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We present an extension of the SAFT-VR Mie approach to model adsorption of molecular fluids
based on a two-dimensional (2D) approximation to describe the adsorbed fluid. Analytical results
are provided for the first- and second-order perturbation terms of the 2D system. The adsorption
model is based on the assumption that the particle pair interactions in the adsorbed and bulk phases
are described with the same Mie potential parameters λa and λr, in contrast with the square-well
version of the 2D-SAFT-VR approach in which it is considered necessary to modify the attractive
ranges of the SW interactions. This important difference between theories reduces the number of
molecular parameters to be determined. In order to demonstrate the performance of the 2D SAFT-
VR-Mie approach, we present results for the the modelling of CO2 and CH4 adsorbed onto dry
coal.

PACS numbers:

I. INTRODUCTION

Adsorption of fluids onto solid surfaces is a common
process in nature that can be rationalized in terms of the
intermolecular interactions between fluid molecules and
the molecules comprising the solid surface. These inter-
actions, as well as the geometric constraining effect of the
adsorbent surface, induce an inhomogeneous ordering of
molecules of the adsorbed fluid.

Adsorption plays an important role in many industrial
processes, including: heterogeneous catalysis, where a
fluid reacts on the surface of a solid catalyst; development
of nanoporous materials to separate contaminants from
waste streams; hydrogen storage in cells [1]. Adsorp-
tion is particularly important in enhanced-oil-recovery
(EOR), wherein there is selective adsorption of water,
oil, gas and other EOR fluids into the pores present in
soils and rocks. Hence, to improve the efficiency of EOR
processes, a fundamental understanding of the phase be-
haviour of confined fluids is needed. Carbon storage takes
place in the EOR process and a molecular description of
the adsorption phenomena is required in order to un-
derstand and predict the thermodynamic properties of
the fluid under confinement. The main purpose of the
carbon-dioxide storage via adsorption is to remediate the
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greenhouse effect due to accumulation of gases in the at-
mosphere and, at the same time, to enhance the process
of oil recovery. In 2013, CO2 accounted for about 82
percent of all U.S. greenhouse-gas emissions from human
activities [2].

In the statistical models for adsorption phenomena,
confinement effects are taken into account by considering
a fluid formed by particles or molecules in the presence
of surfaces that act as external potentials. As a conse-
quence of this external interaction, molecules adsorb onto
the surfaces, and molecular equations of state (EOS) can
be provided to describe the thermodynamic properties of
the fluid near the wall. Following this approach, Lang-
muir [3] and Brunauer, Emmett and Teller [4] developed
the first theoretical predictions of adsorption isotherms
for monolayers and multilayers, respectively. The BET
method provided a route still used today for the deter-
mination of the surface area of the adsorbent surface
[5, 6]. The BET approach has also been extended to
model more-complex sorption processes in fluids [7, 8].
On the other hand, although molecular simulations can
be applied to accurately describe the adsorption of com-
plex fluids [9–11], the prediction of adsorption isotherms
by these methods remains challenging due to the huge
effort required in order to obtain a significant number of
state points to construct a single curve. An alternative
route fully explored by several authors over the years
has been to model adsorbed fluids by two-dimensional
EOS [12–17].

Based on the SAFT-VR approach for square-well (SW)
fluids [18] and its formulation for 2D discrete-potential
systems (2D-SAFT-VR) [19, 20], predictions of adsorp-
tion isotherms for molecular fluids and their mixtures
have been previously reported [21–24], as well as for as-
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phaltenes in porous materials [25]. In this paper we
present the improvement of the 2D-SAFT-VR adsorption
theory by considering the case of the spherically symmet-
ric Mie potential [26], which has been applied to a wide
range of substances in fluid bulk conditions [27, 28].

The Mie pair potential is defined by

uMie(r) = Cε

[

(σ

r

)λr

−

(σ

r

)λa

]

(1)

where ε is the depth of the potential well, r is the in-
ternueclear distance between the spherical segments, σ is
the position at which the potential is zero, and λa and λr
are the attractive and repulsive exponents, respectively;
the pre-factor C ensures that the minimum of the poten-
tial is −ε regardless of the values of the exponents and is
given by

C =
λr

λr − λa

(

λr
λa

)τ

; τ =
λa

λr − λa
. (2)

For the case λr = 12 and λa = 6, the Mie potential takes
the form of the well-known Lennard-Jones (LJ) model.

Recently, Franco et al. [29] proposed an equation of
state for confined fluids using the SAFT-VR-Mie ap-
proach with a free-energy term due to confinement. Such
an extension was obtained within the generalised van der
Waals framework by assuming a SW potential for the
fluid–solid interaction (as introduced in the 2D-SAFT-
VR approach [19]), which is integrated over the confining
space considering semi-empirical models for the inhomo-
geneous fluid structure under different geometries.

The 2D-SAFT-VR Mie EOS presented here is based
on an application of the Barker and Henderson (BH) [30]
high-temperature perturbation expansion, up to second-
order, to a hard-disk reference system. After describing
the adsorption model and theory in Sec. II, we start
our theoretical treatment calculating analytical expres-
sions for the first- and second-order perturbation terms
using an analytical approximation to the pair correla-
tion function of hard bodies in 2D space, a strategy re-
cently adopted by Trejos et al. [31] and also discussed in
[32]. The perturbation terms are validated by direct com-
parison with exact numerical results from Monte Carlo
(MC) simulations. Finally in Sec. III, we describe the
methodology for the parameterisation of fluid−fluid and
fluid−solid interactions and test the theory on the de-
scription of adsorption of CO2 and CH4 on dry coal.

II. THEORY

We consider a model of a single-component fluid com-
posed of N spherical particles in the presence of a solid
uniform wall, as depicted in Fig. 1. The interaction po-
tential exerted by the wall on a particle is denoted as
upw, and it is assumed that this potential is a function

only of z, given by,

upw(z;σ, λw) =











∞ if z < 0

− εw if 0 ≤ z ≤ λwσ

0 if z > λwσ

where z is the perpendicular distance from the wall to
the particle, λwσ is the length scale of the attractive po-
tential and εw is the depth of the well. The system is
comprised of two subsystems: the particles near to the
wall, i.e., those for which z ≤ λwσ, represent the adsorbed
phase, and the particles that are far from the wall, i.e.,
for which z > λwσ, comprise the bulk phase. In the
present approach, the bulk and adsorbed phases can be
considered divided by a surface with null thickness, i.e.,
the interface has zero volume [33]. This approximation
allows us to model the adsorption process in the same
way as a two-phase system.

Figure 1: System of study. The system is divided into two
subsystems, an adsorbed phase (green spheres) and a bulk
phase (blue spheres).

Due to the presence of the wall, the adsorbed fluid
exhibits different macroscopic properties in relation to
the bulk fluid. For the bulk phase, the pair potential is
written as upp and for the adsorbed phase, the molecules
interact with each other via the potential denoted as uadspp .
For the adsorbed fluid, the pair potential interaction can
be described as a decoupling of the x, y coordinates from
the coordinate z for each adsorbed particle,

φ(x, y) =
1

λwσ

∫

uadspp (x, y, z)dz (3)

and the adsorbed phase can be approximated by a quasi-
two dimensional system, i.e., the particles comprising the
adsorbed phase interact with each other only in the x–y
plane. The canonical partition function of the adsorbed
fluid is then given by

Zads =
V Nads

ads Qads

Nads!Λ3Nads

(4)
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where Λ is the de Broglie thermal wavelength, Vads is
the volume occupied by the adsorbed molecules, Nads is
the total number of adsorbed molecules and Qads is the
configurational integral of the total pair potential in the
adsorbed fluid, i.e.,

Qads =
1

V Nads

ads

∫

exp (−βUtot)dr
Nads (5)

where β = 1/kBT , with kB the Boltzmann constant and
T the absolute temperature. The total pair potential for
the particles in the adsorbed phase is given by

Utot = Uads
pp (x, y) + Upw(z;σ, λw) . (6)

In this equation, Uads
pp (x, y) is the total potential for the

adsorbed particles, i.e., Uads
pp = (1/2)Nads(Nads − 1)φ,

and Upw is the total potential for the interaction of the
adsorbed particles with the wall, Upw = Nadsupw. The
configurational integral is then written as

Qads =
1

V Nads

ads

∫

exp (−βNadsupw(z;σ, λw))dz
Nads (7)

∫

exp

(

−β
Nads(Nads − 1)

2
φ(x, y)

)

dxNadsdyNads.

Within the 2D-SAFT-VR approach [19, 20], the volume
occupied by the adsorbed particles is given by the prod-
uct of the adsorbed area (s) and the perpendicular dis-
tance between the wall and the fluid influenced by the
wall, taken as the particle-wall SW range λwσ. As a
result of the decoupling approximation,

Qads = Q1DQ2D (8)

where Q1D and Q2D are the one- and two-dimensional
configurational integrals respectively, i.e.,

Q1D =
1

(λwσ)Nads

∫ λwσ

0

exp (−βNadsupw(z;σ;λw))dz
Nads

=

[

1

λwσ

∫ λwσ

0

exp (−βupw(z;σ, λw))dz

]Nads

(9)

Q2D =
1

sNads

∫

exp

(

−β
Nads(Nads− 1)

2
φ(x, y)

)

dxNadsdyNads .

(10)
The integral in Eq. (9) can be evaluated using the
mean-value theorem as

Q1D = exp (−βNadsupw(z
∗;σ, λw)) (11)

where z∗ is the value of the z coordinate that guarantees
the mean value of Q1D. The canonical partition func-
tion for the adsorbed fluid is thus given by the expression

Zads = Z1D
adsZ

2D
ads (12)

where

Z1D
ads =

(λwσ)
Nads

ΛNads

exp (−βNadsupw(z
∗;σ, λw)) (13)

and

Z2D
ads =

sNads

Nads!Λ2Nads

×

∫

exp

(

−β
Nads(Nads − 1)

2
φ(x, y)

)

dxNadsdyNads.

(14)

Rearranging Eqs. (12)–(14) we obtain

Zads = Z2D
ads

(

λwσ

Λ

)Nads

exp (−βNadsupw(z
∗;σ, λw)) .

(15)
The Helmholtz free energy of the adsorbed fluid is then

given by Aads = −kBT lnZads:

Aads

NadskBT
=

A2D

NadskBT
− ln

(

λwσ

Λ

)

+ βupw(z
∗;σ, λw)

(16)
where the term upw(z

∗;σ, λw) can be approximated by
upw(z

∗;σ, λw) = −εw. A2D is the Helmholtz free energy
of a two-dimensional fluid interacting via the pair poten-
tial φ(x, y). According to the standard Thermodynamic
Perturbation Theory (TPT) of Zwanzig [34], we can
express A2D as

A2D

NadskBT
= ln(ρadsΛ

2)− 1 + aHD + βa2D1 + β2a2D2 + . . .

(17)
where ρads = ρ2D corresponds to the number of molecules
per unit area in the adsorbed phase, aHD is the Helmholtz
free energy of the reference system of a hard-disk fluid,
and a2D1 and a2D2 are the first- and second-order pertur-
bation terms.
In the present manuscript we restrict our discussion to

the second-order perturbation expansion,

A2D

NadskBT
= ln(ρadsΛ

2)− 1+ aHD + βa2D1 + β2a2D2 . (18)

The total Helmholtz free energy for the adsorbed fluid in
Eq. (16) can be rewritten as

Aads

NadskBT
=

A2D

NadskBT
− ln

(

λwσ

Λ

)

− βεw . (19)

For the case of the bulk fluid, we consider an analogous
perturbation expression given by

A3D

NbkBT
= ln(ρbΛ

3)− 1 + aHS + βa3D1 + β2a3D2 (20)

where Nb is the number of molecules in the bulk phase,
ρb = ρ3D is the corresponding density, aHS is the
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Helmholtz free energy of the hard-sphere fluid and a3D1
and a3D2 are the first two perturbation terms.
The calculation of adsorption isotherms at tem-

perature T is performed by solving the equilibrium
between the adsorbed and bulk phases, by equating the
corresponding chemical potentials, i.e.,

µads = µb (21)

where

µads =

(

∂Aads

∂Nads

)

T,s

(22)

and

µb =

(

∂Ab

∂Nb

)

T,V

; (23)

in Eq. (23) Ab ≡ A3D is the Helmholtz free energy of the
3D bulk fluid and the terms Nads and Nb are the number
of particles of the adsorbed and bulk phases, respectively
(Nads +Nb = N).
In previous communications [19, 22] we have tested

with Monte Carlo computer simulations the quasi-2D ap-
proach described here when applied to the SW potential
model, by considering 3D particles adsorbed in surfaces.
It was found that the 2D-SAFT-VR approach gives very
accurate adsorption isotherms when compared with MC
values. This agreement is not due to the pair potential
model used but to the actual decoupling approximation
in the adsorbed particles pair potential and to the values
of the adsorption wall-particle energy, and we can expect
that the same result applies to the Mie potential.

A. 2D SAFT-VR Mie

In this section we present an equation of state for a 2D
Mie fluid, based on the method followed in the SAFT-VR
Mie approach [28]. The Helmholtz free energy for the 2D
Mie fluid is given by

A2DMie

NadskBT
= ln(ρadsΛ

2)− 1 + aHD + βa2DMie
1 + β2a2DMie

2

(24)
where the properties of the hard-disk reference fluid are
obtained from a temperature-dependent effective diame-
ter d, according to the Barker and Henderson perturba-
tion theory [30],

d =

∫ σ

0

(1− exp (−βu(r)))dr . (25)

The first-order perturbation term is given by

a2DMie
1 = πρ2D

∫ ∞

σ

uMie(r) gHD(r) r dr (26)

where gHD(r) is the hard-disk radial distribution func-
tion. The mean-attractive energy a2DMie

1 can be obtained
either by molecular simulation or by integration of gHD.
In this work we have explored the analytical evaluation in
the spirit of the SAFT-VR approach for 3D systems [28],
using an approximated expression for gHD given by San-
tos and Yuste [35], which expresses this property as a
combination of 1D and 3D hard-body pair-correlation
functions,

gHD(r; γ) = α(γ) g1D(r;ω1(γ)γ1D)

+ (1− α(γ)) g3D(r;ω3(γ)γ3D) (27)

where three parameters are used to relate the properties
of the systems with different dimensionality. The packing
fractions are denoted by γ1D, γ and γ3D for 1, 2 and 3
dimensions, respectively. The terms ω1(γ) and ω3(γ) are
the scaling parameters for the packing fraction in the 1D
and 3D space, respectively and the function α(γ) is a
mixing parameter. These parameters can be determined
numerically using the procedure outlined by Yuste and
Santos [35]:
1. The contact value of the HD radial distribution

function, gHD(1, γ), corresponds to the hard-rod or hard-
sphere radial distribution function when α = 1 or α = 0,
respectively. This enables us to obtain the parameters
ω1 and ω3.
2. From the isothermal compressibility expression

kBT

(

∂ρ

∂P

)

T

= 1 + 2πρ

∫ ∞

0

[gHD(r, γ)− 1]r dr (28)

and the heuristic expression for gHD given in Eq. (27),
it is possible to obtain α in terms of the corresponding
expressions for the 2D and 3D terms, which can be deter-
mined numerically from molecular simulations or integral
equations.
Once the parameters used in Eq. (27) are calculated,

the scaling parameters are found to be smooth functions
of γ, that can be represented by quadratic polynomials:

ω1(γ) = 1.5539− 0.22742γ − 0.31723γ2 ; (29)

ω3(γ) = 0.62911 + 0.1804γ − 0.18307γ2 ; (30)

α(γ) = 0.40462− 0.21235γ + 0.1754γ2 . (31)

Using Eqs. (26) and (27), the first-order perturbation
term can be expressed as,

a2DMie
1 = πρ2D

∫ ∞

d

uMie(r)gHD(r) r dr

− πρ2D

∫ σ

d

uMie(r)gHD(r) r dr (32)

= I1A + I1B .

Following the SAFT-VR Mie method used to evaluate
a3DMie
1 [28], we can use an analogous procedure in the

2D case to obtain expressions for I1A and I1B, as we
explain in the following subsections.
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B. Expression for I1A

The first integral in Eq. (32) is

I1A = πρ2D

∫ ∞

d

gHD(r)Cε

[

(σ

r

)λr

−

(σ

r

)λa

]

r dr .

(33)
Defining the reduced distance x between disk centers as

x =
r

d
(34)

Eq. (33) transforms into

I1A = πρ2D d
2Cε

∫ ∞

1

gHD(xd)

[

(x0
x

)λr

−

(x0
x

)λa

]

xdx

(35)
where x0 = σ/d. The expression

as1(γ, λ) = πρD ε d
2

∫ ∞

1

(

−
1

xλ

)

gHD(xd)xdx

= 4γ ε

∫ ∞

1

(

−
1

xλ

)

gHD(xd)xdx (36)

represents the first-order term as1(γ;λ) of the Helmholtz
free energy of a system of hard-core Sutherland particles
of diameter d characterized by the range parameter λ.
From Eqs. (26) and (36) we obtain

as1(γ;λ) = −4γ ε α

∫ ∞

1

g1D(ω1γ)x
1−λdx

− 4γ ε (1− α)

∫ ∞

1

g3D(ω3γ)x
1−λdx . (37)

The 1D and 3D packing fractions have here been ex-
pressed simply as γ because it is easy to distinguish be-
tween them by looking at the corresponding multiplying
scaling parameter.
Eq. (37) can be further separated into two integrals.

as1(γ;λ) = I2A + I2B

where

I2A = −4γ ε α

∫ ∞

1

g1D(ω1γ)x
1−λdx (38)

and

I2B = −4γ ε (1− α)

∫ ∞

1

g3D(ω3γ)x
1−λdx . (39)

An exact expression for the hard-rod radial distribution
function g1D is given by the Salsburg-Zwanzig-Kirkwood
solution [36],

g1D(x; ρσ) =
1

ρσ

∞
∑

k=1

W keWk

(k − 1)!
(x− k)

k−1
e−WxH(x− k)

(40)
where H(x− k) is the Heaviside Function,

H(x− k) =

{

1 if x ≥ k

0 if x < k

and W = ρσ/(1− ρσ). By substituting g1D in I2A and
exploiting the properties of the Heaviside function, we
obtain
∫ ∞

1

g1D(x;ω1γ)x
1−λdx =

1

ω1γ

∞
∑

k=1

W keWk

(k − 1)

∫ ∞

k

(x− k)
k−1

x1−λe−Wxdx . (41)

A final expression for I2A is derived
1) using the binomial expansion of order k − 1

(x− k)k−1 =

∞
∑

j=0

(

j,
k − 1

)

xk−1−j(−k)j (42)

where the term
∑∞

j=0

(

j,
k − 1

)

is a series from j to k−1,

and
2) introducing the incomplete Γ function,

Γ(α, s) =

∫ ∞

s

uα−1e−udu . (43)

With this, one obtains

I2A = −
4γεα

ω1γ

∞
∑

k=1

W keWk

(k − 1)!

×

∞
∑

j=0

(j, k − 1) (−k)
j

W k−λ−j+1
Γ(k − λ− j + 1,Wk) . (44)

For the three-dimensional case [28], we have the SAFT-
VR Mie analytical expression for a1

s-3D(η;λ)
∫ ∞

1

g3D(x)x
2−λdx = −

as-3D1 (η;λ)

12ηε
. (45)

By comparing this result with I2B, we then have

I2B =
(1− α)

3ω3
a1

s-3D(ω3γ;λ+ 1) (46)

where the term as-3D1 (η;λ) is the first-order term of the
Helmholtz free energy of a three-dimensional system of
hard-core Sutherland particles. This term was derived
previously [18, 28]. Accordingly, the 2D first-order term
of the hard-core Sutherland system is

as1(γ;λ) = −
4γεα

ω1γ

∞
∑

k=1

W keWk

(k − 1)!

×

∞
∑

j=0

(j, k − 1) (−k)j

W k−λ−j+1
Γ(k − λ− j + 1,Wk)

+
(1− α)

3ω3
a1

s-3D(ω3γ;λ+ 1) , (47)

and integral I1A is

I1A = C
(

xλa

0 as1(γ;λa)− xλr

0 a
s
1(γ;λr)

)

. (48)
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C. Expression for I1B

In order to calculate the integral I1B, the radial distri-
bution function gHD is approximated with a linear rela-
tion obtained from a first-order Taylor expansion of the
contact value of gHD(r) and its first derivative with re-
spect to the distance r

gHD(xd) ≈ gHD(d) + (x− 1)

(

dgHD(xd)

dx

)

x=1

. (49)

Therefore, we have

I1B ≈ − π ρ2D d
2gHD(d)

∫ x0

1

uMie(xd)xdx

− π ρ2D d
2

(

dgHD(xd)

dx

)

1

∫ x0

1

uMie(xd)x (x − 1) dx .

(50)

In order to simplify this expression we write

Iλ(λ) =

∫ x0

1

x

xλ
dx = −

(x0)
2−λ

− 1

λ− 2
(51)

and

Jλ(λ) =

∫ x0

1

x2 − x

xλ
dx

= −
(x0)

3−λ
(λ− 2)− (x0)

2−λ
(λ− 3)− 1

(λ− 3) (λ− 2)
.

(52)

The analytical expression of I1B is then given by

I1B = C
(

xλa

0 B(γ;λa)− xλr

0 B(γ;λr)
)

(53)

where

B(γ;λ) = 4γε

(

1− 7γ
16

(1− γ)2
Iλ(λ) − Φ(γ)Jλ(λ)

)

; (54)

the contact value of the HD radial distribution function
is obtained from the Henderson EOS [38]

gHD =
1− 7γ

16

(1− γ)2
(55)

and

Φ(γ) =

(

dgHD(xd)

dx

)

1

= −α
ω1γ

(1− ω1γ)
− 4.5(1− α)ω3 γ

(1 + ω3γ)

(1− ω3γ)

3

.

(56)

Finally, the analytical expression for the first-order
perturbation term for the 2D Mie fluid is

a2DMie
1 = C

[

xλa

0 (as1(γ;λa) +B(γ;λa))
]

− C
[

xλr

0 (as1(γ;λr) +B(γ;λr))
]

. (57)

As can be seen from this equation, the treatment of the
analytical expression of a2DMie

1 seems to be particularly
difficult since it involves an infinite series over an incom-
plete gamma function, see Eq. (47). However, the expres-
sion can be approximated to the first term, k = 1, that
uses the hard-rod radial distribution function from r = 0
to r = 2σ, and a correction term is introduced assuming
gHD(r) ≈ 1 for r > 2σ,

a2DMie
1,corr = πρ2D

∫ ∞

2σ

uMie(r) r dr

= 4C γ ε

[(

2(2−λa)

2− λa

)

−

(

2(2−λr)

2− λr

)]

. (58)

By introducing this correction, the resulting analytical
expression of a2DMie

1 is given by

a2DMie
1 = C

[

xλa

0 (as1(γ;λa) +B(γ;λa))
]

− C
[

xλr

0 (as1(γ;λr) +B(γ;λr))
]

+ 4Cγε

[(

2(2−λa)

2− λa

)

−

(

2(2−λr)

2− λr

)]

. (59)

In the case of the second-order perturbation term, an
expression based on the 3D SAFT-VR-Mie theory and
the macroscopic compressibility approximation [37] has
been derived for the 2D case,

a2DMie
2 =

1

2
KHD(1 + 2ψγ2)a∗1 (60)

where KHD is the hard-disk isothermal compressibility,

KHD =
(1 − γ)3

1 + γ + 0.375γ2 − 0.125γ3
, (61)

obtained from the Henderson EOS [38]; ψ is a 2D correc-
tion term of the macroscopic compressibility approxima-
tion [39],

ψ = ψ0(1 − 7.63944x20γ + 17.83253x40γ
2) (62)

where ψ0 = 1/γ20 and γ0 = 0.69015 is the HD packing
fraction for the liquid phase in the liquid-solid transition,
and a∗1 is the first-order perturbation term for the square
of the Mie potential,

a∗1 = πρ2D

∫ ∞

σ

[

uMie (r)
]2
gHD (r) rdr . (63)

The last quantity is easily evaluated with the expres-
sion that we have developed for a2DMie

1 considering the
square of the pair potential (see Appendix C). The Barker
and Henderson compressibility approximation was orig-
inally derived for 3D fluids [37], and assumes that the
fluctuations in energy are correlated to the fluctuation
of the number of interacting particles inside the attrac-
tive well of the pair potential, an effect that is approx-
imated by the isothermal compressibility of the entire
fluid. The correction introduced by Zhang [39] modi-
fies this assumption by considering the high-density limit
of HS packing of particles in the liquid phase. The 2D
version presented here gives the standard compresibility
approximation (2D MCA) by taking ψ = 0 in Eq. (60).
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D. Comparison with MC simulation results for

a2DMie

1 and a2DMie

2

Standard Metropolis Monte Carlo (MC) simulations
at constant number of particles, area and temperature
(NsT ensemble) were performed in order to numerically
compute the first- and second-order perturbation terms
of a set of 2D Mie fluids with different repulsive and at-
tractive exponents (λr and λa ). Systems at several val-
ues of reduced density (ρ∗2D = ρ2Dσ

2) were simulated at
reduced temperatures T ∗ = kBT/ε = 1 and T ∗ = 2. Sim-
ulations were carried out using 864 particles, contained
within a 2D square box, with 2.5×105 cycles required
for thermalisation and 5.0×105 cycles for statistics (the
number of cycles is defined as the number of movements
per particle). Runs were performed with a 40-50% ac-
ceptance ratio.
In Figs. 2-5 results are presented for a2DMie

1 and
a2DMie
2 obtained from theory and MC simulations for

Mie fluids with selected values of the repulsive exponent
λr, fixing the attractive exponent to the London value
of λa = 6. The corresponding numerical values are
summarized in Tables IV-IX of Appendix A, where we
include as a comparison parameter the percent deviation
of the theoretical data with respect to the MC values,

%D =
aTheory
n − aMC

n

aMC
n

× 100.

0 0.2 0.4 0.6 0.8
−2.5

−2.0

−1.5

−1.0
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a
2
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M
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λr = 20

λr = 14

λr = 12

Figure 2: The density ρ∗2D dependence of the first-order
Barker and Henderson perturbation term a2DMie

1 at a reduced
temperature T ∗ = 1, for Mie fluids with exponents λa = 6 and
λr and as indicated. Continuous curves are obtained from
Eq. (59) whereas the circles represent the exact results ob-
tained by MC computer simulation.

Good agreement between a2DMie
1 values obtained us-

ing the theoretical expression and the corresponding MC
simulation values is found for densities ρ∗2D < 0.85. The-
oretical and MC values diverge from each other at higher
densities, corresponding to packing fractions higher than

0 0.2 0.4 0.6 0.8
−2.5

−2.0

−1.5

−1.0

−0.5

0.0

ρ∗
2D

a
2
D
M
ie

1

λr = 20

λr = 14

λr = 12

Figure 3: The density ρ∗2D dependence of the first-order
Barker and Henderson perturbation term a2DMie

1 at a reduced
temperature T ∗ = 2, for Mie fluids with exponents λa = 6 and
λr and as indicated. Continuous curves are obtained from
Eq. (59) whereas the circles represent the exact results ob-
tained by MC computer simulation.

0.67. From MC simulation studies [40] it is known
that the hard-disk fluid undergoes a fluid–solid transition
when γ ≈ 0.69 in the fluid branch. In other words, the di-
vergence found for the first-order perturbation term may
be an indication of the HD liquid–solid phase-transition.
The results obtained for a2DMie

2 can be seen from
Figs. 4 and 5, and are in good agreement with the exact
MC values. The trends obtained with density and tem-
perature are correct, and in better agreement than the
MCA approximation (see also Tables IV-IX in Appendix
A).
The approach followed in this article modifies the pre-

vious version based on the SW potential. The use of the
Mie potential widens the scope of applications with this
potential model, since for bulk phases the SAFT-VR-Mie
has been used to reproduce and characterise a larger va-
riety of thermodynamic properties of substances than the
SW version. The use of the bulk parameters is required
to describe adsorption isotherms, as explained in the fol-
lowing section. From the theoretical point of view, the
2D version for the Mie system uses a better representa-
tion of the second-order perturbation term; in the case of
the SW theory, this term is given by the local compress-
ibility approximation, which has a lower accuracy than
the corrected MCA version introduced here.

III. MODELLING ADSORPTION ISOTHERMS

OF REAL FLUIDS: CO2 AND CH4

The prediction of adsorption isotherms using the
3D/2D SAFT-VR Mie approach is based on the solu-
tion of the thermodynamic equilibrium condition. Thus,
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Figure 4: Values of a2DMie

2 as function of the 2D reduced
density ρ∗2D obtained using the 2D SAFT-VR Mie, the 2D
Macroscopic Compressibility Approximation (2D MCA), and
MC simulations for Mie fluids with exponents λa = 6 and
several values of λr, for a reduced temperature T ∗ = 1.0.
Continuous curves corresponds to Eqs. (60)-(63) and dashed
lines are the 2D MCA values, based on the original expression
by Barker and Henderson for 3D fluids, which is obtained by
taking ψ = 0 in the aforementioned equations. MC computer
simulation results are represented by circles.

coexisting densities are obtained by demanding equal-
ity in the chemical potentials of the adsorbed and bulk
phases, for a given temperature, T , and bulk pressure,
P , as expressed in Eq. (21).
The chemical potential for a pure fluid is calculated

from the standard thermodynamic relationship

βµb = a3D + η

(

∂a3D
∂η

)

V,T

(64)

and

βµads = aads + γ

(

∂aads
∂γ

)

s,T

(65)

where η and γ are the 3D and 2D molar packing fractions,
respectively. From Eq. (64) and the 3D/2D SAFT-VR
Mie approach, the equations to be considered to model
adsorption isotherms are:

βµads = βµ2D + βµw (66)

where

βµ2D = ln(γ)+aHD+βa2DMie
1 +β2a2DMie

2 +
βP2D

ρ2D
(67)

and

βµw = ln(2/3)− ln(λw)− βεw ; (68)

0 0.2 0.4 0.6 0.8
−0.20

−0.15

−0.10

−0.05

0.00

ρ∗
2D

a
2
D
M
ie
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λr = 20
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λr = 12

Figure 5: Values of a2DMie

2 as function of the 2D reduced
density ρ∗2D obtained using the 2D SAFT-VR Mie, the 2D
Macroscopic Compressibility Approximation (2D MCA), and
MC simulations for Mie fluids with exponents λa = 6 and
several values of λr, for a reduced temperature T ∗ = 2.0.
Continuous curves correspond to Eqs. (60)-(63) and dashed
lines are the 2D MCA values, based on the original expression
by Barker and Henderson for 3D fluids, which is obtained by
taking ψ = 0 in the aforementioned equations. MC computer
simulation results are represented by circles.

βµb = ln(η) + aHS + βa3DMie
1

+ β2a3DMie
2 + β3a3DMie

3 +
βP3D

ρ3D
. (69)

The terms P3D and P2D correspond to the three- and
two-dimensional pressures respectively. The Helmholtz
free energies of the hard-disk and hard-sphere reference
systems are given by the Henderson [38], and Carnahan-
Starling [41] equations of state, respectively:

AHD

NadskBT
= aHD =

9γ

8(1− γ)
−

7

8
ln(1− γ) ; (70)

AHS

NbkBT
= aHS =

4η − 3η2

(1− η)2
. (71)

The molecular parameters of the 3D/2D SAFT-VR Mie
approach for calculating adsorption isotherms of model
fluids are:

1. The particle-particle interaction in the bulk phase:
σb, ε

Mie
b , λr, λa.

2. The particle-particle interaction in the adsorbed
phase:
σads, ε

Mie
ads , λ

ads
r , λadsa .

3. The particle-wall interaction:
εw and λw.
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In order to test the accuracy of the theory, the cases
of the adsorption of carbon dioxide (CO2) and methane
(CH4) onto dry coal were considered. Molecular param-
eters were defined under the following assumptions:

1. Bulk parameters (σb, ε
Mie
b , λr, λa). Parameters

reported in Table I were adopted to model the bulk
phases of CO2 [27] and CH4 [28]. The values of
these parameters are independent of the adsorption
process.

2. The molecules in the adsorbed and bulk phases
have the same segment diameter, i.e., σads = σb.

3. The adsorbed-phase particle–particle Mie-potential
parameters are the same as in the bulk phase,
λadsr = λr and λadsa = λa, i.e., the shape of the
pair interaction is the same for particles in both
phases.

4. The ratio of critical temperatures of the adsorbed
and bulk phases, Rc = T ads

c /T b
c is approximated

to 0.4. This value corresponds to the ratio ob-
tained from experimental data of adsorption of flu-
ids [15], and to the 2D/3D ratios obtained from the
Ising model [42] and computer simulation data of
Lennard-Jones fluids [43, 44]. This criterion im-
plies, using the 2D and 3D SAFT-VR Mie EoS,
that

εads/εb = 0.4
T ∗
c(b)

T ∗
c(ads)

= 0.8097 . (72)

This value is also in agreement with the prediction
given by Sinanonoglu and Pitzer [45].

5. The particle–wall interaction parameters i.e., εw
and λw are determined by numerical fitting to
provide the best resproduction of experimental
adsorption data, subject to the constraint that
0.1305 ≤ λw ≤ 0.8165, in order to guarantee mono-
layer adsorption [16].

6. The specific surface area (as) of adsorbent is also
obtained by regression. In the present case, the
value for dry coal was constrained to lie within
the range of values provided in the experimental
study of adsorption of CO2 and CH4 on dry coal
by Ottiger et al. [46].

Table I: Values of 3D SAFT-VR Mie parameters for pair in-
teractions in the bulk phase

Substance (εMie

b /kB)/K σ/Å λr λa

CO2 [27] 353.5500 3.7410 23.0000 6.6600
CH4 [28] 153.3600 3.7412 12.6500 6.0000

Table II: The SAFT-VR Mie scheme for the modelling of ad-
sorption isotherms of real single-component fluids

Interaction Model Parameters

Particle-particle,
σ, λr, λa, εbbulk phase

Particle-particle,
σ, λr, λa, εadsadsorbed phase

Particle-wall λw, εw

Parameter Origin

σ, λr, λa, εb Ref. [27]

εads from Rc, via Eq. (72)

λw, εw
obtained by fitting to
experimental adsorption data

Table III: Optimised parameters for modelling of adsorption
of CO2 and CH4 onto dry coal

System (εMie

ads /kB)/K λw εw/ε
Mie

b as/(m
2g−1

s )

CO2 (318.16K) 286.26 0.61 4.02 322.95
CO2 (333.16K) 286.26 0.62 3.98 310.45
CH4 (318.16K) 124.17 0.13 13.35 191.52

In Table II the procedure to determine the molecular
parameters for modelling of adsorption of real fluids is
summarised. The optimised parameter values used in
the modelling of adsorption isotherms of CO2 and CH4

onto dry coal are reported in Table III.
In Fig. 6, experimental and theoretical results are pre-

sented for the adsorption isotherms of CO2 onto dry
coal at two different temperatures, namely 318.16K and
333.16K. In particular, we report the number of adsorbed
moles per unit mass of adsorbent (n/ms) as a function of
bulk density. The experimental values are compiled from
the work of Ottiger et al. [46] and the theoretical adsorp-
tion isotherms are calculated by solving the thermody-
namic equilibrium condition between bulk and adsorbed
phases. The transformation of the coexisting densities
to the commonly used experimental units is discussed in
Appendix B. As observed, the theory allows for an excel-
lent reproduction of the experimental values in the whole
range of bulk fluid densities. Additionally, the variation
of the (n/ms)(ρbulk) curve with temperature is also well
captured. It is worth noting that the increase to a max-
imum value and subsequent quasi-linear decrease on the
adsorbed amount with increasing density is a character-
istic feature of the adsorption of CO2 on dry coal [46, 47].
As in the case of the 2D-SAFT-VR for SW particles,

the extension to the Mie potential can be used to
accurately describe a wide range of substances. The
case of adsorption of CH4 on dry coal at 318.16K is re-
ported in Fig. 7, where agreement between experimental
measurements [46] and theory is also attained. These
observations illustrate the capabilities and predictive
power of the theory as well as the quality of the molec-
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Figure 6: Adsorbed amount (n/ms) as a function of bulk den-
sity (ρbulk) for CO2 onto dry coal at 318.16K and 333.16K.
Comparison between the theoretical descriptions (continu-
ous curves) and the experimental values (circles) reported in
Ref. [46].

ular parameters used for describing both fluid-fluid and
fluid-solid interactions. In further communications we
will present applications to associating systems and their
mixtures.
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Figure 7: Adsorbed amount (n/ms) as a function of bulk
density (ρbulk) for CH4 onto dry coal at 318.16K. Comparison
between the theoretical description (continuous curve) and
the experimental values (circles) reported in Ref. [46]

IV. CONCLUSIONS

In this work we have presented the 2D SAFT-VR mod-
elling of adsorption isotherms for particles interacting via
Mie pair-potentials, based on the extension to the case
of two-dimensional fluids of the SAFT-VR Mie approach
[28]. By considering the examples of CO2 and CH4 ad-
sorbed onto dry coal, we have shown that excellent results
can be obtained from the application of the theory, even
considering that the Mie pair interaction in the adsorbed
and bulk phases have the same shape, given by the pa-
rameters λa and λr. This result is in contrast with the
2D SAFT-VR SW version, that requires non-conformal
pair interactions in the adsorbed and bulk phases [20–22].
In this way, the use of the Mie potential simplifies the
application of the SAFT approach to model adsorption.
The application of this theory to the case of associating
and multicomponent systems will be the subject of future
publications.
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Appendix A: Tables

In this and the following Appendices we provide in-
formation complementary to the results discussed in this
work.
In Tables IV-IX we report information about the com-

parison between the theoretical values of perturbation
terms and their corresponding Monte Carlo computer-
simulation values.

Table IV: Values of a2DMie

1 and a2DMie

2 for a Mie fluid char-
acterized by the exponents λr = 12 and λa = 6 at a reduced
temperature T ∗ = 1. Comparison between theory and MC
computer simulations.

ρ∗2D a2DMie

1 MC %D a2DMie

2 MC %D
0.10 −0.218 −0.190 14.605 −0.041 −0.042 2.071
0.30 −0.715 −0.663 7.802 −0.076 −0.078 2.555
0.50 −1.286 −1.210 6.308 −0.094 −0.086 8.970
0.70 −1.860 −1.779 4.565 −0.138 −0.120 14.818
0.75 −1.978 −1.906 3.770 −0.146 −0.133 9.654
0.80 −2.069 −2.016 2.644 −0.148 −0.146 1.368
0.85 −2.120 −2.101 0.890 −0.142 −0.159 10.784

Table V: Values of a2DMie

1 and a2DMie

2 for a Mie fluid charac-
terized by the exponents λr = 14 and λa = 6, at a reduced
temperature T ∗ = 1. Comparison between theory and MC
computer simulations.

ρ∗2D a2DMie

1 MC %D a2DMie

2 MC %D
0.10 −0.199 −0.183 8.643 −0.038 −0.039 3.470
0.30 −0.659 −0.616 6.948 −0.070 −0.074 5.406
0.50 −1.200 −1.135 5.742 −0.087 −0.081 7.796
0.70 −1.762 −1.694 4.034 −0.131 −0.116 12.659
0.75 −1.882 −1.821 3.351 −0.139 −0.129 7.801
0.80 −1.978 −1.935 2.232 −0.142 −0.144 1.412
0.85 −2.036 −2.027 0.460 −0.137 −0.160 14.349

Table VI: Values of a2DMie

1 and a2DMie

2 for a Mie fluid char-
acterized by the exponents λr = 20 and λa = 6, at a reduced
temperature T ∗ = 1. Comparison between Theory and MC
computer simulations.

ρ∗2D a2DMie

1 MC %D a2DMie

2 MC %D
0.10 −0.167 −0.156 7.144 −0.031 −0.033 5.411
0.30 −0.564 −0.532 5.957 −0.059 −0.066 11.007
0.50 −1.052 −1.003 4.883 −0.075 −0.075 0.072
0.70 −1.598 −1.545 3.427 −0.117 −0.101 15.710
0.75 −1.725 −1.678 2.803 −0.126 −0.117 7.629
0.80 −1.836 −1.801 1.916 −0.130 −0.135 3.377
0.85 −1.916 −1.910 0.329 −0.128 −0.153 16.219

Table VII: Values of a2DMie

1 and a2DMie

2 for a Mie fluid char-
acterized by the exponents λr = 12 and λa = 6, at a reduced
temperature T ∗ = 2. Comparison between Theory and MC
computer simulations.

ρ∗2D a2DMie

1 MC %D a2DMie

2 MC %D
0.10 −0.217 −0.198 9.550 −0.041 −0.042 1.793
0.30 −0.705 −0.653 7.992 −0.077 −0.079 2.796
0.50 −1.254 −1.176 6.643 −0.094 −0.095 0.586
0.70 −1.792 −1.705 5.125 −0.139 −0.135 3.017
0.75 −1.903 −1.820 4.539 −0.148 −0.148 0.194
0.80 −1.991 −1.919 3.730 −0.152 −0.159 4.274
0.85 −2.045 −1.995 2.530 −0.148 −0.170 12.746

Table VIII: Values of a2DMie

1 and a2DMie

2 for a Mie Fluid char-
acterized by the exponents λr = 14 and λa = 6, at a reduced
temperature T ∗ = 2. Comparison between Theory and MC
computer simulations.

ρ∗2D a2DMie

1 MC %D a2DMie

2 MC %D
0.10 −0.198 −0.182 8.846 −0.038 −0.039 3.235
0.30 −0.650 −0.607 7.157 −0.071 −0.075 5.846
0.50 −1.171 −1.105 5.969 −0.088 −0.091 3.501
0.70 −1.697 −1.624 4.491 −0.131 −0.132 0.440
0.75 −1.808 −1.740 3.880 −0.141 −0.144 2.309
0.80 −1.897 −1.841 3.051 −0.145 −0.159 8.830
0.85 −1.955 −1.921 1.754 −0.142 −0.172 17.525

Table IX: Values of a2DMie

1 and a2DMie

2 for a Mie Fluid char-
acterized by the exponents λr = 20 and λa = 6, at a reduced
temperature T ∗ = 2. Comparison between Theory and MC
computer simulations.

ρ∗2D a2DMie

1 MC %D a2DMie

2 MC %D
0.100 −0.167 −0.155 7.520 −0.031 −0.033 5.249
0.300 −0.558 −0.526 6.020 −0.059 −0.068 13.097
0.500 −1.029 −0.981 4.921 −0.075 −0.091 17.315
0.700 −1.540 −1.487 3.592 −0.117 −0.113 3.413
0.750 −1.656 −1.608 2.991 −0.126 −0.131 3.555
0.800 −1.755 −1.718 2.163 −0.132 −0.148 11.074
0.850 −1.826 −1.811 0.848 −0.130 −0.165 20.963
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Appendix B: Quantitative expression of adsorption

to compare with experimental data values

In order to quantify the amount of adsorbed particles
the Gibbs’ concept of surface excess is used [33]; this
consists of an imaginary surface placed parallel to the
solid wall of the adsorbent. The surface excess amount,
n, corresponds to the number of moles of the adsorbed
fluid. The amount n is an extensive quantity, which de-
pends on the extent of the interface and can be related
to the surface excess concentration, Γ, by the following
relationship

Γ

NA
=

n

ss
(B1)

where NA is the Avogadro’s number and ss is the surface
area associated with the mass of solid adsorbentms. The
specific surface area as is therefore

as =
ss
ms

. (B2)

In many cases, adsorption data values are reported using
the quantity (n/ms), termed the specific surface excess

amount, and defined as the ratio of the surface excess
amount over the solid mass (adsorbent mass). There-
fore, a compact expression for the specific surface excess
amount or the amount adsorbed is given by

n

ms
=

Γas
NA

. (B3)

In this equation, the only undefined term is the surface
excess concentration, Γ. This term is defined as

Γ =

∫ ∞

0

[ρ(z)− ρb]dz (B4)

where ρ(z) is the density of particles in the adsorbed
phase and ρb is the bulk density of particles, i.e.,

ρ(z → ∞) = ρb. The surface excess concentration is
commonly called the Gibbs surface excess concentration,
denoted as ΓGibbs. In the case of a solid wall interacting
with the adsorbed particles via a SW potential, we have
that

ΓGibbs =

∫ λwσ

0

ρ(z)dz − ρbλwσ (B5)

where λwσ is the length scale of the adsorbed phase. The
integral in this equation is the absolute adsorption con-
centration, Γabs, defined as the total concentration of ad-
sorbed molecules , given by

Γabs = ρads =

∫ λwσ

0

ρ(z) dz (B6)

where ρads = ρ2D is the density of molecules of adsorbed
fluid. This relation can also be written as

ΓGibbsσ
2 = Γabsσ

2
− 6ηλw/π (B7)

where Γabsσ
2 = 4γ/π. The Gibbs surface excess concen-

tration and the absolute adsorption concentration values
can be calculated when the equilibrium conditions are
satisfied. Therefore, the connection with the experimen-
tal data values is accomplished by the calculation of the
adsorbed amount, given by

n/ms =
(ΓGibbsσ

2)as
NA σ2

. (B8)
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Appendix C: Evaluation of a∗

1

From simple algebraic manipulation, it can be demon-
strated that the mean-attractive energy for the square of
the Mie pair potential, a∗1, required in the evaluation of
a2DMie
2 (Eq. (61)) is given by:

a∗1 = C2
[

x2λa

0 (as1(γ; 2λa) +B(γ; 2λa))
]

+ C2
[

x2λr

0 (as1(γ; 2λr) + B(γ; 2λr))
]

− 2C2
[

xλr+λa

0 (as1(γ;λr + λa) +B(γ;λr + λa))
]

+ 4C2γε2
[

2

(

2(2−(λr+λa))

2− (λr + λa)

)

−

(

2(2−2λr)

2− 2λr

)

−

(

2(2−2λa)

2− 2λa

)]

.

(C1)


