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Abstract

Many computational models of human upper limb movement successfully capture some 

features of human movement, but often lack a compelling biological basis. One that 

provides such a basis is Harris and Wolpert’s minimum variance model. In this model, 

the variance of the hand at the end of a movement is minimised, given that the controlling 

signal is subject to random noise with zero mean and standard deviation proportional to 

the signal’s amplitude. This criterion offers a consistent explanation for several movement 

characteristics.

This work formulates the minimum variance model into a form suitable for controlling 

a robot arm. This implementation allows examination of the model properties, specifically 

its applicability to producing human-like movement. The model is subsequently tested in 

areas important to studies of human movement and robotics, including reaching, grasping, 

and action perception.

For reaching, experiments show this formulation successfully captures the character­

istics of movement, supporting previous results. Reaching is initially performed between 

two points, but complex trajectories are also investigated through the inclusion of via- 

points.

The addition of a gripper extends the model, allowing production of trajectories for 

grasping an object. Using the minimum variance principle to derive digit trajectories, 

a quantitative explanation for the approach of digits to the object surface is provided. 

These trajectories also exhibit human-like spatial and temporal coordination between 

hand transport and grip aperture.

The model’s predictive ability is further tested in the perception of human demon­

strated actions. Through integration with a system that performs perception using its 

motor system offline, in line with the motor theory of perception, the model is shown to 

correlate well with data on human perception of movement.

These experiments investigate and extend the explanatory and predictive use of the 

model for human movement, and demonstrate that it can be suitably formulated to pro­

duce human-like movement on robot arms.
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Chapter 1

Introduction
One path to producing flexible, adaptive movement on a robot is to study how humans 

produce such movements. Computational neuroscience provides a range of theories and 

models that attem pt to explain the common features that characterise human upper limb 

movements. 41’u9’69’125’52,127’92’68’106’42’128,46’116 The experimental and observational work to 

identify these common features has been carried out over many years and continues today, 

leading to a number of qualitative and quantitative laws of movement.37’91,59,60,57,8’62’70’18

A major research goal is to identify, through greater understanding of the processes 

involved in human motor planning and generation, underlying principles of human move­

ment that might be employed to help design new algorithms and strategies for controlling 

robots 123-13'107<6>48’4>122>12-27-20-28.23

There are obviously considerable differences between human and robot arms. Hu­

man arms are moved by forces generated by muscles rather than motors. Muscles are 

often compared to springs, and they exhibit many spring-like properties such as passive 

compliance; but they act in a way that is considerably more complex than the spring 

analogy suggests. They also show dynamic properties such as fatigue tha t are not repli­

cated by motors. One thing human and robot motor systems have in common is noise, 

which causes inaccuracies in both control and sensory signals, leading to inaccuracies in 

movement execution.

Understanding these differences is important, as the aim is that the identified prin­

ciples and algorithms, when applied to the dissimilar mechanical systems and control 

architectures of robots, capture particular aspects of human movement.

The other side of the generation of motor behaviour by an intelligent agent is its 

sensory perception of the motor behaviour of others. Once treated as a separate phe­

nomenon to action generation, action perception is increasingly seen as a process tha t
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explicitly involves the motor system through the offline simulation of observed move­

ments.61’103’10’73,53’26’124’74,34’11,99’43’28,29’30 This motor theory of perception is supported by 

behavioural and imaging experiments in both monkeys and humans.102»21 18»75*104»39’38'50<71 >45

The ability to recognise the actions of others and understand their goals is a vital com­

ponent of the ability to learn from demonstration. Providing robots with these abilities 

becomes an important research goal as robots find increasing use in human orientated en­

vironments. Linking together models that capture human-like movement characteristics 

and systems that provide some level of action recognition through the use of the motor 

system in perception is a step towards this goal.

Contributions

Within the context given above, the primary contributions of this thesis are in the novel 

application and synthesis of specific theories of human movement to a platform suitable 

for robot control. More specifically, the contributions are as follows: implementation of a 

successful model of human movement, the minimum variance model, for control of a robot 

arm; extension of this implementation to the problem of prehension, through the combi­

nation of two parallel theories of grasp planning and execution; and the integration of this 

model for reaching and grasping with an existing model for learning from demonstration, 

the combination of which allows recognition of observed actions.

The first contribution is the novel application of the minimum variance model of human 

movements to the task of prehension. There have been several previous implementation 

of the model for reaching52,117,86,88 using a variety of optimisation methods to produce 

trajectories for comparison with human movement data. The approach presented here 

follows the work of Todorov,117 who used a linear quadratic gaussian (LQG) scheme to 

iteratively find the optimal state-feedback gains and control law in the presence of signal- 

dependent noise, and extends his work for reaching movements by adding structures to 

control the movement of two digits at the end of a two-joint planar arm.

As with any model, it is important to set out the basic assumptions being modelled. 

This is especially relevant in neuroscience, where studies can be performed at many dif-
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ferent levels of detail. For motor control studies, a distinction can be made between the 

level of detail of the plant and the level of detail of the controller. Both the plant and 

the controller of the human motor system have evolved together over time. As such, it is 

important when trying to capture particular aspects of human movement to understand 

the source of the observed behaviour: is it a consequence of the control strategy, a con­

sequence of the mechanical properties of the arm, or is it due to the interaction of the 

two? An observed behaviour may also be an emergent property, one that has come about 

indirectly through evolutionary pressure acting on another part of the system.

Here, this is taken into account by judging movement models not only on the relevant 

features of human movement that they capture, but also on the degree to which the 

underlying principles of the model can be applied to controlling a robot arm, and their 

suitability for implementation. This is the case for the minimum variance model, where 

valid trajectories have been produced with several different plant models and types of 

optimisation, yet with the underlying principles unchanged.

The minimum variance model has been shown to predict trajectories for saccadic eye 

movements and reaching movements, including those that involve obstacle avoidance, but 

is used here for the first time to predict grasping behaviour. To do this, the model uniquely 

mixes two grasping paradigms; the separate planning of transport and grip components, 

and a recent theory tha t casts grasping as pointing with the digits to targets on an 

object.113

This synthesis of the two paradigms is achieved through the specific principles of the 

minimum variance model. As has been stated, it has been successfully implemented for 

the task of reaching to a target with an arm. Its extension to the digits of a gripping 

mechanism allows the model to grasp by moving the arm and gripper to target positions 

on the object, following trajectories that obey the minimum variance criterion. However, 

noise on the control signals of the arm as well as on those of the digits will effect the 

variance, but by different amounts according to the nature of the task. As such, planning 

of the transport and grip components must take place separately.

This extension of the reaching model is an important one for robotic control as well,
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since it raises the model to the level of being able to perform tasks more complex than 

reaching. Point-to-point reaching movements are the basic units of all upper-limb move­

ments, but the addition of a gripping mechanism and appropriate controller allows for 

interaction with the environment in a way that pointing alone does not.

The second primary contribution is in the application of the model for reaching and 

grasping to the problem of learning from demonstration. A scheme that uses the motor 

theory of perception is adapted to use the optimal control scheme presented here to 

recognise patterns of reaching movements. The structure of the optimal control scheme 

is such that predicted movement costs can be calculated and stored without having to 

perform the movement itself.

When presented with a demonstrated movement, these predicted costs can be used to 

generate motor commands and produce trajectories using the observed states rather than 

the system’s own state. The predicted trajectories for known movements are compared 

with the demonstration in progress, in order to calculate the confidence that the prediction 

matches the observed movement.

If such a system (where the motor generation subsystem is involved in perception) is 

to confidently recognise a human demonstration, it is a logical step tha t the system is 

also able to generate movements corresponding to human movements to some degree. A 

further test of the minimum variance implementation presented in this work is therefore 

how successful it is in recognising movements when presented with variations to human­

like movement patterns. The third contribution of this work is this investigation, carried 

out by applying the scheme for action perception described here to the minimum variance 

model for prehension described above. When the system is presented with normal grasping 

behaviour and abnormal grasping patterns demonstrated by humans, it correctly assigns a 

significantly higher confidence to the natural behaviour. This success is further confirmed 

by the confidence time profiles produced by the system, which are qualitatively similar in 

form to neural activation patterns of human subjects when presented with the same type 

of grip patterns.

The contributions of this thesis build on a foundation of neuroscientific theory which
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is applied to the dissimilar domain of robotic control. Through the increasingly complex 

applications of reaching, grasping and action perception, the validity and importance of 

these contributions are demonstrated.

Outline of Thesis

The organisation of the rest of this thesis follows. In Chapter 2, a detailed background 

is given on the characteristics of human upper limb movement and a range of compu­

tational models that have been proposed as explanations. The theoretical backgrounds 

of several different movement models are described, showing how the trajectories they 

produce match up with the previously identified features of movement. Models such as 

the equilibrium point hypothesis are briefly discussed, but the main focus is on the wider 

class of optimisation models. Among those discussed are the well-studied minimum jerk 

and minimum torque-change models. From these descriptions several issues are identified 

that are not covered, leading to the introduction of the minimum variance model in the 

following chapter.

In Chapter 3, the primary focus is on the details of the minimum variance model and 

the implementation for robotic reaching movements. As well as describing the theoret­

ical background, a description of an optimal control scheme formulated to capture the 

relevant principles is given, using a two-link planar effector model suitable for robotic 

control. This implementation is demonstrated to capture the required features of human 

movement described in Chapter 2 for point-to-point movements, and is also extended for 

more complex trajectories involving via-points.

In Chapter 4, the model for human reaching is extended to encompass precision grasp­

ing of an object. The basis for this chapter is the competition between two alternative 

views of human grasping. The first view59,60 suggests that grasping is performed using 

two visuomotor channels, one for the reach and one for the grip, which are executed in 

parallel. The second view113 predicts that grasping can be thought of as pointing with the 

digits to target positions on an object. Here, an effector model with separate reach (the 

arm) and grasp (a gripping mechanism) components is combined with the implementation
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of the minimum variance model developed in the previous chapter for pointing to a target 

position.

The resulting digit trajectories are shown to successfully match the well-documented 

spatial and temporal relationships between peak grip aperture and a number of task- 

dependent parameters, including object size and degree of perpendicular approach. Unlike 

other models of grasping, the extension of the minimum variance model to gripping also 

allows the study of the relative contributions to movement accuracy of the reach and 

grasp components of the movement, where the results are shown to also match those of 

previous grasping variability studies performed on human subjects.

Having described the model and its success in replicating features of human-like move­

ment for reaching and grasping, chapter 5 covers experiments that show the model’s ap­

plicability to the perception of human actions. The model is integrated with a system 

for action perception based on the motor theory of perception. Structures from the opti­

mal control scheme used to generate movements from the system’s own state are instead 

used to predict the movements of a demonstrator, given the demonstrator’s current state. 

These predictions are given a confidence rating based on how well they match the observed 

action.

In this chapter, the system is presented with both normal and altered grasping patterns 

produced by a human demonstrator. The system is shown to successfully recognise the 

normal grasping behaviour but shows decreased confidence in predictions for other pat­

terns. The confidence profiles are shown to qualitatively take the same form as recordings 

of neural activation levels of human subjects observing the same type of patterns.45,31

The final two chapters discuss the implications and limitations of this work and present 

some potential directions for further research.

Publications

The primary contributions and results presented in this thesis have also been used by the 

author in the following articles:
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G. Simmons and Y. Demiris. Object grasping using the minimum variance model. Bi­

ological Cybernetics, 2006 (to appear)110 : Covers the extension of the minimum variance 

model from reaching to grasping, including descriptions of the two grasping paradigms 

used. Results from chapter 4, including the effects of different movement parameters on 

variability of grasping, also form part of this paper.

Y. Demiris and G. Simmons. Perceiving the unusual: Temporal properties of hierar­

chical motor representation for action perception. Neural Networks, 2006 (to appear)31 

: Paper describing how the minimum variance implementation given in this work can be 

fitted to the HAMMER architecture29,30 to recognise the actions of a demonstrator. This 

is the basis for the action perception work that forms chapter 5.

Additional Information

Supplementary information for some sections is provided in the appendices. Where nec­

essary, this is noted in the text of the appropriate section. Equations and figures are 

numbered by chapter and the order in which they occur within each chapter. A list of 

figures is included after the contents list.
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Chapter 2

Background
As stated in Chapter 1, computational neuroscience provides a range of theories and 

models that attem pt to explain the common features that characterise human arm move­

ments. Among these features are the straight hand paths and bell-shaped velocity profiles 

found in point-to-point reaching movements, and the speed-accuracy trade-off formalised 

by F itts Law. Many such models generate their trajectories through the optimisation of 

some aspect of movement, such as hand velocity or joint torque.

This chapter begins with a description of the characteristic features that define "human­

like" movement. A number of relevant computational theories of human upper limb move­

ment that attem pt to explain these features are then outlined. The focus is primarily on 

optimisation models, such as the minimum jerk and minimum commanded-torque-change 

models. For completeness other relevant theories, such as the equilibrium point hypothe­

sis, are also described.

Through this analysis, several areas not covered by these models are identified, leading 

to the introduction of the minimum variance model in the following chapter.

1 Human Movement

When performing upper limb movements humans show a number of stereotypical patterns, 

both between individuals and between trials for the same individual. The following section 

describes these features and some of their implications. The focus is initially on the 

characteristics of point-to-point reaching movements, since these are among the most 

basic movements performed by the upper limb. In the next chapter it is shown how these 

principles still hold for more complex trajectories through the inclusion of via-points.
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1.1 Straight, sm ooth movement

When reaching between two points humans move their arms to make the path of the 

hand between the two points roughly straight. Slight curvature does occur, depending 

on the area of the arm ’s workspace in which the movement occurs.119 These straight 

movements are smooth: the acceleration profile of the movement contains no discontinu­

ities (Figure 2.1(c)). This results in a characteristic bell-shaped velocity profile for the 

movement.91,40,119, as shown in Figure 2.1(b). However, this bell-shaped profile does not 

have to be perfectly symmetric, and can be skewed towards either the start or end of the 

movement depending on the movement parameters of the task .114

Relative time

(a) (b)

Relative time

(c)

Figure 2.1: Smooth movement between points: (a) Change in x-axis position; (b) Bell­
shaped velocity profile; (c) Acceleration profile, showing no discontinuities
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1.2 Speed-accuracy trade-off

Point-to-point reaching movements also exhibit an inverse relationship between speed and 

accuracy, known as F itts’ Law37 (equation 2.1) which states that the faster the movement, 

the less accurately it will reach the target.

T  = a + b (log2 )  )  (2.1)

In equation 2.1, T  is the movement time, A is the amplitude of the movement, W  is 

the target width, and a and b are coefficients of regression. The term ^  is known as the 

index of movement difficulty (ID). Often, a fast inaccurate movement will be followed by 

short corrective movements to bring the hand back to the target.32,33 The speed-accuracy 

trade-off has been extensively studied in human-computer interaction, where various IDs 

have been proposed and evaluated against human movements.1 The general form of the 

trade-off is shown in Figure 2.2.

Figure 2.2: General form of the speed-accuracy trade-off observed in human point-to-point 
reaching movements

1.3 Tim ing Accuracy

As well as the spatial aspects of a movement many tasks have temporal requirements, 

including temporal accuracy. In contrast to the speed-accuracy trade-off for spatial goals, 

variability of timed actions increases almost linearly with the goal movement tim e,109 as
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shown in Figure 2.3. When the movement distance increases but movement time stays 

constant, timing error doesn’t increase despite the increased movement velocity.

Figure 2.3: General form of the relationship between temporal variability and instructed 
movement time (adapted from Schmidt109)

1.4 Velocity and curvature

Another important aspect of human movement is the relationship between velocity and 

curvature of a movement, often referred to as the two-thirds power law.78,120,101 This 

relationship is formalised by equation 2.2.

v — gK ^ (2-2)

In equation 2.2, v is the tangential velocity of the hand, k is the curvature and g is a 

proportionality constant. The coefficient ¡3 has a value around |  (the name "two-thirds" 

power law comes from the original formulation of the law in terms of angular velocity101).

The following section provides details of a number of computational models that have 

been developed to explain why the motor system would exhibit the relationships described 

here.
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2 Computational Models

A majority of computational neuroscience models that seek to explain the characteristics 

given in the previous section are based on the assumption that they arise from the op­

timisation of some criterion, or criteria, by the human motor system.17,79’42’80 A notable 

exception is the equilibrium-point hypothesis and its variations.8,9,49,92,54

Within the class of optimisation models, it is not clear which aspects of movement 

should be optimised. A range of criteria have been proposed, such as minimum time 

of movement, minimum energy expenditure, minimum commanded-torque-change93,121 

and the well-known minimum jerk41 and minimum torque-change models.119 Many of 

these optimisation criteria have been evaluated against actual human arm movements by 

previous studies.51

In this section, a basic description of the equilibrium-point hypothesis is given for 

completeness, before the wider-class of optimisation models is explored.

2.1 Equilibrium-point hypothesis

Muscles are the motors responsible for limb movement. They are more them simple force 

generators however, and their spring-like behaviour has long been recognised as a key 

element in the control of limb movement. One theory of motor control, the equilibrium 

point hypothesis (EPH)8,9,49,92 is predicated on the assumption that the central nervous 

system can control the equilibrium position established by the balance of forces in these 

muscle-springs.54

There are several variations on the basic hypothesis, of which the most well-known 

is the A-model. It was proposed, based on force measurements of human muscles, that 

the force response of those muscles is exponential with respect to perturbation from a 

target length. Flexor-extensor pairs of muscles behave like exponential springs where the 

parameters (the A values, which determine the length threshold a t which a muscle begins 

to generate force) set the target angle of the joint. For a motion between two postures, the 

A values are interpolated linearly between the settings consistent with the desired initial 

and target positions.51 The equilibrium-point hypothesis thus offers an explanation for
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how a reference trajectory can be achieved by guiding limb movement, but does not 

explain how such a trajectory could be produced in tasks more complex than pointing.116

As well as this lack of application to more complex tasks, there is also experiment 

evidence against the theory as well. Gomi and Kawato49 report on experiments to mea­

sure human arm stiffness during movement using a high-precision manipulandum. Prom 

these measurements, and from the actual hand trajectory and generated torques, they 

reconstructed the equilibrium-point trajectory of the movement. They found tha t using 

the measured arm stiffness produced an equilibrium-point trajectory with an incorrect 

velocity profile. Further, a set of experiments performed by Hinder and Milner54 tested 

the EPH against the theory that the CNS learns and uses an internal dynamics model 

of a task. Their results show that predictions made by the EPH were inconsistent with 

observed data, supporting the internal model theory.

Because of the apparent evidence against the theory, and based as it is on detailed 

proprioceptive information about the stretch of muscles in the arm, the EPH is unsuited 

for implementation on a simple robotic platform. It would be interesting to adapt the 

theory to control a robot arm based on artificial muscles, but these are expensive compared 

to servo-motors.

This means it is necessary to look at other theories of how the CNS performs the 

computations required for movement planning and execution. Amongst these theories, 

those most suitable for implementation on a robotic platform are the ones based on control 

engineering methods, specifically in the field of optimal control.

2.2 Optimisation models

Optimal control theory has been well studied and forms the basis for most modern control 

solutions. The principles of optimal control theory have also proved to be useful for 

applications outside the domain of control engineering, the most relevant of which for this 

thesis is the problem of human trajectory planning and arm movement.79,117,116,80

Rather than specifying a desired path, optimal solutions to control problems work by 

assigning a performance index based on the parts of the system that the designer wishes
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to optimise, such as amount of time passed or energy expenditure. This performance 

index, or cost function, usually takes the form of a summation or integral which must be 

minimised over a given duration; both finite and infinite (steady state) horizon problems 

can be addressed.

Optimisation criteria for modelling limb movements and hand trajectories generally 

fall into one of two categories - kinematic or dynamic solutions. In kinematic solutions the 

cost function is based upon the geometric or time-based properties of the motion and the 

state of the limb could be represented, for example, in terms of joint angles or Cartesian 

position of the hand. In dynamic solutions the cost function is based on the dynamics 

of the arm and the state could be represented, for example, in terms of joint torques or 

forces acting on the hand.

One of the major differences between the two types is in the way they represent the 

planning and execution processes. For kinematic models, movements are specified in 

terms of the positions and velocities of the arm as a function of time which must then 

be converted into motor commands to move the arm. This implies a separation of the 

planning and execution processes. In dynamic models, however, motor commands are 

specified directly, effectively combining planning and execution into a single process.51

Distinction can also be made between intrinsic and extrinsic spaces in which planning 

occurs. For example, planning in joint angle space is intrinsic to the human or robot, while 

planning in Cartesian space is extrinsic.51 Since actual movements can only be specified 

intrinsically, but many goals of movement are specified extrinsically (e.g. picking up an 

object), one of the major problems in sensorimotor planning and control is converting 

between these two frames of reference.

The following sections describe several optimisation criteria that have been suggested 

as possible explanations for the characteristic properties of human movements. This is 

not a comprehensive review, but covers a number of the most successful and important 

theories. Each is evaluated in terms of the features it captures and its applicability for 

transferring to control of a robotic system.
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2.2.1 M inim um  energy

Minimisation of energy is an interesting criterion for movement, as it is potentially appli­

cable to many movements performed by different parts of the body. It also has a sound 

biological basis, as it deals with the metabolic energy expended by the muscles when 

moving.

The minimum metabolic energy cost hypothesis was modelled by Alexander2, using 

equations for the metabolic rate of uni-articular muscles derived from a number of em­

pirical studies.81,2 The model uses a two-link arm operating in a vertical plane, with 

two uni-articular muscles (a flexor and extensor) for both the shoulder and elbow joints. 

Experiments are also carried out on an arm using biarticular muscles to control the elbow.

The metabolic energy cost for muscles shortening or being stretched at known rates is 

calculated in this paper as a function of the moments and angular velocities of the joints 

of the arm. The metabolic rate P  of a uni-articular muscle while it is shortening a t a rate 

that gives its joint angular velocity 9 is given by 2.3.

P = (2.3)
J

where Miao is the moment the muscle would exert if contracting isometrically, and 0mai 

is the angular velocity corresponding to the muscle’s maximum (unloaded) shortening 

speed. Data for the function $  comes from Ma and Zahalak81, and are well-fitted by 

equations 2.4 and 2.5. When the muscle is doing positive work (when the moment it 

exerts and its angular velocity have the same sign), the function is:

$
9

=  0.23 — 0.16 exp
-89
Qmax

(2.4)

When the muscle is doing negative work (when the moment it exerts and its angular 

velocity have different signs), the function $  becomes:

$
9

=  0.01 -  0.11 9
+  0.06 exp (2.5)
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For some movements only some of the muscles motor units need to be activated. To 

use equation 2.3, the isometric moment for the part of the muscle that is activated at each 

time step is needed. The faster the muscle is shortening, the more it must be activated 

to exert a given moment. Alexander2 converts standard force-velocity equations into 

moment-angular velocity equations, and rearranges them to give the isometric moment 

for the part of the muscle that must be activated to generate a required moment and 

angular velocity (equations 2.6 and 2.7).

As when calculating the function $  above, different equations are used depending on 

whether the muscle is doing positive or negative work. When the moment and the angular 

velocity have the same sign (positive work), the isometric moment is:

Mi, (2.6)
M  ( O m a x  + Gfl)

r,__ -  — \ ----------- :— L
Omax ^

When the moment and angular velocity have different signs (negative work), the iso­

metric moment is:

M id m a x -  7.6 Gfl)

Omax ~  13.6G0 -  0.80 '

The factor G in equations 2.6 and 2.7 is set by Alexander2 to be 4, described as a 

typical value for moderately fast muscles. Empirical values of ¿max are given as 22 rad/s 

for flexion of the elbow, and 28 rad/s for extension - it is noted that these values were 

determined during maximum effort and are likely to reflect the properties of the fastest 

muscle units. Less forceful movements would probably be performed by slower muscles, 

so a value for Omax of 15 rad /s is used in the paper for both flexion and extension of both 

the elbow and shoulder joints.

The equations above allow the metabolic rate P  (equation 2.3) to be calculated a t each 

time step, given the angular velocity of the joint that the muscle is moving. This requires 

tha t the angular velocity profile for a movement is calculated. For a  two-link planar arm 

moving between two points, joint angle trajectories are produced using a general Fourier 

series to describe the time course of the angular velocities 0. Two terms of the Fourier
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series are shown to be adequate, leading to an equation for the velocity profile of each joint 

based on its start and target values (equation 2.9). The joint angles (equation 2.8) and 

angular accelerations (equation 2.10) are then calculated by integrating and differentiating 

this equation respectively.

0  9  start "b 0 - 5  (9  tar get $  s ta rt) 1 — COS + 0 5 D  1 _ C O S ( ^ )

? =  ( ^ )  0.5 ( 9 ^ 1  -  0atart) sin +  D sin

' - ( f t (?)0.S(0uraa -  0,<„,)cos ( ^  ) +  2D cos i ^ ) j

(2.8)

(2.9)

(2.10)

In equations 2.8, 2.9 and 2.10, T  is the movement time, 6star t  is the joint angle at 

time t =  0, and Otarget is the required joint angle at time t = T. All three equations 

can be applied to both the shoulder and elbow joints of a two link arm. The variable D 

determines the exact trajectory between the two joint angles by effectively changing the 

timing of the movements. If D is zero, the joint angular velocity 9 follows the form of 

a sine wave, rising to a peak at time t = % and falling again. If D is positive 9 reaches 

its peak early in the movement, while if D is negative the opposite occurs, as shown in 

Figure 2.4.

Using the equations given by Alexander2, it is possible to calculate the metabolic 

energy used by the muscles for a given trajectory characterised by a value of D for each 

joint. The optimisation process for a given set of start and target angles involves varying 

these values of D and recording the total metabolic energy used by all the muscles of the 

arm. For two joint angles, this gives a 2D landscape whose minimum gives the values of 

D tha t produce the minimum metabolic energy cost for the given task.

Comparisons with movement data from human subjects57 show that it produces op­

timal trajectories tha t are similar to the observed trajectories for fast movements when 

operating on a Particular arm model. However, it shows marked differences when perform-
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Figure 2.4: Plot showing the effect of the parameter D on trajectories produced by the 
minimum metabolic energy model. Positive values of D cause the peak velocity to occur 
earlier in the movement, while negative values cause it to occur later. A zero value for 
D puts the peak velocity exactly half-way through the movement, (a) Angular velocity 
profiles for three different values of D, and (b) their corresponding trajectories for a joint 
movement of 90 degrees.

ing slow movements due to the assumptions made about the maximum angular shortening 

speeds that the muscles can use. Also, as noted by Alexander2, task performance is often 

a more plausible criterion than simple energy economy.

Although energy minimisation can not account for much of the behaviour observed in 

arm movements or eye movements, it is often used in conjunction with a smoothness cost 

such as minimum jerk ,116 described in the following section.

2.2.2 M in im um  je rk

The minimum jerk model is an example of a purely kinematic cost function. These would 

seem to be good candidates for explaining human movement, as most targets for reaching 

are specified in external visual coordinates; it follows that movement planning could also 

take place in extrinsic coordinates.

It has been suggested that smooth, straight hand paths can be explained if smoothness 

of movement is an explicit goal of the system.41 A good measure of smoothness is the jerk 

of the movement, defined as the derivative of the Cartesian hand acceleration (the third 

derivative of the hand position). The cost function of the minimum jerk model is given
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by equation2.11.

C j „ k  =  \  E  ( ( i n ) 2 +  ( V . ) J )  ( 2 . 1 1 )
z  n=0

In equation 2.11, T  is the number of time steps in the movement and 'x and V 

represent the jerk of the movement along each axis. Results for this model show a good 

match between predicted trajectories and most actual trajectories. The hand paths are 

indeed smooth and straight. Not all features of movement are captured by the minimum 

jerk model however, including the slight asymmetry in the velocity profile and the speed- 

accuracy trade-off, since the model does not include any disturbances.

Figure 2.5 shows simulation hand paths and velocity profiles for ten movements per­

formed between similar points in one area of the arm ’s workspace. These simulations were 

performed by an implementation of minimum jerk model using the optimal control scheme 

described in the next chapter. The specific details of the minimum jerk implementation 

of this control scheme are given in Appendix A.

As can be seen in Figure 2.5(a), the movements predicted by the minimum jerk model 

fit the criterion for straight hand trajectories described in section 1.1. The trajectories 

are smooth with characteristic bell-shaped velocity profiles41 (Figure 2.5(b)). However, 

they lack the slight curvature typical of human movements. As stated previously, the 

minimum jerk model also lacks an accuracy constraint.
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0.5 0.25

Figure 2.5: Ten typical trajectories produced by the minimum jerk model in simulation: 
(a) Hand paths; (b) Tangential velocity profiles

A major consideration for using this model on a robot arm is the fact that Cartesian 

positions and velocities have to be converted into angles and angular velocities at each 

time step to control the robot arm. This is not difficult or computationally expensive with 

a two-link planar arm, but a more complicated arm model would have a correspondingly 

more complicated inverse kinematics function. There are several existing inverse kinemat­

ics algorithms, working in a variety of different ways (including iterative methods), that 

could be used to deal with this increased complexity. Inverse kinematic functions are also 

one-to-many functions, meaning that the arm configuration calculated at each time step 

would have to be checked against the configuration at the previous time step to ensure 

joint angle continuity.

2.2.3 H ig h er-o rd er derivatives

jerk is not the only derivative of Cartesian position that has been explored as an opti­

misation criterion. Trajectories involving the fourth derivative of hand position ("snap") 

and beyond have been produced, as shown in Figure 2.6. The general hypothesis for 

higher-order derivatives states that minimising the nth derivative of hand position gives 

a continuous profile for the (n — l)th  derivative and a smooth profile for the (n — 2)th 

derivative.
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(a) (b)

Figure 2.6: Plots showing (a) x-axis trajectories and (b) x-axis velocity profiles for 20cm 
movements of duration Is where different derivatives of hand position have been min­
imised; (c) Plot showing the relationship between derivative order n and the ratio between 
peak velocity and average velocity r. The dashed line shows the how the experimentally 
derived value for humans, r  =  1.875, relates to the derivative order.
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As the value of n gets higher, the optimal trajectory tends to a step function and 

the velocity profile gets correspondingly narrower and taller. The change in the velocity 

profile can be measured as the ratio r  of peak velocity to average velocity. As shown in 

Figure 2.6(c), the value of r increases with n. However, psychophysical experiments have 

shown that in human subjects r  is about 1.875 (shown as a dashed line in Figure 2.6(c)) 

and therefore produce trajectories that are closest to minimum jerk trajectories. Very 

little is gained in terms of similarity to human movement by taking derivatives above 

jerk, and it is also unclear how the brain would calculate these higher-order derivatives.51

2.2.4 Minimum angle jerk

An obvious problem with the minimum jerk criterion as outlined above is tha t the opti­

misation is not carried out in an intrinsic space, thus requiring transformations between 

coordinate systems in order for the optimal trajectory to actually be performed. The 

equally obvious response is to perform minimum jerk optimisation of the joint angle tra­

jectories rather than the hand trajectory itself. The cost function for this criterion is 

given by equation 2.12.

I T /  N ... A
C a n g le - je r k  — Z  ^  ^  " ( 6  i,n) I

Z  n=0 \ i = l  /
(2.12)

Here, T  is the number of time steps in the movement, and 9i,n is the third derivative 

of the ith joint angle of N  joints. As for the minimum jerk model, trajectories produced 

using equation 2.12 are smooth, but in addition show the slight curvature associated with 

unconstrained point-to-point reaching movements by humans, as shown in Figure 2.8.

Despite this, minimum angle jerk does not fully explain human reaching behaviour. In 

the same way that minimising the jerk of the hand leads to straight paths in hand space, so 

minimising the jerk of joint angles leads to straight paths in joint space. This is not what 

is observed in actual human reaching, where joint angles do not change monotonically but 

can invert part way through the movement - as when moving the arm from outstretched 

to the side, to outstretched in front of the body. In the same way as the minimum hand 

jerk model, the minimum angle jerk model also fails to take into account any of the forces
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Figure 2.7: Joint angle trajectories for ten movements performed using the minimum 
angle jerk evaluation function: (a) The changes in joint angle are smooth, as required; (b) 
The joint angle velocities have the required bell-shape; (c) The joint acceleration profiles 
are also smooth and have no discontinuities.
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Figure 2.8: Minimum angle jerk hand path and velocity profile: (a) The hand path is 
smooth and roughly straight, with a slight degree of curvature; (b) The hand velocity 
profile has the required bell-shape

or other dynamics that act on the arm.

2.2.5 M in im um  to rque-change

In contrast to the purely kinematic minimum jerk models, the minimum torque-change 

model119 uses a dynamic cost function. While the minimum jerk model captures some of 

the general behaviour of reaching movements (such as smooth movement and a generally 

straight hand path), it is unlikely that movements are determined independently of dy­

namic quantities of the arm such as length, load, torque or external force. To account for 

this, it was suggested that the change in the joint torques be used as a cost function, as 

shown by equation 2.13.

f a u f j  (2-13)

T  is again the number of time steps in equation 2.13, while f iiTl is the derivative of 

torque at the zth joint of N  joints, for each time step n. Torque change is used rather 

than minimisation of joint torque itself, as this is known to generate discontinuities in 

acceleration which are inconsistent with smooth movement.69

Uno et a l.119 calculated joint torques using the dynamics equations for a two-joint
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manipulator acting in the horizontal plane, equations 2.14 and 2.15. Given these highly 

non-linear dynamics, the trajectories that minimised the cost function could not be cal­

culated analytically in the same way as those for the minimum jerk model, but required 

an iterative learning scheme.119

T\ — (/i +  I2 +  2Ai2Z/iS2 cos 02 +  M2(L i )2) +  ( /2 +  M2L 1 S2 cos 02) 62

—M2L 1 S2 ( 2O1 +  ¿2^ 02 sin 02 +  bi9i (2.14)

72 =  (I2 “h M2L 1 S2 COS 62) 9i +  / 202 "H M2L 1 S2 ^01^ Sin 02 d" &202 (2.15)

In these equations, Mi, Li, Si and L are the mass, length, distance from the centre of 

mass to the joint, and the rotary inertia of the link i around the joint, respectively. 6* is 

the coefficient of viscosity and r< is the torque, both for the joint i. The values used for 

these parameters are given in Uno et a l.119.

The trajectories produced by the dynamic minimum torque-change model are closer 

to those produced by humans than the trajectories of the purely kinematic minimum jerk 

model: they are not perfectly straight but are instead slightly curved. The hand paths 

are still smooth however.

The hand paths predicted by the model agreed with those predicted by the minimum 

jerk model in areas close to and in front of the body. Significant differences were predicted 

however in areas further out and to the side of the body, where the dynamics of the arm 

differ from those in front of the body. This is a feature of human movement which 

is captured by models where the hand kinematics are not independent of the physical 

system used to generate them.91,119 One clear example of this feature is the inversion of 

the elbow joint angle during some movements; this inversion is captured by the minimum 

torque-change model but not, as described above, by the minimum angle-jerk model.

In a similar way to the minimum angle jerk model, the minimum torque-change model 

is more appropriate for controlling the robot arm than the minimum Cartesian jerk model.
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The hand position is calculated using the the forward kinematics which are much less com­

putationally expensive than the inverse kinematics. They are also many-to-one functions, 

so there is no ambiguity about the position of the hand. The required joint angles can be 

easily translated to the required angles of the motors of the robot arm. However, it still 

does not fully account for all the features of human movement. In particular, it does not 

predict any change in the temporal position of the peak velocity; that is, the minimum 

torque-change velocity profiles are always symmetric and never skewed to either the start 

or the end of the movement.114

This model also still does not account for disturbances to the system and lacks an 

accuracy constraint. It has the added disadvantage that the criterion it optimises is 

difficult to measure and calculate compared to a quantity such as jerk, since the inverse 

dynamics are non-linear equations.

2.2.6 Minimum commanded torque change

The term commanded torque refers to the torques that control muscle tension, and hence 

muscle torque. The commanded torque compensates for the damping caused by muscle 

viscous properties, i.e. to generate actual torque, the motor commands controlling the 

muscle tension must overcome the muscles inherent viscosity. By considering muscle 

properties in addition to the link dynamics used by the minimum torque-change model, 

the commanded torque can be thought of as a better representation of the motor signals 

used by the central nervous system (CNS) than the actual torque.93

In this model, the cost function is the same as that of the minimum torque-change 

model (equation 2.13).119,93,66 However, Nakano et al.93 address a number of issues re­

garding the torque equations given by Uno et a l.119, including parameter values for inertia 

I  and viscosity 6. They use slightly modified equations for the joint torque, and include 

a term that accounts for the acceleration due to gravity when movements are performed 

in the vertical plane.

The minimum commanded torque-change model is based on the idea that the char­

acteristics of human movement can be captured if smoothness constraints are put on

39



the motor system at the level of motor commands generated by the CNS. Since these 

are at a high level in the motor hierarchy of motor neurons-muscle tensions-torques-joint 

angles-hand position, the constraints are passed on to each level, reducing the natural 

indeterminacy of the system. As stated above, in the minimum torque-change model 

the link dynamics are regarded as the controlled object, while the minimum commanded 

torque change model uses signals that control muscle tensions to control both the link 

dynamics and muscles.

For movements in both the horizontal and sagittal planes, the minimum commanded 

torque change model produces trajectories that match well with the spatial characteristics 

of observed trajectories. In particular, the trajectories of the model capture the magnitude 

and direction of movement curvature better than either the minimum torque-change model 

or the minimum jerk model.

One of the drawbacks of the model from the point of view of controlling a robot is 

tha t it is computationally difficult to reliably calculate the optimal trajectories.66

Summary

Computational models of human movement vary considerably in the observable char­

acteristics of such movement that they capture and in their applicability to controlling 

a robot arm. In this chapter the focus has been on optimisation models. It has been 

demonstrated that they can be successful in capturing and explaining some characteristic 

features of human arm movements. Their applicability to the control of a robot arm has 

also been discussed briefly.

The models described in this chapter have focused on producing arm movements with 

straight hand paths and bell-shaped velocity profiles, but few have addressed the issue of 

the speed-accuracy trade-off. Many do not include a specific accuracy constraint or do 

not include any form of disturbance as part of their model. A further point is tha t few 

models include a convincing explanation as to why their particular characteristic should 

be optimised by the motor system, other than the predicted trajectories.

In the next chapter the minimum variance criterion, a model tha t sets out to specifi-
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cally  address these issues, is introduced and im plem ented for control of a robot arm.
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Chapter 3

Minimum Variance Model
It was stated in the previous chapter that the stereotypical features of human movement 

hold true between individuals and between repeated movements for the same individual. 

However, all movements are subject to noise which causes deviations from the desired 

trajectory. The models mentioned previously do not account for these deviations, or 

assume them to be negligible. By contrast, the minimum variance model52 specifically 

allows for disturbances to the hand trajectory caused by noise on the motor command 

signal.

The goal of the model is to minimise the variance in the hand position caused by this 

noise during some post-movement period. In this chapter this explanation is expanded, 

and it is explained how the model accounts for the speed-accuracy trade-off and smooth 

arm movements. Details are then given of the implementation of this model using an 

optimal control scheme. The extension to more complex trajectories involving via-points is 

outlined, and trajectories are presented for both simple point-to-point reaching movements 

and via-point trajectories.

1 Minimum Variance Model

Starting from the fact that all neuronal signals are subject to signal-dependent noise 

(noise whose variance is proportional to the signal amplitude), it follows that such noise 

on the neuronal motor signals sent to muscle units results in deviations from the desired 

path. Moving rapidly necessarily requires motor signals with large amplitudes and hence 

high levels of noise, causing greater deviations. Over the course of the movement these 

deviations accumulate, leading to inaccuracy of the final arm position and possibly causing 

failure of the movement goal. Moving as fast as possible is therefore sub-optimal from 

a goal-achievement point of view. Since different tasks require different levels of spatio-
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temporal precision, an optimal movement would be one that balances the speed-accuracy 

trade-off to accomplish the task.

It was therefore proposed that the goal of motor planning is to minimise the variance 

of the arm ’s position in the presence of signal-dependent neuronal noise.52 In this model 

the movement time is chosen to achieve a given movement accuracy constraint. In the 

formulation of the model expressed by Harris and Wolpert52, the optimisation criterion 

to produce goal-directed movements is defined in terms of reaching a target position and 

maintaining it for a post-movement period, during which the summed positional variance 

should be minimised.

T+N

Cvariance =  X  O7*^) +  rfi*)) (3-l)
t=T

In equation 3.1, T  is the number of time steps in the movement and N  is the number 

of time steps in the post-movement period. The definition of the variance at each time 

step <72(t) is

= E  [(*(() -  x(())! ] (3.2)

where x(t) is the hand x-axis position subject to signal-dependent noise and x(t) is 

the position of the hand if the system was noiseless. E  [... ] represents the expected value 

over repeated movements. For time steps during the period t = T , . . .  ,T  + N , the mean 

position x  should be the target position x tgt. The same definition applies for the y-axis. 

This means equation 3.1 can be rewritten as

T+N

C Variance =  ^  ] { E  [(x(f ) — Xtgt) ] +  E  [(y(f) — Utgt) ] ) (3-3)
t=T

Alternatively, since the sum of expected values is the same as the expected value of 

the sum, this can written as

= E
'T+N

X! ( (* (0  -  x t g t f  + (v( t)  -  utgt)2)
. t=T

(3.4)
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which is the discrete version of the integral cost function for the minimum variance 

model given in Miyamoto et al.86. As in equation 3.1, in equation 3.4 T  represents the 

number of time steps in the movement and N  is the number of time steps in the post­

movement period. x(t) and y(t) are the hand coordinates positions, x igt and ytgt are hand 

target positions, and E  [... ] is the expected value over repeated movements.

The principle of the minimum variance model can be thought of as moving to a target 

as accurately as possible in the presence of signal-dependent noise. The model achieves 

this for individual movements by producing a control law that aims to minimise the spread 

of end-points about the target of all movements between two points.

It is not sufficient to add signal-dependent noise to a feedback-system whose optimi­

sation criterion involves moving precisely to a target. In this situation the noise on the 

control signals would cause deviation from the optimal trajectory, which would in turn 

cause corrective actions through the feedback mechanism. The end result would be that 

individual movements would end as close to the target as possible, given their own inde­

pendent (and random) noise profile. However, as the noise was not included as part of 

the original set of optimisation criteria there is no guarantee that the standard-deviation 

of all independent movement end-points about the target would be in any sense optimal.

Also, any control law produced without allowing for the noise in the system will 

produce the same trajectories regardless of the relative level of tha t noise. This means 

that movements cannot be adapted to maintain a required level of task performance if 

the system noise changes.

As mentioned above, a key assumption of the model is that the control signals are 

corrupted by random noise during movement. Based on studies of the standard deviation 

of motor-neuronal firing,84 this noise is assumed to have a normal distribution with zero 

mean and variance proportional to the amplitude of the control signal.52 This form of 

the noise is also used in other (non-optimisation) models tha t include some measure of 

deviation from a planned trajectory.14 The exact form of the noise is discussed further in 

chapter 6.

This model has been shown to produce the roughly straight, smooth movements52’86
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observed in humans.91 Smooth movements are a clear consequence of the optimisation 

criterion, as non-smooth movements require larger motor commands which have higher 

amplitude noise, increasing the cumulative variance.

The speed-accuracy trade-off observed in human movement can also be shown to be 

a property of minimising the movement variance: fast movements require large control 

signals, which are subject to higher amplitude noise than slower movements requiring 

small control signals. Trials with a computational model demonstrate that the two-thirds 

power law also emerges as a result of minimising the variance of the hand position.52

One of the further implications of using end-point accuracy as a criterion for movement 

is that different trajectories emerge when the goal area is not uniform in all dimensions. 

For example if the goal area is a rectangle, greater constraints are placed on movements 

coinciding with the narrow axis of the rectangle than with movements along the wide axis. 

Depending on the exact task requirements, these different constraints lead to different 

trajectories.

This aspect of minimising the end-point variance has been formalised by Todorov 

and Jordan117. Their experiments and mathematical models of noisy human movement 

indicate that trajectories are chosen so that the inevitable variation in a movement is 

shifted to task-irrelevant dimensions, consequently minimising the variance in task-specific 

dimensions.

As well as reliably capturing the important features of human arm movements, the 

minimum variance model has further advantages. Unlike other models, it offers a princi­

pled explanation as to why the motor system should have evolved to produce movement 

in this way. Also, the variance of the hand position over repeated trials is a readily observ­

able quantity that can be reliably estimated from visual and proprioceptive information, 

in contrast to more complex derivative terms such as jerk or joint torque. The concept 

of a distribution of movements around a mean is in line with the growing application of 

probabilistic and Bayesian models to neuroscientific studies.76,72
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1.1 Previous Implementations

The minimum variance model has been implemented in various forms. The original for­

mulation52 used a combination of muscle and skeletal models for the arm, combined with 

optimisation of cubic splines to determine the minimum variance trajectory. Other ap­

proaches include the combination of a minimum jerk trajectory generator and a recurrent 

network to produce the required movements86 and a Kalman filter method with a muscle 

model, used to examine appropriate feedback control laws.117 An analytic solution to the 

minimum variance problem has also been proposed.35,36

Another study that should be mentioned is that of Burdet and Milner14. They pro­

pose a model where a single movement is produced through the superposition of several 

smooth submovements. A particular feature of this model is that it allows for deviation 

of the overall movement by making the amplitude of each submovement variable. This 

has the effect of making the deviation proportional to the mean velocity of the submove­

ment. As each submovement is able to correct for the deviations introduced by previously 

submovements (subject to sensory uncertainty about the current deviation and the vari­

ability introduced by the submovement itself) greater accuracy is achieved with a  greater 

number of submovements.

This model captures many of the same features of movement as the minimum variance 

model, including the slightly asymmetric velocity profile of point-to-point movements and 

the speed-accuracy trade-off. It also introduces other aspects of movement, including 

learning to perform a given movement more accurately by adjusting parameters over 

multiple trials.14

The most appropriate implementation for this work was the Kalman Filter optimisa­

tion scheme of Todorov and Jordan.117 This feedback control scheme allows rapid move­

ment planning and is suitable for controlling a robot arm. As well as the specific ap­

plication of controlling a robot arm, a further consideration in using this scheme is its 

suitability for extension other domains, especially that of action perception. As discussed 

further in chapter 5, the optimisation scheme and implementation described in detail be­

low fitted well with the principles underlying a model for robotic imitation and action
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perception.30,31 The next section details how the Kalman Filter optimisation scheme for 

producing minimum variance movements was implemented.

2 Implementation

2.1 The arm model

The model used to represent a robot arm in this work is a two link arm with two rotational 

degrees-of-freedom (DOF), restricted to movement in a plane (Figure 3.1). The forward 

and inverse kinematics of this model are well defined, allowing both extrinsic and intrinsic 

optimisation criteria (see chapter 2) to be investigated using the same model.

This is a relatively straightforward multi-joint arm, but it represents a good trade-off 

between realistic human movement and model complexity. It is sufficient to show details 

of the movement model and the trajectories it produces without being subject to the 

difficulties of working with the complex kinematics of an arm with more DOFs.

Many studies have used a manipulandum to restrict a person to move their arm in a 

plane, providing data for comparison between the movement of this robot arm model and 

actual human movement.91,41,119,88,15

The optimisation scheme described below actually performs all calculations by mod­

elling the hand as a 2-D point mass. It is straightforward to convert the position of this 

point-mass to the corresponding joint angle changes required to move the hand from its 

starting position to a target.

2.2 Optimal control algorithm

The algorithm for the optimal control scheme used in this work is described in the following 

section. This description is largely based on the supplementary notes to Todorov and 

Jordan117.

2.2.1 Modified Linear-Quadratic-Gaussian (LQG) System

A general control model takes the form:
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0.2

Figure 3.1: The two link planar arm model with two rotational degrees of freedom used 
in this work. The forward and inverse kinematics for this arrangement are well defined, 
allowing extrinsic and intrinsic optimisation criteria to be examined.

x i+1 =  Ax.t +  B u t (3.5)

y  t =  //x t (3.6)

0 <  x'tQtx t +  u'j/iUi (3.7)

where equation 3.5 represents the dynamics, equation 3.6 represents the feedback, 

and equation 3.7 is the control cost. The terms used in these equations are the state 

vector x(i), the control signal vector u(t) and the output vector y (t). The definitions of 

the matrices A, B , / / ,  Q and R are given below. To account for multiplicative (signal- 

dependent) noise in the system, this dynamic and feedback equations of the general model 

are modified a shown below:
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(3.8)
k

xt+1 = Ax, +  B u t +  ^ 2  c in t£ i,t
i=  1

y f =  H xt +  u t (3.9)

In these equations, eitt are independent standard normal variables, Ci are constant 

matrices, and u>t is a vector of independent multivariate normal random variables with 

mean 0 and covariance matrix ft“', also defined below. An important point to note here is 

that, through the inclusion of the Ci matrices, the presence of noise on the control signals 

is directly included in the optimisation algorithm (see section 2.2.2, below).

The Linear Quadratic Gaussian (LQG) problem is to find the control law which min­

imises the expected cumulative cost over a given time interval, given the matrices specified 

above. It has a well-known solution when the noise is additive rather than multiplicative. 

To solve the problem when the noise is multiplicative, Todorov and Jordan117 derived an 

iterative algorithm using a modified Kalman filter, which takes the following form.

2.2.2 Kalman filter

For a given control law Lt, the corresponding Kalman filter Kt is

xj+i =  A xt + B ut +  K t (yt -  H xt) (3.10)

Kt = AH\H' +  ft“ )-1 (3.11)

£?+1 =  ( A - K t W l A '  + J^C nLrfL 'tC ',,-, =  Ei (3.12)
n

£f+1 =  KtHTrtA' + { A -  B L t) £ f  (A -  BLt)' ; E? =  x jx i (3.13)

In the set of equations 3.10 to 3.13, x  is the estimated state vector and matrices K t, 

E®, and E£ correspond to the Kalman gain, the expected estimation error covariance, and 

the non-centred covariance of the state estimate. Computing the unknown matrices in 

this set of equations requires a single forward pass through time.
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For a  given K alm an filter K t, the corresponding control law Lt is

u t =

Lt =

S f  =

- L tx t

\^B'S?+1B + R + ^ C ' n (Sf+1 +  Sf+1) 

Qt + A'S?+1( A - B L t) ; S$ = QT

B'S?+lA

(3.14)

(3.15)

(3.16)

S et = A'S?+1BLt + (A -  KtH)' Ste+1 {A -  K tH) ; S f  =  0 (3.17)

In the set of equations 3.14 to 3.17, Sf and S* are the parameters specifying the 

optimal cost-to-go function. Computing the unknown matrices in this set of equations 

requires a single backward pass through time. To find the Kalman filter and control law 

that are optimal with respect to one another, the sets of equations 3.11 to 3.13 and 3.15 

to 3.17 are iterated until convergence. It has been shown that iteration always converges 

exponentially, and to the same answer regardless of initialisation.117

As such, for the simulations shown in this thesis Lt was set to zero for the first pass 

through equations 3.11 to 3.13, taking the value calculated by equations 3.15 to 3.17 

thereafter.

2.2.3 State vector

As described in section 2.1, following Todorov and Jordan117 the hand was modelled as 

a point-mass with position (pf, p\). The movement of the hand is accomplished through 

actuators producing forces f f  and f \ .  This forces are calculated by applying a second- 

order linear filters with time constants Tj =  ti — 0.04s to the noisy control signals u* and

u l

As the plant model is an inertial system, the state vector has to include the position 

and velocity of the point mass. The linear filters used to calculate the actuator forces have 

their own states, which must be included as well (since the filters are second-order, two 

state variables per actuator are needed). Finally, the target position (gx, gy) is needed 

so tha t the task error can be defined as a function of the state, as per equation 3.7 (see
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section 2.2.5, below).

W ith a single target it is acceptable to include the goal coordinates in the state vector. 

However, if multiple via-points are defined as part of the task, this structure can become 

inefficient and unwieldy. To make the state vector simpler in this situation, the goal 

coordinates can be encoded in the state cost matrix Qy. The state vector then has two 

" l"s  appended to it for each required positional constraint (an a>axis goal coordinate and 

a y-axis goal coordinate). For a single target, this gives a ten-dimensional state vector x t:

xt = p? pi n  f  n  n  £  £  i  i (3.18)

In equation 3.18, f \  is the internal state variable required to implement the second- 

order filter.

2.2.4 Dynamics matrices

Having defined the state vector, it is now appropriate to define the constant matrices used 

in the dynamics and feedback equations: A, B, Cn and H.

Sensory feedback to the system only requires position, velocity and force information, 

so the internal state variables for the second-order filter and the positional " l"s  do not need

to be included in the feedback vector y t. This sets the feedback matrix H = 

Putting this H matrix into equation 3.9 gives the state feedback vector as:

<6x6 06x4

y< = f t  f t  f t  f t  f t  f t + (3.19)

AS mentioned previously, the sensory noise terms in the vector u t are independent 

Gaussians with a mean of zero, and standard deviations:

(T,
- t

0.01m 0.01m 0.1ms-1 0.1ms-1 liV liV

a , is a weighting term that sets the overall sensory noise magnitude. It was set to 0.4 

for the simulations shown here. The relative magnitudes of the standard deviation terms 

given above were set by the fact that, for the movements tasks carried out in this work
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velocities are an order of magnitude larger than displacements and forces are an order of 

magnitude larger than velocities.

The discrete time dynamics of the system xt+At =  Ax.t+At +  B ut +  C\\it£\ + C2Ut£j is 

given by the following set of equations (the subscripts x  and y have been removed from 

the equations for position, velocity and force for clarity. Each equations applies equally 

to movement of the hand on the x- and y-axis):

Pt+At = P t +  P tA t

. , ft A t
Pt+At = P t  +  -------

A t A t  -
ft+At = e f t+  e n ft

ft+ A t =  e f tX +  u t +  ( < £ t +  “ t e t )

ft+At =  e" n f t  +  uvt + au (ti?ei -  < e?)

In these equations, cru is a scaling factor for the signal-dependent noise. Together, the 

two parameters cru and crs set the overall variability of the optimal control law. For similar 

movements to those shown here, Todorov and Jordan set these parameters to adjust the 

overall variability to match their experimental observations of human movement. The 

values they selected were as =  au — 0.4.

Given these equations and equation 3.8, the remaining dynamics matrices A , B, C\ 

and Ci can now be specified:
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A =

1 . A t 

1 A t
At
m

_ At
e  T

At
m

At
e  t

At
e  f

_  At
e  r

At
e  t

At

5  =

06*2

1-2x2

02*2

C\ = B \ C 2 = b
(Ju

- a u .

2.2.5 Cost function matrices

The cost function matrices are the mathematical interpretation of the task. In the case 

of the minimum variance model, the task is to come to rest as close to a specified end­

point (gx, gy) as possible, in time T. The cost is the defined as the amount of error in 

accomplishing this task, as shown in equation 3.20.

\  S  ( ( 5< -  pt )2 +  (wvPt ) 2 +  (wf fT )2)  (3.20)
i=x,y

Here, the first term is the error between the final hand position pr  and the goal, and the 

second and third terms ensure that the hand comes to a halt at the end of the movement. 

The weighting terms wv and Wf scale the velocity and force values so tha t all terms in the 

cost function have equal weighting. Again following Todorov and Jordan, these weights
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had thé values 0.1 and 0.01 respectively, again reflecting the fact that velocities are an 

order of magnitude larger than displacements and forces are an order of magnitude larger 

than velocities.

A scale factor of |  is introduced as there are three task constraints - one positional, 

one velocity and one force. In the case of via-points being specified for a trajectory as 

well as an end-point target, the number of positional constraints will increase (see section 

2.3, below). For P  positional constraints (P — 1 via-points and the end-point goal), the 

scale factor is

An interesting aspect of the minimum variance model over other optimisation models 

is that strict boundary conditions, when the errors in position, velocity and acceleration of 

the start and end points are required to become strictly zero, are no longer necessary. Since 

the final state will vary from the target state due to the noise, the goal of the algorithm 

is not to reach the exact target point at the end of the movement, but rather to move the 

hand to the target with a certain level of task-dependent variance.86 This flexibility means 

that velocity constraints at the target position can also be relaxed, allowing movements 

such as catching a ball to be performed in the same way as reaching to a static target.

It should be noted here that although the movement time T  is an input parameter of 

this system, determined to some extent by the required accuracy, in the human motor sys­

tem movement time is more likely to be an integrated part of the optimisation process.55 

This point is discussed further in chapter 6.

Also, the optimal control scheme of Todorov and Jordan117 does not include a post­

movement period. Instead, the goal is to minimise the variance across all movements at 

the exact end of the movement. This does not fundamentally change the principle of the 

implementation, or the trajectories it produces.

As well as penalising task error, optimisation requires that the control signal energy, 

or effort, is also penalised. The term added to the cost function to do this is shown in 

equation 3.21.

r
T E W)2 + M Ÿ

t=1
(3.21)
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Here, the scalar r  represents a tradeoff between task error and effort. If the effort 

penalty is much larger than the task error the optimal strategy is to keep the control 

signals as small as possible, meaning the target may not be reached at all. W ith the 

model parameters described in the previous sections, a value of r  =  0.002 provided a good 

tradeoff between error and effort. The effort penalty is also divided by the movement time 

T  to average out the cost of the control signals over the entire course of the movement.

Converting the linear equations 3.20 and 3.21 into the appropriate matrix form for the 

Kalman Filter algorithm given above is straightforward. The LQG cost function (equation 

3.7) specifies a state cost matrix Q and a control signal cost matrix R.

The control signal part of the cost function takes the form xi^Rut, where u t = Ut u\
is the control signal vector. Converting equation 3.21 into the form of equation 3.7 gives:

R  =  £ /2 x2 (3.22)

where I2x2 is the 2x2 identity matrix.

The state part of the cost function takes the form x^Qtx t, where x t is the state vector 

given in equation 3.18. Because the task error is only measured a t the end of the movement 

(t = T), Qt =  0, 0 < t < T. The only exception to this is when the task goal requires 

the trajectory to pass through specified via-points (see section 2.3, below). As specified 

by equation 3.20, the only non-zero state cost matrix is Qt :

55



Qx ~  ~V T  g

Wv .

. wv .

W f

Wj

-9x

~9x

-9V

• (9xY

(3.23)

• - 9 y ............................................ (9vY

As an example of how this matrix reproduces equation 3.20, the positional constraint 

for the ar-axis is expanded here:

9x

x 'tQt X-t Pt  ■ ■ ■ 1 •

9x ■ • ■ {9x)

P t

Pt ~ 9 x ~Pt 9x +  {9xf

=  (Pt )2 ~  Pt 9x ~  Pxt 9x +  {gx)2 

= (Pt Y  ~  2Pt 9x + (9x)2 

= (Pt  ~  9x)

1

Pf-

1
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2.3 Complex Trajectories and Via-points

While point-to-point reaching movements are the simplest types of movements, humans 

normally carry out tasks that require more complex trajectories. These complex trajec­

tories are characterised by one or more via-points.121,87

Each via-point V  has two parts: its spatial coordinates and its temporal location n in 

the course of the movement, as shown in equation 3.24.

V = CPi, PiO, 0 < n < T  (3.24)

This is no different from the start and target points, except in those cases the temporal 

information is unimportant (t = 0 for the start point and t = T  for the target point, where 

T  is the duration of the movement). However, via-points must be dealt with differently 

to start and target points, as their temporal position within the course of the movement 

effects the trajectory as much as their spatial coordinates (Figure 3.2(a)). Despite this, 

small differences between the temporal locations of via-points (10-100ms) can produce 

trajectories tha t are sufficiently similar for most purposes (Figure 3.2(b)).

The y-axis positional constraint is calculated in exactly  the sam e way.
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Trajectory comparisons: VP temporal positions, s

(b)

Figure 3.2: The position of a via-point within the time course of a movement has a 
significant impact on the shape of the resulting trajectory.
(a) A simple point-to-point reaching movement with a single via-point is performed. In 
the first movement (dotted line) the via-point occurs at 25% of the movement time. In 
the second (dashed line) it occurs at 75% of the movement time. The solid line shows the 
reaching movement without the via-point;
(b) This chart shows mean square differences for movements with the same target and 
via-point as in (a). Mean square differences are shown for trajectories with via-points at 
the times shown on the x-axis. It is clear that differences in via-point temporal position 
up to about 100ms do not significantly alter the trajectory.

Via-points are added to a movement by first appending "l"s to the state vector, and 

then changing the state cost matrix Qt (usually set to 0 for all t less than the movement 

time T)  at time step t =  n to reflect the spatial location of the via-point. Qt at t = n 

takes a form similar to that of Qt  (equation 3.23). Constraints can be placed on the 

velocity or force when passing through the via-point, but generally these constraints are 

not imposed (wv =  wj  =  0 for Qt) . The task error equation for a movement with P 

via-points can then be written:

f e  K  ~  Pn) +  {Oi ~ P t Ÿ  +  (wvPt Ÿ  + (wj f r )  )  (3 -2 5 )
i= x ,y  \  n  /

The important differences to note between equation 3.20 and equation 3.25 are the 

extra term for the via-point positional errors and the change to the cost function scaling 

factor.

Single via-points can be useful for tasks such as obstacle avoidance, while more complex
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Figure 3.3: Plots showing how the target of a movement can be turned into a via-point 
to merge two discrete movements.
(a) Shows the trajectories of the two discrete movements and the composite movements. 
Movement 1 between points A and B, and movement 2 between points B and C have no 
via-points. Movement 3 between points A and C has a via-point at B;
(b) The velocity profiles for the three movements, clearly showing the contributions of the 
two discrete movements to the composite movement.

trajectories can be built up using multiple via-points. Via-points can also play a role in 

combining movements: instead of the target of one movement being the final position, it 

could be turned into a via-point for a movement that then continues into a second distinct 

movement, as can be seen in Figure 3.3.

Another use for via-points is to provide a reduced representation of a movement, by 

recording the spatial and temporal relationships between each point. The movement is 

then defined by its start, end and via-points. Depending on how the via-points of the 

movement are chosen, this can result in a compact and adaptable representation. Ap­

pendix 2.3 provides further information on how via-points could be determined to provide 

this sort of representation, and how this could then be used to generalise movements both 

spatially and temporally.

This completes the description of the Kalman Filter optimal control implementation 

of the minimum variance model. The following section presents the trajectories produced 

by the model given above, for both simple point-to-point movements and more complex
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trajectories with one or more via-points.

3 Trajectories and Parameter effects

3.1 Trajectories produced by the model

Example trajectories and demonstration of the speed accuracy trade-off for a simple reach­

ing movement performed using the Kalman Filter LQG implementation of the minimum 

variance model are shown in Figures 3.4 and 3.5.

The trajectories predicted by this version of the model exhibited the required features 

of human movement. For individual point-to-point reaching movements without via- 

points the trajectories were slightly curved in the same way as human arm movements 

(Figure 3.4(a)), matching those of the dynamic minimum torque-change model without an 

explicitly dynamic cost function. The average of a large number of these noisy movements 

is a straight line between the start point and the goal point, as expected from the zero- 

mean Gaussian profile of the noise added to the control signals.

In addition to roughly straight smooth movements, the addition of signal-dependent 

noise on the control signals results in changing end-point standard deviation for different 

required movement times. Figure 3.5(a) clearly shows the decrease in end-point standard 

deviation with increasing movement time predicted by the model, and this is confirmed 

by the decreasing spread of distances from the target-point shown in Figure 3.5(b). This 

speed-accuracy trade-off matches that of F itts’ Law in human movement.

3.2 Via-point trajectories

The optimisation scheme can be extended to more complex trajectories through the in­

clusion of one or more via-points, as discussed in the previous section. Figure 3.6 shows 

trajectories and velocity profiles for reaching movements consisting of two via-points. 

The end-point standard deviation for repeated movements between the same points, but 

with different movement times, is shown in Figure 3.7(a) to demonstrate that the speed- 

accuracy trade-off still applies for complex trajectories.
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Figure 3.4: These plots show the trajectories and velocity profiles of a typical point-to- 
point movement of the hand, between (0.2,0.2) and (0.4,0.5) (with the shoulder at (0,0)).
(a) 50 repeated example trajectories. Signal-dependent noise on the control signal results 
in slightly different trajectories for repeated movements, but each trajectory is still smooth 
and roughly straight;
(b) The velocity profiles for the movements. The velocity curves follow the characteristic 
bell-shape of reaching movements;
(c) The average hand path of the fifty movements shown in (a). The average trajectory 
is a straight line between points, as expected when the movement noise in the system 
is Gaussian white-noise with zero mean. The addition of movement noise also causes 
individual movements to exhibit a slight curvature;
(d) The average velocity profile of the fifty profiles shown in (b).
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(a) (b)

Figure 3.5: A demonstration of the speed-accuracy trade-off as exhibited by this imple­
mentation of the minimum variance model.
(a) The end-point standard deviations of 200 movements between the points as shown in 
Figure 3.4 were calculated for a variety of movement times. As all movements covered 
the same distance in hand-space, increasing the movement time decreased the speed of 
movement. As seen in this plot, the end-point standard deviation decreased as movement 
speed decreased;
(b) The end-point linear distances from the target coordinates are shown for each of the 
movements used to calculate the standard deviation. This confirms that the spread of 
deviations from the average distance decreases as the speed decreases, and also shows 
that the average distance from the end-point gets smaller as the speed decreases.
(Each cross represents a single trajectory’s distance from the target point at the end of 
the movement. The line follows the average of 200 movements performed at durations of 
500, 600, 700, 800, 900, 1000, 1100 and 1200ms).
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Figure 3.6: These plots show the trajectories and velocity profiles for a point-to-point 
movement between (-0.2,0.5) and (-0.4,0.2), with a pre-specified via-point at (-0.4,0.4) 
and another at (-0.2,0.3), forming an ’s’ figure. The first via-point was set to occur at 
25% of the movement time and the second was set to occur at 75% of the movement time.
(a) 50 repeated example trajectories. As for the point-to-point movement without via- 
points shown in Figure 3.4, signal-dependent noise on the control signal results in different 
trajectories for repeated movements;
(b) The velocity profiles for the movements. The velocity curves follow the characteristic 
bell-shape of reaching movements, for the three straight sections of the movement, with 
slowing at the bends of the ’s’;
(c) The average hand path of the fifty movements shown in (a);
(d) The average velocity profile of the fifty profiles shown in (b).
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Figure 3.7: A further demonstration of the speed-accuracy trade-off based on the more 
complex via-point movement shown in Figure 3.6.
(a) As in Figure 3.5, the end-point standard deviations of 200 movements were calculated 
for a variety of movement times. This plot also shows that the end-point standard devi­
ation decreased as movement speed decreased, although the complexity of the movement 
results in a less clear relationship between standard deviation and movement time;
(b) As before the end-point linear distances from the target coordinates are shown for 
each of the movements used to calculate the standard deviation. Again, the complexity 
of the movement results in a less clear relationship, but the decrease in average distance 
from the target can easily be seen.
(As before, each cross represents a single trajectory’s distance from the target point at 
the end of the movement. The line follows the average of 200 movements performed at 
durations of 500, 600, 700, 800, 900, 1000, 1100 and 1200ms).
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Figure 3.8: A movement with several via-points arranged to draw out the letter ’a ’.
(a) The hand path, showing the positions of the via-points;
(b) The velocity profile for the movement, showing the temporal relationships between 
via-points. The point of reversal, where the velocity drops to zero, can also be clearly 
seen at approximately 70% of the movement time.

In a similar way, Figure 3.8 shows the same plots for a reaching movement consisting 

of several via-points, arranged in such a way that the movement draws the letter ’a’. This 

highlights another use of via-points, in that they can be used to define more meaning­

ful action that simple reaching movements. In this example, the spatial and temporal 

relationship between these via-points could easily be stored, allowing the letter ’a’ to be 

redrawn anywhere in the arm ’s workspace, or with a different movement time, and yet 

still remain recognisably an ’a’.

A comparison between this arrangement of via-points performed at different movement 

speeds is shown in Figure 3.9. The shape is maintained even when the velocity is increased 

as the order and relative times between via-points is kept the same.

Summary

The minimum variance model has been shown to address many of the issues that are 

not covered by previous movement models, including noise, biological basis, accuracy 

constraint, as well as a unified explanation of smooth movement and the speed-accuracy
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Figure 3.9: The same movement as shown in Figure 3.8, repeated with three different 
movement times.
(a) The hand trajectories are clearly very similar, as the order of the via-points is the 
same. The path performed at the highest speed is clearly cruder than the others, as there 
are fewer time steps between via-points and the higher velocity is subject to higher noise;
(b) The velocity profiles have the same shapes, with the fastest movement subject to 
greater levels of noise.

trade-off.52 In this chapter an optimal control scheme implementation of the model has 

been described, and it has been demonstrated that this implementation produces trajec­

tories that capture the essential features of human point-to-point movements. This model 

has also been extended to cover complex trajectories through the use of via-points.

In the next chapter the model is extended further to cover reach-to-grasp movements, 

and it is shown how minimum variance trajectories can capture the essential features of 

grasping movements.
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Chapter 4

Grasping Using the Minimum Variance 

Model
Reaching to grasp an object is a complex motor task involving the movement of many 

joints and the coordination of several end-effectors. In much the same way as multi­

joint reaching movements, studies of the kinematics of grasping59,60,56,77’65’!8 have revealed 

characteristic patterns of behaviour. Among the most well established of these is the 

observation that maximum grip size (between the thumb and the finger) increases with 

the size of the object,59 with a slope of approximately 0.8. A further observation is that 

the maximum grip aperture occurs at around 60-80% of the movement tim e.60

The general description of grasping behaviour is based upon the separation of the grasp 

into two visuomotor channels: one for the transport component (moving the hand to the 

object) and one for the grip (moving the fingers to grip the object).59 This separation 

implies tha t the two components are planned independently, but executed together to 

form a single coordinated movement.56

More recently, Smeets and Brenner113 suggested the alternative view that grasping 

movements are carried out as smooth pointing movements of the thumb and finger to 

target positions on the object. They used the minimum jerk model of arm movement to 

successfully predict finger- and thumb-tip trajectories towards an object, however delib­

erately avoiding any consideration of the mechanics of limbs and joints.113

1 Minimum variance grasping

In the preceeding chapters an implementation of the minimum variance model of human 

reaching using an optimal control scheme suitable for controlling a robot arm has been de­

scribed. Following the general idea that grasping can be described as pointing movements
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performed by the finger and thumb, in this chapter it is shown that this implementation 

is suitable for examining the behaviour of grasping as well.

Grasping is an interesting task on which to apply the minimum variance model, as 

there are two sources of variance effecting the finger-tip position: that produced by the 

movement of the wrist and that produced by the movement of the fingers.77

To correctly model the minimum variance trajectory, signal-dependent noise must be 

applied to the control signals of the arm (and digit) actuators. It is not possible therefore 

to eliminate the mechanics of the arm from the model. Instead, this approach builds on 

both the "classical" view of grasping and on the view of Smeets and Brenner113. In this 

chapter, reaching-to-grasp is viewed as two separate processes (the transport and the grip) 

that are nonetheless planned using the same computational model for pointing, under the 

same temporal constraints.

In the following section the extension of the reaching model to include a gripping 

mechanism is described. An analysis of the impact of several different parameters on the 

end-point accuracy of the digits’ trajectory is carried out, identifying in each case the trend 

in that parameter that leads to the lowest level of inaccuracy. Using the identified values 

of the parameters, the resulting trajectories are examined as to whether they capture the 

characteristic features of grasping.

The model presented here allows for the study of the nature of the variance over the 

whole course of the movement, for both the transport and grip components. This chapter 

goes on to show how these are effected by changes in object size, movement time and 

transport distance.

1.1 Implementation for Grasping

Following the effector model of the preceeding chapters, and other motor control stud­

ies41’119, the arm is still modelled as a two-link planar device with two rotational degrees- 

of-freedom.

A gripping mechanism is then added at the wrist of the arm, modelled as smaller two- 

link devices, as shown in Figure 4.1. The links of the arm are set to be 30cm in length
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and the links of the digits to be 10cm in length, values chosen as approximations to the 

proportions of a human arm. Overall the arm-and-gripper model has six joints which are 

controlled directly by the optimisation scheme. The focus here is on the kinematics of 

the movements, without explicit consideration of the dynamics of the arm or modelling 

arm muscles. More complex models of the hand have been examined for grasping (for 

example, Meulenbroek et al.85), but this model is sufficient to demonstrate the required 

principles, and strikes a balance between these approaches and the simple model of Smeets 

and Brenner113.

(a) (b)

Figure 4.1: The initial set up of the arm, hand and object. The link lengths for the arm 
and gripper are shown, and the distance to object r  and grip aperture g are defined. The 
digit target positions on the surface of the object are shown as dots. The model used here 
for the arm is the same as that used in the previous chapter.

From the given position of the object, the wrist target position is specified as being 

6cm vertically below the centre of mass of the object. For the experiments presented 

here, the distance between the wrist target position and the centre of the object is kept 

constant at this value. Examining the effects of this variable on the digit trajectories is 

therefore outside the scope of this work, but is a clear candidate for future work.
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As for the reaching experiments described in the previous chapter, the Cartesian wrist 

target is converted into target joint angles using the inverse kinematics for a two-link 

planar arm (equations ?? and ??). Following the optimal control scheme algorithm also 

described in the previous chapter, the "cost-to-go" is then calculated for the reaching part 

of the movement.

Target points are then specified on the object, using a disk for simplicity. The digit 

target positions are specified as being on the surface of the object, connected by a  line 

that is perpendicular to the surface and passes through the centre of mass of the object. 

There has been much recent work on the placement of digits on an object and the resulting 

quality of the grasp.90,16 However, the assumption made here (and also made by Smeets 

and Brenner113) is that for the simple cylindrical object, a precision grip is used tha t aims 

to place the fingers on opposite sides of the object at points in line with the centre of 

mass.

These target points are translated into the hand frame of reference by subtracting 

the wrist target position. Again the inverse kinematics are used, with appropriately link 

lengths, to get target joint angles for the digits. These are also used to create a "cost-to- 

go" for each digits movement.

From the starting point (with the digits touching) the "cost-to-go" is used to generate 

motor commands for each joint, adding signal-dependent noise with a 1% coefficient of 

variation and updating the state at each time step. As the movement is executed the 

forward kinematics are used to specify the Cartesian positions of the wrist and the tips 

of the digits, given the appropriate joint angles.

Having described the mechanism used to extend the minimum variance model to grasp­

ing, the next section identifies a number of tests to show that the extended model replicates 

the important features of reach-to-grasp movements described in the introduction to this 

chapter.
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1.2 Experiments to be performed

The model of Smeets and Brenner113, which uses the minimum jerk trajectory, does not 

account for the natural inaccuracies of human movement introduced by neural noise. 

Instead, they empirically discuss why finger-tip trajectories that approach the surface of 

the object perpendicularly result in more accurate grasping than those that approach 

tangentially. Accordingly, they introduce an "approach parameter" which constrains the 

minimum jerk trajectory to approach the surface of the object perpendicularly.

The minimum variance model has no equivalent parameter to model this perpendicu­

lar approach to the object. As described above, this implementation of the model does, 

however, allow the introduction of one or more via-points into the trajectory. A via-point 

is therefore introduced into the planning of the digit movements to cause the trajectory to 

approach the target positions perpendicularly. As the digit planning takes place from the 

target position of the wrist, close to the object, these via-points are specified relative to 

the object. When the movement begins the digits follow the joint trajectory specified by 

the target and via-points. However, since the reach and grip components are executed to­

gether, the digit end-point trajectories do not pass through the via-point spatial positions 

relative to the object.

Given this separation of planning and execution, the first set of results determine 

where this via-point should be located, both relative to the target points on the object 

and within the time course of the movement, by selecting the values of these parameters 

tha t result in the lowest variance of the digit end-point - that is, the highest accuracy 

when making contact with the object.

Following this, analysis is carried out to determine whether the minimum variance 

model of pointing, with the introduction of these via-points, can actually reproduce the 

characteristic features of grasping as previously identified: a maximum grip aperture 

proportional to the size of the object, decreasing with a slope of approximately 0.8 as the 

object size increases; and a time for that maximum aperture a t between 60-80% of the 

movement tim e.59’60 Specifically an attem pt is made to match predictions three and four 

of Smeets and Brenner113:
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•  The maximum grip increases and occurs later for larger disk sizes

•  The maximum grip size increase and occurs earlier if the via-point is located further 

away from the object

Here, the first prediction is the same as prediction three of Smeets and Brenner113, while 

the second prediction matches prediction four of Smeets and Brenner113, but with a 

modification to account for the via-point implementation.

Aspects of the task that may effect the contributions of the different components 

to the end-point variance of the digits in the reach-to-grasp movement are then looked 

at. Specifically it is shown how the movement time, the object size and the distance of 

the object from the start position of the hand effect the variances of the wrist and grip 

aperture.

Experimental work in this area has been carried out by Kudoh et a l.77, who recorded 

the spatiotemporal variability of the two segments when both distance to the object and 

the object size were manipulated. Their results indicate that object size had a significant 

impact on the variability of both the transport and the grasp components, while a change 

in starting distance mostly effected the transport component. They also found tha t the 

peak wrist variability depended on distance but not object size, while the peak aperture 

variability depended on both distance and object size. Variability in grasping has also 

been studied by Girgenrath et al.47, who observed a clear speed-accuracy trade-off in 

prehension as well as reaching.

The next section describes how these predictions are to be tested using the minimum 

variance model extended for grasping.

2 Grasping trajectories

Before the predictions made in the previous section can be properly tested, the position 

of the via-point of the grip component must be specified. The following section identifies 

the via-point height and temporal position that minimises the variance of the final digit
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positions, and presents the resulting trajectory that forms the basis for the experiments 

that test the predictions.

2.1 Via-point Position

Each via-point consists of three parameters: its spatial coordinates on the plane of the 

arm, and its temporal location within the time course of the movement. To confirm 

whether a perpendicular approach to the surface of the object is line with the minimum 

variance principle two factors are examined:

•  The vertical position of the via-point relative to the target positions on the object.

•  The point at which the via-point occurs during the course of the movement (referred 

to as the temporal position of the via-point).

These parameters have the greatest effect on the angle of approach: the vertical position 

of the via-point determines whether the digits approach the object from above, below 

or level with the target positions; the temporal position of the via-point determines the 

balance between the movement towards the object and the final approach.

To do this, one parameter is changed at a time and 500 movements are repeated for 

each value. Two measures of the end-point accuracy are observed - the Cartesian distance 

of the end-point from target position for each trajectory and the standard deviation about 

the target position of all 500 end-points for a given parameter value.

The model is set up to perform a reach-to-grasp movement on a disk located 20cm 

directly in front of the starting position of the arm and hand, with via-points located 1cm 

horizontally from the object, as shown in Figure 4.1. Each movement was performed on 

an object of diameter 4cm and took place over 1000ms.

2.1.1 Via-point vertical position

First the vertical distance of the via-points (defined as the distance between the line 

connecting the target positions and the line connecting the viewpoints. For example, a 

vertical distance of -1.0cm would indicate the line connecting the via-points was 1.0cm
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below the line connecting the target positions. This is illustrated Figure 4.2(a)) is varied. 

For these movements, the via-points occurred after 70% of the movement time, or 700ms 

into the movement.

The accuracy of the digit trajectories was measured as both the standard deviation 

of digits movement in the x and y axes, and as the mean distance of the digit trajectory 

end-point from the target position on the object.

Figure 4.2: Changing the vertical position of the digit via-point relative to the digit target 
position on the object.
(a) An illustration of the starting position of the hand and the relationship between the 
line connecting the via-points and the line passing through the target positions;
(b) The average digit trajectories for each value of the via-point y-coordinate. To reduce 
clutter, the changing positions of the via-points are not shown. Thumb trajectories are 
shown as dashed lines, finger trajectories as dotted lines.

Figures 4.3(a) and 4.3(b) show that the distance between the end-point of each digit 

trajectory and the target position for that digit on the object decreases as the via-point 

position comes level with the target positions, before increasing again as the via-point 

position goes above the target positions. This indicates that a perpendicular approach of 

the digits to the object results in a more accurate movement.

From the results shown in Figure 4.3(c) and Figure 4.3(d), it is clear that the lowest 

end-point standard deviation for each digit is found when the via-points are located at 

the same level as the target positions on the object in the wrist target frame of reference. 

Together, these two results are in line with the argument given in Smeets and Brenner113
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(a) (b)

(c) (d)

Figure 4.3: Plots showing the accuracy of the different via-point vertical positions for 
both digits.
(a) The finger end-point distances from the target - the result from each movement is 
shown as a cross. The solid line shows the mean of 500 repeated movements for each 
value of via-point vertical distance;
(b) The thumb end-point distances from the target (again, the result of each movement 
is shown as a cross). The solid line shows the mean of 500 repeated movements for each 
value of via-point vertical distance;
(c) Finger end-point standard deviations in both the x and y axes for each value of via- 
point vertical distance;
(d) Thumb end-point standard deviations in both the x and y axes for each value of 
via-point vertical distance.
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relating a greater perpendicular approach of the digits to increased accuracy of the final 

grip position and less variation between repeated movement.

2.1.2 V ia-point tim ing

The position of the via-point within the time course of the movement was then varied. 

The same movement parameters were used as for the previous experiment. Following 

those experiments, the via-points were placed along the line passing through the target 

positions.

Figure 4.4: Changing the position of the digit via-point within the time course of the 
movement.
(a) The aveiage digit trajectories for each value of the via-point temporal position. Thumb 
trajectories are shown as dashed lines, finger trajectories as dotted lines. Trajectories with 
a via-point later in the movement are more curved, while those with a via-point earlier 
in the movement show a more abrupt change in direction due to the fact that they have 
reached a point level with the target position faster;
(b) The average velocity profiles for each value of the via-point temporal position. Thumb 
trajectories are shown as dashed lines, finger trajectories as dotted lines.

The results shown in Figures 4.5(c) and 4.5(d) indicate that a via-point late in the 

movement increases the inaccuracy of the digit trajectory end-point, with a peak in the 

end-point standard deviation at approximately 87%. Past this point the standard devi­

ation decreases. This can be explained as the declining weight of the via-point in the 

optimisation scheme relative to the target point, as the via-point temporal position ap­

proaches the end of the movement.

76



(a) (b)

.*10. x  10

0.7 0.75 0.8 0.85 0.9 0.95 1
Via-point position in time course

0.7 0.75 0.8 0.85 0.9 0.95 1
Via-point position in time course

(c) (d)

Figure 4.5: Plots showing the accuracy of the different via-point temporal positions for 
both digits.
(a) The finger end-point distances from the target (shown as crosses) and the mean of 
500 repeated movements for each value of via-point temporal position (shown as a solid 
line);
(b) The thumb end-point distances from the target (crosses) and the mean of 500 repeated 
movements for each value of via-point temporal position (solid line);
(c) Finger end-point standard deviations in both the x and y axes for each value of via- 
point temporal position;
(d) Thumb end-point standard deviations in both the x and y axes for each value of 
via-point temporal position.
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The decrease in standard deviation below 87% is a product of the increasingly perpen­

dicular approach of the digits to the object as the via-point temporal position decreases 

- as the digit reaches the via-point (which is level with the target position) earlier in the 

movement, it has longer to move along the perpendicular line joining the via-point and 

the target position.

However, via-point temporal positions below approximately 70% of the movement time 

show an increase in standard deviation. This is likely to be due to the increased speed 

(and increased noise) that is required to cover the distance to the via-point so early in 

the movement. Although the a perpendicular approach indicates reduced variance at the 

end-point, the transport of the digits to a point where an accurate final approach can be 

made must also be taken into account.

Results from Figures 4.5(a) and 4.5(b) indicate that below approximately 80% the 

via-point temporal position has little effect on the distance of the end-point from the 

target position. This climbs sharply beyond 85% as the digit trajectories approach the 

target position at a greater and greater deviation from the perpendicular.

From the results of Figures 4.3 and 4.5, it can be concluded that a via-point located 

perpendicularly along the axis of the target positions on the object, with the trajectory 

required to pass through that point at approximately 70% of the movement time, results 

in trajectories that maximise the accuracy of the digit trajectories end-points - both in 

terms of end-point distance from the target and the end-point distribution about the 

target.

Typical digit trajectories, and their velocity profiles, produced using these parameters 

are shown in Figure 4.6.
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Figure 4.6: Plots showing: (a) Typical trajectories for the finger and thumb with via- 
points level with the axis of the target positions and occurring at 70% of the movement 
time. The via-points were located 1cm horizontally from the object and the movement 
took place over 1000ms.

The next section looks at whether these digit trajectories actually match the features 

of human grasping (and the predictions discussed in the previous section) in a quantitative 

manner.

2.2 Grasping Predictions

Using the parameters identified in the previous set of results, the model is set up to test the 

predictions given above (see section 1.2). These predictions examine the characteristic 

form of grasping movements, specifically the maximum grip aperture and the time at 

which it occurs within the course of the movement. Initially two sets of movements are 

performed: in one the via-point horizontal distance from the object is varied, while in 

the other the object size is varied. For both sets of experiments, each movement again 

took place over 1000ms. The via-point was located along the orientation of the grip and 

occurred at 70% of the movement time, or 700ms into the movement, in line with the 

results above.
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2 .2 .1  V ia -p o in t  h o r iz o n ta l  p o s i t io n

The first set of results, shown in figures 4.7 and 4.8, show five grasping movements to an 

object of diameter 4cm. Via-point distances from the object were set at 0.0cm, 0.5cm, 

1.0cm, 1.5cm and 2.0cm. For each of these values, 500 repeated movements were made. 

Figure 4.7 shows the mean digit paths, the mean digit velocity profiles and the time course 

of the grip aperture for each via-point value.

Relative time

(c)

Figure 4.7: Grasping movements performed to a disk of diameter 4cm, with via-points at 
horizontal distances 0.0cm, 0.25cm, 0.5cm, 0.75cm and 1.0cm from the object.
(a) Movement paths for the thumb (dashed line) and finger (dotted line);
(b) Velocity profiles for the digits;
(c) Time course of the grip aperture.

From these movements it was possible to plot the via-point distance against both the
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maximum grip aperture and the time at which that maximum occurred, as shown in 

Figure 4.8.

(a) (b)

Figure 4.8: Plots showing:
(a) The relationship between via-point horizontal distance from the object and maximum 
grip aperture;
(b) The relationship between via-point horizontal distance and the relative time at which 
the maximum grip aperture occurs.
These show the results for ten grasping movements to an object of 4cm, including the five 
shown in Figure 4.7. These plots confirm the prediction that the grip size increases and 
occurs earlier if the via-point is located further away from the object.

The results shown in Figure 4.8 clearly confirm the second prediction given in the 

previous section: that grip size increases and occurs earlier if the via-point is located 

further away from the object.

2.2.2 O bject size

The second set of movements were performed to objects of varying sizes, with the via- 

point distance fixed at 1.0cm from the object. All other parameters were kept the same 

as for the first set of movements. The grasps were performed on objects of size 0.0cm, 

2.0cm, 4.0cm, 6.0cm and 8.0cm. Again, 500 repeated movements were made to obtain 

the mean trajectories for each value of the object size. Figure 4.9 shows the digit paths, 

the digit velocity profiles and the time course of the grip aperture for each object size.
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0.4

Figure 4.9: Grasping movements performed to disks of diameter 0.0cm, 2.0cm, 4.0cm, 
6.0cm and 8.0cm, with via-points at horizontal distance 1.0cm from the object.
(a) Paths for the thumb (dashed line) and finger (dotted line);
(b) Velocity profiles for the digits;
(c) Time course of the grip aperture.

In the same way as the first set of movements, these trajectories were used to examine 

the relationship between object size and maximum grip aperture, and between object size 

and the time at which that grip aperture occurs, as shown in Figure 4.10.
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Figure 4.10: Plots showing:
(a) The relationship between object size and maximum grip aperture, along with the 
equation for the line of regression for 9 different object sizes, from 0cm to 8cm;
(b) The relationship between object size and the relative time at which the maximum 
grip aperture occurs.
These plots confirm that the prediction that the grip size increases and occurs later for 
larger object sizes.

From these plots, it is clear that the model confirms the first prediction from section 

1.1, that grip size increases and occurs later for increasing object sizes. In addition, 

Figure4.10a shows the equation for the line of regression between the points. This line 

has a slope of 0.92, which is larger than the average value reported in Fig. 6A and Fig. 

7A of Smeets and Brenner113, but still well within the range of maximum grip slopes from 

the numerous experimental studies of grasping shown in those figures.

The second plot, Figure 4.10b, shows a range of relative times for the maximum grip 

aperture, with values between 60-80% of the movement time for the object sizes examined 

here. These values and the form of the regression line are also well within the range of 

values reported in Figure 6B and Figure 7B of Smeets and Brenner113.

2.3 Transport and Grip Variability

Having demonstrated that the grasping model captures the experimentally observed fea­

tures of human movement, it can now be used to study the contributions to the end-point 

digit variance made by the two components of the reach-to-grasp movement. The three
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variables considered were the effect of movement time, object size and distance to the 

object from the start position of the hand.

As in the previous sets of experiments movements were performed with a via-point 

located 1cm from the object along the line joining the target positions on the surface of the 

object, and occurring at 70% of the movement time. The variability of the movement was 

analysed by performing 500 repeated grasps for each parameter change, plotting both 

the standard deviation of the wrist trajectories and the standard deviation of the grip 

apertures at each time step. As well as looking at the overall variance in this way, the 

magnitude of the peak standard deviation and the time within the course of the movement 

that it occurred were also used as measurements of the variance. These values were 

plotted against the parameter values and a one-way analysis of variance (ANOVA) was 

used for each parameter to determine whether that parameter had an effect on movement 

variability.

2.3.1 Movement time

The first variable to be considered was the impact of movement time. As shown in Figure 

3.4(d) the variability of both components is expected to decrease as the movement time 

increases, for movements over the same distance. The grasping movements were performed 

on an object of 4cm diameter, located 20cm in front of the hand, with via-points placed 

as described above. The movement times were 600ms, 700ms, 800ms, 900ms, 1000ms, 

1100ms and 1200ms.
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Figure 4.11: Plots showing the time course of (a) the wrist standard deviations and (b) 
the grip aperture standard deviations of 500 movements repeated for each movement time. 
The time courses have been normalised for ease of comparison.
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Figure 4.12: Plots showing the change in peak standard deviation and relative time of 
peak standard deviation of 500 movements for each value of the movement time.
(a) Wrist peak standard deviation and (b) relative time of peak standard deviation;
(c) Grip aperture peak standard deviation and (d) relative time of peak standard devia­
tion.

The results shown in Figure 4.11 confirm that increasing the movement time decreases 

the overall variability of the movement for both the wrist (transport component) and the 

grip aperture (grasp component). The variability of the grip aperture (Fig. 4.11(b)) shows 

a change in the slope of the variability just after the via-point (70% of the movement time). 

This can also be seen in Fig. 4.13(b) and Fig. 4.15(b) below.

The change in slope of the standard deviation after the via-point is caused by a re­

duction in constraints acting on the trajectory. After the via-point has been reached, the
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dominant term acting on the trajectory is the target position, which must be reached in 

the remaining movement time. This leads to an increase in velocity (and hence variability) 

just after the via-point.

From Figure 4.12(a) and Figure 4.12(c) it can be seen clearly that peak standard 

deviation decreases as movement time increases. Figure 4.12(b) and Figure 4.12(d) show 

that the movement time also had an effect on the time at which the peak standard 

deviation occurred during the movement. Generally, an increased movement time resulted 

in the peak variability occurring earlier in the movement.

These results are expected, as according to F itts’ Law37,82 an increased movement time 

for a movement over a fixed distance will result in lower velocities. Since the standard 

deviation of the movements is signal-dependent, lower velocities (which require lower 

control signals) result in lower standard deviations for both the digits and the wrist. These 

results also follow those of Girgenrath et al.47, who specifically showed that prehension is 

subject to the same speed-accuracy trade-off as reaching.

2.3.2 Object size

The next variable examined was the effect of object size on the variability. As before 

grasping movements were performed on an object located 20cm in front of the hand, with 

the movement time set to be 1000ms. The object size was varied as 0cm, 2cm, 4cm, 6cm 

and 8cm.

87



St
an

da
rd

 d
ev

ia
ti

on

Figure 4.13: Plots showing the time course of (a) the wrist standard deviations and (b) 
the grip aperture standard deviations of 500 movements repeated for each object size.
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Figure 4.14: Plots showing the change in peak standard deviation and relative time of 
peak standard deviation of 500 movements for each object size.
(a) Wrist peak standard deviation and (b) relative time of peak standard deviation;
(c) Grip aperture peak standard deviation and (d) relative time of peak standard devia­
tion.

The results shown in Figure 4.13(a) indicate that object size has no significant effect 

on the peak standard deviation except in the case where no object was present (object 

size of 0cm), when the peak standard deviation was much higher. This is confirmed by 

Figure 4.14(a). Figure 4.14(b) shows that the peak standard deviation occurs slightly 

later in the movement for larger object sizes.

By contrast, Figure 4.14(c) shows a strong linear correlation between peak standard 

deviation and grip aperture as object size increases. This can also be seen in Figure
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4.13(b). For the object sizes used in this experiment, the timing of the peak standard 

deviation of grip aperture does not vary significantly with object size.

This is largely in line with the results of Kudoh et a l.77 which showed similar effects 

of increasing object size on the grip aperture at a significant level, but no effect on the 

wrist movement.

2.3.3 Transport distance

Finally, the effect of starting distance between the hand and the object was examined. 

Movements were performed to an object of 4cm diameter, over 1000ms. The distance to 

be moved was set as 8cm, 12cm, 16cm, 20cm and 24cm.

Figure 4.15: Plots showing the time course of (a) the wrist standard deviations and (b) the 
grip aperture standard deviations of 500 movements repeated for each movement distance.
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Figure 4.16: Plots showing the change in peak standard deviation and relative time of 
peak standard deviation for 500 movements for each movement distance.
(a) Wrist peak standard deviation and (b) relative time of peak standard deviation;
(c) Grip aperture peak standard deviation and (d) relative time of peak standard devia­
tion.

As can be clearly seen in Figure 4.15, increasing the movement distance decreases 

the overall standard deviation of the wrist movement, but has no effect on the standard 

deviation of the grip aperture. This is also clear from Figure 4.16(a) and Figure 4.16(c).

These results were also largely in line with those of Kudoh et al.77, in that the effect of 

increasing movement distance on wrist variability was highly significant. However, their 

study also showed a significant effect on grip aperture variability which is not replicated 

using the model presented in this thesis.
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Summary

In this chapter, a model of grasping based on both the "classical" dual visuomotor channel 

view and on a new view that attempts to explain reaching-to-grasp as pointing movements 

with the digits has been put forward. Using the implementation of the minimum variance 

model described modified to allow grasping movements, described in previous chapters, 

it has been shown that the model captures many of the characteristic features of human 

grasping.

In particular, it was demonstrated that the model exhibits an increase in maximum 

grip aperture for increasing object size, with a slope of approximately 0.8. The maximum 

grip aperture produced by the model was also shown to occur at around 60-80% of the 

movement. Both of these results follow observations made by a large body of experimental 

studies.

Furthermore, the contribution of each component (the transport and the grip) to the 

variability of grasping movements was studied, by analysing the effects of changing three 

task-related parameters: the movement time, the movement distance, and the object size. 

The results produced by the model again follow the experimental studies carried out in 

this area.

Overall then, the approach presented here seems to support the view th a t reaching 

and grasping are planned using the same motor principle. However, as it is still not known 

whether the human motor system acts in this way, further biological and neuroscientific 

studies are needed to clarify this.

As a condition of the movement model it was found necessary to retain elements of the 

"classical" view of grasping as two separate visuomotor processes. Experiments presented 

in this chapter were thus able to analyse the contribution of each of the components in a 

unified manner through the application of the minimum variance principle, computation­

ally confirming human experimental studies.
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Chapter 5

Action Perception
The previous chapters have described the minimum variance model, an implementation of 

the model for a robotic platform and demonstrated that this implementation can success­

fully capture key features of human reaching and grasping movements. In this chapter, the 

model (as extended for grasping) is tested in the domain of action perception. Like grasp­

ing, this is both an important validation of the human-like qualities of the trajectories 

produced by the model and a useful application in its own right.

1 Coupling between action observation and execution

Much recent work in action perception has focused on the possible role played by the motor 

system in perception. The motor theory of perception suggests that actions are perceived 

and understood by using the motor system "offline" (i.e. without sending commands to 

the system actuators) to simulate potential actions and then comparing the predicted 

movements with the actual observed movements of the demonstrator.38 The theory has 

gained support with the discovery of mirror neurons in monkeys;102,50 neurons in area 

F5 of the monkey cortex, an area associated with motor control, have been shown to  fire 

both when the monkey observes an action and when the monkey performs the action itself. 

There is growing evidence for a similar system in humans,103,104 although it is thought to 

be considerably more complex than this simple definition suggests.

There is also a growing interest in computational mechanisms tha t allow robots to 

observe, imitate and learn from human actions.107,7,12 As robots are required to perform 

tasks of greater and greater complexity, and to cooperate with humans on tasks in human­

centric environments, there is a clear need for easier methods of programming robot 

movements. This need has resulted in a number of computational architectures tha t 

allow the matching of demonstrated actions to the observer robot’s equivalent motor
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representations.6,26,3 If the robot is to learn from human demonstrations by invoking its 

own motor system, it is intuitive that its own motor system should produce movements 

similar to human movements.

In the work presented in the previous chapters, the robot’s motor representation is the 

scheme for producing human-like movement features using the minimum variance model. 

In this chapter, this is combined with part of an existing model for robotic learning from 

demonstration,26 the goal being to couple action observation to the action observation 

system, where the execution system is suitable for robot control and produces the qualities 

of human-like movement.

When presented with a demonstration, the system compares its predicted trajectories 

with those of the demonstration and produces a confidence value based on how closely 

the two match. Here, the system is presented with normal grasps and grasps tha t show 

deviation from the normal pattern. A comparison of the relative levels of the confidence 

profiles aims to show that the system produces significantly higher confidences when 

presented with normal grasps, thus providing evidence that the system could successfully 

be used as part of a scheme for robotic learning from human demonstration.

The confidence profiles produced by the system are then compared qualitatively with 

transcranial magnetic stimulation (TMS) data from humans during the passive observa­

tion of similar grasping movements.45 This comparison aims to show that the importance 

of temporal coupling between action observation and execution in humans (see below) is 

matched by its importance to the imitation scheme presented here.

1.1 Temporal coupling between action observation and execution

While imaging studies have demonstrated the existence of a mirror system in humans,50 

the temporal resolution limitations of brain scanning technology means tha t far less is 

known about the temporal aspects of the mirror system. However, recent experiments 

with transcranial magnetic stimulation (TMS) have shed some light into the temporal 

coupling between action observation and execution.45,44 Previous computational models 

of the mirror system have shown that such temporal coupling is crucial.22,26,96 For ex­
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ample, Demiris22 derived a set of testable predictions, most important of which was that 

monkey mirror neurons would not fire (or fire less) when the demonstrated movement 

was performed at speeds unattainable by the observer monkey. In Gangitano et al.44 it 

was shown that the amplitude of the motor evoked potentials (MEP) induced by TMS in 

humans observing a reach-to-grasp action was modulated by the amount and timing of 

the observed grip aperture. A strict temporal coupling between cortico-spinal excitability 

and the dynamics of the reaching and grasping movement when passively observed was 

clearly demonstrated.44

A follow-up study45 shed further light into the temporal characteristics of this coupling. 

The modulation in cortico-spinal excitability profiles during the observation of reach and 

grasp actions was studied under three experimental visual stimuli:

•  Observation of natural reach-to-grasp actions

•  Observation of a reach-to-grasp action where the appearance of the maximal finger 

aperture was significantly delayed.

•  Observation of a reach-to-grasp action where an unexpected finger closing and open­

ing action was inserted before the final grasp portion of the demonstration.

The first condition replicated the results of Gangitano et al.44, in tha t the observer’s 

cortical excitability profile was in alignment with the kinematic profile of the demonstrated 

finger movements. The second condition did not show any modulation in the cortico-spinal 

excitability profile, while for the last condition the initial profile remained the same for 

as long as the two stimuli remained the same, but upon sight of the unexpected finger 

closing and opening action there was a slow decay in the initial activation.

This essentially means that familiar grasping dynamics caused greater cortico-spinal 

excitability than un-natural and unfamiliar patterns, and tha t the differences between 

cortico-spinal excitability levels when presented with different stimuli were predictable 

and directly linked to the dynamics of unfamiliar grasping movements. The experiments 

presented in this chapter attem pt to reinforce this theory by showing that, when presented
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with the same stimuli, the computational imitation scheme described below produces 

similar patterns in its confidence profiles.

In the next section the movement model developed over the previous chapters will 

be integrated with an existing imitation scheme ( following the motor theory of percep­

tion.103,124’11,20’28’64’30) and the combined system will be shown to both match human-like 

grasping and to place emphasis on the temporal coupling between its predicted action 

and the observed action.

2 The Imitation Scheme

The scheme to perform action perception used in this chapter is based in part on the 

Hierarchical Attentive Multiple Models for Execution and Recognition (HAMMER) imi­

tation architecture. This section gives a brief overview of tha t model and describes how 

the optimal control scheme described in chapter 3 fits into this model.

The HAMMER family of architectures uses inverse and forward models94,67’126 as the 

basic building blocks. An inverse model is a module that takes as inputs the current 

state of the system and the target goal or goals and outputs the control commands that 

are needed to achieve those goals. The functionally opposite concept is that of a forward 

model of a controlled system: a forward model is a module that takes as inputs the current 

state of the system and a control command and outputs the predicted next state of the 

controlled system.

Pairing an inverse model with a forward model in the way shown in Figure 5.1 results 

in a structure that can be used both for executing an action and for perceiving it. When 

HAMMER simulates or executes an action, the inverse model module receives information 

about the current state and outputs the motor commands tha t it judges are necessary to 

achieve the target goal. The forward model provides an estimate of the upcoming states if 

these motor commands were to be executed. If, instead of feeding the current state of the 

im itator to the inverse model, the imitator feeds in the current state of the demonstrator, 

the inverse mode will generate the motor commands that it would output if it was in that 

state and wanted to execute this particular action. By inhibiting the motor commands
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- Demonstrator's state 
if in perception mode 
-Imitator's own state 
if in generation mode

Target goal 
(optional)

(inhibited in 
perception mode)

Motor
system

- Demonstrator's state 
if in perception mode 
-Imitator's own state 
if in generation mode

Figure 5.1: The building block of the HAMMER architecture, an inverse model paired 
with a forward model26,27

from being sent to the motor system, the forward model can output an estimated next 

state, which is a prediction of what the demonstrator’s next state will be.

This predicted state is compared with the demonstrator’s actual state at the next time 

step. This comparison results in an error signal that can be used to increase or decrease 

the behaviour’s confidence value, which is an indicator of how closely the demonstrated 

action matches a particular im itator’s action.

The HAMMER architecture in full consists of multiple pairs of inverse and forward 

models that operate in parallel and in hierarchies.26 When the demonstrator agent exe­

cutes a particular action the perceived states are fed into all of the im itator’s available 

inverse models. Following the algorithm described above, this generates multiple motor 

commands (representing multiple hypotheses as to what action is being demonstrated). 

The multiple forward models generate predictions about the demonstrator’s next state 

that are all compared with the actual demonstrator’s state at the next time step, and the 

error signals resulting from these comparisons effects the confidence values of the inverse 

models (see section 3 below for a description of how the confidence values are calculated). 

At the end of the demonstration (or earlier if required) the inverse model with the highest 

confidence value, i.e. the one that is the closest match to the demonstrators action is 

selected.
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2.1 Fitting the minimum variance model into the HAMMER ar­

chitecture

As stated above, the implementation of the minimum variance model presented in chapter 

3 is also suitable for producing an instance of the HAMMER architecture.111 To do this, 

a movement needs to be encoded as a pair of forward and inverse models. The forward 

model aspect corresponds to the state dynamics (equation 3.5 - this equation is in fact 

usually described as a forward model in the control literature). It takes the current state 

and a motor command and produces a prediction for the next state. The forward model 

in the HAMMER architecture is therefore stored as the state dynamics matrices A and 

B.

The inverse model corresponds to the motor command equation. Here, the set of 

state-feedback gains L and Kalman-filter gains K  are stored as the inverse model. Both 

these and the dynamics matrices can be calculated and stored "offline" without having 

to execute a movement. They are calculated using the parameters of the movement, such 

as the target and movement time (or number of time steps).111

W ith these structures in place, the implementation of the minimum variance model 

can be fitted directly into the HAMMER architecture. This instance of the architecture 

is termed HAMMER-MV to distinguish it from other instances of the architecture that 

use a different control system.26,30 Pairs of forward and inverse models exist for individual 

movements of individual effectors and can be combined into hierarchical structures.29,30 

Formulating reach-to-grasp movements as a hierarchy is described in the next section.

2.2 Organisation for grasping recognition

The arm model used in these experiments was the same as that used in chapter 4 (see 

Figure 4.1). The model was a two-link planar arm with two rotational degrees-of-freedom 

corresponding to the shoulder and elbow. The lengths of the two links were 30cm, which 

roughly corresponded to the lengths of the upper arm and forearm of the demonstrator. 

The hand was constructed as before from two similar components, both two-link models 

with two rotational degrees of freedom. The link lengths were set to 10cm, accounting for
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Object to be grasped, time, effector to be used

Figure 5.2: A hierarchical representation of the control model for grasping, as described in 
chapter 4. Each leaf of the hierarchy calculates its own set of state-feedback and Kalman- 
filter gain matrices for the given task parameters. These take the role of inverse models 
in the architecture shown in Figure 5.1.

the hand and the digit.

To perform a reach-to-grasp movement using the paired forward/inverse model con­

cept, inverse models of the component parts of the movement are assembled as shown 

in Figure 5.2, in much the same way as reach-to-grasp movements were planned and ex­

ecuted in the previous chapter. The individual components are parameterised from the 

highest level using information about the object and the required movement time. This 

is propagated down to the components of the movement, which then return back the 

state-feedback gains L and the Kalman-filter gains K  for those particular requirements.
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3 Confidence

The confidence value associated with a predicted trajectory is a measure of how closely 

the prediction matches the observed action. Confidence values are calculated at each time 

step, and the confidence that a given model’s prediction matches the observed action can 

both increase and decrease over the course of a movement. Many movements may begin 

in a similar way, but differ considerably in their final trajectory, as will be seen with the 

experiments into grasping recognition described below.

Confidence values from many competing models can be compared, and the model with 

the highest confidence can be selected to execute its motor commands, thereby replicating 

the observed action. Selecting the "winning" model in this way does not have to take 

place at the end of the movement - it can also take place during the observed action 

if required. For long or complex movements it is unlikely that one model will have the 

highest confidence throughout the demonstration, and the system is capable of switching 

between models as confidence values rise and fall. A clear example of this can be seen 

in Johnson and Demiris63 where several models exhibit the highest confidence value as a 

demonstrator performs a sequence of movements.

For the experiments shown below, the following method is used to calculate the con­

fidence for the predicted trajectory against the observed action. When the system is 

presented with the demonstration trajectory, it uses the state-feedback and Kalman-filter 

matrices of known movements to produce a prediction of the next state, given its obser­

vation of the current state of the observed action. To produce an value for the confidence 

in the prediction, this is then compared to the demonstrators actual next state, according 

to equation 5.1.

ACr =  sgn (r„ -  r„_.) x sgn ( r T 1 -  Cf)  * («7** -  < ? )  (5.1)

Here, rn is the distance between the hand and the target at time step n  for the observed 

action, while r%ed is the same value for a given inverse model. sgn(x) is the sign function, 

which returns -1 for x < 0 and +1 for x > 0. The term n — 1 indicates the previous time
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step. Equation 5.1 can be summarised in the following points:

•  If the predicted trajectory is moving in the same direction as the observed trajectory

(i.e. either towards or away from the target) at a given point in time, we want the 

confidence value of the prediction to increase. If the predicted trajectory is moving 

in the opposite direction to the observed trajectory, we want to decrease the predic­

tion’s confidence value. Prom the above definitions, rn — r„_i is the change in dis­

tance between hand and target in one step. If the hand is moving further away from 

the target, its value will be negative; if moving closer to the target, its value will be 

positive. Multiplying the sign of the change for the observed action, sgn (rn — r„_i), 

by the sign of the change for the predicted action, sgn (r%ed — , in equation5.1

results in a value of +1 (confidence value increase) if the changes are the same or 

-1 (confidence value decrease) if they are different.

•  The third term in equation 5.1 is the velocity of the predicted trajectory; the confi­

dence value increases or decreases by this amount to reflect the fact that a rapidly 

changing prediction should either have its confidence increased or decreased cor­

respondingly rapidly; if it is moving rapidly in the correct direction its confidence 

should increase rapidly, while if it is moving rapidly in the wrong direction, its con­

fidence should be decreased significantly. By the same argument, a slow moving 

prediction should have its confidence rise or fall equally slowly.

This confidence update equation can be applied to both reaching and grasping; as de­

scribed in more detail below, for grasping the term r n (distance between hand and target) 

is substituted for grip aperture.

The change in confidence A Cr is calculated for each time step, and is used to update 

the overall confidence Cn that the movement has been correctly recognised, based on the 

past history of confidence values (equation 5.2).

Cn = C n. l + ACr (5.2)
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Figure 5.3: Examples of the three different stimuli recorded: the top panel shows a 
normal grasp action, the middle panel shows a grasp action where the finger opening 
occurs abnormally late in the process and the bottom panel shows a grasp action with an 
unexpected finger closure at the point of expected maximum finger aperture; the stimuli 
closely follow those used in the TMS experiments of Gangitano et al.45.

4 Grasping Experiments

In this set of experiments, human demonstrations of reaching actions were recorded and 

given as inputs to the two-dimensional 6 degree of freedom simulated arm, controlled 

using the scheme described in the previous section. In the following sections, the visual 

stimuli that make up the demonstrated movement are described, along with the equations 

governing the matching of the model arm ’s performance against the human data.

4.1 Visual stimuli

Three different types of reaching and grasping movements were recorded using a human 

demonstrator as shown in Figure 5.3, closely following the experimental approach and 

stimuli types of Gangitano et al.45.

The movements of the human demonstrator were restricted to a 2D plane parallel to 

the table surface, and a 100mm foam ball was used as the grasping target. Data were 

captured with a Unibrain firewire camera at the rate of 30 frames per second. Colour 

markers were placed at the thumb and index fingers of the demonstrator and a coloured
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arm band at the wrist. These three points (end of thumb and pointer fingers, and centre 

of mass of the wrist) were tracked using the CamShift algorithm, and the coordinates of 

these points in successive frames along with time stamps were saved to a file, to be used 

as input to the action perception scheme. Periods of inactivity at the start and end of 

the demonstration were removed from the file.

The captured trajectories used in these experiments are shown in Figure 5.4, along with 

the grip aperture profiles. These show the essential differences between the three types of 

stimuli, and the similarity between the grip aperture profile of the human demonstrator’s 

normal grip and that produced by the grasp implementation of the minimum variance 

model.

4.2 Error calculation and confidence update

The confidence was updated at each time step by comparison between the im itator’s pre­

diction and the demonstrator’s trajectory. Specifically, comparisons were made between 

the predicted change in both the distance to the target, r , and the grip aperture, g, 

both shown in Figure 4.1. This meant that the confidence for the top-level of the hierar­

chy a function of the confidences of its component parts. The first step was to find the 

coordinates of the mid-point of the grip according to equation 5.3.

mn = +  tn (5.3)

where mn is the position of the grip mid-point, and /„  and tn are the positions of the 

tips of the finger and thumb respectively. This was then used to define the distance to 

the target r (equation 5.4), given as the absolute difference between the coordinates of 

the centre of the object and the mid-point of the grip (see Figure 4.1).

rn =  \object -  m„| (5.4)

The absolute value of the grip aperture g (again, see Figure 4.1) was also calculated 

for each time step according to equation 5.5.
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Figure 5.4: Examples of the thumb- and finger-tip trajectories recorded from the human 
demonstrator: (a) Normal grasping movement; (b) Delayed opening; (c) Opening-closing- 
opening; (d) Grip aperture profiles for the three different types of stimuli and the mini­
mum variance model grasp. This plot also shows the grip aperture variances, which are 
understandably greater for the non-natural grips.
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9n | fn n̂| (5.5)

Using equations 5.3, 5.4 and 5.5, values of mn, r„, and g„ were calculated both for 

the observed trajectory and the predicted trajectory. Given these values, the confidence 

value at each time step was given as

Cn = Cn_! +  A Cr +  A Cg (5.6)

where

ACr =  sgn (rB -  r„_x) x sgn ( r ^  -  C - t )  x (r%ed -  r j^ f )  x wr (5.7)

and

ACg =  sgn (g„ -  x sgn ( s f *  -  C - f )  x ( s T *  -  Æ f )  x «>, (5.8)

Here, sgn(x) again represents the sign function. As with the confidence calculations 

for reaching given in the previous section (equation 5.1), equations 5.7 and 5.8 mean tha t if 

both the observed action and the prediction are moving in the same direction and the grip 

apertures of the two are also changing in the same way (i.e. either both opening or both 

closing), the confidence that the inverse model has correctly recognised the movement will 

increase. If the two trajectories move in different directions or the grip apertures change in 

different ways, the confidence will decrease. The change in confidence for both distance-to- 

target and grip-aperture is modulated by both the step-by-step change in the prediction, 

as in equation 5.1, and additionally by a weighting term wr or wg. These weighting terms 

are set to ensure that the relative contribution of each component of the movement to the 

overall confidence is the same, despite the large differences in velocity between arm and 

digit movements in a combined reach-to-grasp movement. In the confidence plots shown 

below, ^  =  1.’ V>g 2
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Figure 5.5: Plot showing normal trajectories predicted by the reach-to-grasp model against 
observed trajectories, when the observed action is of a normal grasping pattern.

4.3 R esults

Figures 5.5, 5.6 and 5.7 show the normal trajectories produced the reach-to-grasp model 

against the demonstrated movements. Figure 5.5 shows how similar the predicted move­

ment is to the observed movement when the demonstrator performs a normal reach-to- 

grasp action. By contrast, large differences can be seen in Figures 5.6 and 5.7 between 

the predicted normal movement and the observed movements when the demonstrator 

performs non-natural actions.

Figure 5.8 shows the confidence plot over time for example trajectories of the three 

different conditions. Confidence profiles for all the trajectories performed are shown in 

Figure 5.8.

The results closely follow the characteristics of the data reported by Gangitano et al.45. 

For example, in Figure 5.8(a), the confidence progression during the observation of a 

normal movement over time follows the increasing trend reported by Gangitano et al.45, 

reaching its maximum at the point of maximum aperture and subsequently reducing 

slightly as the movement closes to the end.

The confidence progression during the observation of the second stimuli type (the 

grasp movement with delayed aperture opening) does not show any significant increase 

in value during the first half of the observed action, corresponding to the time when 

the demonstrator’s digits are still closed. When the digits start to open they begin to
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Figure 5.6: Plot showing normal trajectories predicted by the reach-to-grasp model against 
observed trajectories, when the observed action is of a delayed opening of the digits.

Figure 5.7: Plot showing normal trajectories predicted by the reach-to-grasp model against 
observed trajectories, when the observed action is of an open-close-open grasping pattern.
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Figure 5.8: (a) Confidence profiles of the predicted movement when executed against single 
instances of each of the three observed grasp actions (normal, delayed opening, open-close- 
open) ; (b) Confidence profiles of the predicted movement for all observed movements: 3 
instances each of the three observed conditions; (c) Mean confidence profiles for each of 
the three observed conditions.
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intersect with the digit trajectories of a normal grasping movement, causing a gradual 

increase in the confidence level of the prediction that still only results in a relatively low 

final confidence value (again following data reported by Gangitano et al.45).

Finally, the confidence progression during the open-close-open grasp closely follows 

the trend of the normal movement until the point of the sudden digit closure, with a 

notable descending trend followed by a gradual increase as the digits open and begin to 

match the normal grasping trajectories, again matching the general trend for this stimuli 

reported by Gangitano et al.45. It can be seen in both Figure 5.8(a) and 5.8(c) that the 

rate of confidence increase during the second half of the movement is still greater for the 

prediction against the observed normal grasp than for either of the other two non-normal 

grasps.

This pattern is reproduced amongst all captured trajectories, as shown by both Figure 

5.8(b) and the mean confidence profiles of all observed movements shown in Figure 5.8(c). 

This figure also shows the variance at select points along the confidence profiles. These 

bars are small for the prediction against the normal grasp, indicating that the predicted 

grip is highly consistent with the observed grasping movement. For the non-normal grasps, 

the predictions show greater variability during the periods where the grasps differ most 

from the normal movement. For the delayed opening movement, this is during the first 

half of the movement, before the digits have opened. For the open-close-open grasp, it is 

at exactly the point where the grasp begins to un-expectedly close.

Summary

The neuro-physiological data mentioned in this chapter lend support to the notion that 

the human brain does not passively observe actions but actively forms hypotheses and 

predicts forthcoming states. In Gangitano et al.45 it was shown that timing is a strong 

component of these predictions, and thus that there is no temporal dissociation between 

components of an action plan in the motor representation of an observer.

The computational implementation of a system based on the HAMMER architecture 

described in this chapter reproduced these results, using a controller based on the mini­
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mum variance principle introduced in previous chapters. This system used the controller 

to generate predictions of the next state for the observed action based on a familiar (nat­

ural) grasping pattern, predictions that closely matched the actual digit trajectories of 

human grasping.

Where the components of the observed action (the reach and the grip) were dissociated 

to produce an unfamiliar grasp, the system produced reduced confidence profiles whose 

key differences from the confidence profile for the normal movement were explainable and 

related to the dynamics of the un-natural movements.
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Chapter 6

1 Discussion

1.1 Minimum Variance Model

Computational models of human movement vary in the observable characteristics of such 

movement that they capture and in their applicability to controlling a robot arm. In 

chapter 3, focus was given to the minimum variance model and it was demonstrated that 

not only does this model capture the common characteristics of human arm movements, 

but that it is also suitable for implementation on a robotic platform, thereby allowing a 

robot arm to move in a human-like manner.

Previous implementations of the minimum variance model were briefly outlined in 

chapter 3, and a number of reasons for the differing approach of this work were given. 

Chief among these was one of the aims of this work, to look at the applicability of models 

of human movement to the control of a robot arm. A number of the previous approaches 

were not suitable for this, either due to time consuming computations required for the 

planning of single movements or due to their computational complexity.

Another consideration when choosing a different approach to previous work was the 

structure of the optimisation process, and its compatibility with the ideas and principles 

behind the HAMMER imitation architecture. As described in chapter 5, the LQG imple­

mentation outlined here117 has structures that were able to represent forward and inverse 

models in the control sense. Since these are required for the prediction and comparison 

of known movements with an observed demonstration, it was important that the optimal 

control scheme be able to match these structures.

As well as describing an implementation of the minimum variance model, the resulting 

trajectories were compared with those produced by two other well-known models. These 

models capture some, but not all, of the common features of human movement. Their 

criteria of jerk and torque-change are also less straightforward to calculate and optimise 

than the readily observable quantity of hand positional variance.
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The success of the minimum variance model in predicting and explaining the charac­

teristic features of human behaviour is extensive. It has been shown to capture the form 

of saccadic eye movements,52 reaching movements,52,117,112 and now grasping movements 

(Simmons and Demiris110 and chapter 4), and is one of the few models to account for 

disturbances to the system in the form of noise on the control signal. However, no exper­

iment (behavioural or neurophysiological) has been performed that definitively identifies 

exactly how the brain plans and executes movements. It is highly likely that more than 

one criterion is used, or that emphasis is placed on different criteria depending on the 

task .116 The direction of research in this area is moving towards combined optimisation 

criteria, such as that proposed by Matsui and Wada83.

Despite this, the arguments and theory behind the model make it reasonable that 

some form of minimum variance or task-level optimisation that accounts for natural dis­

turbances to the system takes place in the planning of movements. As such, it was chosen 

as a valid model for implementation on a robotic platform to reproduce important char­

acteristics of human movement.

The stochastic nature of the minimum variance model, where the random noise on the 

control signal is assumed to have variance proportional to the amplitude of the control 

signal, fits in well with the growing emphasis on probabilistic and Bayesian methodologies 

in the study of behaviour and brain function.76 The suggestion put forward by these the­

ories is that the CNS uses previous knowledge to judge likely future outcomes, adjusting 

its expectation of these outcomes as it accumulates more experience.25*20 Using this as a 

basis, a learning scheme can be envisaged whereby the motor system, generating move­

ments through the minimisation of variance in the presence of noise, modifies its output 

based on its previous experience of the effects of the noise and other disturbances.

An interesting aspect of the minimum variance model not discussed in the proceeding 

chapters is the actual form that the signal-dependent noise takes in the model, and the 

effect this has on the trajectories that are produced. For the purpose of this work, the noise 

has been assumed to be white noise (i.e. random noise drawn from a normal distribution) 

with zero mean and variance proportional to the square of the control signal amplitude
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(giving a standard deviation that is linearly proportional to the amplitude of the control 

signal), as shown below. This is the same assumption made by Harris and Wolpert52 in 

their original paper, based on studies that report on the standard deviation of motor- 

neuronal firing.84

un = un + U)n, wn ~  N  (0, k(un)2) (6.1)

Other studies have looked at aspects of this assumption in greater detail, including 

the type of distribution from which the noise is drawn35 and the profile of the noise 

determined by the exponent on the control signal.58 In their analytic treatment of the 

minimum variance theory, Feng et al.35 discuss using a Poisson process instead of a normal 

distribution for the noise, on the suggestion that neural signals take this form.

Iguchi et al.58 note that a number of studies suggest that the relationship between the 

mean of the noise and its standard deviation may be non-linear, implying tha t the value 

of the exponent used to calculate the variance in equation 6.1 is not 2. They repeated 

the experiments of Harris and W olpert52, varying the value of the exponent between 0.1 

and 3.0, and showed that the match to observed data by the model trajectories depends 

on the value of the exponent.

1.2 Grasping

Together, the two experiments shown in sections 2.1 and 2.2 confirm that the model of 

reaching-to-grasp captures the experimentally determined characteristics of human grasp­

ing. As stated before, the approach of this chapter was to consider grasping to be two 

separate processes, planned using the same motor control principle.

Through the addition of a single via-point to each digit’s trajectory, the perpendicular 

approach of the digits to the object target positions observed in grasping has been repli­

cated. Following the minimum variance principle, the spatio-temporal positions of the 

via-points were determined as those that resulted in the lowest end-point standard devia­

tion of the digit trajectories, quantitatively confirming tha t a perpendicular approach to 

the target positions of the object results in a more accurate grasp.
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The via-point constrains the trajectory to pass through a set location (or close to it, 

as the addition of signal-dependent noise means the trajectory is unlikely to pass through 

the exact spatial location) at a set time during the movement. The via-point imposes no 

other demands, such as velocity or acceleration constraints, on the system.

The results show that increasing the horizontal distance of the via-points from the 

object increases the maximum grip aperture of the hand during grasping and causes that 

maximum to occur earlier in the movement. This follows as a fairly logical consequence, as 

a via-point further from the object will require a larger grip, which will have to performed 

earlier if the digits are to successfully reach the target positions on the object in the 

required movement time.

This work also confirms that the model matches the characteristics observed in numer­

ous experiments on grasping. Both the relationship between maximum grip aperture and 

object size, and between time of maximum grip and object size were successfully captured 

by the model. These results compare favourably with the literature summaries reported 

in Smeets and Brenner113.

The model presented in chapter 4 allows the contributions to the end-point variance of 

both components of grasping to be studied. By varying the movement time for a grasping 

movement over a fixed distance, it was demonstrated that both the transport component 

and the grip component exhibit reduced variance as movement time increases.47 Since the 

model of reaching has been shown to obey the speed-accuracy trade-off of F itts’ Law (see 

Simmons and Demiris112 and Figure 3.4), this result is not unexpected.

Experiments to check whether the model matched the findings of an experimental 

study into the spatiotemporal variability of grasping were also carried out. Following 

Kudoh et al.77, both object size and movement distance were varied to observe their 

effects on the variability of the movement. The model showed that object size has a 

significant effect on the variability of the grip aperture, but not on the wrist movement. 

This follows from the separation of the grasping movement into two separately planned 

components, as the planning of the reaching component takes no account of the object 

properties.
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With regards to changing the movement distance, the results from the model differed 

slightly from those of Kudoh et al.77. The same effect on the transport component was 

observed; that an increase in movement distance results in an increase in variability. 

Again, this is a logical consequence of the speed-accuracy trade-off in that a shorter 

movement distance over the same movement time will require lower velocities and therefore 

be more accurate.

However, no significant effect of movement distance on the grip aperture variability 

was observed. Again, the reason for this result is the separation of planning for the reach 

and transport components. This would generally be the case for models that follow the 

dual-channel view of grasping, since it proposes that the information processed by the 

grip channel is intrinsic to the object and not effected by properties that relate to the 

object and its environment.59,113 In turn, these extrinsic properties are processed solely 

by the transport channel.

1.3 Action perception

The hierarchical organisation of the motor representation used in chapter 5 is a useful 

engineering tool when structuring motor systems. As well as being a natural organisation 

of the prehension scheme detailed in chapter 4 (the movement consists of reach and grip 

components, with the grip further consisting of separate digit movements), the hiding of 

the lower details in higher level structures allows for easier task planning than can be 

achieved with flat non-hierarchical representations. Only the details of the goal and the 

desired task parameters need to be supplied and the higher inverse model will recruit and 

coordinate the appropriate lower level primitives. This is a key feature of the HAMMER 

architecture, upon which the action perception scheme presented in chapter 5 is based.

Additionally, the higher level models also modulate the contribution of each of the 

underlying primitives when predicting future states: apart from judging success individu­

ally, predictions from lower levels are rated, and modulated according to how much they 

contribute to the higher goal (equations 5.6, 5.7 and 5.8).

The minimum variance implementation employed was particularly suited for this, since
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it allows the calculation of the confidence of the lower level level primitives (e.g. digit 

movements) individually as well as with respect to each other (e.g. grip aperture), and 

propagates their weighted values upwards to allow higher level nodes to calculate the 

progress of the overall model towards the final goal. It would also be interesting to see 

whether other criteria (for example, smoothness of movement) that result in human-like 

trajectories could also replicate the effects observed in experiments presented here.

Whereas some control schemes can adapt their output during execution, movement 

planning using the optimal control implementation presented here is performed "off-line". 

As a result, there are no parameters to be adjusted during execution, and therefore no 

way to temporally "morph" the plan to more closely match what is being observed. 

Although that is technically possible using this action perception scheme (as shown in 

previous instances of the HAMMER architecture that use adaptive PID controllers;26 

these allow online adaptation to different speeds of the demonstration, within limits), the 

data of Gangitano et al.45 suggest that humans do not morph the ongoing motor plan 

temporally, and the minimum variance implementation for action perception captures 

that aspect more closely than Demiris and Hayes26.

However, it is possible for the system given here to smoothly switch from one motor 

plan to another (as opposed to adjusting the current motor plan). An example of when 

this might be appropriate is when two movements share a common initial trajectory but 

then diverge; if the confidence value of the correct predicted trajectory is lower, but then 

rises after the point of divergence while the confidence of the other movement drops away, 

the system could easily switch which of the predicted trajectories is sent to the motor 

system.

It is important to note that the comparisons between the results of Gangitano et al.45 

and the computational results reported in chapter 5 rely on the assumption tha t the 

confidence of an inverse model can be mapped to changes in motor evoked potentials 

(MEPs) of the controlled body part in humans. This is based on the intuition tha t the 

neural substrate of an inverse model with higher confidence (i.e. a model tha t better 

explains the observed movement) will be more active than tha t of a model with lower
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confidence. Other work has linked the confidence of inverse models to the attentional 

resources that are allocated to them .30 Since attention to action increases activity in 

prefrontal, premotor and parietal cortices,105 a potential link between inverse models and 

MEPs can be drawn, although the exact nature of this link will require more detailed 

neural modelling than is within the scope of this thesis.

2 Future Work

2.1 Minimum Variance Model

An important aspect for further study based on the work in this thesis is to increase 

the complexity of the robotic platform. The minimum variance model has been shown to 

hold for a relatively straightforward arm configuration, but access to more human like arm 

configurations and devices would allow further study. More degrees of freedom increase 

the complexity of the model, allowing greater flexibility in the tasks that can be carried 

out by the arm.

One of the primary differences between the minimum variance theory and other opti­

misation criteria is that the optimal trajectory is found through costs associated with a 

post-movement period, rather than costs associated with the movement itself. Framing 

the movement task as one in which goal accuracy is the most important requirement works 

well, but not every task can be cast in this way. A common movement goal is to minimise 

variance during the movement itself, as when moving a glass full of liquid. An obvious 

experiment to perform with the implementation given in chapter 3 is to place costs on the 

variance during the movement and observe the resulting trajectories. This has also been 

proposed by Feng et al.35, who produced an analytic solution to the minimum variance 

problem for both post-movement and during-movement variance minimisation.

As mentioned above, the human motor system is unlikely to use a single optimisation 

criterion to plan and generate movement. An examination of how different criteria can 

be combined and their different effects would be a profitable area for future work. In 

particular, the relative weighting given to different criteria in different tasks is of interest.83
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Along these lines, an improvement to the system presented in this work would be the 

addition of movement duration to the cost function, following the model proposed by 

Hoff55. Currently, the movement time is an input parameter calculated according to the 

required movement accuracy, but incorporating it in the terms to be optimised would 

allow further study of issues related to the timing of movement.

One limitation of the present system is that it is unable to perform obstacle avoidance. 

A via-point trajectory can be specified that would allow an obstacle in the workspace to be 

avoided, but there is no principled way to determine exactly what that via-point should 

be to produce a human-like trajectory. Work has been done by de C. Hamilton and 

W olpert19 analysing obstacle avoidance trajectories, using a spline based optimisation 

method. They added costs to the minimum variance trajectories such that any part of an 

ellipse with axes equal to two standard deviations that intersected with the object was 

penalised. In this way, the degree of uncertainty in position at each point in time during 

the movement determined the path around the object. Fast movements, with greater 

variance, take a wider path around an obstacle than slower movements that are subject 

to less uncertainty.

Outside of the domain of upper limb movements, this method of obstacle avoidance 

using the minimum variance model could find application in mobile robot navigation. A 

robot planning a path tha t reached a target position with as great an accuracy as possible 

could make use of the minimum variance principle, and use the obstacle avoidance method 

described above to navigate to the target through a cluttered environment. If this could 

be implemented, it would be of value to compare the chosen path with human subjects 

moving through the same environment at a comparable speed, to judge if humans take 

the uncertainty of movement into account when moving around obstacles.

Looking beyond the system as it exists, an interesting extension would be into the 

realm of tool use. Movements involving tools often have very specific patterns related to 

the task being carried out. Analysis of human tool use would have to be performed to 

acquire relevant data for comparison with model predictions. For generating trajectories 

from the model, a careful formulation of both the task and the mechanical system would
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have to be performed, bearing in mind that tasks involving tools are often unstable.15 

Many tasks with tools also involve the application of forces, and a valid extension of the 

model that was able to accomplish these tasks would also have to extend the model given 

here to account for the combined arm and tool dynamics.

Another interesting future area of study would be to look into how the system could 

be extended to learn to improve its trajectories through training or practice. When hu­

mans first learn a skilled movement, they often perform it inaccurately and inconsistently. 

Following F itts’ Law, beginners will usually attem pt to increase their accuracy by per­

forming the movement more slowly than a more skilled individual, but through practice 

and training they are able to increasingly reduce the effects of disturbances and perform 

movements fast and accurately.

A starting point for extending the model in this direction would be the work of Burdet 

and Milner14, as described in chapter 3. Their model of movement as the superposition of 

multiple submovements accounts for deviations from a planned trajectory by introducing 

deviations into each submovement. These can then be corrected by subsequent submove­

ments; thus, the greater the number of submovements the greater the accuracy of the 

overall movement. By adjusting various model parameters according to the outcome of 

the overall movement, this model effectively learns to improve its accuracy over repeated 

trials.

2.2 Grasping

The work presented in chapter 4 clearly prompts further investigation into the behaviour 

of grasping. It supports the view that grasping could be planned as pointing movements 

of the digits, but this remains to be physiologically or neurologically confirmed.

The results presented in chapter 4 have been achieved even with a relatively simple 

model for the arm and hand. A more realistic model of the hand, such as tha t used by 

Meulenbroek et al.85, could certainly be introduced to the system without changing its 

fundamental characteristics. However, different types of grip have been modelled using 

two "virtual" fingers97 that are similar to the arrangement for the hand used in this
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chapter. A further extension of the model would be to move away from planar grasping 

and model full three-dimensional grasping movements.

One of the assumptions of our model and that of Smeets and Brenner113 is tha t the 

digits begin the movement touching each other. An area for further modelling is to relax 

this assumption and observe the effect on the digit trajectories of a starting grip aperture 

that is not zero. Timmann et a l.115 showed that when subjects started the movement 

with maximum grip aperture, they initially closed the grip before reopening to second 

maximum and then closing again to grip the object. Current models, including those of 

Smeets and Brenner113 and Meulenbroek et al.85 are unable to account for this, although 

Smeets and Brenner113 suggest that additional constraints on their model would conform 

to the results of Timmann et a l.115.

This work has not touched on the effects of hand orientation or object-to-wrist distance 

on grasping. Clearly these will have a large influence on the movement of the digits, and 

will also change the shape of the grasp. The greatest impact of changing the object-to- 

wrist distance will be to restrict the maximum size of object that can be grasped - the 

largest object can only have a radius equal to the object-to-wrist distance. A second 

factor will be a limitation on the size of the maximum possible grip aperture.

Only a single object shape has been considered, while there is evidence that object 

shape has a large impact on the grasping kinematics.18,108 Furthermore, only a precision 

grip between the finger and thumb has been explored - the principle could equally be 

applied to other types of grip, such as a power grip.

An interesting area of study would be to examine how grasping trajectories produced 

from pointing models are effected by the presence of obstacles, both in the path of hand 

and close to the object. Experimental work has already been performed looking a t how 

obstacles influence the speed of grasping movements5 and how obstacle position in the 

workspace can change grasping trajectories.89 As stated above, the effects of obstacles 

on minimum variance reaching movements have also been examined,19 allowing obstacle 

avoidance to be incorporated into a minimum variance grasping model.
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2.3 Action perception

Although, as noted above, the motor plan generated off-line by the action perception sys­

tem can be interrupted and a new one generated to possibly better capture the demon­

stration, it is unlikely that for short demonstrations such as the ones examined here (and 

used in the experiments of Gangitano et al.45) there is sufficient time to do so. It would 

be interesting, both for the neurophysiology and the computer modelling sides to repeat 

such experiments but for longer actions, including possibly sequences of them, to deter­

mine whether such a resetting mechanism (as termed by Demiris24) is indeed present in 

humans and study its characteristics.

Perceiving and recognising individual elements within a sequence of movements would 

also be a challenging task, as any given sequence might be made up of known and un­

known movement components. Since an unknown movement might move smoothly and 

continuously into a known movement, it is not clear at what point the observed action 

shifts from being a completely unknown single movement to a combination of known and 

unknown segments.

If the minimum variance model is extended to the domain of tool use, as suggested 

above, the role of the action perception system would become highly relevant. As well 

as observing the movement behind the use, the action perception system could be used 

to extract the meaning behind the movement. This would move the system beyond 

recognising the movement and towards the higher level goal of understanding the intention 

of the demonstrator. Once this is achieved, the high level cognitive information could 

conceivably be used to plan the task in another way, perhaps one more suited for the 

robot’s abilities or situation.
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Chapter 7

Conclusion
As stated in the introduction (chapter 1), the primary contributions of this work have 

been in the application of specific theories of human movement to a platform suitable 

for robotic control. Expressly, the research presented in this thesis has demonstrated an 

implementation of the minimum variance model52 suitable for controlling a robot arm .112

This implementation has been shown to effectively capture several characteristics of 

human movement, among which are smooth, straight hand paths, bell-shaped velocity 

profiles and a speed-accuracy trade-off. This properties are achieved due to the intrinsic 

nature of the model, and apply even for a robotic plant model.

The model has also been successfully shown to match the characteristics of grasping. 

Specifically, the grip aperture profiles associated with digit trajectories follow the same 

pattern for variations in object size as those observed in human subjects.

Further validation of the human-like qualities of the movement model were obtained 

through the use of an action perception scheme to predict and recognise grasps produced 

by a human demonstrator. The system was able to successfully distinguish between 

normal grasps and two patterns of abnormal grasp, in the process producing prediction 

confidence profiles that were qualitatively similar to neural activation recordings from 

human subjects observing the same stimuli.

The background presented in chapter 2 described several important features tha t char­

acterise human movement. Despite the complexities of the human motor system and its 

inherent neural, musculo-skeletal and kinematic redundancies, upper limb movements 

show stereotypical features both between trials and between individuals. Any theory 

tha t attem pts to explain how the motor system plans such movements and generates the 

commands to execute them must explain and reproduce these characteristics.

W ith the goal of reproducing these features on a robot arm, the remainder of the
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background discussed models from computational neuroscience that have attem pted to 

match these features, focusing on the class of models that involve the optimisation of some 

movement relevant criteria. Models discussed include the well-studied minimum jerk and 

minimum torque-change models, offering a good representation of this class of models. 

The degree to which they capture the features given earlier in the chapter, as well as 

their general suitability for implementation, was used as a basic measure for whether they 

could be used to achieve the goal. The lack of an accuracy constraint or the inclusion of 

any form of disturbance in the majority of these models lead to the introduction of the 

minimum variance model in the following chapter.

This implementation of the minimum variance model presented in chapter 3 is based on 

the previous work of Todorov and Jordan117. The structure of the scheme lends itself well 

to pre-computing and storing predicted costs for given movements. These are effectively 

primitives,95 which can be called and executed, switched and superimposed, as required. 

They are also used in the form of inverse models in the action perception system described 

in chapter 5.

It has additionally been shown that this implementation can be readily extended 

to the task of grasping an object, by extending the arm model to include a gripping 

mechanism and treating prehension as pointing with the digits of the gripper, in line with 

a recent theory of grasping.113 In their work, Smeets and Brenner113 used the minimum 

jerk model to derive digit trajectories that matched grip aperture profiles from a wide 

range of literature.

Here, trajectories with the same characteristics were produced by the minimum vari­

ance model applied to the arm-gripper plant model. Via-points were added to the digit 

trajectories, with the aim of producing a perpendicular approach of the digits to the ob­

ject. The exact position of these via-points (spatially and temporally) was chosen so as 

to give the maximum accuracy for the digits when arriving at the target positions on the 

object, without considering how this would effect the trajectory. W ith the via-point po­

sitions established, the grip aperture profiles were then examined for a range of variables, 

including object size. The results of these experiments showed that the grip aperture pro­
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files, as measured by maximum grip aperture and the relative time a t which it occurred, 

were well within the limits derived by Smeets and Brenner113 from the literature.

The nature of the grasp model is such that it is possible to examine separately the 

contributions of the movement components to the variability of the digit end-points. 

The effects of different parameters on the variability of the reach and grasp parts of 

the prehension movement were analysed by looking at the average variance profiles for 

a large number of repeated movements for each parameter value. This aspect of the 

model allowed comparison with previous work on the nature of the variability of human 

movements, especially that of Kudoh et al.77.

This use of the minimum variance model for grasping was then been combined with a 

high-level system for perceiving and recognising the actions of a human demonstrator.26 

When presented with grasping trajectories, some of which contained deviations from a 

natural grasping pattern, this system produced confidence profiles that followed a similar 

pattern to neural activation levels recorded from human subjects45 observing comparable 

movements. This not only contributes further validation that the model successfully 

captures human-like features of movement in the form presented here, but it also provides 

the basis for a robotic system that can learn from human demonstration.

In summary, this thesis has shown a novel implementation of a biologically plausible 

model for human movement that captures many of the features of both reaching and 

grasping. The work on prehension is an extension to previous work on this model, and 

offers a middle road between two theories of grasping; the separation of planning for reach 

and grasp components, and the theory that grasping can be explained as pointing with 

the digits to targets on the object surface. This system for grasping lends itself well to a 

hierarchical implementation, and can be used in conjunction with an existing system for 

action perception to recognise and imitate observed movements.
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Appendix

A: Spatial and Temporal Generalisation

The use of via-points to produce complex trajectories and meaningful patterns has been 

described in chapter 3. Here, it is shown how the representation of a movement as a series 

of via-points can be used to generalise that movement both spatially and temporally.

A .l Via-point locations

The information needed to perform the generalisation is the coordinates of the start and 

end points, and the coordinates and temporal locations of the via-points. For an arbitrary 

movement, observed externally or performed by the motor system, it is not clear exactly 

where the via-points should be placed to adequately replicate or generalise that movement. 

Previous work has placed them according to what are considered recognisable features of 

the movement, including zero crossings (maxima and minima) of velocity or acceleration.

Although not looking directly at via-points, it is appropriate to include the work of Rao 

et a l.100, as they define movements in terms of dynamic instants where the forces acting 

on the hand change significantly. As forces cannot be measured from external observation, 

they use maxima of the movements spatio-temporal curvature (equation A .l), capturing 

velocity and acceleration information, to segment it into dynamic instants. As an added 

advantage, spatio-temporal curvature is view invariant.

Spatio-temporal curvature is calculated by projecting a three-dimensional position

vector r t — x t yt zt on to a two-dimensional surface to produce a spatio-temporal

trajectory defined by rf* = x t Vt t . Spatio-temporal velocity and acceleration can

also be defined: v f  = x't y[ 1 a*‘ = Vt 0 . The curvature of the spatio-

temporal trajectory can then be defined in the standard way:

K = \\r f  x r f l
mi3l|r?l
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Expanding this out using the spatio-temporal vectors defined above gives:

K =
y[ 1 X X" y '; 0 y'l x'l x'ty" — y'tx"

x[ y't 1

which in turn can be re-written as:

x't y't 1

K —
\Jx2t + $  +  (xtyt -  xtytf

(VW+W+i)
(A.l)

Despite only showing the second-derivative of position, the first two terms of the top 

line of equation A .l in fact have units of m 2s~3, due to the vector cross product in the 

previous equation.

The requirement for identifying via-points in this work is that the selection criteria 

results in the best reproduction of the observed movement (as measured by the mean 

square distance between observed and replicated movements) for the lowest number of 

via-points. Requiring that the number of via-points be as low as possible prevents the 

strategy of placing a via-point at every time step of the observed trajectory; this would 

quickly scale to unfeasible levels for long movements.

As such, via-points were selected for a given curved trajectory as the maxima and 

minima of three criteria: velocity, acceleration, and curvature. The trajectory was then 

replicated using the selected via-points and the mean-square difference (MSD) between 

the replicated and original trajectories was plotted against the number of via-points.

The MSD was calculated using equation A.2 and the combined-segmentation method 

of Pomplun and Matarid98. This metric works in joint space to compensate for differences 

in arm length between observer and imitator, and is flexible enough to be used to compare 

single movements (with or without via-points) and combinations of movements performed 

in a sequence.

min(ra,T/3) j

d (■»,« =  £  ¿ ( a “ - / ? “ ) ’ (A.2)
n=0 j= 1
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Figure A.l: Via-point identification from zero-crossings of the derivatives of position, 
velocity and curvature. Trajectories were produced using the found via-points, and com­
pared to the original trajectory: (a) Shows mean square difference between the original 
and new trajectories against the number of identified via-points; (b) Combining both mea­
sures confirms that via-points at maxima and minima of curvature give the best balance 
between similarity and no. of via-points.

Figure A.l (a) is the plot of number of points against MSD, for several repeated trials 

for each criterion. From this plot is can be seen that maxima and minima of acceleration 

captures the original trajectory well, but generally maxima and minima of curvature 

results in the best replicated trajectory for the least number of points. This is confirmed 

in the bar chart of Figure A. 1(b) which shows MSD multiplied by number of points for 

each criterion.

Figure (a) shows the trajectory for which the via-points were selected, including the 

via-points found using the the curvature. Figure (b) shows both the spatio-temporal 

curvature and the change in the hands position on the x-axis, marking the maxima and 

minima of the curvature and showing how these relate to actual features of the x-axis 

trajectory.

A .2 M ovem ent representation

Having identified the start and end points, and the via-points, the movement can now be 

put into a form suitable for generalisation.

For temporal generalisation the movement time is normalised, with the start at time
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Figure A.2: The trajectory used to test the selection criteria for via-points. (a) The 
hand path, showing the positions of via-points corresponding to maxima and minima of 
spatio-temporal curvature; (b) The x-axis component of the hand path and the curvature 
(dotted line). The identified points occur at the start of the movement, the point where 
movement speed initially increases, the point of maximum velocity (when deceleration 
begins), the start of the post-movement period, and at the completion of the movement.

t = 0 and the end at time t = 1. The via-point temporal locations are also normalised to 

give their relative position within the time-scale of the movement. After this normalisa­

tion, the movement can be performed over any given time by multiplying the temporal 

positions by the required movement time. This can be summarised by equation A.3.

vi(0new X  J  new (A.3)

Here, is the temporal position of the z'th via-point and T  is the movement time. 

The terms "old" and "new" denote the originally observed movement and the movement 

with the new required time. Obvious the start of the movement is still at time t =  0 

while the end time becomes Tnew. An example of this temporal generalisation is shown in 

Figure A.3(a), where a movement originally performed at one speed is performed again 

with a much shorter movement time. The basic shape of the original movement is still 

clear, as the relative temporal relationship between via-points has remained the same.

Spatial generalisation is performed in a similar way. The spatial relationship between 

the points of the movement is determined by the start position. The movement can be
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------ Imitation from demonstration ------ Imitated from demonstration
------ Temporally scaled ------ Scaled movement

Figure A.3: Plots showing the effects of temporal and spatial generalisation on a via-point 
trajectory: (a) A trajectory that draws the letter ’a’, similar to the one shown in Figure 
3.8, is shown performed at one speed (dotted line) and at a much faster speed (solid line). 
The faster movement appears cruder than the slower one as there is less time to move 
between via-points, but the basic same is retained; (b) The same trajectory (dotted line) 
with a repeated movement scaled by a factor of |  (solid line).

executed in a different part of the arm ’s workspace if the via-points and target point are 

adjusted for the new start point (equations A.4 and A.5). The movement can be scaled as 

well using this method, by applying a scaling factor to the general representation before 

adjusting for the new target position, as given by the term a  in equations A.4 and A.5. 

Figure A.3(b) shows a movement scaled by a factor of a but performed from the same 

starting position and with the same movement time.

G n ew &  { G o ld  S 0 ld )  *F S new  ( A . 4 )

-  S *f) +  Sn,u, (A.5)

In these equations, G  is the target goal of the movement, S  is the start position of the 

movement and Vp^ is the Cartesian position of the ith  via-point. As noted above, the 

term a is the scaling factor and the terms "old" and "new" denote the observed movement 

and the movement with the new required starting position or scaling factor.
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