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ABSTRACT
We perform an analysis of the three-dimensional cosmic matter density field traced
by galaxies of the SDSS-III/BOSS galaxy sample. The systematic-free nature of this
analysis is confirmed by two elements: the successful cross-correlation with the gravi-
tational lensing observations derived from Planck 2018 data and the absence of bias at
scales k ' 10−3 − 10−2h Mpc−1 in the a posteriori power spectrum of recovered initial
conditions. Our analysis builds upon our algorithm for Bayesian Origin Reconstruc-
tion from Galaxies (borg) and uses a physical model of cosmic structure formation to
infer physically meaningful cosmic structures and their corresponding dynamics from
deep galaxy observations. Our approach accounts for redshift-space distortions and
light-cone effects inherent to deep observations. We also apply detailed corrections
to account for known and unknown foreground contaminations, selection effects and
galaxy biases. We obtain maps of residual, so far unexplained, systematic effects in the
spectroscopic data of SDSS-III/BOSS. Our results show that unbiased and physically
plausible models of the cosmic large scale structure can be obtained from present and
next-generation galaxy surveys.

Key words: large-scale structure of Universe – methods: statistical – methods: data
analysis – gravitational lensing: weak – dark matter

1 INTRODUCTION

The measurement of clustering properties with modern
galaxy surveys is achieving unprecedented precision on many
scales of interest for cosmology (Ross et al. 2017). How-
ever, even for well-controlled galaxy surveys such as SDSS-
III/BOSS (Eisenstein et al. 2011), systematic effects affect
the largest spatial scales. This is clearly illustrated by the re-
cent work of Kalus et al. (2019): for scales1 k . 10−2h Mpc−1

systematics remain a challenge in clustering analyses. Since
sampling noise will be reduced with future surveys such as
Euclid (Laureijs et al. 2011), the problem will further in-
crease, hampering our capability to do cosmological infer-
ence.

Fortunately, over the last decade, Bayesian forward
modelling of large-scale structures has come of age and may
provide a way out. This method allows, assuming that the
initial conditions are drawn statistically fairly from a Gaus-

? E-mail: guilhem.lavaux@iap.fr
1 We use h = H/(100 km s−1 Mpc−1) with H the Hubble constant

at redshift z = 0.

sian distribution, to model the detail of the observed galaxy
distribution. Notably, the borg algorithm (Jasche & Wan-
delt 2013) has been successfully applied to the 2M++ galaxy
compilation (Lavaux & Hudson 2011; Lavaux & Jasche 2016;
Jasche & Lavaux 2019) and to the SDSS-II main galaxy sam-
ple (Abazajian & Survey 2009; Jasche et al. 2010). Other
groups (in particular the ELUCID projet, Wang et al. 2014,
2016; Tweed et al. 2017) have developed techniques similar
in spirit, meeting some success in applying to the SDSS-II
main galaxy sample.

In this work, we apply the newly updated borg anal-
ysis framework jointly to the two galaxy samples of SDSS-
III/BOSS, LOWZ and CMASS. Most analyses run separate
analysis on each component, which increases sample variance
in their measurement. We are not limited by this aspect and
we can add as many surveys as needed, provided that no
double counting of a single galaxy occurs. We aim at recov-
ering an unbiased ensemble of history of formation of the
large-scale structure, and validate the model with Planck
lensing maps (Planck Collaboration et al. 2018a). Solving
this problem will open up new venues to extract cosmo-
logical information, in particular with the likelihood-based
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ALTAIR extension of borg (Ramanah et al. 2019) or with
the likelihood-free SELFI algorithm (Leclercq et al. 2019).

An important feature of SDSS-III/BOSS is that it pro-
vides an excellent test case for the next generation of galaxy
surveys, i.e. the Euclid mission (Laureijs et al. 2011) and
the Large Synoptic Survey Telescope (LSST LSST Science
Collaboration et al. 2009). It will be impossible to control
everything in the data acquisition of these surveys, and the
huge number of expected observed galaxies with photomet-
ric redshifts (∼20 billions for LSST, ∼1 billion for Euclid)
will make all classical methods signal-dominated and dan-
gerously sensitive to systematic errors (Laureijs et al. 2011;
Colavincenzo et al. 2017; Monaco et al. 2018) to reach sub-
percent precision the measurement of the density power
spectrum. This further highlights the need to control sys-
tematic signals. There is also the interesting possibility that
unexploited cosmological signal is available in the data of
SDSS-III/BOSS.

To achieve a systematic-free inference we make use of
a new likelihood (named “robust Poisson likelihood”, Por-
queres et al. 2019), and a template matching method for
systematics (Jasche & Lavaux 2017) to remove the impact
of systematic effects on our inference. Usual galaxy survey
data analysis rely fully on the existence of maps to correct
for large scale, subtle, systematic effects. For example, Leist-
edt & Peiris (2014) compiled a set of 220 foreground maps
of possible contaminants for the inference of the clustering
signal of quasars in SDSS-III/BOSS. Later, Elsner et al.
(2016, 2017) showed that ‘extended mode’ projection, i.e.
the foreground template fitting technique, is almost surely
biased, whereas ‘basic mode’ projection is unbiased in most
cases. These two approaches resemble what has been done
for analysis of Cosmic Microwave Background data obtained
from space (Tegmark 1997) and ground observatories (e.g.
for ACT and SPT, Fowler et al. 2010; Schaffer et al. 2011).
In this work, we use the two kind of procedures at the same
time.

Another big issue in analysing galaxy surveys is the
derivation of the relation between galaxy population and the
large scale dark matter field. This relation is generally called
the galaxy bias model (Kaiser 1984; Desjacques et al. 2018).
Typical analysis methods are calibrated on mock data from
N-body simulations before being applied to galaxy surveys
(Chuang et al. 2015; Kitaura et al. 2016; Beutler et al. 2017;
Satpathy et al. 2017). A more agnostic procedure would fit
this “bias” model jointly with the inference of cosmological
parameters, the underlying density field and the eventual
residual due to systematic effects (Jasche & Lavaux 2017).
However, finding a family of bias models sufficiently generic
to capture all the unknown small-scale physics, extensible
and fast to evaluate, is non-trivial (Schmidt et al. 2019). In
this work, we present a novel bias model that has some of
these properties.

This paper is organised as follows. In Section 2, we
present the overall organisation of the borg inference
method, its assumptions and the essential new components
of the adopted model to represent the galaxy distribution of
SDSS-III/BOSS. In particular, we review the properties of
our robust likelihood and introduce a new bias model. Next,
we present the pre-processed data provided to the borg in-
ference machine in Section 3. We then describe our results
on the systematic-free inference of the large-scale structure

P(δ̂ic |Ω)

δ̂ic

δLPT[δ̂ic]

δLPT

N(g)[δLPT]

N(g)

N(g, obs. pred.)[N(g)] N(g, obs. pred.)

P(N(g, obs.) |N(g, obs. pred.))N(g, obs.)

P(Ap |N(g, obs.), N(obs.,pred.)

µA, σA

N(g, obs.)

Figure 1. Hierarchical representation of the Bayesian inference

framework used for the analysis of SDSS-III/BOSS. Ω represents
cosmological parameters, δ̂ic is the set of Fourier modes encod-

ing the initial conditions at z ' 1 000, δLPT is the density field
obtained from first-order Lagrangian Perturbation Theory, N(g)

the galaxy number density field derived from the bias model,

N(g, obs. pred) the galaxy number density field that should be ob-
served after selection and systematic effects, N(g, obs.) the actual

SDSS-III/BOSS data, µA and σA the per-pixel mean and stan-

dard deviation of the inferred systematic maps. The details are
provided in Section 2. Purple boxes correspond to a deterministic

transition from one field to another. Green boxes are probability

distributions modelling the field prior, like the top one which has
a Gaussian form, or likelihood, like the bottom right ones. White

ellipses are statistical variables. The two blue ellipses show the

input from the data in the inference.

in Section 4, including the systematic maps that we have
derived for the SDSS-III/BOSS sample. We conclude in Sec-
tion 5.

2 METHOD

This section provides a detailed overview of the method used
in this work. We focus on the salient features of the model
that we have adopted to analyse the SDSS-III/BOSS data.
We note that all the expressions are written as for only one
galaxy catalogue. To reduce the number of indices, we have
omitted to explicitly mention every-time that the inference is
given a set of different independent galaxy catalogue. How-
ever the method as implemented does take this into account,
and the expressions may be trivially generalised to the multi-
catalogue case. We thus omit this in the rest of the section.

In Section 2.1, we give a short presentation of the sta-
tistical modelling and sampling algorithms, with references
to our previous work where details can be found. Then we
present the dynamical model that used in this work in Sec-
tion 2.2, before describing the galaxy predictive model, i.e.
the bias model, in Section 2.3. In Section 2.4, we present
the foreground templates used to model known systematic
effects. In Section 2.5, we move on our likelihood, designed

MNRAS 000, 1–19 (2019)



Cosmological density inference with SDSS3-BOSS 3

to absorb most of the other, unknown, systematic effects.
Finally in Section 2.6, we show how this likelihood can be
reversed to provide an inference procedure for the systematic
maps themselves.

2.1 A probabilistic physical forward model of
dark matter dynamics

As mentioned in the introduction, this work describes the
extension and application of our previously-developed borg
algorithm. borg aims at inferring a fully probabilistic and
physically plausible model of the three-dimensional mat-
ter distribution from observed galaxies in cosmological sur-
veys (see e.g. Jasche & Wandelt 2013; Jasche et al. 2015;
Lavaux & Jasche 2016). This framework solves a large-scale
Bayesian inverse problem by fitting a dynamical structure
formation model to data and inferring the primordial initial
conditions from which presently-observed structures formed.
The development of this framework was stemmed by con-
vincing evidence from Cosmic Microwave Background ob-
servations that the statistics of initial conditions are close
to Gaussian (Planck Collaboration et al. 2019). In contrast,
the statistics of present large-scale structures are very com-
plex and strongly non-Gaussian. It happens that modelling
the change of coordinates relating initial conditions to vis-
ible large-scale structures is not so complicated in the cos-
mological paradigm, and it is even feasible to sample the
initial states with a Monte Carlo algorithm, currently the
Hamiltonian Markov Chain Monte Carlo algorithm (Jasche
& Wandelt 2013). This physical forward modelling approach
naturally accounts for the formation of non-linear and non-
Gaussian large-scale structures, associated with statistics of
the density field beyond 2-point correlations, redshift-space
distortions and light-cone effects. As a result, the algorithm
provides plausible three-dimensional matter density fields,
but also performs a full four-dimensional state inference and
recovers the dynamic formation history and velocity fields of
the cosmic large-scale structures.

The method also accounts for systematic and stochas-
tic uncertainties, such as survey geometries, selection effects,
unknown noise and galaxy biases, as well as foreground con-
tamination (see e.g. Jasche & Wandelt 2013; Jasche et al.
2015; Lavaux & Jasche 2016; Jasche & Lavaux 2017; Por-
queres et al. 2019). For further details on the statistical in-
ference machinery and solutions to the described large scale
Bayesian inverse problem, the reader is referred to our previ-
ous work (Jasche & Wandelt 2013; Jasche et al. 2015; Lavaux
& Jasche 2016; Jasche & Lavaux 2019).

We note that our model includes many components
(initial Fourier modes amplitudes and phases, galaxy bias
and foreground contamination). Parameters related to these
components are all injected in a probabilistic framework
which is bound together on one side by Bayesian priors, typ-
ically Gaussian initial conditions, and by the likelihood of
galaxy observations on the other side. A graphical summary
of all the steps and connections involved in this Bayesian in-
ference is given in Figure 1. As already detailed many times
in our previous work, we use sampling algorithms to build a
fair ensemble of points in the posterior parameter space, pro-
viding globally a numerical approximation to the posterior
density distribution. We do not use an iterative procedure
which would provide a single answer for the reconstruction

problem, and would potentially bias the result as in the case
of the Wiener filter (Rybicki & Press 1992). We want to
stress this point to reduce misconceptions about our results.

2.2 Dynamics and light cone model

The target resolution of the inferred initial conditions and
modelled galaxy distribution, discussed in the Section 3,
is about 16h−1 Mpc. At this resolution, the mass density
on the mesh at that scale is only affected by mildly non-
linear dynamics at low redshift. We thus limit our model of
the dynamics in borg to first-order Lagrangian Perturba-
tion Theory (LPT), also called the Zel’dovich approximation
(Zel’Dovich 1970; Bouchet et al. 1995). This model predicts
the matter density field and its dynamics with sufficient ac-
curacy at the scales relevant to this work (∼ 16h−1 Mpc, e.g.
Bernardeau et al. 2002).

In borg, we use a particle representation to implement
the LPT model. The relation between the final Eulerian po-
sition x and the initial Lagrangian position q of each particle
is given as:

x(q) = q + D+(a f )Ψ(q), (1)

with Ψ(q) the displacement field derived from the initial
conditions proposed by the sampling algorithm, and D+(a f )
the linear growth factor at the scale factor a f . We encourage
the reader to refer to the previous publications (Jasche &
Wandelt 2013; Jasche & Lavaux 2019) for further details on
the numerical implementation of the forward and adjoint
gradient. For the purpose of this work, we further modify
the model by adjusting D+ depending on the distance to
the observer to simulate a light cone. The new evolution
equation is thus

x(q) = q + D+(a(|q |))Ψ(q), (2)

with a(d) the relation between the comoving distance d and
the scale factor of the homogeneous Universe at that look-
back distance. This model is an approximation to the full
problem of light cone building which involves computing in-
tersections of two trajectories, the trajectory of the light
emitting object and the geodesic of the photon emitted by
that object and detected through observatories. The average
error produced by this approximation is given by the typical
amplitude of the displacement field Ψ(q). In a ΛCDM uni-
verse with Planck cosmology (Planck Collaboration et al.
2018b), that displacement is of order 5h−1 Mpc, with a
maximum of ∼20h−1 Mpc for the fastest moving objects,
which is of the same size as a volume element of our mesh
(see Appendix A). At the farthest distance, this approxima-
tion means that we neglect additional coherent distortion
of about 10h−1 Mpc. At the present resolution, this is still
acceptable. However, future improvement on the resolution
will require to investigate the detailed impact of the light
cone effect on the reconstruction.

2.3 Galaxy bias model

In this work, we introduce a new bias model which is built on
a few requirements: i/ galaxy formation is a non-local pro-
cess in Eulerian coordinates, meaning that the model must
be somehow sensitive to the environment, and not neces-
sarily linearly; ii/ it should follow features of the linear bias

MNRAS 000, 1–19 (2019)
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model as much as possible on large scales, for better compar-
ison with earlier literature, and (more interestingly) to offer
a connection to generic perturbative bias expansion (Des-
jacques et al. 2018; Schmidt et al. 2019; Elsner et al. 2019);
iii/ it must ensure positivity of the final galaxy population
field to give physically meaningful predictions. As such, we
introduce the following bias model to predict the number of

galaxies N(g)
i

in a mesh element indexed by i:

N(g)
i
= ∆†

i
Q∆i, (3)

with Q a positive definite matrix and ∆i a vector formed
from local averages of the matter density contrast field δ. In
order to guarantee that any sampled matrix is positive def-
inite, we use the Cholesky decomposition of Q as sampling
parameters, i.e. the matrix L with Q = LL†. The vector ∆i
is defined as follows:

∆†
i
=

(
1, δ(1)

i
, (δ(1))2i , . . . , δ

(2)
i
,
(
δ
(2)
i

)2
, . . . ,

(
δ
(3)
i

)
, . . .

)
, (4)

with δ
(`)
i
= A(`)({δi}), A(`) being an averaging operation in

a neighbourhood of the i-th mesh element for ` ≥ 2 or the
identity for ` = 1. This can be written more compactly as

∆i,a =
(
δ(`a )

)γa
(5)

for `a ≥ 0 and γa ≥ 0. In this work, the averaging is done
in practice with an oct-tree structure. The level ` = 1 is
directly the density fluctuation at the finest level, i.e. δ. For
higher levels, ` > 1, we derive the density fluctuations using
the following relation:

δ
(`)
x,y,z ({δi}) =

1
8`

2(`)−1∑
a,b,c=0

δm(`)(x,a),m(`)(y,b),m(`)(z,c) , (6)

with the coarsening operator

m(`)(x, a) = 2` bx/2`c + a . (7)

For the purpose of Hamiltonian Markov Chain exploration
used in borg, we compute analytically and provide the ad-
joint gradient of the above model in Appendix B.

2.4 Foreground templates

A major point of contention in data analysis is the level of
systematic effect contaminating the observational data. The
contamination affects the spectroscopic sample of galaxies
by hindering a proper uniform target selection from pure
photometry. Indeed, to build a galaxy sample, one must gen-
erally start with broadband photometry, from which a list of
candidates for spectrum measurement is built. Once its spec-
trum is measured, each candidate object is classified, e.g. as
a star or a galaxy. Any bias in target selection can affect the
resulting samples of classified objects. For this reason, the
final spectroscopic sample of galaxies reflects the biases of
the target selection procedure.

In the case of SDSS-III/BOSS, several groups have stud-
ied the possible implication of different contaminants (e.g.
Ross et al. 2012; Leistedt & Peiris 2014). In this work, we
follow the model presented in Jasche & Lavaux (2017) to
represent the effect of a small number of systematics maps,
which we use to benchmark the effectiveness of the robust

likelihood mechanism presented in the next section. The as-
sumed model is multiplicative, i.e.

N(g, obs. pred.)
i

= Ri

∏
a

(1 + αaFa,i)N
(g)
i

, (8)

with N(g, obs. pred.)
i

the predicted mean number of galax-
ies at mesh element i that is observed given observational

constraints (mask and systematics), and N(g)
i

the predicted
mean number of galaxies from the dynamical model in the
same mesh element, as obtained in Equation (3). In the
above equation, we have also introduced Ri the linear sur-
vey response, which accounts for the mask and the selec-
tion effects (radial and angular), Fa,i the value of the fore-
ground template a in mesh element i, and αa the intensity
of foreground a. The linear response is generally provided as
part of the meta-data of a given survey. It is estimated from
the target and spectroscopic sample. In the case of SDSS-
III/BOSS, that is just the ratio between those two samples
for each angular direction. The parameter αa is left free sam-
pled directly from its posterior given the data. As mentioned
in the introduction of Section 2, there is one parameter for
each foreground and for each for each catalogue part of the
inference problem. This multiplicative foreground model can
reasonably model a broad class of systematic effects, such as
intergalactic absorption of light by dust, atmospheric effects
or fibre collisions. However, it is limited to known effects for
which sky models exist.

2.5 Robust likelihood

The SDSS-III/BOSS survey has been designed to optimally
study galaxy clustering at the scales of BAOs. While con-
trol of systematic effects at these scales has been studied
in detail by the SDSS collaboration (e.g. Reid et al. 2016),
there exists no equally-good understanding of the impact of
systematic effects at the largest scales of the galaxy distribu-
tion, typically for modes of wavenumber k <∼ 10−2h Mpc−1. So
far, state-of-the-art data analysis methods have had limited
success in removing some of the large-scale systematic ef-
fects inherent to the observations (Kalus et al. 2019). These
results indicate that there probably exists a scale in data be-
yond which galaxy clustering is not understood because it is
not modelled sufficiently well using known foreground tem-
plates. To address this issue, Porqueres et al. (2019) devel-
oped a new likelihood, based on Poisson statistics, which is
designed to be robust against unknown foreground contami-
nation at a scale given a priori. The underlying idea relies on
the assumption that the physically modelled galaxy distri-
bution can be related to the observed one up to some overall
scaling over patches on which the unknown foreground mod-
ulation is quasi constant. These patches can be chosen in any
convenient way for the analysis. In practice, we use a three-
dimensional extrusion of pixels of a HEALPix map, yielding
a 3d patch map. This allows us to group pixels with quasi
constant foreground amplitudes into sets Am, where m runs
over indices of an HEALPix map. The effective predicted

Poisson intensity is Api N(obs. pred.)
i

, where i is a mesh el-
ement index of the 3d grid covering the considered volume
of Universe, pi the index of the patches containing i (oth-

erwise said i ∈ Api ), and N(g, obs.)
i

the raw galaxy count
intensity predicted by the dynamical model and the galaxy

MNRAS 000, 1–19 (2019)
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bias model. We build the following probabilistic model:

P({N(g, obs.)
i

}, {Ap}|{N(obs. pred.)
i

}) =∏
p


∏
i∈Ap

Poisson(ApN(g, obs. pred.)
i

)
 π(Ap) , (9)

with {N(g, obs.)
i

} the number count of galaxies observed in
the voxel i. We choose π(A) ∝ 1/A as the prior probability of
the amplitude of the unknown systematic, which thus follow
a Jeffreys’ prior. The problem of large scale structure infer-
ence uses the marginalised version of that probability, and
was shown to be resilient to unknown systematics in a test
on mock data (Porqueres et al. 2019). After marginalisation
over {Ap}, the new likelihood takes a simple form:

P
(
{N(g, obs.)

i
}|{N(obs. pred.)

i
}
)
∝

∏
p

∏
i∈Ap

©«
N(obs. pred.)
i∑

j∈Ap
N(obs. pred.)
j

ª®¬
N

(g, obs.)
i

. (10)

We immediately notice that this likelihood is insensitive
to absolute scales in the predicted galaxy number inten-

sity {N(obs. pred.)
i

}, which is an appealing feature: the ra-
tio cancels any contribution over a scale corresponding to
the assumed smoothness of the foreground contamination.
Robustness tests are described in more details in Porqueres
et al. (2019).

2.6 Systematic map inference

The robust likelihood is designed to ignore information on
some spatial scale. In the case of this work, we limit our-
selves to ignore information above some angular scale, even
if the framework would also work also for complex 3d scales.
However, we may still use the inferred density field to solve
the reverse problem of inferring the systematic effects that
were ignored within the Markov Chain Monte Carlo analy-
sis (MCMC, see Section 4). In doing so, we obtain complete
maps of the unknown systematic effects down to some angu-
lar scale. For one patch Ap, we may derive the conditional
probability of the value taken by Ap from Equation (9)

P(Ap |{N(g, obs.)
i

}, {N(obs. pred.)
i

}) ∝
1

Ap

∏
j∈Ap

Poisson
(
ApN(obs. pred.)

i

)
. (11)

For most purposes, we are only interested in the first two
moments of the above distribution, the mean and the vari-
ance. These may be computed analytically:

µ
Ap |N(obs. pred.) = 〈Ap〉 =

∑
i∈Ap

N(obs)
i∑

i∈Ap
N(obs. pred.)
i

, (12)

σ2
Ap |N(obs. pred.) = 〈(Ap − µAp

)2〉

=

∑
i∈Ap

N(obs)
i(∑

i∈Ap
N(obs. pred.)
i

)2 . (13)

In the above, we have used the following identity to compute
the integral over the Poisson distribution:∫ +∞

0
dx xα exp(−βx) = α!β−α−1 . (14)

We note that we did not specify the derivation of the set
Ap for each patch of interest. In our case, we are inter-
ested in computing sky maps at different redshift of de-
tectable systematic effects, given our model of large scale
structures. We use the HEALPix pixelization to represent
these maps. Each patch thus corresponds to the cosmolog-
ical volume that projects in each pixel of the sought map.
We build the set Ap by throwing 100 uniformly distributed
rays at random within each pixel and recording the voxels
that are traversed. Because voxel has a finite size, many rays
for different HEALPix pixels will traverse the same voxels.
This means that the maps derived from this procedure will
have nearby pixels with highly correlated values. That is not
a fundamental limitation but a choice of representation of
the systematic map that we aim to derive. The value for
the patches derived from the posterior analysis would be
completely decorrelated if we had decided to choose a non-
overlapping set of voxels to compute pixel values.

We note that the average and the variance per pixel
given in Equations (12) and (13) are for one particular
model of large-scale structure given by the set of values{

N(g, obs. pred.)
i

}
. borg provides an ensemble of plausible

values for this field. The probability for the set of pixels
{Ap} is thus:

P({Ap}|{N(g, obs.)
i

}) =∫ ©«
Ng∏
j=1

dN(obs. pred.)
j

ª®¬ P({N(obs. pred.)
j

}|{N(obs)
i

}) ×

P({Ap}|{N(obs)
i

}, {N(obs. pred.)
j

})

' 1
Nsample

∑
c

P({Ap}|{Ni}, {N
(obs. pred.)
i,c

}) , (15)

with N(obs. pred.)
i,c

the predicted observed galaxy intensity in
voxel i for the Markov chain sample c, Nsample the number
of considered samples in the MCMC, and Ng the number of
mesh element to represent the matter density field. Thus,
the marginalised mean and variance at each pixel position
is computed by taking the average over the Markov chain of
the mean and variance given by Equations (12) and (13).

3 THE SDSS-III/BOSS DATA

We apply our Bayesian inference approach to galaxies
observed by the Baryon Oscillation Spectroscopic Survey
(BOSS, Dawson et al. 2013), the third generation of the
Sloan Digital Sky Survey (SDSS-III, Eisenstein et al. 2011).
The BOSS survey is dedicated to observing the three-
dimensional clustering of 1.37 million galaxies with spec-
troscopic redshifts covering about 10 000 deg2 of the sky
over two contiguous regions in the Northern and Southern
Galactic caps. This work uses the final data release DR122

2 https://data.sdss.org/sas/dr12/boss/lss/
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LOWZ

0.8 1

CMASS

0.8 1

Figure 2. Completeness maps of SDSS-III/BOSS for the LOWZ sample (left panel) and CMASS sample (right panel). These completeness

maps are directly derived from the DR12 repository and rendered on an HEALPix mesh at Nside = 2048. We note the usual vetoed

regions in LOWZ corresponding to a problem in the target selection that occurred during the first year of data acquisition (Parejko et al.
2013).

Dust map

0 5.0 × 10−1

PSF r-band

0 3.0arcsec

Sky brightness g band

0 4.0nanomaggy

Star density 20.3 <m< 20.5

0 1.0 × 106Stars.radian−2

Figure 3. Four of the eleven known systematic maps that we have used in the inference presented in this work. Each of these maps was

rendered at Nside = 2048 from a mangle representation. The above are dust induced reddening (top left), point spread function (PSF) in

the r band (top right), sky flux in the g band (bottom left), density of stars with an apparent magnitude 20.3 < i < 20.5 (bottom right).
We note the typical striping induced by the SDSS scanning strategy for the top right and bottom left maps.

Name Definition

dust Dust induced reddening (Schlegel et al. 1998)
sky flux Photometric sky flux in the indicated

band (5 maps)

airmass r Air mass above telescope, r band
psf r Point spread function, r band
star 0 Density of stars with 20.5 < i < 20.3
star 1 Density of stars with 20.3 < i < 20.1
star 2 Density of stars with 20.1 < i < 19.0

Table 1. Name convention for the 11 foreground templates used

in this work. The coefficients αa attached to each of these tem-
plates in Equation (8) are sampled jointly with the bias parame-

ters and the matter density field.

of SDSS-III/BOSS, containing the data of all six years of the
survey (Alam et al. 2015). Galaxies were targeted uniformly
in a low-redshift sample with z < 0.45 (LOWZ). To select ad-
ditional massive galaxies in the redshift range 0.4 < z < 0.8,
several colour cuts were applied to the SDSS-III imaging
data in the (u,g,r,i,z) bands (Fukugita et al. 1996). Accord-

ing to the passively evolving model, these selections result
in a sample (CMASS) that has a constant stellar mass limit
over the redshift range 0.4 < z < 0.8 (Maraston et al. 2009).
Large stellar masses imply strong galaxy biases with respect
to the underlying dark matter density field. This property
induces that each galaxy provides strong indication of large
scale matter fluctuations, yielding more information on large
scale structure analysis than their lower stellar mass coun-
terpart. Detailed descriptions of BOSS targeting criteria,
data reduction methods and the construction of the large-
scale structure catalogue are described in Eisenstein et al.
(2011); Dawson et al. (2013); Alam et al. (2015); Reid et al.
(2016). More specifically, we use large-scale structure cat-
alogues provided by the BOSS galaxy clustering working
group (Anderson et al. 2014; Reid et al. 2016). Their sample
assigns weights to galaxies to correct for non-cosmological
fluctuations imprinted on the target catalogue by imperfec-
tions in the acquisition of spectroscopic redshifts due to fibre
collisions, precluding simultaneous assignments of spectro-
scopic fibres to targets closer than 62′′ (Ross et al. 2011;

MNRAS 000, 1–19 (2019)
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Figure 4. Slices through the inferred three-dimensional ensemble mean density field (left panel) and the corresponding standard de-

viations of density amplitudes (right panel) obtained from the Markov Chain. As can be seen, the algorithm recovers the filamentary
large-scale structures in regions sampled by galaxies of the SDSS-III/BOSS survey, while matter density approaches cosmic mean in

unobserved regions. Correspondingly, the map of standard deviations shows low variance in observed regions and correctly provides

higher uncertainty in unobserved regions. The plot illustrates that borg provides detailed reconstructions of matter density fields and
corresponding uncertainty quantification. The coordinates are all comoving assuming the cosmology given in Section 4. The residual

small fluctuations outside the observed region in the left panel are due to the finite length of the Markov Chain.
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Figure 5. Slices through the cosmic velocity field derived with borg using data from SDSS-III/BOSS.Left panel : ensemble average of

the line-of-sight component of the velocity field. Right panel : standard error of the mean of the velocity field (standard deviation derived

from the posterior). The effect of the light cone is visible (giving a factor of ∼2 difference in the standard deviation between z = 0 and
z = 0.7).

Ho et al. 2012; Ross et al. 2012). Additional weights are as-
signed to compensate systematic effects between observed
galaxy number densities and the seeing (Reid et al. 2016).
To account for survey geometry and spectroscopic complete-
ness, we used the mangle software (Swanson et al. 2008) to
create corresponding HEALPix (Gorski et al. 2005) maps
at Nside = 2 048 shown in Fig. 2. To account for redshift de-
pendence in radial selection functions we split the LOWZ
and CMASS sample into four redshift bins and two galac-

tic caps each, making a total 16 sub-catalogues. We have
thus 4 redshift bins for each of the following catalogue:
LOWZ north galactic cap (NGC), LOWZ south galactic
cap (SGC), CMASS NGC and CMASS SGC. The four dis-
tance bins for LOWZ are chosen as [600, 750]h−1 Mpc, [750,
900]h−1 Mpc, [900, 1050]h−1 Mpc, [1050, 1200]h−1 Mpc. Sim-
ilarly we have four sub-catalogues for CMASS with distance
bins chosen as [1000, 1200]h−1 Mpc, [1200, 1400]h−1 Mpc,
[1400, 1600]h−1 Mpc, [1600,1800]h−1 Mpc.

MNRAS 000, 1–19 (2019)
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The borg algorithm permits us to treat the respective
systematic effects, such as redshift dependent galaxy biases,
selection effects and foreground contamination, for each of
these 16 galaxy sub-samples. In the following we will provide
more detail to our data analysis procedure.

While not strictly required by our robust likelihood
framework, we also derive systematic maps from the meta-
data of the SDSS-III/BOSS photometric database. As men-
tioned in Section 2.4, we make them part of the data model
to learn about specific features that could still be there even
after the cleaning performed by the robust likelihood. We
have included 11 foregrounds which have been classically
considered by the SDSS-III/BOSS collaboration (e.g. Ross
et al. 2012) and which still potentially contaminate the data,
despite applying weights to galaxies. The inferred amplitude
values will be used to assess the amount of residual cor-
rections that are still necessary at small scales. The known
systematic effects that we consider are summarised in the
Table 1. We note that we consider the impact of the sky
flux independently in each of the SDSS photometric band
(u,g,r,i,z), thus the line “sky flux” corresponds actually to
five maps. Each of these maps was derived using the mangle
(Swanson et al. 2008) geometry file describing the SDSS-
III/BOSS large structure sample.3 Each mangle polygon
was assigned a weight depending on the meta data of the
corresponding photometric tile. We rendered the maps on
an HEALPix mesh at Nside = 2 048. This corresponds to
a precision of ∼2 arcminutes. As an illustration, we show a
subset of four of the eleven foregrounds maps in Figure 3.
These maps show, in Mollweide projection, the vector Fa,i
of Equation (8).

4 RESULTS

In this section, we detail various aspects of our results. In
all the following, we have assumed a cosmology close to
what the Planck collaboration has found with CMB data
(Planck Collaboration et al. 2018b), namely Ωr = 0, ΩK = 0,
ΩM = 0.2889, Ωb = 0.048597, ΩΛ = 0.7111, w = −1,
nS = 0.9667, σ8 = 0.8159, H0 = 67.74km s−1 Mpc−1. We
note that the absolute value of the Hubble constant enters
only through the transfer function in the power spectrum
and does not have an impact on the coordinate transform
for example. Early tests indicated that a slightly lower Ωm

seems to be preferred. We have thus pushed Ωm to the lower
acceptable limit and proceeded with the run. We have used
an inference box of 4 000h−1 Mpc sampled with a 2563 mesh
grid, setting resolution to ∼ 15h−1 Mpc. The radial com-
pleteness is estimated in a similar way to Anderson et al.
(2012).

The borg inference machine is left free to choose the
value of the 14 parameters of the bias model (model de-
scribed in Section 2.3) and the amplitude of the 11 fore-
ground templates, for each sub-catalogue (Section 4.4 and 3
for the description of sub-catalogues), and the amplitude of
the 2563 modes in the initial condition at z = 1 000. We use
a particle set of 5123 to trace the evolution of matter with

3 https://data.sdss.org/sas/dr12/boss/lss/geometry/boss_

geometry_2014_05_28.fits
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Figure 6. Ensemble average power spectrum of the a posteriori

samples of initial conditions produced by borg. Top panel : Mean
of the power spectra (black line), one standard deviation (shaded

grey region), and the prior power spectrum (dashed blue line).

Bottom panel : same as the top panel but we divide by the prior
power spectrum before plotting. The finest mode reachable in the

box on the right-hand side is at k ' 0.35h Mpc−1 as can be seen

by the strong increase of variance at that scale. It corresponds
to a scale that already includes non-linear features. Deviations

on large scales, up to the largest mode at k ' 10−3h Mpc−1, are

below a few percents, confirming the systematic-free nature of the
density reconstruction.

Lagrangian perturbation theory. We include both the light
cone model of Section 2.2 and the model of redshift-space
distortion effects at the level of particles. The bias parame-
ters were given a prior centred on zero with a variance unity
on elements of L, in order to avoid the chain to explore too
wide a parameter space initially and cause numerical issues.
We have checked that this choice does not impact our result
by verifying the a posteriori information content: the stan-
dard deviation of the sampled parameters are all less 0.7
which is less than 1. We have generated ∼ 10 400 MCMC
samples from the posterior distribution. By an analysis of
the a posteriori power spectrum of the initial density (Ap-
pendix D), we are confident that the chain has reasonably
burned in after ∼2 000 samples. We use all the samples with
an identifier greater than 2 000 for the results shown in this
section.

MNRAS 000, 1–19 (2019)
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4.1 Inferred 3D matter density fields

The main purpose of our borg inference machine is to de-
rive a probable, dynamical, physical, model of the matter
distribution of the observed universe. As such, the first data
product that we investigate is the inferred matter density
that is required to explain the data. This comes in two forms:
the initial conditions, post-recombination but still in the lin-
ear regime of the dynamics; and the evolved matter density
at the moment the photon is detectable in our light cone.
borg samples all possible realisations of the initial condi-
tions that satisfy the observational constraints. We focus
our analysis mostly on the first moment of the posterior dis-
tribution for each considered parameter. However, more in-
formation is available on the posterior. In Figure 4, we show
the ensemble average of all realisations of the evolved matter
density. We represent a plane parallel to and close to the ce-
lestial equatorial plane (DEC=0°), chosen to include the full
shape of the light cone probed by the SDSS-III/BOSS. The
full density field cube of Figure 4 will be made available on
Zenodo at publication time. We recognise the typical struc-
ture of SDSS data: the south galactic cap part (SGC) at
Y > 0, and the north galactic cap (NGC) at Y < 0. We see a
separation between the LOWZ and CMASS components of
SDSS-III/BOSS at a comoving distance ∼ 900h−1 Mpc. The
distinction is more pronounced in the right panel, showing
the standard deviation of fluctuations compared to the mean
field: LOWZ clearly yields a noisier estimate of the matter
density than CMASS. Despite the low resolution of our run
(∼15h−1 Mpc per voxel-side), we see that the density field is
non-Gaussian, with some filamentary structure.

In Figure 5, we show the line-of-sight component of the
velocity field, which we infer from the data and the dynam-
ical model. The velocity field is derived using the simplex-
in-cell estimator presented in Abel et al. (2012); Hahn et al.
(2015); Leclercq et al. (2017) (based on the Delaunay tes-
sellation of elementary Lagrangian cubes of particles into
six tetrahedra), applied to the particle tracers generated by
borg for each element of the MCMC. We show the ensemble
mean average (left panel) and the standard deviation with
respect to the mean (right panel). We note that the light
cone model also induces a modulation depending from the
distance to the observer, located at the centre of the figure.
In the right panel for example, the standard deviation of un-
observed region is significantly higher close to the observer
than in outer regions, as expected in perturbation theory,
which predicts a factor ∼2 difference between z = 0.2 and
z = 0.7. Visual inspection of the maps does not show any
particular anomaly. We note a slight excess of infall towards
the observer in the lower-left region of the left panel, which
could be due to an insufficient number of samples in the
ensemble averaging of the Markov Chain.

We show in the top panel of Figure 6 the power spec-
trum of a posteriori initial conditions, both the ensemble av-
erage and the standard deviation. We also plot our prior on
the cosmological power spectrum, obtained from the Eisen-
stein & Hu (1999) fitting function for our choice of cosmo-
logical parameters. In the bottom panel, we show the devia-
tions of the a posteriori power spectrum from our prior. The
prior is not strictly enforced in our inference framework, but
only used as a guideline in the absence of informative data.
We note that, contrary to previous attempts (e.g. Ross et al.
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Figure 7. Bias parameters inferred for the CMASS NGC lowest

redshift bin. The parameters are presented as the matrix Q ap-
pearing in Equation (3). Top panel : matrix of mean parameters.

Middle panel : ratio of the top matrix to the bottom matrix, show-

ing the signal-to-noise matrix for each coefficient. Bottom panel :
matrix of standard deviations for each coefficient. The inferred

matrix represented here corresponds to a quadratic form: each

coloured coefficient is associated with the product of the symbols
indicated in the corresponding row and column in the bias model

(see Equation (3)). The off-diagonal terms contribute twice while

the on-diagonal terms contribute only once. The coefficient cor-
responding to 1 × 1 (top-left corner) is special as it is fixed to a

value of unity and not sampled.
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2012; Kalus et al. 2019), we do not observe strong deviations
of the power spectrum at k . 10−2h Mpc−1. Such deviations
are typical of cases where systematic effects are improperly
accounted for (Porqueres et al. 2019). If our model did not
include systematic effects, the a posteriori power spectrum
would have received contributions from them at the largest
scales, as was noted by all previous attempts as well as our
own investigations (e.g. Jasche & Lavaux 2017; Kalus et al.
2019; Porqueres et al. 2019). Given that past Cosmic Mi-
crowave Background missions (Bennett et al. 2013; Planck
Collaboration et al. 2018b) have not observed any anomalous
power at large angular scales deviating from the predictions
of the ΛCDM model, we conclude the power spectrum de-
viations originally observed in SDSS-III/BOSS were due to
systematic effects. The fact that we these deviations vanish
when using our framework for known and unknown system-
atic effects indicates that the presence of excess large-scale
power is unnecessary to explain data. Furthermore, the pos-
terior captures more information than what is in the prior,
which is indicated by the shifted mean in the bottom panel
of Figure 6.

4.2 The galaxy bias model

The borg forward model includes a new quadratic-form
bias, described in Section 2.3. As it is multi-scale, a direct
comparison to previous analyses is not straightforward. In
Figure 7, we give an example of the bias parameters that we
have inferred, with corresponding uncertainties. These pa-
rameters correspond to the coefficients forming the Q matrix
for the sub-catalogue holding the CMASS NGC in a distance
bin of [1000,1200]h−1 Mpc. This is thus the closest to a cen-
tral slice in SDSS-III/BOSS. The matrix shown in Figure 7
gives the coefficient of the field produced by the product of
its row and column labels in the bias model. For example, co-
efficients in the top row correspond to coupling the constant
(“1”) with something else. If we choose the second column
(labelled“δ”), we obtain the coefficient in the quadratic form
that corresponds to the term 1×δ. In the second row and the

last column, we find the coefficient of the term δ×
(
δ(2)

)2
. It

is a quadratic form, thus off-diagonal terms shall be counted
twice owed to the symmetry. In Figure 7, the top panel is
the ensemble average for each coefficient, the bottom panel
is the standard deviation with respect to that mean. The
middle panel is the ratio of the top to the bottom panel,
corresponding to the signal-to-noise ratio.

These bias parameters indicate that there is evidence
for scale dependence, as the data require the model to have
a non-vanishing second level (terms in δ(2)) to be represented
fairly. We also note that it requires some compensation be-
tween scales as, for example, in the top row of the top panel
of Figure 7. There, we have a positive coefficient in the sec-
ond column (“δ”) followed by a negative coefficient in the
fourth column (“δ(2)”). There is thus some evidence of scale-
dependent biasing. We leave further interpretation to future
work.

As our model is non-local and non-linear (Equation 3),
it is not straightforwardly related to classical linear biasing.
However, assuming that the dark matter density is mostly
the same at the two levels (1) and (2), the model has a lin-
ear term linking the matter density to galaxy number count
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Figure 8. Evolution of the linear component of the bias model
with redshift from the two hemispheres. We show here the quan-

tity closest to linear biasing in our model, the sum 2(Q1, δ+Q1, δ(2) ),
as discussed in the text. In CMASS (at redshifts 0.4 ≤ z ≤ 0.7),
the evolution shows evolution with redshift, with a clear increase

in the CMASS redshift range. There is little residual difference be-

tween data from the northern and southern hemisphere. The mea-
surements of the linear bias coefficient b1 from Gil-Maŕın et al.

(2015, GM15) are shown by purple and grey bands, with the ref-

erence redshift indicated by a vertical dark green dashed line.

which behaves like 2(Q1,δ +Q1,δ(2) ). In Figure 8, we show the
evolution of this combination of the bias parameters of our
model for the different sub-catalogues, organised in redshift
bins. In LOWZ, there is no clear trend for this combination
of bias parameters with redshift, but in CMASS, we ob-
serve that the equivalent of the linear bias evolves by nearly
a factor of two between redshift 0.4 and 0.7. Additionally,
there is no big discrepancy between the NGC and SGC part
of CMASS, which indicates that the systematic effects be-
tween these two regions of the sky have likely been taken
care of.

We can only partially compare our results to Gil-Maŕın
et al. (2015) who provide the bias in very large bins, and
without light cone correction. As we work with a fixed cos-
mological prior, we set their σ8 to their reference maxi-
mum likelihood measurement and focus on the parameter
b1. They report their measurement at an effective redshift
zeff = 0.57 (indicated by a vertical dashed line), correspond-
ing to our second before last bin in Figure 8. Their reported
b1 value are indicated by two horizontal bands (purple for
NGC, grey for SGC), which corresponds to the measure-
ments reported in table 1 and 2 of Gil-Maŕın et al. (2015).
Given the respective approximations involved, both mea-
surements agree very well.
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Figure 9. Correlation of the inferred lensing potential from

SDSS-III/BOSS and the reconstructed lensing convergence from
Planck temperature and polarisation maps. We show here the

correlation , for each line-of-sight, between the value of the con-

vergence that is obtained from the Planck lensing map derived in
Planck Collaboration et al. (2018a) and the value that we com-

pute from the gravitational potential derived from borg. Follow-
ing the procedure used in the Planck analysis, we restricted the

modes to ` = 8 − 2048 to derive the pixel based map. The blue

dashed line indicates a perfect a correlation. Further details are
given in Section 4.3.

4.3 Cross analysis with CMB lensing

As presented above, the borg algorithm provides very de-
tailed reconstructions of the matter distribution over a cos-
mological volume. As demonstrated by the analysis of a pos-
teriori power spectra in Section 4.1, inferred initial density
fields follow the expected statistical properties at all Fourier
modes considered in this work. This is owed to the robust
treatment of unknown foreground effects which could oth-
erwise introduce erroneous features at large scales in the
matter distribution. In our previous work (Jasche & Lavaux
2019), we have demonstrated that borg uses the physical
forward modelling approach to perform dynamical mass es-
timates of galaxy clusters. We have found compatible mass
profiles with the one derived from gold standard weak lens-
ing measurements, X-ray observations or classical applica-
tion of the virial theorem to galaxy velocity dispersion. To
provide an independent test on whether borg recovered
the underlying large-scale dark matter field from SDSS-
III/BOSS galaxy clustering data, we here perform a sim-
ple cross-correlation analysis with CMB weak lensing data
provided by the Planck satellite mission. Achieving this goal
requires to first generate posterior templates of weak lensing
convergence maps from our inferred mass distributions. We
use the classical expression to derive lensing convergence
from the matter density fluctuation, which we reproduce

here:

κ(n̂) = 3
2
Ωm

(
H0
c

)2
×∫ χCMB

0

dχ

a(χ)
fK (χ) fK (χCMB − χ)

fK (χCMB)
δm(χ, n̂) , (16)

with Ωm the matter density at redshift z = 0, H0 =
100 km s−1 Mpc−1, c the speed of light, χ the comoving
distance, fK (χ) the angular diameter distance, χCMB the
comoving distance to the last scattering surface, n̂ the di-
rection in which we observe the convergence. A schematic
derivation is provided in Appendix C. Having only to rely
on the local density fluctuation greatly simplifies the deriva-
tion of the convergence map by only taking integrals on lines
of sight of the density contrast.

For our cross analysis we use publicly available CMB
lensing convergence map4 obtained by the Planck satellite
mission (Planck Collaboration et al. 2014, 2018a). We have
checked that the results are consistent between the 2015
and 2018 maps. The result of the cross-analysis is shown
in Figure 9. We show there a direct comparison, for each
line of sight, of the convergence computed from the tem-
perature and polarisation maps of the CMB sky observed
by the Planck satellite and the one derived from the borg
analysis using Equation (16). Random samples of the ob-
servational noise for the Planck convergence has been taken
into account, as well as the fluctuations allowed by the borg
posterior constrained by SDSS-III/BOSS data. The correla-
tion procedure automatically cancels out the noise in the
lensing map reconstructed from Planck mission data. The
grey band is generated by the borg posterior.

Other groups have already reported some correlation
between the CMB lensing map obtained by the Planck col-
laboration and tracers of large-scale scale structures with
Sloan Digital Sky Survey data. One of these test is provided
in Singh et al. (2017). However, their comparison between
large-scale structures and Planck CMB lensing is done at a
much smaller scale than here by focusing on galaxy clusters.
Their signal is typically vanishing starting from ∼10h−1 Mpc
from a galaxy, whereas in our case our voxels have a size of
∼16h−1 Mpc. This shows the future potential of an inferred
density map such as the one we are providing, and that we
have barely scratched the surface of the amount of available
information. He et al. (2018) attempted a first detection of
matter filaments using galaxies of SDSS-III/BOSS through
the use of cross-correlation of the angular power spectrum.
This detection is however done only at the level of correla-
tion between cross-angular spectra. At larger distances, Han
et al. (2019) found some evidence of correlation between the
Quasar catalog from SDSS-IV and the same lensing map
that we use. Thus we expect that a further extension of the
present inference in the SDSS-IV regime would yield even
better comparison.

A few other notable examples are the correlation with
the CIB-WISE data (Yu et al. 2017), and similarly the cor-
relation with the 2MASS-PhotoZ sample (Bianchini & Re-
ichardt 2018). In these two cases, the sample either covers
a larger fraction of the sky or has more galaxies and span

4 http://pla.esac.esa.int/pla/
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a redshift range that is comparable to SDSS-III/BOSS. Ad-
ditionally Yu et al. (2017) use the CIB contribution which
peaks at much farther distances and provide a good template
for the lensing convergence, which explains their very high
correlation to the Planck lensing map. The WISE compo-
nent that is used in that work is providing only ∼10% of the
correlation. Bianchini & Reichardt (2018) finds also some
correlation although it is much weaker owed to the redshift
distribution of the galaxies of the 2MPZ which is limited to
z <∼ 0.2.

The above agreement is showing that the mass distribu-
tion that borg derives from SDSS-III/BOSS is supported by
both an independent data-set and an independent physical
effect that measure the same quantity. A detailed analysis of
CMB-Large scale structure cross analysis will be presented
in a forthcoming publication.

4.4 Mean inferred systematic properties

In this section, we discuss our results concerning the con-
tamination of the SDSS-III/BOSS sample with known and
unknown systematic effects. We remind the reader that we
use two techniques at the same time for taking into account
these effects, leading to a clean reconstruction of the mat-
ter density field: the template based approach (also know as
‘extended mode’ projection, see Leistedt & Peiris 2014) and
the robust likelihood (closer to ‘basic mode’ projection, see
Porqueres et al. 2019).

In Figure 10, we show the mean and standard deviation
for each individual foreground coefficients multiplying the
indicated templates independently at different redshift and
for the NGC and SGC side. We note that for a large fraction
of these coefficients, no signal is really detectable with our
robust likelihood. For example, the dust contamination is
completely flat and compatible with zero. However some of
these coefficients exhibit positive, redshift dependent, signal.
That is the case for the point spread function (PSF) in the
r band (top row, middle panel). In this case there is a clear
difference between NGC and SGC as well. Another template
that has clear correlation with data is the skyflux in the u
band (third row, left panel). There is a monotonic increase
in the contamination level of the SDSS-III/BOSS data in the
NGC, while SGC seems to be more immune. We have chosen
to use the same choice of foreground templates as the one
studied by Ross et al. (2012), notably the slices of star den-
sity. Though our results are not directly comparable owed
to the different procedure to analyse the data, Figure 11 of
Ross et al. (2012) is the most evocative. Generally speaking,
this other study showed that the CMASS sample is more
contaminated than the LOWZ sample. The star density and
the seeing/PSF were among the top contaminant. Here we
clearly have evidence of this in the subplot labelled “psf r”
and “star 0”. The effect of sky brightness seems larger in
our analysis than in the original SDSS analysis. We note
that we used the weights provided by the SDSS-III/BOSS
collaboration to correct our sample of galaxies before doing
the inference, thus some of these contaminations have al-
ready been compensated. Our plots may be understood as
additional residual contamination that were not accounted
for in the galaxy weighting of SDSS-III/BOSS. To conclude
this discussion, these results highlight the power of our in-

ference method to detect and correct defects in the data
acquisition.

In Figures 11 and 12, we show the correlation coeffi-
cients between these same foreground coefficients and the
amplitude of modes at different scales. In both figures, we
have ordered in increasing redshift from left-to-right, LOWZ
being in the top rows and CMASS in the bottom rows. The
foregrounds templates are indicated on the y-axis and the
scale on the x-axis. We see that despite seeing in most cases
a null detection in Figure 10, the amplitudes of coefficients
tend to correlate heavily with a lot of modes in the recon-
structed initial conditions. This correlation is not stable with
redshift nor with scales. The most notable example is the
the skyflux in the u band: it is mostly positively correlated
with density Fourier modes up to k ∼ 0.15h Mpc−1and then
becomes negatively correlated at higher k, for a lot of sub-
catalogues. The influence of the airmass in the r band is also
an example of contaminant that changes significantly with
redshift in both LOWZ and CMASS. Other foregrounds give
an impact that is more focused either spatially or in redshift.

Our Bayesian inference approach has another seducing
aspect: unknown foreground contamination may also be re-
constructed from posterior samples of the Markov chain, as
discussed in Section 2.6. This possibility was already men-
tioned by Monaco et al. (2018) for Euclid-like surveys. But it
is already possible for the SDSS-III/BOSS sample of galax-
ies. Here we have used equations (12) and (13) to estimate
the ensemble mean and signal-to-noise ratio maps for the
four redshift bins of the LOWZ and CMASS samples of
SDSS-III/BOSS. The corresponding inference results for un-
known foreground contamination are presented in Figures 13
and 14. As can be seen, these maps clearly contain spatial
structure despite having marginalised over already 11 fore-
grounds per sub-catalogue. The systematic maps show clear
iso-declination striping, which does not seem to follow the
drift-scan strategy of the SDSS photometry. The drift-scan
strategy is visible for example in Figure 3. These stripe mod-
ulate the signal at the level of 30% of multiplicative correc-
tion on the sky. It is most prominent for the highest signal-
to-noise redshift bin at z = 0.29 and z = 0.35 for LOWZ and
z = 0.49 and z = 0.58 for CMASS.

While the striping structure at each redshift bin are
fairly represented by some pattern of iso-declination mod-
ulation for both NGC and SGC, the pattern itself between
the two north and south caps look different. For example in
Figure 13 (LOWZ), at z = 0.35, there is a clear wide blue-
stripe (∼ −30% correction) at DEC= +30◦ in the SGC, while
it is reddish (∼ +30%) for the NGC. It is not strictly iso-
declination all the time either. For example in LOWZ, at
z = 0.29 the red stripe at DEC=+30◦ is widening towards
lower DEC while going from left to right of the NGC. Fi-
nally, the stripes are not constant with redshift, sometimes
inverting completely. That is the case between the two red-
shift bins of CMASS at z = 0.49 and z = 0.58 for which the
large stripe just above DEC=+30◦ is blue in the first case,
and red in the second case.

The plausible origin of these systematic effects is likely
to be on the ground given the distribution of the stripes.
One of such problems are the “contrails” (Finkbeiner et al.
2016). Understanding the detail of the origin of these sys-
tematic effects is however beyond the scope of this work.
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Figure 10. Foreground template coefficients for NGC and SGC as a function of redshift. We show the inferred mean values alongside
their standard deviation for each of the 11 foreground templates assigned to each sub-catalogue in our borg run on SDSS-III/BOSS. As

for other figures, the LOWZ component is at redshift z ≤ 0.4 and the CMASS component is at z > 0.4.

The systematic maps will be made available for download
on Zenodo after publication.

5 CONCLUSION

With the advent of next-generation galaxy surveys, cosmic
large-scale structures will become one of the most impor-
tant cosmological probes to test the fundamental physics
governing the dynamics of our Universe. To ensure contin-

ued scientific progress in cosmology, the acquisition of novel
quality data needs to be accompanied by the development of
novel methods capable of handling unknown systematic ef-
fects and to link complex non-linear structure growth physics
with observations. Such model model of large scale struc-
tures as the one we have derived have many applications for
the study and observation of the Universe through different
instruments. Some of the applications that were considered
in the past are cosmic-web identifications and characteriza-
tion (Leclercq et al. 2015b, 2017), cosmic voids properties
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Figure 12. Same as Figure 11 but for the SGC sub-samples.
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Figure 13. Inferred mean systematic maps (left column) as well as the estimated corresponding signal-to-noise for each pixel in these

maps (right panel), as derived from SDSS-III/BOSS data, in equatorial coordinates. Each of these maps is estimated using Equations (12)
and (13), independently for each of the redshift bins. The maps are multiplicative, we clearly note a correlated modulation of order 30%

on the sky, indicative of unknown residual systematic effects in the data.

.

(Leclercq et al. 2015a), cosmic magnetic fields (Hutschen-
reuter et al. 2018), constraints on fifth-force gravity models
(Desmond et al. 2018a,b, 2019), peculiar velocity corrections
to Hubble-Lemâıtre constant deduced from standard sirens
(Mukherjee et al. 2019).

While traditional methods focus only on analysing a
limited number of low-order statistics of the matter dis-
tribution, here we apply a fully Bayesian physical forward
modelling approach to extract the significant information
entailed in the high-order statistics associated to the fila-
mentary matter distribution underlying the galaxies in sur-
veys.

Specifically, we presented a fully Bayesian analysis of
the spatial matter distribution probed by SDSS-III/BOSS
data. As described in this work, our method infers physically
plausible reconstructions from the data while accounting for
systematic effects, such as galaxy biases, light-cone effects,
survey geometries and other selection effects. Most notably,
we demonstrate the application of a novel robust likelihood
approach to data, required to deal with unknown system-
atic effects in the data, which otherwise would result in the

erroneous reconstruction of the large-scale matter distribu-
tion and corresponding velocity fields, posing significant nui-
sances for cosmological interpretation of observations.

We conducted an analysis of SDSS-III/BOSS data to
recover the cosmic large-scale structure within a Carte-
sian co-moving volume of 4 000h−1 Mpc at a resolution
of ∼15.6h−1 Mpc. Our analysis simultaneously accounts for
data in the southern and northern galactic cap of SDSS-
III/BOSS. We carefully accounted for non-linear scale de-
pendencies in galaxy biases and data selection effects by
splitting the data into galaxy sub-samples of eight red-
shift bins, nearly equidistant. For each of these galaxy sam-
ples, we treated respective systematic effects separately. To
model possible non-linear and non-local effects of the galaxy
bias, we proposed a novel multi-power galaxy biasing model,
which uses the information of the density field at two dif-
ferent levels of resolution, resulting in a fourteen parameter
model per galaxy sub-sample. We determined correspond-
ing bias parameters for each of the galaxy sub-samples, to
account for possible redshift evolution. In addition, for each
of these galaxy sub-samples, we accounted for survey ge-
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Figure 14. Same as Fig 13 but for the CMASS sample.

ometry, and we self-consistently inferred the amplitudes of
eleven known foreground templates as well as the unknown
noise levels of the galaxy samples. Besides fitting known fore-
ground contributions, a significant improvement over previ-
ous work is that our approach uses a robust likelihood ap-
proach to also account for unknown systematic effects affect-
ing the survey. As demonstrated in this work, the detailed
handling of unknown systematics in galaxy surveys is crucial
to infer cosmologically significant and unbiased information
from the largest scales in present and coming galaxy sur-
veys. To confirm the reality of the large-scale dynamics that
we recovered, we checked the correlation with lensing mea-
surements obtained from the data of the Planck mission.
The near-perfect alignment between the prediction that we
derived from SDSS-III/BOSS and Planck lensing provides
solid evidence that the inferred dark matter density field is
correct in the volume spanned by SDSS-III/BOSS.

In summary, the combination of a Bayesian physical
forward modelling approach with a robust likelihood ap-
proach to account for unknown systematic effects in data is
a successful approach to characterise the cosmic large-scale
structure and its dynamic formation. The presented work,
therefore, defines a promising path towards a fully physically
meaningful analysis of next-generation galaxy surveys.
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berg, François Bouchet, Stéphane Colombi, Valérie de Lap-
parent, Matthew Lehnert, Suvodip Mukherjee, Peter H. Jo-
hansson for useful discussions. This work has been done
within the activities of the Domaine d’Intérêt Majeur
(DIM)“Astrophysique et Conditions d’Apparition de la Vie”
(ACAV), and received financial support from Région Ile-de-
France. GL acknowledges financial support from the ILP
LABEX, under reference ANR-10-LABX-63, which is fi-
nanced by French state funds managed by the ANR within
the programme “Investissements d’Avenir” under reference
ANR-11-IDEX-0004-02. GL also acknowledges financial sup-
port from the ANR BIG4, under reference ANR-16-CE23-
0002. FL acknowledges funding from the Imperial College
London Research Fellowship Scheme. This work was granted
access to the HPC resources of CINES (Centre Informa-
tique National de l’Enseignement Supérieur) under the allo-
cation A0020410153 and A0040410153 made by GENCI and
has made use of the Horizon cluster hosted by the Institut
d’Astrophysique de Paris on which the cosmological simula-
tions were post-processed. GL thanks the hospitality of the

MNRAS 000, 1–19 (2019)



Cosmological density inference with SDSS3-BOSS 17

University of Helsinki where part of this work took place.
This work is done within the Aquila Consortium5.

REFERENCES

Abazajian K., Survey f. t. S. D. S., 2009, The Astrophysical Jour-

nal Supplement Series, 182, 543

Abel T., Hahn O., Kaehler R., 2012, Monthly Notices of the Royal

Astronomical Society, 427, 61

Alam S., et al., 2015, The Astrophysical Journal Supplement Se-
ries, 219, 12

Anderson L., et al., 2012, Monthly Notices of the Royal Astro-

nomical Society, 427, 3435

Anderson L., et al., 2014, Monthly Notices of the Royal Astro-

nomical Society, 441, 24

Bennett C. L., et al., 2013, The Astrophysical Journal Supplement

Series, 208, 20

Bernardeau F., Colombi S., Gaztanaga E., Scoccimarro R., 2002,
Physics Reports, 367, 1

Beutler F., et al., 2017, Monthly Notices of the Royal Astronom-

ical Society, 464, 3409

Bianchini F., Reichardt C. L., 2018, The Astrophysical Journal,

862, 81

Bouchet F. R., Colombi S., Hivon E., Juszkiewicz R., 1995, As-
tronomy & Astrophysics, 296, 575

Chuang C.-H., Kitaura F.-S., Prada F., Zhao C., Yepes G., 2015,

Monthly Notices of the Royal Astronomical Society, 446, 2621

Colavincenzo M., Monaco P., Sefusatti E., Borgani S., 2017, Jour-

nal of Cosmology and Astroparticle Physics, 2017, 052

Dawson K. S., et al., 2013, The Astronomical Journal, 145, 10

Desjacques V., Jeong D., Schmidt F., 2018, Physics Reports, 733,

1

Desmond H., Ferreira P. G., Lavaux G., Jasche J., 2018a, Physical
Review D, 98

Desmond H., Ferreira P. G., Lavaux G., Jasche J., 2018b, Physical
Review D, 98

Desmond H., Ferreira P. G., Lavaux G., Jasche J., 2019, Monthly

Notices of the Royal Astronomical Society: Letters, 483, L64

Eisenstein D. J., Hu W., 1999, The Astrophysical Journal, 511, 5

Eisenstein D. J., et al., 2011, The Astronomical Journal, 142, 72

Elsner F., Leistedt B., Peiris H. V., 2016, Monthly Notices of the
Royal Astronomical Society, 456, 2095

Elsner F., Leistedt B., Peiris H. V., 2017, Monthly Notices of the

Royal Astronomical Society, 465, 1847

Elsner F., Schmidt F., Jasche J., Lavaux G., Nguyen N.-M., 2019,

arXiv:1906.07143 [astro-ph]

Finkbeiner D. P., et al., 2016, The Astrophysical Journal, 822, 66

Fowler J. W., et al., 2010, The Astrophysical Journal, 722, 1148

Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K.,
Schneider D. P., 1996, The Astronomical Journal, 111, 1748
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APPENDIX A: VARIANCE OF THE
DISPLACEMENT FIELD

In a ΛCDM universe, assuming that evolution of large-scale
structures is well described by the Zel’Dovich approxima-
tion (Zel’Dovich 1970), the statistics of the displacement is
simple. Using the continuity equation, we can write

∇q .Ψ = −D(t)δ(q), (A1)

with q the Lagrangian coordinates, which at high redshift
are close to the Eulerian coordinates, D(t) the growth func-
tion, Ψ the displacement field. The one-point variance of the
displacement field becomes thus

〈Ψ2
a(t, q)〉 =

∫
d3kd3k ′

(2π)6
ei(k+k

′).q 〈Ψ̂a(k)Ψ̂a(k ′)〉

= D2(t)
∫

d3kd3k ′

(2π)6
−kak ′a
|k |2 |k ′ |2

ei(k+k
′).q 〈δ̂(k)δ̂(k ′)〉

= D2(t)
∫

d3k

(2π)3
P(k) k

2
a

k4

=
D2(t)

3

∫
d3k

(2π)3
1
k2 P(k) (A2)

=
D2(t)
12π2

∫ +∞
k=0

dkP(k) , (A3)

with P(k) the power spectrum of matter density fluctuations
at high redshift. For a ΛCDM universe, with Planck 2018
cosmology, the square root of that variance is 5.96h−1 Mpc.
An acceptable typical upper bound to the displacement field
may be at ∼3 times that value, which leads to 17.9h−1 Mpc.

APPENDIX B: ADJOINT GRADIENT OF THE
BIAS MODEL

Computing of the adjoint gradient, or back-propagation in
machine learning terminology, consists in linearly transform-
ing an error vector back to the adequate parameter space of
interest. In borg, that consists in transporting the error
vector from the likelihood space, which touches galaxy dis-
tribution, to the initial condition. The bias model step relate

the matter density to the expected galaxy distribution, be-
fore the effect of the pipeline of detection by the instrument.
We assume that we are provided an error vector vi , per mesh
element. The new error vector ṽq will be derived as follow:

ṽq =
∑
i

vi
∂N(g)

i

∂δq
= 2

∑
i

vi
∂∆i
∂δq

†
Q∆i . (B1)

In general the element of the vector ∆i take the following
form

(∆i)a = (δ
(`a )
i
)γa , (B2)

with ja the density averaging level at the component a and
γa the power rising of the component a. The detail of that
ordering is given in Section 2.3. The special case ja = 0
corresponding to δ(0) = 1. Thus we may derive the derivative
of the vector ∆i by looking at each component:

∂∆i,a

∂δq
=
∂δ
(ja )
i

∂δq
×

{
γa

(
δ
(ja )
i

)γa−1
, if γa ≥ 1, ja ≥ 1

0 otherwise
(B3)

=
∂δ
(ja )
i

∂δq
ga

(
δ
(ja )
i

)
(B4)

Finally the derivative of the averaging operator is

∂δ
(`a )
i

∂δq
=

1
8`
×

{
1 if q ∈ V(ja )

i
,

0 otherwise,
(B5)

with V(ja )
i

the vicinity set of i at the level ja of the oct-
tree. This vicinity set is defined implicitly from Equation (7).
We may compute it explicitly by doing the matrix-vector
multiplication with the vector v:

ṽq =
1
8`

∑
α,β

2`−1∑
a,b,c=0

v f̀ (q,a,b,c)×

gα

(
δ
(`α )
f̀ (q,a,b,c)

)
Qα,β

(
δ
(`α )
f̀ (q,a,b,c)

)γα
. (B6)

This gives an explicit algorithm to compute the adjoint-
gradient with this new bias model.

APPENDIX C: LENSING EQUATION

In this appendix we give a brief reminder of the derivation
of Equation (16). If we consider the Newtonian potential
Ψ defined at comoving distances χ and angular direction n̂
on the sky (Kaiser 1998; Lewis & Challinor 2006; Kilbinger
2015), then the sky displacement of one photon, at first order
of perturbation in Ψ and on the geodesic trajectory followed
by that photon is:

α(n̂) = 1
c2×∫ χCMB

0
dχ

fK (χCMB − χ)
fK (χCMB) fK (χ)

(∇n̂Ψ)(χn̂; χCMB − χ) (C1)

where χ is the comoving radial distance and

fK (χ) =


sin(χ) for K = +1, closed universe;
χ for K = 0, flat universe;
sinh(χ) for K = −1, open universe.

(C2)
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The convergence is defined as the sky divergence of the sky
displacement:

κ(n̂) = ∇n̂α(n̂), (C3)

Furthermore, the three-dimensional potential Ψ is related to
the matter density contrast δm(x) via the Poisson equation
in comoving coordinates,

∇2
xΨ =

3
2a(χ)Ωm(χ)H2

0 δm(x; χ) . (C4)

The above equation is valid in the usual perturbative regime
of the metric, which is the case for the entirety of this work.
By moving the divergence inside the integral, we obtain

κ(n̂) = − 1
c2×∫ χCMB

0
dχ

fK (χCMB − χ) fK (χ)
fK (χCMB)

×(
(∇2

n̂Ψ)( fK (χ)n̂; χCMB − χ)
)
, (C5)

As generally done in the scientific literature and explicitly
justified in Kilbinger (2015), we replace the 2D Laplacian by
the 3D Laplacian because we expect the second-order radial
derivatives to average to zero at the scale that we consider.
Thus we have a simplified expression for the convergence

κ(n̂) = 3
2
Ωm

(
H0
c

)2
×∫ χCMB

0
dχ

fK (χ) fK (χCMB − χ)
fK (χCMB)

δm(χ, n̂)
a(χ) (C6)

This greatly simplifies the derivation of the convergence map
by only taking integrals on line of sights of the density con-
trast.

APPENDIX D: TESTING THE WARM-UP
PHASE OF THE SAMPLER

As described in our previous works (Jasche & Wandelt 2013;
Lavaux & Jasche 2016; Jasche & Lavaux 2019), we initial-
ize the Markov chain with an over-dispersed state, that is
far remote from the target regions in the parameter space.
This permits us to test the sampler behaviour during the
initial warm-up phase and confirm it has approached the
stationary regime before starting to record Markov samples
for the analysis. Over-dispersed initial states are prepared
by initialising the Markov chain with a random Gaussian
initial density field scaled by a factor 1/10, which trans-
lates to 1/100 in Figure D1. To follow the sampler behaviour
during its warm-up phase, we follow the traces of posterior
power spectrum amplitudes throughout the initial sampler
steps. As demonstrated by Figure D1, initially power spec-
trum amplitudes at the different modes of Fourier-space per-
form a coherent drift towards preferred regions in parameter
space. After about 1, 000 Markov transition steps the chain
has reached a stationary distribution and power spectrum
amplitudes oscillate around their expected fiducial values.
From that moment, we start recording samples from the
stationary distribution to perform the analysis presented in
this work.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Figure D1. Amplitudes of the a posteriori primordial matter
power spectrum at different Fourier modes traced during the

warm-up phase of the MCMC sampler. As can be seen, initially,

modes perform a coherent drift towards the high probability re-
gion in posterior distribution and start oscillating around their

fiducial values once the Markov chain has reached a stationary

state.
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