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Abstract

This paper presents the application of isogeometric analysis (IGA) to the spatial discretisation
of the multi-group, self-adjoint angular flux (SAAF) form of the neutron transport equation with
a discrete ordinate (SN) angular discretisation. The IGA spatial discretisation is based upon
non-uniform rational B-spline (NURBS) basis functions for both the test and trial functions. In
addition a source iteration compatible maximum principle is used to derive the IGA spatially
discretised SAAF equation. It is demonstrated that this maximum principle is mathematically
equivalent to the weak form of the SAAF equation. The rate of convergence of the IGA spa-
tial discretisation of the SAAF equation is analysed using a method of manufactured solutions
(MMS) verification test case. The results of several nuclear reactor physics verification bench-
mark test cases are analysed. This analysis demonstrates that for higher-order basis functions,
and for the same number of degrees of freedom, the FE based spatial discretisation methods are
numerically less accurate than IGA methods. The difference in numerical accuracy between the
IGA and FE methods is shown to be because of the higher-order continuity of NURBS basis
functions within a NURBS patch as well as the preservation of both the volume and surface
area throughout the solution domain within the IGA spatial discretisation. Finally, the numerical
results of applying the IGA SAAF method to the OECD/NEA, seven-group, two-dimensional
C5G7 quarter core nuclear reactor physics verification benchmark test case are presented. The
results, from this verification benchmark test case, are shown to be in good agreement with solu-
tions of the first-order form as well as the second-order even-parity form of the neutron transport
equation for the same order of discrete ordinate (SN) angular approximation.

1. Introduction

Second-order forms of the neutron transport equation, such as the even-parity (EP) and self-
adjoint angular flux (SAAF) equation, have been investigated since the mid 1960s [1, 2]. They
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have a number of numerical advantages over the first-order form of the neutron transport equa-
tion. One of the key numerical advantages of second-order forms is that they are numerically
stable when spatially discretised using a continuous Bubnov-Galerkin discretisation using pre-
scribed test and trial functions. Conversely, the first-order form of the neutron transport equation
can produce spurious numerical artefacts, near sharp gradients in the solution, when discretised
using the same approach [3]. Therefore, in general, the first-order form has to be discretised using
either stabilised FE methods such as streamlined-upwind Petrov-Galerkin (SUPG) or discontinu-
ous Galerkin methods [4, 5]. The use of discontinuous Galerkin methods can lead to significantly
more degrees of freedom than the equivalent continuous Bubnov-Galerkin discretisation [6, 7].

A further advantage of second-order forms of the neutron transport equation (such as the
SAAF and the EP equations) are that they produce symmetric positive definite (SPD) systems of
linear equations when their weak form is spatially discretised using a Bubnov-Galerkin approach.
SPD linear systems of equations can be solved efficiently with preconditioned conjugate gradi-
ent matrix solution algorithms [8]. Amongst the second-order forms of the neutron transport
equation the most widely used are the EP, self-adjoint angular flux (SAAF), and symmetrised
neutron transport (ST) [9] forms. Such forms, of the neutron transport equation, have been used
extensively because they are self-adjoint equations and extremum variational principles may be
derived for them [2] which allows for upper and lower bounds of the solution to be determined
[10]. The EP form of the neutron transport equation allows for the efficient computation of the
scalar neutron flux. The efficiency of the EP form is due to the number of angular unknowns
being approximately half of that required by the SAAF or the first-order form of the neutron
transport equation. Nevertheless, the additional cost of the SAAF solution provides the full an-
gular neutron flux which, amongst other things, allows for easier implementation of SN reflective
boundary conditions [11].

A disadvantage of the aforementioned second-order forms is that they are unable to model
voided regions whilst maintaining symmetry of the system and global conservation of neutrons.
The least-squares (LS) formulation [12] developed by Hansen et. al. is symmetric but does not
maintain conservation of neutrons except in the limit of the discretisation error vanishing. The
hybrid SAAF & conservative LS (SAAF-CLS) formulation by Laboure et. al. [13] maintains
conservation of neutrons and can model near-void regions, but is not symmetric. Void treatments
for the SAAF form of the neutron transport equation have similar issues [11, 14]. Zheng et. al.
presented a sub-domain discontinuous least-squares scheme (SDLS) that is globally continuous
and forms a symmetric system of linear equations within each sub-domain. However, the sub-
domain problems have to be linked together using transport sweeps or solved simultaneously as
a non-symmetric global system of equations [15].

The SAAF equation was first derived from a variational principle by Pomraning and Clark
[2]. However, this was only for one-dimensional (1D) slab geometries where the material cross-
sections are spatially constant. Later, Ackroyd derived a more general three-dimensional (3D)
maximum principle for the SAAF equation from his K̃ functional without any restriction on the
spatial variation in the macroscopic neutron cross-sections [16]. Morel & McGhee published
the first detailed theoretical and numerical study of the SAAF equation. Their paper presented a
source iteration suitable formulation and also considered the relative advantages and disadvan-
tages when compared to the first-order form and the EP & OP forms of the neutron transport
equation [11]. In their paper they provided a simple algebraic derivation of the SAAF equation
and spatially discretised it using a lumped FE approach. They utilised a discrete ordinate SN
angular discretisation of the SAAF equation and applied it to a one-dimensional (1D) problem.
They also discussed the issues surrounding purely scattering regions as well as voids for the
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SAAF equation. The formulation they developed was implemented within a unstructured FE,
three-dimensional (3D), neutron transport code called DANTE that has options for both SN and
PN angular representations [17].

Liscum-Powell et. al. applied the discrete ordinates (SN) form of the SAAF equation to cou-
pled electron-photon transport and derived a consistent DSA scheme [18]. They utilised a contin-
uous Bubnov-Galerkin spatial discretisation with linear FEs and applied this to one-dimensional
(1D) radiation transport problems. Fan et. al. derived an operator form of the SAAF equation
angularly discretised using discrete ordinates (SN) and with anisotropic scattering [19]. Ackroyd
developed another variational derivation by considering relaxed forms of the SAAF equation
based on trial functions and vectors for the reaction and leakage rates respectively, spatially dis-
cretised using FEs [20]. Morel et. al. presented the SAAF, EP, and OP equations applied to
general radiative transfer [8]. The self-adjoint angular intensity (SAAI) equation was applied to
two-dimensional (2D) problems that were spatially discretised using bi-linear FEs and a discrete
ordinate (SN) angular discretisation. Cao and Wu compared the spherical harmonics (PN) and
discrete ordinate (SN) angular discretisation methods when applied to the SAAF equation over
an unstructured FE mesh [21]. Wang & Gleicher investigated reflective boundary conditions for
the SAAF equation proposing a different method that is symmetric but not positive definite [22].
Wang et. al developed a consistent DSA scheme for the SAAF equation that included a void
treatment [14]. Schunert et. al. investigated the physical and mathematical adjoint. The reason
for this is that the SAAF equation is self-adjoint for the mono-energetic equation but in the multi-
group case the scattering and fisson operators are not self-adjoint. The SAAF-SN equation was
spatially discretised using a continuous Bubnov-Galerkin FE discretisation in the radiation trans-
port code RattleSNake [23]. RattleSNake can use either a discrete ordinate (SN) or a spherical
harmonic (PN) angular discretisation [24]. The radiation transport code RattleSNake is a physics
module within the multi-physics code MOOSE [25].

Contemporary unstructured mesh neutron transport calculations are typically spatially dis-
cretised using the FE method [25, 26, 27, 28]. In fact most of the unstructured mesh neutron
transport literature is devoted to the development of FE based discretisation schemes. However,
more recently high-order accurate spectral element (SE) [29, 30, 31, 32] and isogeometric analyis
(IGA) methods have been developed for modelling neutron transport [33, 34, 35, 36, 37, 38]. The
IGA method is a spatial discretisation methodology first introduced in 2005 by T. J. R Hughes
[39]. IGA methods utilise the same NURBS basis function representation as used in CAD geom-
etry software for the test and trial functions within weak forms of a prescribed partial differential
equation (PDE). This approach enables the IGA spatial discretisation to provide automatic re-
finement of the spatial representation whilst preserving the geometry of the domain and without
the need for auxiliary mesh generation software. Estimates for the fraction of analysis time spent
generating adequate FE meshes are as high as 80% for certain applications [40].

The advantages of IGA compared to the FE method are two-fold. Firstly there is no error
due to approximation of geometry, with IGA, both surface area and volume are represented
exactly and this is satisfied even on the coarsest mesh. In a nuclear reactor physics context this
allows for the exact representation of volume (fissile mass) and surface area (neutron leakage
effects) for geometries that can be represented by NURBS [33]. The preservation of volume and
surface area are mutually exclusive when using isoparametric tetrahedral or hexahedral meshes
for geometries described by NURBS (e.g. conic sections in 2D and quadric surfaces in 3D)
[33, 34, 35]. Secondly, the NURBS basis functions used with IGA have high-order continuity
over given NURBS patches. Conversely, FE basis functions are at most C0 continuous between
FEs. The higher continuity within a NURBS patch leads to a higher fidelity solution when
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representing smooth solutions within a NURBS patch. This is particularly useful when solving
elliptic partial differential equations (PDEs) which are often characterised by smooth solutions.
For some problems, due to the discontinuous spatial variation in material properties, the solution
may exhibit sharp gradients. However, this is usually known ahead of time and the inter-element
continuity of the basis functions can be adjusted as will be explained in section 2.

In a neutron transport context, IGA has been applied to the mono-energetic [33] and multi-
group [35] neutron diffusion equation, the second-order even-parity equation [34], as well as the
first-order neutron transport equation [36, 37, 38]. Throughout all of this work it has been seen
that in terms of accuracy per degree of freedom (dof) an IGA spatial discretisation is as least as
good as a FE one. Furthermore, the exact representation of geometries has allowed for energy
dependent meshing methods to be developed for both first-order [38] and second-order forms of
the neutron transport equation [34]. Open-source IGA codes such as GeoPDE’s [41] and pyIGA
[42] have made the implementation and testing of IGA methods for general PDEs much easier.

In section 2 the basics of IGA and its basis functions are explained. In section 3 the SAAF
equation is derived in two ways. Firstly the well known source iteration compatible algebraic
derivation from Morel & McGhee’s paper [11] is repeated for completeness. Then a novel source
iteration compatible variational derivation is performed in a manner similar to Ackroyd’s work
[16]. This derivation gives a theoretical grounding to the incoming boundary condition used in
the algebraic derivation. These two derivations are then shown to be equivalent. Following this
section 4 contains details of the IGA spatial and SN angular discretisations applied to the SAAF
equation. Finally numerical results are given in section 5.

2. An introduction to isogeometric analysis (IGA)

IGA is an exact geometry spatial discretisation methodology for geometries that are repre-
sented using NURBS basis functions (e.g conic sections in 2D and quadric surfaces in 3D). The
NURBS basis functions, used by commercial CAD software to produce geometric models, are
used as test and trial functions for the unknown numerical solution allowing for any CAD model
to be represented exactly without a mesh having to be generated. Traditionally standard NURBS
basis functions are used for this purpose. However, all that is required of the basis functions
is their ability to represent CAD geometries exactly. Therefore, different basis functions such
as T-splines [43] and hierarchical B-splines [44] can also be used. In this paper we consider
only NURBS as there exists computationally efficient methodologies for the evaluation [45] and
refinement [46] of NURBS, and assembly of matrices formed from NURBS basis functions [47].

Another important property of NURBS basis functions is their high-order continuity over el-
ement boundaries within a NURBS patch, referred to as inter-element continuity. FE basis func-
tions are typically C0 between elements but NURBS allow arbitrary continuity to be achieved
over element boundaries within a NURBS patch. This property has been shown to provide more
accuracy per degree of freedom [35] and it allows for more accurate eigen-mode analysis [48].
The effect of these two properties, high-order inter-element continuity and exact geometry repre-
sentation, on numerical accuracy will be investigated in section 5. The NURBS basis functions,
along with the mathematics and algorithms needed to discretise a prescribed partial differential
equation (PDE) with the IGA method will now be presented.

2.1. A description of B-spline basis functions
B-splines (basis splines) are piecewise polynomials defined as follows: given a sequence of

non-decreasing real numbers - the knot vector Ξ = {ξ1, ξ2, . . . , ξm−1, ξm} - and a degree p, the
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Figure 1: B-spline basis for knot vector Ξ = (0, 0, 0, 1, 1, 2, 3, 4, 4, 4)

B-spline basis functions are generated as such:

Ni,0(ξ) =

1, for ξ ∈
[
ξi, ξi+1)

0, otherwise

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ), (1)

where if the expression 0
0 occurs that term is assumed to be 0.

In Ξ the ith knot ξi can be repeated. This has the effect of reducing the continuity of the
B-spline functions over that knot to Cp−mi . mi is referred to as the multiplicity of the knot and
is the number of times the knot appears in Ξ. If a knot only appears once in Ξ, then the basis is
Cp−1 there. For all other ξ ∈ [ξ1, ξm], ξ , {ξi}

m
i=1 the B-spline functions are C∞. This, combined

with the fact that the B-splines over Ξ are linearly independent, means that the B-splines defined
over Ξ are a basis for the vector space of all piecewise polynomial functions of degree p that are
Csi continuous at ξ = ξi for i ∈ [1,m] with si ∈ [−1, p) [45].

Previous IGA research has concluded that open knot vectors offer several advantages. An
open knot vector has the multiplicity of the first and last knots set to p + 1. Using these vectors
allows for simple implementation of strong Dirichlet boundary conditions, makes the design and
manipulation of CAD geometries intuitive, and causes the B-splines to form a partition of unity
over Ξ [49]. The partition of unity leads to the strong convex hull property which simplifies
certain algorithms further [45]. Open knot vectors are the de facto standard for IGA [40], and
we adopt open knot vectors for the entirety of our study. For quadratic B-splines (p = 2) an open
knot vector could be: Ξ = {ξ1, ξ1, ξ1, ξ2, ξ3, ξ4, ξ4, ξ4}. An example of a B-spline basis or order
p = 2 formed over an open knot vector with reduced continuity over certain knots is shown in
figure 1.

2.2. A description of non-uniform rational B-spline (NURBS) basis functions
NURBS are a generalisation of B-splines that in addition to Ξ require a set of weights

{wi}
N
i=1 ∈ R, where N is the number of basis functions. For an open knot vector Ξ, N = m−(p + 1)
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where m is the length of Ξ. The NURBS functions, defined as:

Ri,p(ξ) =
Ni,p(ξ)wi∑N

j=1 N j,p(ξ)w j
, for i = 1, 2, . . . ,N, (2)

can be shown to form a vector space of piecewise rational polynomials. It is standard to require
that the wi > 0 as this leads to the NURBS functions inheriting some of the properties of B-
splines such as non-negativity, partition of unity, interpolatory end functions, local support, and
the strong convex hull property [45]. Due to the partition of unity formed by the B-spline basis
it can be seen that the B-splines are a subset of NURBS when wi = 1,∀i. Since B-splines are a
proper subset of NURBS basis functions, only NURBS will be discussed from now on.

2.2.1. NURBS curves, surfaces, & volumes
Once the one-dimensional basis functions have been generated using expression (2) then

choosing a set of control points {Bi}
N
i=1 ∈ R

3 allows a NURBS curve to be defined as follows:

C(ξ) =

N∑
i=1

Ri,p(ξ)Bi. (3)

Two spaces are then defined, the parametric domain V̂ = [ξ1, ξm] and the physical domain,
V = C(ξ) for ξ ∈ [ξ1, ξm]. Furthermore the geometry map C : ξ 7−→ C(ξ) : V̂ → V can be
defined. A NURBS curve inherits its properties from the NURBS basis functions used to define
it in equation (3) such as, the order p, piecewise polynomial nature, affine invariance, and strong
convex hull property. Additionally, because Ξ is an open knot vector the endpoints of the curve
are interpolatory at B1 and BN , that is C(ξ1) = B1 and C(ξm) = BN [45]. This property becomes
useful when the concept of patches is introduced.

NURBS surfaces are formed using a simple tensor product structure. Open knot vectors Ξξ

and Ξη are defined for each dimension and equation (2) is extended in the following way:

Rp
i, j(ξ, η) =

N p
i (ξ)N p

j (η)wi, j∑M
l=1

∑N
k=1 N p

k (ξ)N p
l (η)wl,k

, for i = 1, . . . ,N and j = 1, . . .M. (4)

By defining a new dummy variable the tensor product basis can be rewritten using one index
q ∈ [1,NM]. Specification of the surface in R3 is then done by choosing {Bq}

NM
q=1 and the surface

map is given by:

S(ξ, η) =

NM∑
q=1

Rq(ξ, η)Bq, (5)

with Rq defined as in (4) with the degree p omitted. This process can be extended to three
dimensions with the specification of another open knot vector Ξζ . The usage of open knot vec-
tors, combined with the tensor product procedure means that the bounding d − 1-dimensional
‘surfaces’ of a d-dimensional NURBS object are themselves NURBS objects.

NURBS functions can be viewed as B-splines in a four-dimensional homogeneous coordi-
nate system with the weight as the fourth dimension. Because of the division by the weight
in expressions (2) and (4) the added generalisation of NURBS functions allows us to represent
more complex curves and surfaces. In particular, NURBS functions are able to exactly represent

6



conic sections in two dimensions and quadric surfaces in three dimensions [40], which is partic-
ularly useful for geometries that occur in nuclear engineering. Standard higher-order Lagrangian
FE cannot represent conic sections in two dimensions or quadric surfaces in three dimensions
exactly as they are not rational polynomial functions [40].

One issue with the tensor product nature of the higher dimensional NURBS objects is that
they are always topologically equivalent to a hypercube. Other basis functions, such as T-splines,
do not have this problem [43]. However, in this paper only NURBS are investigated. In order to
represent complex geometries that differ topologically from a hypercube with NURBS objects,
the concept of a patch is introduced.

2.2.2. NURBS patches
A NURBS patch is defined as a grouping of knot vectors, weights, control points, and ma-

terial coefficients. A collection of NURBS patches allows for the representation of multiply
connected domains or domains that are not topologically equivalent to a hypercube. The par-
titioning of the physical domain into patches also allows for sub-domains of different material
properties to be kept distinct. Due to the fact that patch matrices can be assembled independently
and h, p, and k refinement can be performed independently on each patch, it forms a convenient
way in which to partition the computational load when parallelising code [40].

B-splines and NURBS of degree p exhibit the same theoretical orders of convergence as FE
basis functions of the same order. However, as mentioned earlier, it has been seen that splines of
maximal smoothness (Cp−1) require fewer dof in order to reproduce the same error for neutron
diffusion theory [35] and that FE methods require fissile mass preservation techniques in order
to match IGA in the case of first-order neutron transport [36]. The increased smoothness and
support of spline basis functions leads to complications in other areas: direct solver performance
[50], multi-grid methods [51], and domain decomposition algorithms [52] have all required extra
study. In this paper the spatial error of the IGA solution is of primary concern.

3. Algebraic derivation of the SAAF neutron transport equation and its associated weak
and variational forms

The steady-state (time-independent), first-order, energy-dependent, neutron transport equa-
tion is given by [53]:

Ω · ∇ψo (r,Ω, E) + σt(r, E)ψo (r,Ω, E) = Q(r,Ω, E), (6)

where
Q(r,Ω, E) = Qscatter(r,Ω, E) + Qext(r, E), (7)

and

Qscatter(r,Ω, E) =

∫ ∞

0

∫
4π
σs(r,Ω′ → Ω, E′ → E)ψo

(
r,Ω′, E′

)
dΩ′dE′

is the source of neutrons due to scatter into energy E, ψo (r,Ω, E) is the angular neutron flux
σt(r, E) is the total macroscopic neutron cross-section, σs(r,Ω′ → Ω, E′ → E) is the differential
scattering macroscopic neutron cross-section, and Qext(r, E) is a source composed of fission
sources and fixed (extraneous) sources.

The vacuum and incoming surface source conditions are assumed to be prescribed for the
incoming boundary condition:

ψo(r,Ω, E) = 0 for Ω · n < 0 and r ∈ S b, (8)
7



ψo(r,Ω, E) = T (r,Ω, E) for Ω · n < 0 and r ∈ S s, (9)

where S b ∪ S s = S forms the boundary of the computational domain. It should be noted that a
reflective boundary condition is a special case of an incoming source with

T (r,Ω, E) = ψo(r,Ω′, E) for r ∈ S r and Ω · n < 0,

where Ω′ is the angle of specular reflection for Ω. Together these three boundary conditions
highlight the general form of the boundary conditions used in neutron transport theory [26].

What follows are two derivations of the second-order SAAF equation. Firstly an algebraic
source iteration compatible derivation taken from work by Morel & Mcghee [11] and secondly a
maximum variational principle is derived that is shown to yield the source iteration compatible
SAAF equation along with natural boundary conditions for the incoming and outgoing angles.

3.1. Algebraic derivation of the SAAF form of the neutron transport equation
Rearranging equation (6) for the angular flux gives:

ψo (r,Ω, E) =
1

σt(r, E)
[
Q(r,Ω, E) −Ω · ∇ψo (r,Ω, E)

]
, (10)

which is then substituted back into the first term of the first-order neutron transport equation
yielding:

−Ω ·∇
1

σt (r, E)
Ω ·∇ψo (r,Ω, E)+σt (r, E)ψo (r,Ω, E) = Q (r,Ω, E)−

(
Ω · ∇

Q(r,Ω, E)
σt(r, E)

)
. (11)

Implicit in the rearrangement step is the requirement that σt , 0. This means that in the above
form the SAAF equation is not compatible with voided regions. As is noted by Morel & McGhee
[11], this formulation of the SAAF equation is suitable for source iteration due to the fact that the
operator on the left hand side is self-adjoint in the energy dependent case. This also obviates any
issues singularities in regions of pure scattering as there is no (σt − σs) term in the denominator
as is possible in certain forms of the SAAF equation.

The incoming boundary conditions for SAAF can also be derived algebraically from the
first-order boundary conditions:

ψo (r,Ω, E) =
1

σt (r, E)
(Q (r,Ω, E) −Ω · ∇ψo (r,Ω, E)) = T (r,Ω, E) for r ∈ S s (12)

ψo (r,Ω, E) =
1

σt (r, E)
(Q (r,Ω, E) −Ω · ∇ψo (r,Ω, E)) = 0 for r ∈ S b. (13)

In addition, due to SAAF being second-order, extra boundary conditions for the outgoing flux
must be prescribed. Morel & McGhee [11] suggest that the outgoing flux on the boundary should
satisfy the first-order neutron transport equation, that is:

ψo (r,Ω, E) =
1

σt(r, E)
(Q (r,Ω, E) −Ω · ∇ψo (r,Ω, E)) for r ∈ S (14)

claiming that it is “a natural way to ensure that spurious solutions to the SAAF equation are
eliminated.” It will be seen in the next section that this boundary condition can be derived from
a maximum variational principle.
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3.1.1. The weak form of the SAAF neutron transport equation
Equation (11) is the strong form of the SAAF equation. It is assumed that an approximation

to ψo must be found. In order to form a system of linear equations that represent equation (11)
and allow the computation of an approximate solution, a weak form must be generated by using
a weighted residual (WR) method.

We consider a weighting function w(r) from the space of admissible functions. A function u
is an admissible function if u and Ω · ∇u are continuous functions of r and Ω almost everywhere
within a given patch [54]. No assumptions are made about the boundary conditions that an
admissible function must satisfy.

The strong form equation is multiplied by a weighting function and integration is performed
over the entire spatial domain:∫

V

[
w(r)Ω · ∇

1
σt(r, E)

(
−Ω · ∇ψo(r,Ω, E) + Q(r,Ω, E)

)
w(r)

(
σt(r, E)ψo(r,Ω, E) − Q(r,Ω, E)

)]
dr = 0.

(15)

Suppressing explicit dependencies for brevity and applying Green’s first identity to the first term
in the spatial integral yields:∫

V

[(
Ω · ∇w
σt

)
(Ω · ∇ψo − Q) + w (σtψo − Q)

]
dr +

∫
S

(Ω · n)
w
σt

(−Ω · ∇ψo + Q) drs = 0 (16)

where rs refers to points on surface S . The above equation is the weak form of the SAAF
equation and the weighting (test) function can be chosen in order to form either a Bubnov-
Galerkin or Petrov-Galerkin discretisation of the weak form.

3.2. Source iteration compatible variational formulation of the SAAF neutron transport equation

This variational derivation is based on work done by Ackroyd in two papers [16, 54] and the
following notation is adopted:

〈u, v〉 =

∫
4π

uv dΩ. (17)

It is also noted that:∫
4π

(Ω · n) f (Ω) dΩ =

∫
Ω·n>0

|Ω · n| f (Ω) dΩ −
∫
Ω·n<0

|Ω · n| f (Ω) dΩ. (18)

where f (Ω) is some function that depends on the solid angle Ω.
In the original derivation by Ackroyd the following operator is defined:

Σ f (r,Ω) = σt(r) f (r,Ω) −
∫

4π
σs(r,Ω′ ·Ω) f (r,Ω′) dΩ′. (19)

and it can be shown that

1. Σ has an inverse,
2. Σ and Σ−1 are self-adjoint,
3. Σ and Σ−1 are positive definite.
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These results are proven in Appendix A of Ackroyd’s work [16].
In this derivation, in order to ensure that the variational problem will be compatible with

source iteration the scattering kernel is considered as part of the source and a new choice of Σ is
made:

Σ(r) f (r,Ω) = σt(r) f (r,Ω). (20)

This choice of Σ clearly satisfies the conditions laid out above with the inverse:

Σ−1(r) =
1

σt(r)
,

except where σt , 0 as then the inverse is not defined.
Then the following functional is defined:

F(u, v) =

∫
V

[〈
Ω · ∇u,Σ−1Ω · ∇v

〉
+ 〈u,Σv〉

]
dr +

∫
S

∫
Ω

|Ω · n|uvdΩdS (21)

where u, v are admissible functions and the list of dependent variables has been omitted for
brevity. The choice of F(u, v) is based on the following observations:

1. Σ−1 operates on Ω · ∇ψo in equation (11),
2. Σ operates on ψo in equation (11),
3. All terms in F(u, u) are strictly positive for all u (except at u = 0 where F(0, 0) = 0) as Σ

and Σ−1 are positive definite.

It is noted that:

F(u, ψo) =

∫
V

[〈
Ω · ∇u,Σ−1Ω · ∇ψo

〉
+ 〈u,Σψo〉

]
dr +

∫
S

∫
Ω

|Ω · n|uψo dΩ dS , (22)

where ψo is the exact solution of equation (6). The volume integral in equation (22) can be
simplified giving:∫

V

[〈
Ω · ∇u,Σ−1Ω · ∇ψo

〉
+ 〈u,Σψo〉

]
dr

=

∫
V

[〈
Ω · ∇u,Σ−1Q − ψo

〉
+ 〈u,Q −Ω · ∇ψo〉

]
dr

=

∫
V

[〈
Ω · ∇u,Σ−1Q

〉
− 〈Ω · ∇u, ψo〉 + 〈u,Q〉 − 〈u,Ω · ∇ψo〉

]
dr.

The identity Ω · ∇(uψo) = (Ω · ∇u)ψo + u(Ω · ∇ψo) along with the divergence theorem is used:∫
V

[〈
Ω · ∇u,Σ−1Q

〉
+ 〈u,Q〉

]
dr −

∫
V

∫
Ω

Ω · ∇(uψo) dΩ dr

=

∫
V

[〈
Ω · ∇u,Σ−1Q

〉
+ 〈u,Q〉

]
dr −

∫
S

∫
Ω

(Ω · n)uψo dΩ dS

=

∫
V

[〈
Ω · ∇u,Σ−1Q

〉
+ 〈u,Q〉

]
r −

∫
S

∫
Ω·n>0

|Ω · n|uψo dΩ dS +

∫
S

∫
Ω·n<0

|Ω · n|uψo dΩ dS .

where the integral over angle has been split into two half range integrals according to equation
(18). Therefore, we have that

F(u, ψo) =

∫
V

[〈
Ω · ∇u,Σ−1Q

〉
+ 〈u,Q〉

]
dr + 2

∫
S

∫
Ω·n<0

|Ω · n|uψo dΩ dS (23)
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is independent of ψo once boundary conditions have been prescribed. Here the boundary condi-
tions, given by equations (12) & (13), for ψo can be prescribed yielding the following expression:

F(u, ψo) =

∫
V

[〈
Ω · ∇u,Σ−1Q

〉
+ 〈u,Q〉

]
dr + 2

∫
S s

∫
Ω·n<0

|Ω · n|uT dΩ dS . (24)

An admissible function φ is considered where φ is a variation from the exact solution ψo.
Applying F to the error gives:

F (ψo − λφ, ψo − λφ) = F (ψo, ψo) − 2λ (φ, ψo) + λ2F (φ, φ) ≥ 0, (25)

which implies
2λF(φ, ψo) − λ2F(φ, φ) ≤ F(ψo, ψo). (26)

This provides a mechanism for generating maximum principles for the neutron transport equa-
tion, depending on λ, as equality of equation (26) is only seen when (ψo − λφ) → 0. Here λ = 1
is chosen and the maximum principle K(φ) = 2F(φ, ψo) − F(φ, φ) is defined where:

K(φ) =

∫
V

[
2 〈φ,Q〉 + 2

〈
Ω · ∇φ,Σ−1Q

〉
−

〈
Ω · ∇φ,Σ−1Ω · ∇φ

〉
− 〈φ,Σφ〉

]
dr

+4
∫

S s

∫
Ω·n<0

|Ω · n|φTdΩdS −
∫

S

∫
Ω

|Ω · n|φ2dS
(27)

and K(φ) is independent of the exact solution ψo.
In order to find extrema the first variation of K(φ) must be considered, in particular where

it is stationary. A variation of the exact solution is considered φ = ψo + εξ and K(ψo + εξ) is
evaluated:

K(ψo + εξ) ≡ I(ε) =

∫
V

[
2 〈ψo + εξ,Q〉 + 2

〈
Ω · ∇ (ψo + εξ) ,Σ−1Q

〉
−

〈
Ω · ∇ (ψo + εξ) ,Σ−1Ω · ∇ (ψo + εξ)

〉
− 〈(ψo + εξ) ,Σ (ψo + εξ)〉

]
dr

+4
∫

S s

∫
Ω·n<0

|Ω · n| (ψo + εξ) T dΩ dS −
∫

S

∫
Ω

|Ω · n| (ψo + εξ)2 dΩ dS .

(28)

To find stationary points the following equality is considered(
dI(ε)

dε

)
ε=0

= 0, (29)

giving

0 =

∫
V

[ ∫
Ω

(
2ξQ + 2Ω · ∇ξ(Σ−1Q) − (Ω · ∇ψo)(Σ−1Ω · ∇ξ) − (Ω · ∇ξ)(Σ−1Ω · ∇ψo)

−ψoΣξ − ξΣψo

)
dΩ

]
dr + 4

∫
S s

∫
Ω·n<0

|Ω · n|ξT dΩ dS − 2
∫

S

∫
Ω

|Ω · n|ψoξ dΩ dS .
(30)

The volume integral terms can be simplified:

2
∫

V

[∫
Ω

(
ξQ +Ω · ∇ξ(Σ−1Q) − (Ω · ∇ξ)(Σ−1Ω · ∇ψo) − ξΣψo

)
dΩ

]
dr

= 2
∫

V

∫
Ω

(Q − Σψo)ξ +
[
Σ−1 (Q −Ω · ∇ψo)

]
(Ω · ∇ξ) dΩ dr,

11



with the chain rule and the divergence theorem being used on the second term:∫
V

Σ−1(Q −Ω · ∇ψo)(Ω · ∇ξ) dr

=

∫
V

[
∇ ·

(
ΩξΣ−1 (Q −Ω · ∇ψo)

)
− ξΩ · ∇Σ−1 (Q −Ω · ∇ψo)

]
dr

=

∫
S

∫
Ω

Ω · nξΣ−1 (Q −Ω · ∇ψo) dΩ dS −
∫

V
ξΩ · ∇Σ−1 (Q −Ω · ∇ψo) dr.

The surface integral can be written as:

4
∫

S s

∫
Ω

|Ω · n|ξT dΩ dS − 2
∫

S

∫
Ω

|Ω · n|ψoξ dΩ dS

=2
∫

S s

∫
Ω

|Ω · n|ξ(2T − ψo) dΩ dS − 2
∫

S b

∫
Ω

|Ω · n|ξψo dΩ dS ,

where the range of the angular integral over S S has been increased to all of Ω by noting that
T (Ω) = 0 for Ω · n > 0. Recombining the volume and surface terms yields:

0 =

∫
V

∫
Ω

ξ
[
Q − Σψo −Ω · ∇Σ−1 (Q −Ω · ∇ψo)

]
dΩ dr +

∫
S S

∫
Ω

ξ
[
|Ω · n|(2T − ψo)

+ Ω · nΣ−1 (Q −Ω · ∇ψo)
]

dΩ dS −
∫

S b

∫
Ω

ξ
[
|Ω · n|ψo −Ω · nΣ−1 (Q −Ω · ∇ψo)

]
dΩ dS ,

and applying the fundamental lemma of the calculus of variations yields:

0 =

∫
V

∫
Ω

[
Q − Σψo −Ω · ∇Σ−1 (Q −Ω · ∇ψo)

]
dΩ dr +

∫
S S

∫
Ω

[
|Ω · n|(2T − ψo)

+ Ω · nΣ−1 (Q −Ω · ∇ψo)
]

dΩ dS −
∫

S b

∫
Ω

[
|Ω · n|ψo −Ω · nΣ−1 (Q −Ω · ∇ψo)

]
dΩ dS .

(31)

The SAAF equation along with its boundary conditions can be recovered yielding the following
equations:

−Ω · ∇(Σ−1Ω · ∇ψo) + Σψo = Q −Ω · ∇Σ−1Q (32)

|Ω · n|(2T − ψo) +Ω · nΣ−1(Q −Ω · ∇ψo) = 0 on S s (33)

|Ω · n|ψo −Ω · nΣ−1(Q −Ω · ∇ψo) = 0 on S b (34)

in particular, the boundary conditions can decomposed into expressions for incoming and outgo-
ing directions to the boundary as follows:
Ω · n < 0:

2T − ψo − Σ−1 (Q −Ω · ∇ψo) = 0⇒ ψo = T for r ∈ S s, (35)

ψo + Σ−1 (Q −Ω · ∇ψo) = 0⇒ ψo = 0 for r ∈ S b, (36)

Ω · n > 0:

ψo − Σ−1 (Q −Ω · ∇ψo) = 0⇒ ψo = Σ−1 (−Ω · ∇ψo + Q) for r ∈ S . (37)
12



Not only do the incoming boundary conditions match the boundary conditions for the first-
order form of the neutron transport equation, but the outgoing boundary condition postulated by
Morel & McGhee is found as a natural consequence of the maximum principle. This variational
derivation will not be valid for void regions due to the choice of the operator Σ. In the case of a
void the inverse of the operator Σ will be singular. In addition as this variational principle is not
valid for void regions the outgoing boundary condition is also not valid for void regions.

3.3. Equivalence of algebraic and variational derivation of the SAAF form of the neutron trans-
port equation

The weak form from the algebraic derivation is given by equation (16). Angular integration is
performed over the surface and is split into incoming and outgoing angles according to equation
(18): ∫

4π

∫
V

[(
Ω · ∇w
σt

)
(Ω · ∇ψ − Q) + w (σtψ − Q)

]
dr dΩ

+

∫
Ω·n>0

∫
S

[
|Ω · n|

w
σt

(−Ω · ∇ψ + Q)
]

drs dΩ

−

∫
Ω·n<0

∫
S
|Ω · n|

w
σt

(−Ω · ∇ψ + Q) drs dΩ = 0.

(38)

From the variational derivation we consider equation (23) substituted into equation (26) without
applying the boundary conditions that are given for ψo. By following through with the rest of
the derivation and considering the zeroing of the first variation (see equation 29) an analogous
expression to equation (30) is derived, that is:

0 =

∫
V

[∫
Ω

ξQ +Ω · ∇ξ(Σ−1Q) − (Ω · ∇ψo)(Σ−1Ω · ∇ξ) − ξΣψo dΩ
]

dr

+2
∫

S

∫
Ω·n<0

|Ω · n|ξψo dΩ dS −
∫

S

∫
Ω

|Ω · n|ψoξ dΩ dS .
(39)

Simplifying the equation and multiplying by −1 we are left with:

0 =

∫
V

[∫
Ω

(Ω · ∇ξ)Σ−1 (Ω · ∇ψo − Q) + ξ (Σψo − Q) dΩ
]

dr

−

∫
S

∫
Ω·n<0

|Ω · n|ξψo dΩ dS +

∫
S

∫
Ω

|Ω · n|ψoξ dΩ dS .
(40)

Using the fact that ψo = 1
σt

(−Ω · ∇ψo + Q), replacing ξ with w, and ψ0 with ψ it can be seen that
the variational principle yields the same weak form as the algebraic derivation as is expected of
symmetric operators [55].

4. Spatial and angular discretisation of the weak form of the SAAF neutron transport
equation

4.1. Bubnov-Galerkin IGA approximation
Similarly to FE methods the solution is assumed to be a linear combination of trial functions:

ψ(r,Ω, E) =

∞∑
i=1

di(Ω, E)vi(r), (41)
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where the di ∈ R are referred to as the control variables and vi ∈ TR are the trial functions. The
infinite dimensional trial function space is defined as:

TR =
{

v | v ∈ H1(V), v|S D = g
}
. (42)

Furthermore, w is taken to be a member of an infinite dimensional test function space:

TE =
{

w | w ∈ H1(V), w|S = 0
}
, (43)

where H1(V) is the Sobolev space W1
2 (V) over the domain V [56]. The condition v|S D = g comes

from a Dirichlet boundary condition that may be given for ψ(r) = g for r ∈ S D.
In order to provide closure to equation (41) the expansion must be truncated. To do this finite

dimensional analogues of TR and TE are defined:

T h
R =

{
vh

i | v
h
i ∈ H1(V), vh

i |S D = g, for i ∈ [1,N]
}
,

T h
E =

{
wh

i | w
h
i ∈ H1(V), wh

i |S = 0, for i ∈ [1,N]
}
,

and the solution is approximated as:

ψ(r,Ω, E) ≈ ψh(r,Ω, E) =

N∑
i=1

di(Ω, E)vh
i (r). (44)

A Bubnov-Galerkin IGA discretisation is then applied by making the choices vi(r) = Rp
i (r) ∈ T h

R
and w j(r) = Rp

j (r) ∈ T h
E . This encapsulates the essence of IGA, to use a basis capable of exactly

representing the known geometry as a basis for the fields we wish to approximate [40].

4.2. Angular (Ω) discretisation of the SAAF neutron transport equation
The method of discrete ordinates (SN) is chosen to discretise the angular domain. Integration

with respect to Ω is performed via a summation of functions evaluated at certain angles and
scaled by certain weights. These angles and weights are referred to as the quadrature set. For
example, the scalar neutron flux φ can be calculated from the angular neutron flux ψ in the
following way:

φ(r, E) =

∫
4π
ψ(r,Ω, E)dΩ ≈

M∑
m=1

wmψ(r,Ωm, E) =

M∑
m=1

wmψm(r, E). (45)

By solving equation (11) over the directions {Ωm}
M
m=1 the scalar flux can be recovered using the

above quadrature rule. Therefore, the weak form of the SAAF equation given by equation (16)
evaluated at {Ωm}

M
m=1 will be considered:

∫
V

[(
Ωm · ∇w
σt

)
(Ωm · ∇ψm − Qm) + w (σtψm − Qm)

]
dr +

∫
S

(Ωm · n)
w
σt

(−Ωm · ∇ψo + Qm) drs

= 0, for m = 1, . . . ,M.
(46)

The relevant boundary conditions are found by evaluating (35)-(37) for Ω = Ωm. The above
equation (46) is referred to as the SN-SAAF equation. As equation (45) is a general quadrature
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formula, a quadrature set that can adequately represent the angular integrals must be chosen. In
this work level-symmetric and Legendre-Chebyshev quadrature sets are used, in particular trian-
gular ones where the order of the polar quadrature order is set to two. This yields a quadrature
set that gives the same number of directions as the level-symmetric set but is not identical.

4.3. IGA spatial discretisation of the weak form of the SAAF neutron transport equation

In order to spatially discretise equation (46), equation (44), the choice w(r) = Rq
j (r), and the

boundary conditions given in equations (35)-(37) are substituted into the angularly discretised
weak form given in equation (46). This yields the following equation set depending on the sign
of Ωm·n:
Ωm·n < 0:

N∑
i=1

di,m

∫
V

( 1
σt

(Ωm · ∇Rq
i )(Ωm · ∇Rq

j ) + σtR
q
i Rq

j

)
dr =

∫
V

(
QmRq

j −
Qm

σt
(Ωm · ∇Rq

j )
)
dr−∫

S

(
|Ωm·n|ZRq

j

)
drs,

(47)

Ωm·n > 0:

N∑
i=1

di,m

[ ∫
V

( 1
σt

(Ωm · ∇Rq
i )(Ωm · ∇Rq

j ) + σtR
q
i Rq

j

)
dr −

∫
S

(
|Ωm·n|Rq

i Rq
j

)
drs

]
=

∫
V

(
QmRq

j −
Qm

σt
(Ωm · ∇Rq

j )
)
dr, for m = 1, . . . ,M

(48)

where q is the order of the NURBS basis functions, Z(r,Ω, E) is a incoming source term that
can represent either the vacuum, incoming side source, or reflective boundary conditions given
in equation (35).

Due to the highly localised nature of the NURBS basis functions the integrals over the domain
can be split into a summation of integrals over the knot spans within patches. This leads to an
assembly process similar to the one typically seen in the FE method. Each knot span can be
visited and a local dense bilinear form computed. The global linear system of equations is then
assembled using the geometric connectivity information. The final IGA discretised weak form is
given by:
Ωm·n < 0:

N∑
i=1

di,m

P∑
p=1

ep∑
e=1

∫
Ve

( 1
σt

(Ωm · ∇Rq
i )(Ωm · ∇Rq

j ) + σtR
q
i Rq

j

)
dr =

P∑
p=1

ep∑
e=1

∫
Ve

(
QmRq

j −
Qm

σt
(Ωm · ∇Rq

j )
)
dr

−

P∑
p=1

bp∑
b=1

∫
S b

(
|Ωm·n|ZRq

j

)
drs,

(49)
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Ωm·n > 0:

N∑
i=1

di,m

[ P∑
p=1

ep∑
e=1

∫
Ve

( 1
σt

(Ωm · ∇Rq
i )(Ωm · ∇Rq

j ) + σtR
q
i Rq

j

)
dr −

P∑
p=1

bp∑
b=1

∫
S b

(
|Ωm·n|Rq

i Rq
j

)
drs

]

=

P∑
p=1

ep∑
e=1

∫
V

(
QmRq

j −
Qm

σt
(Ωm · ∇Rq

j )
)
dr, for m = 1, . . . ,M

(50)

where P is the number of patches in the domain, ep is the number of knot spans in patch p, bp

is the number of knot spans on the external boundary of patch p, Ve is the volume of knot span
e, and S b is the external surface of knot span b. Equations (49) & (50) are the IGA-SN-SAAF
equations for the incoming and outgoing angles.

5. Numerical results

In this section the results of several test problems are explored. These include IGA discretisa-
tions compared to FE based discretisations and comparing the SAAF equation with the first-order
neutron transport equation and the EP formulation.

The continuous IGA SAAF spatial discretisation method developed in this paper has been im-
plemented with a Fortran code called ICARUS (Isogeometric Continuous self-Adjoint Radiation
Using Splines). ICARUS is used to generate the SAAF-SN results presented in this paper. The
code is also capable of performing FE calculations and is used here to generate the FE results.
This ensures that exactly the same solvers and convergence criteria are used for both IGA and
FE solutions. Inferno is a first-order neutron transport code with local refinement capabilities
[36, 37, 38]. It is a discontinuous IGA discrete ordinate (SN) code and is used in this paper to
generate reference solutions to a number of nuclear reactor physics verification benchmark test
cases.

5.1. MMS: Gaussian modulated tensor product of trigonometric functions

The method of manufactured solutions (MMS) [57] is used here to investigate the rates of
convergence of the IGA discretised SAAF equation for different orders of basis function. The
function used to generate the source terms for the SAAF equation is a Gaussian function that is
modulated in each direction using a high frequency trigonometric function:

f (x, y) = Cx(x − 1)y(y − 1) exp
(
− (x − 0.5)2 − (y − 0.5)2

)
sin(nx) sin(my) (51)

where each term is chosen to ensure that the solution has the following properties:

• x(x − 1)y(y − 1): enforces homogeneous Dirichlet boundaries on the unit square.

• C exp
(
−(x − 0.5)2 − (y − 0.5)2

)
: to make the solution smooth and infinitely differentiable.

• sin(nx) sin(my): adds oscillations in both directions. This ensures that higher-order basis
functions cannot trivially represent the solution.
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Figure 2: Example MMS function, C = 10,m = 20, n = 10

An example of this function can be seen in figure 2. The function f (x, y) is substituted into the
LHS of equation (11) and the remaining terms are taken as a source term S (x, y,Ω). This source
term is then used on the RHS of the SAAF equation which is discretised using IGA with NURBS
basis functions.

The convergence plot of the L2-error in the solution computed using S20 IGA SAAF is shown
in figure 3. The solution of the linear system of equations formed from the spatial and angular
discretisation of the SAAF equation was performed using the incomplete Cholesky factorisation
preconditioned conjugate gradient (ICC-PCG) algorithm implemented within PETSc using a
iterative convergence tolerance of 10−13 for each angle. The solution algorithm was terminated
when the magnitude of the residual in the scalar neutron flux was less than 10−10. Basis functions
of order one through six have been used and the theoretical order of convergence for degree p
basis functions is O(p + 1).

The order of convergence of all basis functions is limited initially until a sufficient spatial
resolution has been achieved to allow the solution to capture the oscillations in expression (51).
Once the level of discretisation is sufficient to capture the oscillatory behaviour, all solutions
achieve an order of convergence close to the theoretical one. One exception to this is the highly
refined p = 6 solution where the rate of convergence begins to decrease as the error in the solution
begins to approach the convergence tolerance of the scalar neutron flux.

5.2. The IAEA swimming pool nuclear reactor physics verification benchmark test case
The IAEA swimming pool nuclear reactor physics verification test case was first defined in

a IAEA report by J. Stepanek [58]. The problem is relatively insensitive to approximation in
angle beyond a certain point [59]. The insensitivity to angular resolution can be seen in table
1 where the Keff has been calculated using a discontinuous Galerkin IGA discrete ordinate (SN)
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Figure 3: Spatial convergence plots of MMS verification test case

code, called Inferno, for different orders of angular quadrature with similar levels of spatial
refinement. For this reason the IAEA swimming pool problem has been selected to explore the
spatial convergence of the IGA discretised SAAF equation when compared to a FE discretisation.
Furthermore, the problem itself is numerically challenging due to some regions being optically
thick and the difference in order of magnitude between volume averaged scalar neutron fluxes in
neighbouring regions. In this paper both an extraneous (fixed) and a fission source version of the
IAEA swimming pool problem are considered. The geometry and macroscopic neutron cross-
section data are presented in figure 4 and tables 2 & 3. The reference results for each problem
were calculated using the Inferno code with roughly 1,200,000 quadratic elements per calculation
and using S10 Legendre-Chebyshev quadrature. The reference quantity of interest (QoI) for the
criticality problem is Keff = 1.008875 and for the extraneous (fixed) source problem the volume
averaged scalar neutron flux in each region is presented in table 4.

SN Number of elements Keff

8 1,199,569 1.0088657332
10 1,199,554 1.0088746303
20 1,199,560 1.0088852053
40 1,199,569 1.0088878513

Table 1: Keff for various discrete ordinate (SN) orders as calculated by Inferno for the IAEA swimming pool nuclear
reactor physics benchmark.
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Figure 4: Geometry and region numbers for the IAEA swimming pool nuclear reactor physics verification test case.
Vacuum boundary condition are prescribed on all boundaries of the solution domain.

Figure 5 shows the error in the Keff for S10 quadratic IGA and FE solutions when compared
to S20 Inferno for the fission source problem. The IGA solution always preserves the geome-
try (volume and surface area) exactly for geometries that can be represented by NURBS basis
functions. However, due to the Cartesian geometry nature of the problem the FE method also
preserves geometry (volume and surface area) of all regions.

It is seen that for the same number of dof the Keff calculated using the IGA method is more ac-
curate than the Keff calculated using FEs. This is due to the high-order continuity of the NURBS
basis over element boundaries within a NURBS patch. In this case they are C1 continuous over
element boundaries within a NURBS patch, whereas the FE basis functions are C0 over element
boundaries.

Plots of the error in the region averages for the extraneous (fixed) source problem are shown
in figure 6. The same general behaviour can be observed, that is fewer dof are needed to reduce
the error by a prescribed amount when using quadratic IGA compared to quadratic FEs. In
particular, the error in the FE solution is about half an order of magnitude larger than the error in
the IGA solution.

5.3. Seven-group, bare UO2 fuel pin nuclear reactor physics verification benchmark test case

This seven-group, eigenvalue (Keff), nuclear reactor physics verification benchmark test case
consists of a two-dimensional UO2 bare fuel pin of radius 0.54 cm with prescribed vacuum
boundary conditions. The seven-group macroscopic neutron cross-section data for this verifica-
tion test case are taken from the OECD/NEA C5G7 nuclear reactor physics benchmark for the
UO2 fuel-clad material [60]. The geometry for this verification test case is a modified version
of a pincell from the two-dimensional OECD/NEA C5G7 quarter core test case. The fuel pin
has the same dimensions as the original pincell but the moderating material has been removed.
The modified bare fuel pin geometry is shown in figure 7. This benchmark has been specifically
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Region
Macroscopic neutron

cross-section data
(cm−1)

σt σs νσ f

1 0.6 0.53 0.079
2 0.48 0.20 0.0
3 0.70 0.66 0.043
4 0.65 0.50 0.0
5 0.90 0.89 0.0

Table 2: One-group macroscopic neutron cross-section data for the eigenvalue (Keff) IAEA swimming pool nuclear
reactor physics verification test case.

Region 1 2 3 4 5

Neutron source strength (cm−3.s−1) 1.0 0.0 1.0 0.0 0.0

Table 3: Extraneous (fixed) neutron source strengths for the fixed source IAEA swimming pool nuclear reactor physics
verification test case.

Region Volume averaged scalar neutron flux (cm−2.s−1)

1 11.9569693948
2 0.54057779903
3 19.1960438341
4 0.83475246098
5 1.52653294652

Table 4: Reference volume averaged scalar neutron flux solutions for the extraneous (fixed) source IAEA swimming pool
nuclear reactor physics verification test case. These solutions were generated using the Inferno code.

designed to illustrate the effects of geometrical discretisation errors on the numerical accuracy
and rate of convergence of the solution. The problem is solved using S2 triangular Legendre-
Chebyshev quadrature. The reference solution used is a highly refined sixth order IGA solution
with Keff = 7.30533835E−003. The convergence plots of the IGA and volume preserved FEs are
shown in figure 8.

It can be seen that for both sets of FE calculations the rate of convergence is limited by the
rate of decrease of geometric error. In the non-volume preserved FE solution the errors in surface
area, volume, and the total geometric error have been plotted and it can be observed that the rate
of convergence of all solutions is limited to the rate of decrease in geometric error. Similar
behaviour can be seen in the volume preserved FE solutions. Here the error in the surface area
is slightly higher, however the error in volume is zero. This is due to the fact that the nodes on
the surface are being pushed out by different amounts for different numbers of elements in order
to maintain the volume of the geometry. Therefore, the surface polygon circumscribes the true
circular geometry. In the non-volume preserved case the polygon inscribes the geometry.

The errors in the non-volume preserved and volume preserved FE solutions differ by roughly
two orders of magnitude for higher-order basis functions. Therefore, the larger error in the
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Figure 5: Error in the Keff for the eigenvalue IAEA swimming pool reactor physics benchmark. Both the IGA and FE
use quadratic basis functions and a S10 angular quadrature set. Both solutions were computed using ICARUS where
a triangular Legendre-Chebyshev discrete ordinate angular quadrature has been used. The results are compared to the
reference solution provided by an Inferno S20 solution.

surface area incurred by preserving volume would appear to be worthwhile. The difference
between the volume preserved FE and IGA results are even greater. This is mainly due to the fact
that the rate of convergence of the IGA solution is not limited by the geometric approximation
as the geometry is represented exactly for all levels of refinement. Further accuracy in the IGA
solution is obtained due to the high inter-element continuity of the NURBS basis functions within
a NURBS patch, as was demonstrated in section 5.2.

A more in depth study of the effects of higher-order isoparametric FE basis functions on the
surface and volume errors has been performed [61, 62]. Furthermore, the comparison of these
methods to IGA has also been extensively studied as well [35].

5.4. OECD/NEA, seven-group, two-dimensional (2D) C5G7 nuclear reactor physics verification
benchmark test case

The OECD/NEA C5G7 verification test case is a two-dimensional (2D), seven-group, hetero-
geneous, quarter core nuclear reactor physics benchmark used by the OECD/NEA and code de-
velopers as a means of verifying the implementation and assessing the accuracy of deterministic
neutron transport codes. The material composition can be seen in figure 9 and the macroscopic
neutron cross-section data for the benchmark can be found in Appendix A of the benchmark
specification [60].

Figures 10a, 10b, & 10c show the neutron scalar flux profiles for the C5G7 quarter core
verification test case. It can be seen that the fast and epithermal neutrons are born in the fuel
regions. As they are transported through the domain down scattering causes a drop in the fast
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(a) Region 1 (b) Region 2

(c) Region 3 (d) Region 4

(e) Region 5

Figure 6: Error in the volume averaged scalar neutron flux for the extraneous (fixed) source IAEA swimming pool reactor
physics benchmark in each region computed by ICARUS using quadratic IGA and quadratic FEs with an S10 angular
quadrature. The reference solutions were produced using the discontinuous Galerkin IGA SN code Inferno.
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0.54

Figure 7: Geometry for the seven-group, bare UO2 fuel pin eigenvalue (Keff) nuclear reactor physics verification bench-
mark test case. Vacuum boundary conditions have been prescribed on the boundary of the bare UO2 fuel pin.

and epithermal scalar neutron fluxes as the neutron energy is attenuated. As neutrons enter the
reflector region from the fuel region there is a large spike in the thermal scalar neutron flux
caused by the large scattering cross-section causing any fast neutrons to become thermalised.

Several results are presented for comparison. First are the solutions of the benchmark from
the first-order neutron transport IGA discrete ordinate (SN) code Inferno. The results presented
are from a reference solution with 2, 164, 032 quadratic elements for the whole geometry. and S8
angular discretisation. The eigenvalue was converged up to 10−11 and can be found in Owens’
paper [36]. Second are the results from the even-parity SN code CRONOS2 [63]. These re-
sults were discretised using linear triangular FEs that give 24, 804 degrees of freedom for the
entire geometry. An S8 angular discretisation was used and these results can be found in the
OECD/NEA C5G7 benchmark book [60]. Finally, results from ICARUS using quadratic basis
functions are presented. Tables 5, 6, 7 and 8 present the errors in several quantities of interest
(QoI) for CRONOS2 and ICARUS against Inferno. It is assumed that the CRONOS2 FE mesh
is mass preserving as ICARUS ran a similar FE problem with no mass preservation and the error
in the Keff was significantly greater.

Number of
degrees of

freedom (dof)

Keff

(pcm)

Maximum
pin power

(%)

Minimum
pin power

(%)

Inner UO2
assembly

(%)

Outer UO2
assembly

(%)

MOX
assembly

(%)

24804 58 0.0049 -0.041 0.0031 -0.0041 -0.0023

Table 5: Error in CRONOS2 solution compared to the Inferno C5G7 reference result. The Keff is converged to 10−6. The
particular S8 angular quadrature set is unknown.

Tables 5, 6, and 7 show the errors in various quantities of interest (QoI). The solution al-
gorithm has been terminated when the eigenvalue for successive iterations differs by less than
10−6. It can be observed that the IGA solution is superior to FE solution. This is due, in part,
to the quadratic basis functions used and also to the exact representation of the surface area and
volume of each pin, whereas the FE solution only preserves fuel pin volume. While the coars-
est ICARUS solve has more dof than the CRONOS2 solve the number of dof per pincell is the
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Figure 8: Error in the Keff for the bare fuel pin problem for varying levels of spatial and polynomial refinement within a
NURBS patch. All results calculated using ICARUS .
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Figure 9: Geometry specification for the OECD/NEA C5G7 benchmark.
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(a) Group 1 (fast scalar neutron flux with units
cm−2.s−1)

(b) Group 4 (epithermal scalar neutron flux with units
cm−2.s−1)

(c) Group 7 (thermal scalar neutron flux with units
cm−2.s−1)

Figure 10: Scalar neutron flux profiles for the OECD/NEA C5G7 quarter core nuclear reactor physics verification test
case for several energy groups. The scalar neutron flux is normalised to unit fission source.
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Number of
degrees of

freedom (dof)

Keff

(pcm)

Maximum
pin power

(%)

Minimum
pin power

(%)

Inner UO2
assembly

(%)

Outer UO2
assembly

(%)

MOX
assembly

(%)

29105 52 0.0030 -0.0177 0.0016 -0.0014 -0.0014

Table 6: Error in ICARUS solution compared to Inferno C5G7 reference result. The Keff has been converged to 10−6 and
a triangular Legendre-Chebyshev S8 angular quadrature set has been used.

Number of
degrees of

freedom (dof)

Keff

(pcm)

Maximum
pin power

(%)

Minimum
pin power

(%)

Inner UO2
assembly

(%)

Outer UO2
assembly

(%)

MOX
assembly

(%)

29105 57 0.0027 -0.0179 0.0014 -0.0014 -0.0012

Table 7: Error in ICARUS solution compared to Inferno C5G7 reference result. The Keff has been converged to 10−6 and
a level-symmetric S8 angular quadrature set has been used.

Number of
degrees of

freedom (dof)

Keff

(pcm)

Maximum
pin power

(%)

Minimum
pin power

(%)

Inner UO2
assembly

(%)

Outer UO2
assembly

(%)

MOX
assembly

(%)

29105 311 -0.0051 -0.0154 -0.0039 0.0012 0.0040
65332 302 -0.0089 -0.0014 -0.0060 0.0025 0.0062

181136 296 -0.0083 0.00053 -0.0057 0.0026 0.0057

Table 8: Error in ICARUS solution compared to the Monte-Carlo C5G7 reference solution found in the benchmark
specification [60]. The Keff has been converged to 10−7 and a S8 triangular Legendre-Chebyshev angular quadrature set
has been used.

same. The ICARUS IGA mesh has slightly more dof in the water near the boundaries than the
CRONOS2 FE mesh. Therefore, the extra dof in the IGA mesh should affect the pin powers
minimally. Furthermore, it can be seen from figure 10 that the flux profiles in the water near the
boundaries are relatively flat so fewer dof are required to represent the solution here.

Whilst the pin power results for the ICARUS solution in table 7 are clearly more accurate
than the CRONOS2 solution, the difference in the two Keff values is only 1 pcm. The angular
quadrature set used by CRONOS2 is not known to the authors so, in an effort to investigate
how much of a difference angular quadrature sets might make, tables 6 and 7 show the errors
in ICARUS calculations where the only difference is the use of triangular Legendre-Chebyshev
(LCT) and level-symmetric set (LSS) quadrature sets. Both quadrature sets result in the same
number of angular unknowns. It can be seen that there is a difference of 5pcm in the Keff whilst
the pin power errors change minimally. Therefore, we conclude that the small difference seen
between the Keff for the CRONOS2 and ICARUS results could be caused by the use of different
angular quadrature sets.

Table 8 shows the errors in various QoI calculated from IGA-SAAF solutions of the OECD/NEA
C5G7 verification test case using ICARUS. The results have been compared against the reference
Monte-Carlo solution from the OECD/NEA C5G7 benchmark specification [60]. Three levels
of discretisation are presented. The coarsest mesh is identical to the one used in tables 6 & 7
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and the two finer meshes are the result of refining each patch once or twice respectively in each
parametric direction. The tolerance for the relative change in Keff is 10−7 to make sure that errors
in the QoI were not caused by a lack of convergence.

It can be seen that most quantities of interest are converging slowly to the reference solution,
whilst others appear to diverge. It is postulated that the reason for the slow convergence of some
QoI, the divergence of other QoI, and the large pcm difference in the Keff is caused by the low
angular quadrature set used. Furthermore, there will be an error introduced into the S8-IGA
solution due to the ray effect. These errors are not present in the reference Monte-Carlo solution
and cause a discrepancy. Indeed, the pcm error between the Keff from the finest solution in table
8 and the highly refined S8 first-order transport reference solution generated using Inferno is only
37pcm.

6. Conclusion

In this paper a maximum principle compatible with source iteration based upon the SAAF
form of the neutron transport equation was presented. It was shown to be mathematically equiv-
alent to a Bubnov-Galerkin discretisation of the weak form of the SAAF neutron transport equa-
tion. This variational derivation provides a rigorous mathematical justification for the use of
the first-order form of the neutron transport equation as a boundary condition for the outgoing
angular flux on the boundary of the solution domain. The SAAF equation was spatially discre-
tised using isogeometric analysis (IGA) with non-uniform rational B-spline (NURBS) test and
trial functions. A method of manufactured solutions (MMS) verification test case demonstrates
that this spatial discretisation yields close to the theoretical order of convergence for several or-
ders of basis functions. Several extraneous (fixed) source and eigenvalue (Keff) nuclear reactor
physics verification benchmark test cases comparing FE and IGA spatial discretisations of the
SAAF equation were performed. It was demonstrated that in the case where the geometry could
be represented exactly by both IGA and FE basis functions that the IGA spatial discretisation
was more accurate per dof. This improvement in spatial accuracy, using the IGA method, was
due to the high inter-element continuity of the NURBS basis functions within a NURBS patch.
Furthermore, in the case where the FE method is unable to exactly represent the geometry it was
demonstrated that this geometric error limits the rate of convergence of the overall solution.

The OECD/NEA, seven-group, two-dimensional C5G7 quarter core nuclear reactor physics
verification benchmark problem was solved using a discrete ordinate (SN) IGA spatial discreti-
sation of the SAAF equation. The IGA SAAF solutions were compared against a second-order
even-parity (EP) solution from the CRONOS2 FE code. This comparison was performed on
meshes with similar numbers of dof and shows that the IGA solution was more accurate spatially
than a similar FE solution. Furthermore, the effect of discrete ordinate (SN) angular quadrature
sets on the solution was also investigated.

Overall the IGA spatial discretisation method seems a promising numerical discretisation
scheme, especially for second-order forms of the neutron transport equation. The ability to
solve nuclear reactor physics problems using the same geometrical representation utilised in
commercial CAD software has great potential to reduce the time required to set up complex
geometry neutron transport problems. Moreover, the ability to exactly model both the volume
and surface area, as well as having higher-order continuity within a NURBS patch, leads to
improved convergence over conventional FE based discretisation schemes.

Further research is required to extend the IGA SAAF method to general three-dimensional
(3D) nuclear reactor physics and radiation shielding problems as well as to incorporate energy-
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dependent spatially adaptive IGA algorithms (with appropriate dual weighted residual or goal
based error measures) for the SAAF form of the neutron transport equation. The spatial adaptiv-
ity is particularly beneficial for the IGA method as the geometry is always preserved even on the
coarsest spatial refinement. Therefore, such a spatially adaptive IGA method always preserves
the volume and surface area throughout the solution domain when the geometry is defined using
NURBS. Furthermore, it would be interesting to perform a full comparison of the IGA discretised
SAAF equation against the IGA discretised first-order transport equation including detailed com-
parisons of solution accuracy, storage requirements, and computational time required to solve the
system of linear equations.
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