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Abstract. In two-player games on graphs, the players move a token
through a graph to produce an infinite path, which determines the qual-
itative winner or quantitative payoff of the game. In bidding games, in
each turn, we hold an auction between the two players to determine
which player moves the token. Bidding games have largely been studied
with concrete bidding mechanisms that are variants of a first-price auc-
tion: in each turn both players simultaneously submit bids, the higher
bidder moves the token, and pays his bid to the lower bidder in Richman
bidding, to the bank in poorman bidding, and in taxman bidding, the bid
is split between the other player and the bank according to a predefined
constant factor. Bidding games are deterministic games. They have an
intriguing connection with a fragment of stochastic games called random-
turn games. We study, for the first time, a combination of bidding games
with probabilistic behavior; namely, we study bidding games that are
played on Markov decision processes, where the players bid for the right
to choose the next action, which determines the probability distribution
according to which the next vertex is chosen. We study parity and mean-
payoff bidding games on MDPs and extend results from the deterministic
bidding setting to the probabilistic one.

1 Introduction

Two-player infinite-duration games on graphs are a central class of games in
formal verification [2], where they are used, for example, to solve the problem of
reactive synthesis [12], and they have deep connections to foundations of logic
[14]. A graph game proceeds by placing a token on a vertex in the graph, which
the players move throughout the graph to produce an infinite path (“play”) π.
The game is zero-sum and π determines the winner or payoff.

A graph game is equipped with a set of rules, which we call the “mode of
moving”, that determine how the token is moved in each turn. The simplest
mode of moving is turn based in which the vertices are partitioned between the
two players, and when the token is placed on a vertex v, the player who owns
v decides to which neighbor of v it proceeds to. Turn-based games are used to
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model antagonistic behavior and are appropriate in worst-case analysis. On the
other hand, probabilistic transitions conveniently model lack of information and
are appropriate for average-case analysis. In Markov chains, the token proceeds
from each vertex according to a probability distribution on neighboring vertices.
A Markov decision process (MDP, for short) is associated with a set of actions
Γ , and each vertex v is associated with a probability distribution δ(v, γ) on
neighboring vertices, for each action γ ∈ Γ . Thus, an MDP can be thought of
as a 1.5-player game in which, assuming the token is placed on a vertex v, the
single player chooses an action γ, and Nature chooses the vertex to move the
token to according to the distribution δ(v, γ). Stochastic games, a.k.a. 2.5-player
games, combine turn-based games and probabilistic transitions [7]. The vertices
in a stochastic game are partitioned between two players and a Nature player.
Whenever the token is placed on a vertex that is controlled by a player, we
proceed as in turn-based games, and whenever it is placed on a vertex that is
controlled by Nature, we proceed randomly as in Markov chains.

Bidding is another mode of moving. In bidding games, both players have
budgets and an auction is held in each turn to determine which player moves
the token. Bidding games where introduced in [9,10], where several concrete
bidding rules were defined. In Richman bidding (named after David Richman),
each player has a budget, and before each turn, the players submit bids simul-
taneously, where a bid is legal if it does not exceed the available budget. The
player who bids higher wins the bidding, pays the bid to the other player, and
moves the token. A second bidding rule called poorman bidding in [9], is similar
except that the winner of the bidding pays the “bank” rather than the other
player. Thus, the bid is deducted from his budget and the money is lost. A third
bidding rule called taxman in [9], spans the spectrum between poorman and
Richman bidding. Taxman bidding is parameterized by a constant τ ∈ [0, 1]: the
winner of a bidding pays portion τ of his bid to the other player and portion
1− τ to the bank. Taxman bidding with τ = 1 coincides with Richman bidding
and taxman bidding with τ = 0 coincides with poorman bidding.

We study for the first time, a combination of the bidding and probabilistic
modes of moving by studying bidding games that are played on MDPs; namely,
the bidding game is played on an MDP, and in each turn we hold a bidding to de-
termine which player chooses an action. One motivation for the study of bidding
games on MDPs is practical; the extension expands the modelling capabilities of
bidding games. A second motivation is theoretical and aims at a better under-
standing of a curious connection between bidding games and stochastic games,
which we describe below.

Up to now, we have only discussed modes of moving the token. A second
classification for graph games is according to the players’ objectives. The simplest
objective is reachability, where Player 1 wins iff an infinite play visits a designated
target vertex. Bidding reachability games were studied in [9,10], and these are
the only objectives studied there. A central quantity in bidding games is the
initial ratio of the players’ budgets. The central question that was studied in
[9] regards the existence of a necessary and sufficient initial ratio to guarantee
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winning the game. Formally, assuming that, for i ∈ {1, 2}, Player i’s initial
budget is Bi, we say that Player 1’s initial ratio is B1/(B1 +B2). The threshold
ratio in a vertex v, denoted Thresh(v), is such that if Player 1’s initial ratio
exceeds Thresh(v), he can guarantee winning the game, and if his initial ratio
is less than Thresh(v), Player 2 can guarantee winning the game4. Existence
of threshold ratios in reachability games for all three bidding mechanisms was
shown in [9].

Moreover, the following probabilistic connection was shown for reachability
games with Richman-bidding and only for this bidding rule. Random-turn games
are a fragment of stochastic games. A random-turn game is parameterized by
p ∈ [0, 1]. In each turn, the player who moves is determined according to a
(possibly) biased coin toss: with probability p, Player 1 chooses how to move
the token, and Player 2 chooses with probability 1 − p. Consider a reachability
Richman-bidding game G. We construct a “uniform” random-turn game on top of
G, denoted RT0.5(G), in which we toss an unbiased coin in each turn. The objective
of Player 1 remains reaching his target vertex. It is well known that each vertex
in RT0.5(G) has a value, which is, informally, the probability of reaching the target
when both players play optimally, and which we denote by val(RT0.5(G), v). The
probabilistic connection that is observed in [10] is the following: For every vertex
v in the reachability Richman-bidding game G, the threshold ratio in v equals
1−val(RT(G), v). We note that such a connection is not known and is unlikely to
exist in reachability games with neither poorman nor taxman bidding. Indeed,
very simple poorman games have irrational threshold ratios [4]. Random-turn
games have been extensively studied in their own right, mostly with unbiased
coin tosses, since the seminal paper [11].

Infinite-duration bidding games were studied with Richman- [3], poorman-
[4], and taxman-bidding [5]. The most interesting results in these papers regards
an extended probabilistic connection for mean-payoff bidding games. Mean-
payoff games are quantitative games; an infinite play is associated with a payoff
that is Player 1’s reward and Player 2’s cost. Accordingly, we refer to the play-
ers in a mean-payoff game as Max and Min, respectively. Consider a strongly-
connected mean-payoff taxman-bidding game G with taxman parameter τ ∈ [0, 1]
and initial ratio r ∈ (0, 1). The probabilistic connection is the following: the
value of G w.r.t. τ and r, namely the optimal payoff Max can guarantee assum-
ing his budget exceeds r, equals the value of the mean-payoff random-turn game
RTF (τ,r)(G) for F (τ, r) = r+τ(1−r)

1+τ , where the value of RTF (τ,r)(G) is the expected
payoff when both players play optimally. Specifically, for Richman-bidding, the
value does not depend on the initial ratio and equals the value of RT0.5(G). For
poorman bidding, the value of G equals the value of RTr(G). We highlight the
point that bidding games are deterministic. One way to understand the proba-
bilistic connection is as a “derandomization”; namely, Max has a deterministic

4 When the initial ratio is exactly Thresh(v), the winner depends on the mechanism
with which ties are broken. Our results do not depend on a specific tie-breaking
mechanism.Tie-breaking mechanisms are particularly important in discrete-bidding
games [1].
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bidding strategy in G that ensures a behavior that mimics the probabilistic be-
havior of RTF (τ,r)(G).

For qualitative objectives, we show existence of surely-winning threshold ra-
tios in Richman-bidding reachability games. We then focus on strongly-connected
games and show that in a strongly-connected parity taxman-bidding game, one of
the players wins almost-surely with any positive initial budget. For mean-payoff
objectives, we extend the probabilistic connection for strongly-connected mean-
payoff taxman-bidding games from the deterministic setting to the probabilistic
one. Namely, we show that the optimal expected payoff in a taxman-bidding
game G w.r.t. τ and r equals the value of RTF (τ,r)(G). The proof is constructive
and we show an optimal bidding strategy for the two players.

2 Preliminaries

A Markov decision process (MDP, for short) isM = 〈V, Γ, δ〉, where V is a set of
vertices, Γ is a set of actions, and δ : V ×Γ → [0, 1]V is a probabilistic transition
function, where for every v ∈ V and γ ∈ Γ , we have

∑
u∈V δ(v, γ)(u) = 1. We

say that an MDP M is strongly-connected if from every two vertices v and u,
both players have a strategy that forces the game from v to u with probability
1. We focus on strongly-connected MDPs, where the initial position of the token
is not crucial and we sometimes omit it.

We study bidding games that are played on MDPs. The game proceeds as
follows. Initially, a token is placed on some vertex and the players start with
budgets, which are real numbers. Suppose the token is placed on v ∈ V in the
beginning of a turn. We hold a bidding in which both players simultaneously
submit bids, where a bid is legal if it does not exceed the available budget. The
player who bids higher wins the bidding and chooses an action γ ∈ Γ , and the
next position of the token is chosen at random according to the distribution
δ(v, γ). The bidding rules that we consider differ in the update to the players’
budget, and specifically, in how the winning bid is distributed.

Definition 1. Suppose the players budgets are B1 and B2 and Player 1 wins
the bidding with a bid of b. The budgets in the next turn are obtained as follows.

– Richman bidding: Player 1 pays Player 2, thus B′1 = B1 − b and B′2 =
B2 + b.

– Poorman bidding: Player 1 pays the bank, thus B′1 = B1−b and B′2 = B2.
– Taxman bidding with parameter τ ∈ [0, 1]: Player 1 pays portion τ to

Player 2 and portion (1−τ) to the bank, thus B′1 = B1−b and B′2 = B2+b·τ .

Note that fixing the taxman parameter to τ = 1 gives Richman bidding and
fixing τ = 0 gives poorman bidding.

A finite play of a bidding game is in (V × Γ ×R× {1, 2})∗ · V . A strategy is
a function that takes a finite player and prescribes a bid as well as an action to
perform upon winning the bid. Two strategies f1 and f2 for the two players and
an initial vertex v0 give rise to a distribution over plays of length n ∈ IN, which
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we denote by Distn(v0, f1, f2) and define inductively. For n = 0, the probability
of the play v0 is 1. Consider a finite play π that visits n−1 vertices. For i ∈ {1, 2},
let 〈bi, γi〉 = fi(π). If bi > b3−i, then Player i wins the bidding, and the next
action to be played is γi. For u ∈ V , the probability of the n-lengthed play
π · 〈v, γi, bi, i〉 · u is Pr[π] · δ(v, γi)(u). The issue of draws, i.e., the case in which
bi = b3−i, needs to be handled with a tie-breaking mechanism, and our results
are not affected by which mechanism is used. The extension of the distribution
Dn(v0, f1, f2) to infinite paths is standard.

Random-turn games Stochastic games generalize MDPs; while an MDP can be
thought of as a player playing against Nature, in a stochastic game, a player is
playing against a second adversarial player as well as against Nature. We consider
a fragment of stochastic games called random-turn games, which are similar to
bidding games except that, in each turn, rather than bidding, the player who
chooses an action is selected according to some fixed probability. Formally, let
G = 〈V, Γ, δ, w〉 be a mean-payoff bidding game and p ∈ (0, 1), then the random-
turn game that is associated with G and p is RTp(G) = 〈V ∪(V ×{1, 2}), Γ, δ′, w〉,
where vertices in V are controlled by Nature and model coin tosses and a vertex
〈v, i〉, for i ∈ {1, 2}, models the case that Player i is chosen to play. Thus, for
every v ∈ V and γ ∈ Γ , we have δ′(v, γ)(〈v, 1〉) = p and δ′(v, γ)(〈v, 2〉) = 1− p.
Also, Player i controls every vertex in V ×{i}, and we have δ′(〈v, i〉, γ) = δ(v, γ).
Finally, it is technically convenient to assume that vertices in V × {1, 2} do not
contribute to the energy of a play.

3 Qualitative Bidding Games on MDPs

In this section we study infinite-duration games with qualitative objectives. We
adapt the concept of surely winning to bidding games played on MDPs.

Definition 2. Let G be a game that is played on an MDP 〈V, Γ, δ〉, let O ⊆ V ω
be an objective for Player 1, and let v ∈ V . The surely-winning threshold ratio
in v, denoted Thresh(v), is such that

– If Player 1’s initial ratio exceeds Thresh(v), then Player 1 has a strategy
such that no matter how Player 2 plays, the resulting play is in O.

– If Player 2’s initial ratio exceeds 1− Thresh(v), then he has a strategy such
that no matter how Player 1 plays, the resulting play is not in O.

In reachability games, Player 1 has a target vertex and an infinite play is
winning for him iff it visits the target. We show existence of surely-winning
threshold ratios in reachability Richman-bidding games.

Theorem 1. Let G be a reachability Richman-bidding game. Surely-winning
threshold ratios exist in G and can be found using a linear reduction to a stochas-
tic reachability game.
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Proof. Recall that the random-turn game RT0.5(G) is a stochastic game that
models the following process: in each turn, we toss a fair coin, and if it turns
“heads” Player 1 determines the next action and otherwise Player 2 determines
the next action. The action gives rise to a probability distribution with which
the following vertex is chosen. We construct G′ similarly, only that we replace
the last probabilistic choice with a deterministic choice of Player 2. Formally,
the vertices of G′ are V ∪ (V × {1, 2}) ∪ (V × Γ ). The transition function δ′

restricted to V is the same as in RT0.5(G), namely, for every action, we proceed
from v ∈ V to 〈v, i〉, for i ∈ {1, 2}, with probability 0.5. The vertex 〈v, i〉 is
controlled by Player i. A vertex u ∈ V is a neighbor of 〈v, 2〉 iff there exists
γ ∈ Γ with δ(v, γ)(u) > 0. The neighbors of 〈v, 1〉 are {v}×Γ , where moving to
〈v, γ〉 models Player 1 choosing the action γ at v. Each vertex 〈v, γ〉 is controlled
by Player 2 and a vertex u ∈ V is a neighbor of 〈v, γ〉 iff δ(v, γ)(u) > 0.

Let v ∈ V . The value of v in G′, denoted val(G′, v) is the probability of
reaching the target when both players play optimally. We claim that the surely-
winning threshold ratio in v equals 1−val(G′, v). Note that when val(G′, v) = 0,
no matter how Player 1 plays, there is no path from v to t, thus Player 1 cannot
win and we have Thresh(v) = 1. Suppose val(G′, v) = 1 and we claim that
Thresh(v) = 0. We follow the construction in the deterministic setting [3,9]. Let
n = |V |. It is not hard to show that if Player 1 wins n biddings in a row, he
wins the game. Suppose Player 1’s initial ratio is ε > 0. He follows a strategy
that guarantees that he either wins n biddings in a row or, if he loses, his
budget increases by a constant that depends on ε and n. Thus, by repeatedly
playing according to this strategy, he either wins the game or increases his budget
arbitrarily close to 1, where he can force n bidding wins. The proof for vertices
with val(G′, v) ∈ (0, 1) is similar only that Player 1’s strategy maintains the
invariant that his budget exceeds 1 − val(G′, v) and his surplus, namely the
difference between his budget and 1− val(G′, v), increases every time he loses a
bidding. The proof for Player 2 is dual. ut

Theorem 1 shows a reduction from the problem of finding threshold ratios
to the problem of solving a stochastic reachability game. The complexity of the
later is known to be in NP and coNP [7], thus we obtain the following corollary.

Corollary 1. The problem of deciding, given a reachability Richman-bidding
game on an MDP G and a vertex v in G, whether the surely-winning threshold
ratio is at least 0.5, is in NP and coNP.

The solution to strongly-connected games is the key in the deterministic
setting. We show that Player 1 almost-surely wins reachability games that are
played on strongly-connected MDPs.

Proposition 1. Let G = 〈V, Γ, δ, w〉 be a strongly-connected taxman-bidding
game with taxman parameter τ . For every positive initial budget, initial ver-
tex v ∈ V , and target vertex u ∈ V , Player i has a strategy that guarantees that
u is reached from v with probability 1.
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Proof. Let fi be a strategy for Player i in the MDP 〈V, Γ, δ〉 that guarantees
that u is reached from v with probability 1. Let ε > 0 be an initial budget or
Player i in the bidding game G. It is shown in [5] that, for every n ∈ IN, there
is a bidding strategy that guarantees that Player i eventually wins n biddings
in a row. Intuitively, Player i splits his budget into n exponentially increasing
parts ε1, . . . , εn such that if Player i loses the j-th bidding, for 1 ≤ j ≤ n, his
budget increases by a constant factor. By repeatedly following such a strategy,
Player i’s ratio approaches 1, which guarantees n consecutive wins. Player i splits
his budget into infinitely many parts ε1, ε2, . . ., and, for n ≥ 1, he plays as if his
budget is εn until he wins n consecutive biddings. Upon winning a bidding, he
chooses actions according to fi. Thus, Player i essentially follows fi for growing
sequences thereby ensuring visiting u with a probability that approaches 1. ut

Consider a strongly-connected parity taxman-bidding game G in which the
highest parity index is odd. A corollary of the above proposition is that Player 1
almost-surely wins in G with any positive initial budget. Indeed, in RTp(G), by
repeatedly playing according to a strategy fi that forces a visit to the vertex v
with the highest parity index, Player 1 forces infinitely many visits to v with
probability 1. A bidding strategy proceeds as in the proof of the proposition
above and forces increasingly longer sequences of bidding winnings, which in
turn implies following fi for increasingly longer sequences.

Theorem 2. Let G be a strongly-connected parity game. If the maximal parity
index in G is odd, then Player 1 almost-surely wins in G with any positive initial
budget, and if the maximal parity index in G is even, Player 2 almost-surely wins
in G with any positive initial budget.

4 Mean-Payoff Bidding Games on Strongly-Connected
MDPs

Mean-payoff bidding games are played on a weighted MDP 〈V, Γ, δ, w〉, where
〈V, Γ, δ〉 is an MDP and w : V → Q is a weight function. The energy of a
finite play π, denoted E(π), refers to the accumulated weights, thus E(π) =∑

1≤i≤n w(vi). Consider two strategies f1 and f2, and an initial vertex v0. The
payoff w.r.t f1, f2, and v0, is MP(v0, f1, f2) = lim infn→∞ Eπ∼Distn(v0,f1,f2)[E(π)/n].
A mean-payoff game is a zero-sum game. The payoff is Player 1’s reward and
Player 2’s cost. Accordingly, we refer to Player 1 as Max and Player 2 as Min.

We focus on strongly-connected mean-payoff games. Since the mean-payoff
objective is prefix independent, Proposition 1 implies that the optimal payoff
from each vertex in a strongly-connected game is the same.

Definition 3. (Mean-payoff values) Consider a strongly-connected mean-payoff
taxman-bidding game G = 〈V, Γ, δ, w〉, a ratio r ∈ (0, 1), and a taxman parameter
τ ∈ [0, 1]. We say that c ∈ R is the value of G w.r.t. r and τ , denoted MPτ,r(G),
if for every ε > 0,
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– when Max’s initial ratio is r + ε, he can guarantee an expected payoff of at
least c, and

– when Max’s initial ratio is r− ε, Min can guarantee an expected payoff of at
most c.

We describe an optimal bidding strategy for Max in G w.r.t. τ and r. The
construction consists of two components. The first component assigns an “im-
portance” to each vertex, which we call the strength of a vertex and denote by
Stp(v), for every v ∈ V . Intuitively, if Stp(v) > Stp(u), then it is more important
to move in v than it is in u. The second ingredient is a “normalization scheme”
for the strengths, which consists of a sequence (rx)x≥1 and associating normal-
ization factors (βx)x≥1, where βx, rx ∈ [0, 1]. Max keeps track of a position on
the sequence, where he maintains the invariant that when the position is x, his
ratio exceeds rx. One property of the sequence is that the invariant implies that
position x = 1 is never reached. Assuming the token is placed on v ∈ V and the
position on the sequence is x, Max’s bid is roughly βx · Stp(v). The outcome of
the bidding determines the next position on the sequence, where winning means
that we proceed up on the sequence and losing means that we proceed down on
the sequence. A normalization scheme for Richman bidding was devised in [3],
for poorman bidding in [4], and we use a unified normalization scheme that was
devised in [5] for taxman bidding.

We start with assigning importance to vertices. Our definition relies on a
solution to random-turn games.

Definition 4. (Values) For a strongly-connected mean-payoff bidding game G
and p ∈ (0, 1), the mean-payoff value of RTp(G), denoted MP(RTp(G)), is the
maximal expected payoff that Max guarantee from every vertex.

A positional strategy is a strategy that always chooses the same action in a
vertex. It is well known that there exist optimal positional strategies for both
players in stochastic mean-payoff games. For some p ∈ (0, 1), consider two opti-
mal positional strategies f and g in RTp(G), for Min and Max, respectively. For
a vertex v ∈ V , let γ+(v), γ−(v) ∈ Γ denote the actions that f and g prescribe,
thus γ+(v) = f(〈v, 1〉) and γ−(v) = g(〈v, 2〉).

The potential of v, denoted Pop(v), is a known concept in probabilistic models
and was originally used in the context of the strategy iteration algorithm for
MDPs [8]. We use the potential to define the strength of v, denoted Stp(v),
which intuitively measures how much the expected potentials of the neighbors of
v differ. The potential and strengths of v are functions that satisfy the following:

Pop(v) = p·
∑
u∈V

δ(v, γ+(v))(u)·Pop(u)+(1−p)·
∑
u∈V

δ(v, γ−(v))(u)·Pop(u)−MP(RTp(G)) and

Stp(v) = p(1− p)
(∑
u∈V

δ(v, γ+(v))(u) · Pop(u)−
∑
u∈V

δ(v, γ−(v))(u) · Pop(u)
)

The existence of the potential and thus the strength is known to be guaran-
teed [13].
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Consider a finite path η = 〈v1, γ1〉, . . . , 〈vn−1, γn−1〉, vn. Consider a partition
of {1, . . . , n− 1} to W (η) ∪ L(η) such that i ∈W (η) iff γi = γ+(vi). Intuitively,
we think of η as a play and the indices in W (η) are the ones that Max wins
whereas the ones in L(η) represent the ones in which he loses. The probability of
η is

∏
1≤i<n δ(vi, γi(vi))(vi+1). The energy of η, denoted E(η), is

∑
1≤i<n w(vi).

We define a random variable Ψn over paths of length n. Let η be such a path
that ends in a vertex v, then

Ψpn(η) = Pop(v)+E(η)−
∑

i∈W (η)

Stp(vi)/p+
∑
i∈L(η)

Stp(vi)/(1−p)−(n−1)·MP(RTp(G)).

Lemma 1. For every game G, p ∈ [0, 1], and n ∈ IN, we have E[Ψpn−Ψ
p
n+1] ≥ 0.

Thus, E[Ψn] ≥ E[Ψ1] ≥ minv Pop(v).

Proof. Let η = 〈v1, γ1〉, . . . , 〈vn−1, γn−1〉, vn and γ ∈ Γ . We show that E[Ψn(η)−
Ψn+1(η

′)] ≤ 0, where η′ is obtained from η by extending it with a last vertex
that is chosen according to the distribution δ(vn, γ). We prove for the case of
γ = γ+(vn). Since Max wins the last bidding, we have W (η) =W (η′)∪{n} and
I(η) = I(η′). In addition, we have E(η) + w(vn) = E(η′). Thus,

E[Ψn(η)− Ψn+1(η
′)] =

= Pop(vn)−
(∑
u∈V

Pop(u) ·δ(vn, γ+(vn))(u)+w(vn)−Stp(vn)/p−MP(RTp(G))
)
=

= Pop(vn)−
(
(1− p)

∑
u∈V

Pop(u) · δ(vn, γ−(vn))(u)+

+p
∑
u∈V

Pop(u) · δ(vn, γ+(vn))(u) + w(vn)− MP(RTp(G))
)
=

= Pop(vn)− Pop(vn) = 0

The proof for the case that γ 6= γ+(vn) is similar. Since we define γ−(v) to
be the action that minimizes mina

∑
u∈V δ(vn, a)(u) · Po

p(u), we get E[Ψn(η)−
Ψn+1(η

′)] ≥ 0. ut

We continue to describe the properties of a normalization scheme as well as
show its existence.

Lemma 2. [5] Let S ⊆ Q≥0, a ratio r ∈ (0, 1), and a taxman parameter τ ∈
[0, 1]. For every K > τr2+r(1−r)

τ(1−r)2+r(1−r) there exist sequences (rx)x≥1 and (βx)x≥1
with the following properties.

1. For each position x ∈ R≥1 and s ∈ S, we have βx · s · r · (r − 1) < rx.
2. For every s ∈ S\{0} and 1 ≤ x < 1+ rs, we have βx · s · r · (r− 1) > 1− rx.
3. The ratios tend to r from above, thus for every x ∈ R≥1, we have rx ≥ r,

and limx→∞ rx = r.
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4. We have

rx − βx · s · r · (r − 1)

1− (1− τ) · βx · s · r · (r − 1)
≥ rx+(1−r)·K·s and

rx + τ · βx · s · r · (r − 1)

1− (1− τ) · βx · s · r · (r − 1)
≥ rx−s·r

We combine the two ingredients to obtain the following.

Theorem 3. Let G be a strongly-connected mean-payoff taxman-bidding game,
r ∈ (0, 1) an initial ratio, and τ ∈ [0, 1] a taxman constant. Then, the mean-
payoff value of G w.r.t. r and τ equals the value of the random-turn game
RTF (r,τ)(G) in which Max is chosen to move with probability F (τ, r) and Min
with probability 1− F (τ, r), where F (τ, r) = r+τ(1−r)

1+τ .

Proof. Since the definition of payoff favors Min, it suffices to show an optimal
strategy for Max. Let G such that RTF (τ,r)(G) = 0. For ε > 0, we describe a
strategy for Max that guarantees a payoff that is greater than −ε, assuming his
initial ratio is strictly greater than r. Following [5], we consider a slight change
of parameters; we choose K > τr2+r(1−r)

τ(1−r)2+r(1−r) , and define ν = r, µ = K · (1− r),
and p = ν/(ν + µ), where we choose K such that MP(RTp(G)) > −ε, where this
is possible due to the continuity of the mean-payoff value due to changes in the
probabilities in the game structure [6,15]. We find potentials and strengths w.r.t.
p and find a sequence (rx)x≥1 as in Lemma 2, where we set S = {Stp(v) : v ∈ V }.

Max maintains a position on the sequence. Recall that Max’s ratio strictly
exceeds r and that Point 3 implies that the sequence tends from above to r,
thus Max can choose an initial position x0 such that his initial ratio exceeds
rx0 . Whenever the token reaches a vertex v and the position on the sequence is
x, Max bids Stp(v) · r(1− r)βx, and chooses the action γ+(v) upon winning. If
Max wins the bidding, the next position on the sequence is x + µStp(v), and if
he loses a bidding, the next position is x− ν · Stp(v). Note that Point 4 implies
the invariant that whenever the position is x, Max’s ratio exceeds rx; indeed,
the first part of the point takes care of winning a bidding, and the second part
of losing a bidding. The invariant together with Point 1 implies that Max has
sufficient funds for bidding. Suppose the current position is x following a play π,
then x = x0 + µ

∑
i∈W (π) St

p(v)− ν
∑
i∈L(π) St

p(v). Point 2 implies that x > 1;
indeed, consider a position that is close to 1, i.e., a position such that if Min wins
a bidding, the next position is x ≤ 1, then Point 2 states that Max’s bid is greater
than Min’s ratio, thus he necessarily wins the bidding and the next position is
farther from 1. Rearranging, dividing by µ·ν, and multiplying by (−1), we obtain∑
i∈L(π) St

p(v)/µ−
∑
i∈W (π) St

p(v)/ν = (x0−x)/(µ ·ν) < (x0−1)/(µ ·ν), where
recall that x0 is a constant.

Let n ∈ IN. We adapt the notation in Lemma 1 from paths to plays in the
straightforward manner. The lemma implies that E[Ψn] ≥ c, for some constant
c ∈ Q. On the other hand, recall that, for a play π of length n that ends in a
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vertex v, we have

Ψn(π) = Pop(v)+E(π)−
∑

i∈W (π)

Stp(v)/ν +
∑
i∈L(π)

Stp(v)/µ− (n− 1)MP(RTp(G)).

For every vertex v, we have Pop(v) ≤ maxu Pop(u). Also, as in the above, we have
E[
∑
i∈W (π) St

p(v)/ν −
∑
i∈L(π) St

p(v)/µ] is bounded from above by a constant.
Combining, we have that E[E(π)] ≥ c′ + (n − 1) · MP(RTp(G)). We divide both
sides by n and tend it to infinity, thus the constant c′ vanishes, and we get a
payoff that exceeds −ε, as required. ut

Theorem 3 shows a reduction from the problem of finding the value of a mean-
payoff taxman-bidding game on a strongly-connected MDP to the problem of
solving a stochastic mean-payoff game. The complexity of the later is known to
be in NP and coNP, thus we obtain the following corollary.

Corollary 2. The problem of deciding, given a mean-payoff taxman-bidding
game G that is played on a strongly-connected MDP, an initial ratio r, a taxman
parameter τ , and a value k ∈ Q, whether MPτ,r(G) ≥ k, is in NP and coNP.

5 Discussion

We study qualitative and mean-payoff bidding games on MDPs. For qualitative
objectives, we show existence of surely-winning threshold ratios in reachabil-
ity bidding games, and we study almost-surely winning in strongly-connected
parity bidding games. For mean-payoff objectives, we extend the probabilistic
connection from the deterministic setting to the probabilistic one. A problem
that we leave open is a quantitative solution to reachability bidding games that
are played on MDPs; namely, given an MDP with a target vertex t, an initial
vertex v, and a probability p, find a necessary and sufficient budget with which
Player 1 can guarantee that t is reached from v with probability at least p.
We expect that a solution to this problem will imply a solution to parity and
mean-payoff bidding games on general graphs.
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