others for
the UIF problem). Potentially the proposed filter can be applied to
a variety of practical problems inmany different areas such as pop-
ulation estimation and traffic control.

So far there is not any study discussing the existence and
asymptotic stability issues of this newly proposed unified filter.
In this paper we investigate the properties of the Kalman filter
with partially observed inputs developed in Li (2013). For linear
stochastic time-varying systemswith partially observed inputs,we
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establish the existence condition for a general linear filter. Thenwe
show that the developed filter is optimal in the sense of minimum
error covariance matrix. Finally, we consider asymptotic stability
of the filter for the corresponding time-invariant systems based on
the established existence condition and optimality result.

This paper has provided a unified approach to accommodating
existence and asymptotic stability conditions in a variety of filter-
ing scenarios: it includes the results on existence and asymptotic
stability for some important filters as its special cases, e.g., the fil-
ters developed for the problems where the inputs are completely
available and where all the inputs are unknown. Note that the
former is the classical Kalman filtering problem and the corre-
sponding existence and asymptotic stability conditions are well
established in the literature. For the latter case with unknown in-
puts, there has been a continuing research interest in existence
and asymptotic stability conditions for various discrete-time sys-
tems (e.g., Cheng et al., 2009, Darouach & Zasadzinski, 1997, Fang &
Callafon, 2012, Kitanidis, 1987) and continuous-time systems (e.g.,
Bejarano, Floquet, Perruquetti, & Zheng, 2013, Corless & Tu, 1998,
Hou & Muller, 1992).

This paper is structured as follows. First, Section 2 is devoted
to problem statement. Then we establish the existence condition
in Section 3. We focus on the properties of the filter proposed
in Li (2013) in Section 4. In Section 5, we investigate asymptotic
stability. Finally, this paper concludes in Section 6.

2. Problem statement

Consider a linear stochastic time-varying system:

xk+1 = Akxk + Gkdk + ωk
yk = Ckxk + υk,

(1)

where xk ∈ Rn is the state vector, dk ∈ Rm is the input vector,
and yk ∈ Rp is the measurement vector at each time step k with
p ≥ m and n ≥ m. The process noiseωk ∈ Rn and themeasurement
noise υk ∈ Rp are assumed to be mutually uncorrelated with zero-
mean and a known covariance matrix, Qk = E[ωkω

T
k ] ≥ 0 and

Rk = E[υkυ
T
k ] > 0, respectively. Ak,Gk and Ck are knownmatrices.

Without loss of generality, we follow Gillijns and De Moor (2007)
and Kitanidis (1987), and assume that Gk has a full column-rank.
The initial state x0 is independent ofωk and υk with a knownmean
x̂0 and covariance matrix P0 > 0.

We consider the scenario where the input vector dk is not fully
observed at the level of interest but rather it is available only at an
aggregate level. Specifically, let Dk be a qk × m known matrix with
0 ≤ qk ≤ m and F0k an orthogonal complement of DT

k such that
DkF0k = Oqk×(m−qk) and F T

0kF0k = Im−qk , where O and I represent
the zero matrix and identity matrix of appropriate dimensions.
We suppose that the input data is available only on some linear
combinations:

rk = Dkdk, (2)

where rk is available at each time step k. Dk is assumed to have a
full row-rank; otherwise the redundant rows can be removed.

As pointed out in Li (2013), the matrix Dk characterizes the
availability of input information at each time step k. It includes two
extreme scenarios that are usually considered: (a) qk = m andDk is
an identity matrix, i.e. the complete input information is available;
this is case that the classical Kalman filter can be applied; (b) qk =

0, i.e. no information on the input variables is available; this is the
problem investigated in Darouach and Zasadzinski (1997), Gillijns
and De Moor (2007), Hsieh (2000) and Kitanidis (1987).

Throughout this paper, we use λ(B) to denote any eigenvalue of
a square matrix B. For any two symmetric matrices A and B with
suitable dimensions, the notation A ≥ B is used if and only if
A − B is non-negative definite. In addition, we use G⊥

k to denote
an orthogonal complement of Gk and Ωk = [Gk,G⊥

k ]. Define

Πk =


Dk−1
CkGk−1


. (3)

3. Existence condition

To establish the existence condition of a general linear filter
for system (1) and (2), we first consider an invertible linear
transformation.

3.1. Transformation

Consider the following invertible matrix:

Mk =

 Dk Oqk×(n−m)

O(n−m)×m In−m

F T
0k O(m−qk)×(n−m)

Ω−1
k .

It is straightforward to verify thatMkGkdk can be expressed as:

MkGkdk = [DT
k ,Om×(n−m), F0k]Tdk

= [(Dkdk)T , (O(n−m)×mdk)T , (F T
0kdk)

T
]
T

= [rTk ,O1×(n−m), (F T
0kdk)

T
]
T

= r̃k + G̃kδk, (4)

where r̃k = [rTk ,O1×(n−m),O1×(m−qk)]
T , δk = F T

0kdk and G̃k =

[O(m−qk)×qk ,O(m−qk)×(n−m), Im−qk ]
T . We note that r̃k is completely

available due to Eq. (2).
Left-multiplying both sides of Eq. (4) by M−1

k , Gkdk can be
decoupled into two parts:

Gkdk = M−1
k r̃k + M−1

k G̃kδk. (5)

From Eq. (5), the dynamics of xk+1 can be rewritten as:

xk+1 = Akxk + M−1
k r̃k + M−1

k G̃kδk + ωk

= Akxk + uk + Fkδk + ωk,

where uk = M−1
k r̃k is a known term, and Fk is given by

Fk = M−1
k G̃k = [Gk,G⊥

k ]


F0k
O


= GkF0k. (6)

Consequently, linear system (1) with the partially observed inputs
rk = Dkdk can be equivalently represented by the following
system:

xk+1 = Akxk + uk + Fkδk + ωk
yk = Ckxk + υk.

(7)

The above manipulation shows that a linear stochastic system
with partially observed inputs (2) is equivalent to a linear system
with unknown inputs; similar property is also found for linear
descriptor systems (Hsieh, 2013).

3.2. Existence condition

In this subsection, we will establish the existence condition of a
general, asymptotically stable and unbiased linear filter for system
(7) and hence for its equivalent system, Eqs. (1) and (2).

Motivated by the linear filter structure in the literature (e.g.
Darouach et al., 1994), we consider a general linear filter for
discrete-time linear system (7) of the form

x̂k+1 = Ekx̂k + Jkuk + Kk+1yk+1, (8)
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where the gainmatrices Ek, Jk andKk+1 are to be designed. Based on
(7) and (8), one can obtain the error dynamics ek+1 = xk+1 − x̂k+1:

ek+1 = (Akxk + uk + Fkδk + ωk) − (Ekx̂k + Jkuk + Kk+1yk+1)

= Ekek − (Jk − I + Kk+1Ck+1)uk

+ (Ak − Kk+1Ck+1Ak − Ek)xk − (Kk+1Ck+1Fk − Fk)δk
+ (I − Kk+1Ck+1)ωk − Kk+1vk+1.

To ensure the filter is unbiased, it is required that the filtering
error is independent of uk, xk and δk. In addition, it is expected
that the error approaches to zero as time k increases. Hence the
existence condition for filter (8) is given by:

(i) Ek is stable (i.e., any eigenvalue of Ek satisfies |λ(Ek)| < 1);
(ii) Ek = Ak − Kk+1Ck+1Ak;
(iii) Kk+1Ck+1Fk = Fk;
(iv) Jk = I − Kk+1Ck+1.

For system (1)–(2), however, the existence condition for system
(7) should be expressed in terms of matrices Ak,Gk, Ck and Dk. For
this end, we first state a lemma.

Lemma 1. For system (1)–(2), we have

rank

zIn − Ak −Gk
Ck+1 O
O Dk



= rank


zIn − Ak −Fk
Ck+1 O


+ rank(DkDT

k ).

See the Appendix for proof. We now provide a condition for
the existence of a general linear filter for a dynamic system with
partially observed inputs.

Theorem 1. Suppose that both matrices DT
k and Gk have a full

column-rank. Then a sufficient condition for the existence of a general
linear filter (8) for system (1)–(2) is given by:

rank(Πk+1) = m (9)

and for all z ∈ C (C is the field of complex numbers) such that |z| ≥ 1:

rank

zIn − Ak −Gk
Ck+1 O
O Dk


= n + m. (10)

Proof. We note that we can select matrices Ek = Ak − Kk+1Ck+1Ak
and Jk = I−Kk+1Ck+1 to ensure that condition parts (ii) and (iv) are
satisfied. Hence, we will focus on condition parts (i) and (iii). We
first show that Eq. (9) guarantees there exists a matrix Kk+1 such
that condition part (iii) holds. We note

Dk
Ck+1Gk

 
F0k DT

k


=


Oqk×(m−qk) DkDT

k
Ck+1GkF0k Ck+1GkDT

k


. (11)

Since [F0k,DT
k ] is invertible and Πk+1 has a full column-rank, we

obtain that Ck+1GkF0k = Ck+1Fk (see Eq. (6)) is also of full column-
rank, i.e.

rank(Ck+1Fk) = m − qk. (12)

Eq. (12) guarantees there exists a matrix Kk+1 such that condition
part (iii) holds.

Next, since Ck+1Fk has a full column-rank, there exists an
invertible matrix Nk ∈ Rp×p such that

NkCk+1Fk =


O(p−m+qk)×(m−qk)

Im−qk


.

The general solution Kk+1 of Kk+1Ck+1Fk = Fk is given by Kk+1 =

[Γk, Fk]Nk, where Γk can be any matrix of suitable dimensions and
is to be designed for the gain matrix Kk+1.

Now define S1k and S2k such that
S1k
S2k


= NkCk+1Ak. (13)

Then from condition part (ii), we can obtain

Ek = Ak − Kk+1Ck+1Ak

= Ak − [Γk, Fk]NkCk+1Ak = Ak − [Γk, Fk]

S1k
S2k


= Ak − FkS2k − ΓkS1k. (14)

According to Anderson and Moore (1979, p. 342), the existence
condition part (i) holds if and only if the following equivalent
conditions hold:

(a) Ak − FkS2k − ΓkS1k is stable for a matrix Γk;
(b) S1kη = 0 and (Ak − FkS2k)η = λη for some constant λ and

vector η implies |λ| < 1 or η = 0.

The condition (b) can be expressed in the following equivalent
form for all z ∈ C and |z| ≥ 1:

rank


zIn − Ak + FkS2k
S1k


= n. (15)

The following identity, in conjunction with Lemma 1, shows that
Eq. (15) is satisfied:

rank


zIn − Ak −Fk
Ck+1 O


= rank


In O

−Ck+1 zI

 
zIn − Ak −Fk
Ck+1 O


= rank


zIn − Ak −Fk
Ck+1Ak Ck+1Fk


= rank


In O
O Nk

 
zIn − Ak −Fk
Ck+1Ak Ck+1Fk



= rank

zIn − Ak −Fk
S1k O
S2k Im−qk



= rank

zIn − Ak + FkS2k −Fk
S1k O
O Im−qk



= rank

zIn − Ak + FkS2k O
S1k O
O Im−qk



= rank


zIn − Ak + FkS2k
S1k


+ m − qk.

Hence, Eqs. (9) and (10) guarantee there exists a gain Kk+1 such
that: (a) Kk+1Ck+1Fk = Fk; and (b) Ek = Ak − Kk+1Ck+1Ak is stable.
This completes the proof.

Remarks. (i) Eq. (9) is the estimability condition for the filter
developed in Li (2013) for system (1) with partially observed
inputs (2). From the proof of Theorem 1, it also guarantees the
unbiasedness of a general linear filter. In addition, Theorem 1
shows that to ensure the estimation error of a general linear
filter is stable as time k increases, a detectability condition (10)
needs to be met.
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(ii) When condition parts (i)-(iv) are satisfied, the general linear
filter (8) is given by

x̂k+1 = (Ak − Kk+1Ck+1Ak)x̂k + (I − Kk+1Ck+1)uk

+ Kk+1yk+1. (16)

(iii) The error dynamics of the above filter (16) that satisfy
condition (i)–(iv) become

ek+1 = (Ak − Kk+1Ck+1Ak)ek

+ [I − Kk+1Ck+1, −Kk+1][ωk, υk+1]
T . (17)

3.3. Relationships with the existing filters

As mentioned earlier, system (1) with partially observed inputs
(2) includes two important scenarios as its special cases: (a) the
complete input information is available; and (b) no information
on the input variables is available. In this subsection, we compare
the developed existence condition in the previous subsection for
partially observed inputs to the condition derived for the classical
Kalman filter with complete information on the inputs, and to that
of the filter with unknown inputs.

Theorem 2. The proposed existence condition for filter (8) in Theo-
rem 1 reduces to: (a)the existence condition of the classical Kalman
filter when the complete information on the inputs is available, i.e., Dk
is invertible; and (b) the existence condition of the filterwith unknown
inputs, i.e. Dk is an empty matrix.

Proof. First, we consider the case that matrix Dk is invertible. It
is clear that Eq. (9) is satisfied due to the non-singularity of Dk. In
addition, we have

rank

zIn − Ak −Gk
Ck+1 O
O Dk


= rank

zIn − Ak O
Ck+1 O
O Dk



= rank


zIn − Ak
Ck+1


+ rank(DkDT

k ).

Since rank(DkDT
k ) = m, the existence condition (10) reduces to

rank


zIn − Ak
Ck+1


= n, ∀z ∈ C, |z| ≥ 1

which is the detectability condition of the classical Kalman filter
(see, e.g. Anderson & Moore, 1979; Simon, 2006).

Next, we turn to the scenario where no information on the
inputs dk is available. Since matrix Dk reduces to a zero-by-zero
empty matrix in this case, Eq. (9) becomes

rank (Ck+1Gk) = m. (18)

In addition, Eq. (10) reduces to

rank


zIn − Ak Gk
Ck+1 O


= n + m, ∀z ∈ C, |z| ≥ 1. (19)

Eqs. (18)–(19) are identical to the results for the filter with un-
known inputs (Darouach & Zasadzinski, 1997). This completes the
proof.

Theorem 2 shows that the obtained existence condition in this
paper is a more generic condition. In addition, comparing the
existence condition (9) and (10) of the general linear filter (8) for
systems with partially available inputs to the existence condition
(18)–(19), it can be seen that partial information on the unknown
inputs has relaxed the existence condition of a general linear filter.
In other words, with the information on the unknown inputs at an
aggregate level (2), it is more likely that the general linear filter (8)
exists.

4. The filter with partially observed inputs

Now we focus on the filter proposed in Li (2013) for linear
stochastic systems when the inputs are partially observed. Note
that this filter was derived under the Bayesian frameworkwith the
assumption that ωk and υk follow a Gaussian distribution, and δk
has a noninformative prior distribution. We summarize the results
of the filter below. Define

D̃k =


Dk Oqk×(n−m)

O(n−m)×m In−m


.

Let M̃k = D̃kΩ
−1
k . It is shown in Li (2013) that for system (1) with

the input data available at an aggregate level (2), if matrix Πk has
a full column-rank, then the posterior distribution for xk at any
time step k is a Gaussian distribution with posterior mean x̂k|k and
posterior covariance matrix Pk|k given by:

x̂k|k = Ak−1x̂k−1|k−1 + Pk|kM̃T
k−1(M̃k−1Pk|k−1MT

k−1)
−1

× r̄k−1 + Kk(yk − CkAk−1x̂k−1|k−1), (20)

and

Pk|k = Pk|k−1 − Pk|k−1CT
k H

−1
k CkPk|k−1 + [Fk−1

− Pk|k−1CT
k H

−1
k CkFk−1][F T

k−1C
T
k H

−1
k CkFk−1]

−1

× [Fk−1 − Pk|k−1CT
k H

−1
k CkFk−1]

T , (21)

with

Kk = Pk|k−1CT
k H

−1
k + [Fk−1 − Pk|k−1CT

k H
−1
k CkFk−1]

× [F T
k−1C

T
k H

−1
k CkFk−1]

−1F T
k−1C

T
k H

−1
k , (22)

r̄k = [rTk ,OT
]
T , Pk|k−1 = Ak−1Pk−1|k−1AT

k−1 + Qk−1 and Hk =

CkPk|k−1CT
k + Rk > 0. Note that Eq. (9) guarantees Eq. (12) holds,

and hence F T
k−1C

T
k H

−1
k CkFk−1 is invertible in the above equations.

Under the Bayesian framework, x̂k|k was shown to be a mini-
mum mean square error (MMSE) estimate in Li (2013). However,
no further properties of the filter were explored.

We now derive the dynamics of the state estimation error ek =

xk − x̂k|k.

Lemma 2. The estimation error ek = xk − x̂k|k of the filter (20)–
(22) follows the recursive equation

ek = (Ak−1 − KkCkAk−1)ek−1 + [I − KkCk, −Kk][ωk−1, υk]
T , (23)

where Kk is given by Eqs. (21)–(22).

Proof. Let Wk−1 = Pk|kM̃T
k−1(M̃k−1Pk|k−1M̃T

k−1)
−1. The error dy-

namics of the filter (20)–(22) are given by

ek = Ak−1xk−1 + Gk−1dk−1 + ωk−1 − Ak−1x̂k−1|k−1

−Wk−1 r̄k−1 − Kk(yk − CkAk−1x̂k−1|k−1)

= (Ak−1 − KkCkAk−1)ek−1 + (Gk−1 − KkCkGk−1)dk−1

−Wk−1 r̄k−1 + (I − KkCk)wk−1 − Kkvk.

Noting that r̄k−1 = M̃k−1Gk−1dk−1, we obtain

(Gk−1 − KkCkGk−1)dk−1 − Wk−1 r̄k−1

= [I − KkCk − Wk−1M̃k−1]Gk−1dk−1. (24)
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Inserting (21) and (22) into (24), we can obtain (23) by noting that
I − KkCk − Wk−1M̃k−1 = O. This completes the proof.

Lemma 2 shows that, for the gain Kk given in Eqs. (21)–(22), if
Ak−1 − KkCkAk−1 is stable, the error of the developed filter in Li
(2013)will be stable as time k increases. In addition, the estimation
error Eq. (23) shares the same structure as that of Eq. (17), upon
which we can conclude that the filter (20)–(22) falls into the filter
family with the generic linear structure Eq. (8).

We now consider the error covariance matrix Pk|k.

Theorem 3. Let P̃k|k denote the error covariance matrix of any filter
x̂k(Yk) based on the sequence of measurements Yk = {y0, y1, . . . , yk}.
Then for linear system (1) with partially observed inputs (2), we have
P̃k|k ≥ Pk|k, where Pk|k is given by Eq. (21).

Proof. By definition, the conditional covariance matrix of the
estimate x̂k(Yk) for given Yk is

P̃k|k = E{[xk − x̂k(Yk)][xk − x̂k(Yk)]
T
|Yk}.

It is easy to verify the following identity:

P̃k|k = E{[xk − x̂k|k + x̂k|k − x̂k(Yk)]

× [xk − x̂k|k + x̂k|k − x̂k(Yk)]
T
|Yk}

= Pk|k + E{[x̂k|k − x̂(Yk)][x̂k|k − x̂k(Yk)]
T
|Yk}

+ E{[xk − x̂k|k][x̂k|k − x̂k(Yk)]
T
|Yk}

+ E{[x̂k|k − x̂k(Yk)][xk − x̂k|k]T |Yk}.

Li (2013) shows that the estimated state vector x̂k|k in Eq. (20) is
the posterior mean conditional on the sequence of measurements
Yk = {y0, y1, . . . , yk}. Hence, we have E{xk|Yk} = x̂k|k and the last
two terms on the right-hand side of the above equation vanish, i.e.

P̃k|k = Pk|k + E{[x̂k|k − x̂(Yk)][x̂k|k − x̂k(Yk)]
T
|Yk}.

We thus conclude that P̃k|k attains the minimum if and only if the
second term of the right-hand side is equal to zero, i.e. x̂k(Yk) =

x̂k|k. This completes the proof.

Theorem 3 shows that the filter given by Eqs. (20)–(22) is
optimal in the sense of both MMSE and minimum covariance
matrix. This result is not only important in its own right but also
useful in the subsequent asymptotic stability analysis.

5. Asymptotic stability

In this section, we discuss the asymptotic stability of the filter
developed in Li (2013) for time-invariant system (1) and (2). We
hence suppress the subscript k of matrices Ak,Gk, Ck,Dk,Qk and
Rk.

We note from Lemma 2 that the covariance matrix in Eq. (21)
can be re-written as

Pk|k = (A − KkCA)Pk−1|k−1(A − KkCA)T

+ (I − KkC)Q(I − KkC)T + KkRK T
k . (25)

Under the condition given in Theorem 1 and in conjunction with
Theorem 3 that the covariance matrix of the filter given by Eqs.
(20)–(22) is optimal, it can be shown that the covariancematrix Pk|k
in Eq. (25) is bounded for all k and for an arbitrary bounded initial
covariance P0|0. On the basis of boundedness of Pk|k and inspired by
the approaches in Anderson andMoore (1979) and Fang and Calla-
fon (2012), we can further show the following result. The proof is
omitted here for lack of space and is available upon request.
Theorem 4. If the condition in Theorem 1 is satisfied and (A,Q
1
2 ) is

stabilizable, then the covariance matrix Pk|k of the filter (20)–(22)will
converge to a unique fixed positive semi-definite matrix P̄ for any
given initial condition P0|0. Moreover, with the associated limiting
gain matrices K̄ , the time-invariant filter is also stable, i.e. all the
eigenvalues of A − K̄CA satisfy |λ(A − K̄CA)| < 1.

It is of interest to compare the asymptotic stability condition
obtained with partially observed inputs to the asymptotic stability
conditions when the complete information on the inputs is avail-
able and when the inputs are completely unknown. This is investi-
gated in the following theorem. It shows that Theorem 4 provides
a unified approach to accommodating asymptotic stability condi-
tions in a variety of filtering scenarios.

Theorem 5. The asymptotic stability condition for the filter (20)–
(22) in Theorem 4 reduces to: (a)the asymptotic stability condition
of the classical Kalman filter when the complete information on the
inputs is available, i.e. D is invertible; and (b) the asymptotic stability
condition of the filter with unknown inputs, i.e. D is an empty matrix.

Proof. First, we note that when matrix D is invertible, the asymp-
totic stability condition reduces to: (a) (A, C) is detectable; and
(b) (A,Q

1
2 ) is stabilizable. These are the asymptotic stability con-

ditions of the classical Kalman filter (see, e.g. Anderson & Moore,
1979).

Next, when no information on the inputs is available, we know
from Theorem 2 that Eq. (10) in Theorem 1 reduces to Eq. (19). In
addition, condition (A,Q

1
2 ) along with R > 0 (and hence R

1
2 > 0)

can guarantee that the matrix below has a full row-rank, i.e.,

rank


A − ejwI G Q

1
2 O

ejwC O O R
1
2


= n + p, ∀w ∈ [0, 2π ].

(26)

Eqs. (19) and (26) are identical to the asymptotic stability condi-
tion for the filter with unknown inputs (Darouach & Zasadzinski,
1997). This completes the proof.

6. Conclusions

This paper has established existence and asymptotic stability
conditions for the recently developed filter with partially observed
inputs in Li (2013). The obtained existence and asymptotic stability
conditions provide a unified approach to accommodating a variety
of filtering scenarios as its special cases, including the important
Kalman filtering and the unknown input filtering problems. In
practice, information on inputs and/or outputs may sometimes be
only partially available in applications. This work takes a further
step towards the development ofmore generic filtering techniques
where different levels of information are exploited.
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Appendix. Proof of Lemma 1

rank

zIn − Ak −Gk
Ck+1 O
O Dk



= rank

zIn − Ak −Gk
Ck+1 O
O Dk


In O
O [F0k DT

k ]
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= rank

zIn − Ak −GkF0k −GkDT
k

Ck+1 O O
O DkF0k DkDT

k


= rank


zIn − Ak −Fk
Ck+1 O


+ rank(DkDT

k ).
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