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Abstract: We create a passive wave splitter, created purely by geometry, to engineer three-way
beam splitting in electromagnetism in transverse electric and magnetic polarisation. We do
so by considering arrangements of Indium Phosphide dielectric pillars in air, in particular we
place several inclusions within a cell that is then extended periodically upon a square lattice.
Hexagonal lattice structures are more commonly used in topological valleytronics but, as we
discuss, three-way splitting is only possible using a square, or rectangular, lattice. To achieve
splitting and transport around a sharp bend we use accidental, and not symmetry-induced, Dirac
cones. Within each cell pillars are either arranged around a triangle or square; we demonstrate the
mechanism of splitting and why it does not occur for one of the cases. The theory is developed
and full scattering simulations demonstrate the effectiveness of the proposed designs.
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citation, and DOI.

1. Introduction

Beam-splitters play a key role in many optical devices, in particular interferometers, with a
consequently broad variety of applications ranging from astrophysics [1] to quantum computing [2]
as well as to many areas of optical electronics such as optical modulators [3] for fibre optic
telecommunications amongst much more. Indeed to achieve complete control over the flow of
light, power division and redirection devices are required, of which beam-splitters are those most
commonly utilised; a recurrent theme is the desire to have broadband lossless splitters, capable of
multiple and tunable re-direction, and with dimensions that are sub-micron, or at most microns,
in size.
Several different beam-splitting approaches have been successfully implemented ranging

from coupled bent dielectric slab waveguides or ridge waveguides atop substrates, to photonic
crystal/ grating devices using waveguide or self-collimation or more recently non-reciprocal
media or using topological designs. The dielectric waveguide approach is exemplified for
polarisation beam splitters, as used for Mach-Zehnder interferometers, by [3, 4] and recently
with more compact designs [5]. Splitters based upon dielectric waveguides traditionally have
disadvantage of scale, even for high-index dielectrics requiring them to be of the order of several
wavelengths in length to minimise scattering and losses at corners or shallow bends. This scale
limitation, and a desire to minimise radiation losses at the bend, motivated [6] to take advantage
of photonic waveguides created by removing rows or columns of the crystal array; here we design
the topological analogues. The photonic waveguide devices have been successfully applied to
beam-splitters and branched waveguides with T-shaped and Y-shaped branches implemented
by [7–9], amongst many others, and the insertion of additional, or modified, array elements in
the neighbourhood of the corner [10] can improve transmission or broaden frequency range; this
has spawned ever more elaborate designs to optimise for various scenarios [11,12]. A related,
but different, approach to creating splitters within photonic crystals is to take advantage of
self-collimation [13] and self-guiding created by strong dynamic anisotropy [14]. Beam splitters,
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including three-way splitters [15], are created and applied to devices [16, 17] using lattice array
alterations to create effective mirrors or partial mirrors.

More recently, ideas from topological insulators [18] have been transposed into photonics [19],
as reviewed in [20], showing promise for robust one-way edge states protected against disorder
by topology. This promise is tempered by the requirement for time reversal symmetry (TRS) to
be broken, and the electron spin to be mimicked by pseudospin in continuum systems. A simpler,
passive and time reversal symmetric, but less robust approach is to attempt to reproduce the
valley-Hall effect and utilise ideas from the field of valleytronics [21], for instance [22] create
dielectric photonic topological arrangements leading to reflectionless guiding and designs for
optical delay lines. Topological designs have been recently implemented for telecommunication
wavelengths [23] on a CMOS-compatible chip thus bringing these concepts closer to application.
These valley-Hall devices are locally topologically nontrivial however globally trivial, and
therefore cannot draw upon the full power of the analogy with topological insulators, but do have
advantages in terms of simplicity of construction as one need only break spatial inversion or
reflectional symmetry, together with suppressing backscatter. Given the emergence of topological
guiding there is now interest in developing this for photonic circuits, [24], and a natural drive to
explore the potential of these new ideas.
The vast majority of this valleytronics literature takes advantage of periodic hexagonal or

honeycomb lattices, utilising ideas from graphene, in particular the symmetry properties of the
hexagonal Brillouin zone and symmetry induced Dirac cones at the KK ′ vertices. Perturbations
of the structure, that break symmetries, then gap the Dirac points giving topologically nontrivial
band-gaps and well-defined KK ′ valleys. The valleys have opposite chirality and are related by
parity and/or reflectional symmetry as well as TRS. A key point is that by engineering a large
Fourier separation between the valleys one suppresses intervalley scattering and ultimately the
valley is used as an information carrier [20]. One negative that emerges is geometrical: The
hexagonal systems can only create two-way energy-splitters [25], and three-way topological
splitting would require other geometries for which symmetry induced Dirac points do not
occur–hence the recipe outlined above cannot be employed.

Fortunately, one can engineer accidental Dirac points [26–28] for square systems and, although
they are no longer at the high symmetry points, they provide pragmatic advantages over their
hexagonal counterparts. For instance, allowing three-way topological beam-splitting away from
a well defined nodal point. Previously, the only means to partition energy, more than two-ways,
along topologically protected interfaces is by utilising the tunneling phenomena, described
in [25]; however a drawback of this approach is that the outgoing energy is dependent upon the
decaying tail of the initial interface state; here we have no such issues. Interestingly, [25] did
show a three-way non-topological energy-splitter however this has the inherent disadvantage of
being less robust and hence more prone to backscattering.

Recently [29] showed beam splitting for a model system of waves on elastic plates, for a fourth
order elastic plate equation and masses of infinitesimal radius, here we explore to what extent
three-way beam splitters can be employed in electromagnetism. We do this via a combination of
group and k·p theory [30] coupled with detailed numerical simulations to extract the interfacial
edge states, zero-line modes (ZLMs), and further we take these idealised edge states and perform
numerical simulations, using [31], showing transport around right-angled bends and three-way
energy splitting. A typical splitter that we construct is shown in Fig. 1, it is constructed from
dielectric inclusions arranged upon a square lattice, within each elementary cell there is an
arrangement of inclusions and the choice of arrangement is critical for splitting; we illustrate
this importance by contrasting two arrangements. A judicious choice of inclusion arrangements,
and the connection of quadrants of material yield the passive splitter that, as in Fig. 1, takes an
incoming wave and then splits it in three.
We operate at telecommunication wavelengths using a photonic crystal (PC) consisting of
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Indium Phosphide (InP) dielectric pillars in air. Drawing upon the design and fabrication of a
dielectric carpet in [32], we contrast two designs of PCs within a square lattice array; the first of
which has 6 InP dielectric pillars of diameter 200 nm, height 2µm, and minimum center-to-center
spacing of 250 nm arranged around an equilateral triangle, Fig. 2(a), and the second has 8 pillars
with similar dimensions arranged around a square as in Fig. 2(b). The refractive index of InP is
n = 3.16, and we consider primarily (TM) polarization whereby the electric field is parallel to
the pillars’ axis and discuss the analogous transverse electric (TE) polarization, the magnetic
field is parallel to the pillar axis, in the concluding remarks. These two designs exemplify the
potential of topological designs for energy splitting, and in particular how to achieve three-way
splitting, for intrachip communication devices.

Fig. 1. A three-way splitter designed on a square lattice using accidental degeneracies and
geometry (right panel) shows the junction region between four quadrants each containing
a set of dielectric inclusions placed around a rotated square. The quadrants differ in only
the rotation given to the inclusion arrangement within it. In the left panel, the wave energy
incoming along the leftmost interface is split at the junction into three interface waves;
absolute value of wavefield shown. In this simulation the normalized angular frequency
ωd/c is 4.78 and we treat TM polarisation.

The Maxwell equations split naturally into p and s polarizations, with forcing created by an
electric line source or magnetic current dipole at position rs respectively [33] as TM

∇ × (µ−1
r ∇ × El) − εr µ0ε0ω

2El = −iωIsµ0δrse3, (1)

and TE,
∇ × (ε−1

r ∇ ×Hl) − µr µ0ε0ω
2Hl = ∇ × (ε

−1
r jT ) (2)

with ε0, µ0 (εr, µr ) as the permittivity and permeability in-vacuo (and relative values), ω is
frequency with time-harmonic waves, exp(−iωt), assumed, jT and Is being currents. We will
often use a normalised frequency, ωd/c, hereafter where d is the pitch of the lattice and c
the speed of light, c2 = 1/µ0ε0. The TM field is driven by a line monopole source at δrs and
the TE field by a line dipole. For the polarised fields, taking a Cartesian coordinate system
(x1, x2, x3) = (x, x3), where x is the in-plane (or transverse) variable and x3 is the out-of-plane
(or longitudinal) variable, we use invariance along x3 to split the vector Maxwell system into two
polarizations: The TM polarization has El = E(x)e3 (TE similarly has Hl = H(x)e3), that is, the
field is perpendicular to the pillars, and we concentrate from hereon on the TM polarized field.
We take the relative permittivity to be spatially dependent, i.e. εr ≡ εr (x), with the remaining
parameters constant, and thus for source-free TM fields we have that

∇2E(x) + a(x)ω2E(x) = 0 (3)
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where ∇2 is Laplacian with respect to the in-plane variable x, and the material dependence is
encapsulated in a(x) = µ0ε0µr εr (x). Equation (3) carries the assumption of material isotropy
and scalar permittivity and permeability that is lossless. Moreover, for the pillar crystal a(x) is a
piecewise constant function as εr is 1 in air and 3.162 in the pillars, and µr = 1 everywhere (a
non-magnetic medium). This is equivalent to Helmholtz equations in each homogeneous phase,
coupled through continuity conditions across the pillar interfaces of the field E and its normal
derivative ∂nE = n · ∇E, with n the normal to the interface.

Fig. 1. (a) Fig. 1. (b)
Fig. 1. (c)

Fig. 2. The (non-rotated) arrangement of inclusions taken in the elementary cell: (a)
equilateral triangular and (b) square arrangements and (c) the first Brillouin zone relevant
for periodic arrangements of these cells upon a square lattice. For a pitch d, the radius
of inclusions is 0.05d and their center-to-center spacing is 0.2 in the triangular case (a)
the radii of the two types of inclusions in the square case are 0.075d and 0.05d and their
center-to-center spacing is 0.25d The high-symmetry points of the Brillouin zone we refer
to are Γ = (0, 0), X = (π/d, 0), Y = (0, π/d) and M = (π/d, π/d).

2. Engineering a non-symmetry repelled Dirac cone for a square lattice

To create three-way topological splitting we first need to engineer accidental degeneracies along
the Brillouin zone boundary, as shown in Fig. 2(c), it is not sufficient to simply generate Dirac
points, and the arrangement of inclusions in the interior of the physical elementary cell, and their
symmetry, plays a key role. We utilise perturbation theory and symmetry arguments to design
the structures we study; the inclusions are either in a triangular formation or are arranged along a
square, see Fig. 2(a) and 2(b). As we shall see the interaction of the internal inclusion symmetries
with the symmetries of the lattice lead to fundamentally different behaviours; ultimately we
shall see that the triangular inclusion case is unable to create splitters for reasons uncovered by
symmetry arguments. We begin by determining the criteria under which accidental Dirac points
are created, then gap them using geometrical rotations that break symmetry to create band-gaps
with protected edge states; these edge states form the building blocks of the splitters we design.

2.1. Perturbation theory and band interactions

We begin by considering infinite periodic media and interpret the dispersion diagrams of Fig. 3
that contrast the triangular and square cases. We take the inclusion arrangements shown in Figs.
2(a) and 2(b); when we rotate the inclusion arrangements, the rotation is taken around the centroid
of the inclusions. The most notable difference between the non-rotated cases, Figs. 3(a) and 3(b),
are the single Dirac point for bands 4 and 5 in (a) vis-a-vis two in (b); the most important bands
are coloured red and correspond to n = 3, 4, 5, 6 in the index notation we adopt. As advertised in
the introduction a symmetry breaking perturbation, in this case a rotation anti-clockwise, gaps
Dirac points to create band-gaps as indicated in Figs. 4(a) and 4(b). A critical issue, of course, is
where the accidental Dirac points arise, or indeed whether they arise at all [26], and this requires

                                                               Vol. 27, No. 11 | 27 May 2019 | OPTICS EXPRESS 16091 



an analysis of the band structure.
A minor point is that, due to the precise position of the inclusions, spaced at 0.25d, the square

case has an additional glide and reflectional symmetry and there is a Dirac point exactly at X for
bands 5 and 6, but this has no influence on the analysis here.

To understand how the bands interact we consider the eigenfunctions Enκ(x), with n the band
index and κ the Bloch wavevector, i.e. the Bloch momentum vector in reciprocal space, in the
first Brillouin zone such that ∇2Enκ(x) + a(x)ω2

nκEnκ(x) = 0 with ωnκ the eigenfrequency. We
consider Bloch waves and the eigenstates |Enκ〉 relate to periodic eigenstates |unκ〉, which form a
complete basis, via

Enκ(x) = 〈x|Enκ〉 = exp (iκ · x) 〈x|unκ〉 , (4)
with the eigenstates orthonormal, i.e.

∑
nκ |Enκ〉 〈Enκ | = 1̂, 〈Enκ |Emκ′〉 = δmnδκκ′ .

Fig. 3. The band diagrams for (a) triangular and (b) square arrangement of inclusions; the
red curves show the branches of most interest, bands 3-6, in red; the accidental degeneracy
is clear along M X in (a) and along both M X and Y M in (b). Also shown are the real parts
of the eigenstates for the bands of interest at X .

The completeness of the periodic eigenstate basis, means we can expand |unκ〉 in terms of the
basis set {u jκ0 (x)} where κ0 is fixed, to deduce

|Enκ〉 = exp (iκ · x) |unκ〉 = exp (iκ · x)
∑
m

Anm(κ) |umκ0〉

= exp (i∆κ · x)
∑
m

Anm(κ) |Emκ0〉 , (5)

where ∆κ = κ − κ0 and m running over all positive integers. Assuming the perturbation |∆κ | � 1
the governing equation becomes∑

m

Anm(κ)
[
a(x)(ω2

nκ − ω
2
mκ0 ) + 2i∆κ · ∇x + O

(
|∆κ |2

)]
Emκ0 (x) = 0. (6)

                                                               Vol. 27, No. 11 | 27 May 2019 | OPTICS EXPRESS 16092 



Fig. 4. The band diagrams for (a) triangular and (b) square rotated arrangement of inclusions;
the red curves show the branches of most interest, bands 3-6, in red. The inclusion sets are
rotated anti-clockwise through π/12 in (a) and π/18 in (b). The associated real parts of the
eigenstates, at X , show the orbitals and parity.

This relationship connects the eigenstates at a given point in reciprocal space, κ0, to the frequency,
and hence determines the local dispersion relation, and can be used to investigate band repulsion
or attraction. We concentrate upon the behaviour near the point X as both sets of inclusions
share σv mirror symmetry; the triangular case does not have σh symmetry and this leads to the
"missing" Dirac point along Y M in Fig. 3(a).

Looking further at the band diagrams, say that of Fig. 3(a) one observes, at the wavenumber X ,
close to the Dirac point of interest, that the eigenstates of bands 3 − 6 have characteristic orbitals
familiar from quantum mechanics [34]. The symmetries inherent in these eigenstates motivate the
use of the mathematical language of symmetry, that is, group theory: The point group symmetry
of the structure is GΓ = C2v; this is also the point group symmetry at X , GX = C2v (Table 1). The
C2v point group arises from a combination of spatial (reflectional) and time-reversal symmetries;
the latter relates κ → −κ. If we were to solely use the spatial symmetry then we would plot
around half of the BZ; however this would be the incorrect IBZ and the resulting figure would
contain redundant paths (see Figs. 5 and 7 in [35]). The irreducible representations (IRs) at X
are one-dimensional hence there is no symmetry induced degeneracy; however, two of the IRs
can be tuned such that an accidental degeneracy, that is not symmetry repelled, is created along
M X (and also along Y M for the square case).
The four bands highlighted in red in Figs. 3(a) and 3(b) (bands numbered 3 − 6 inclusive)

are associated with the eigenstates shown alongside the dispersion curves; these match the
basis function symmetries of the C2v group given in Table 1; hence this indicates that bands
3 − 6 are symmetry induced and the sequential ordering of them (lowest to highest) is deduced
numerically, via the eigenstates, as: {B2, A1, B1, A2} and these are shown in Fig. 3. The rotated,
symmetry-breaking, cases of Figs. 4(a) and 4(b) retain, at least broadly, the same eigenstate
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structure.

Table 1. Character table showing the classes, irreducible representations (IRs) and basis
functions for C2v

Classes→

IR ↓
E C2 σv σh

Basis

functions

A1 +1 +1 +1 +1 x2, y2

A2 +1 +1 −1 −1 xy

B1 +1 −1 +1 −1 x, xy2

B2 +1 −1 −1 +1 y, x2y

Table 2. Character table showing the classes, irreducible representations (IRs) and basis
functions for reflections σv,h .

Classes→

IR ↓
E σv,h

Basis

functions

A +1 +1 x2, y2, xy

B +1 −1 x, y, x2y, xy2

Intuitively, we expect the two bands (band 4 and 5) forming the accidental degeneracy, A1, B1,
to be strongly coupled with each other; the other two symmetry induced bands, B2, A2, will have
limited influence on the local curvature or slope of the A1, B1 bands. The even more distant
bands (bands 1 and 2 and those above 6) will have negligible effect on the A1, B1 bands and we
quantify this by separating the bands into the the symmetry set eigenstates (SSE, bands 3 − 6)
and the remainder that lie outside the SSE. Equation (5) becomes

|Enκ〉 = exp (i∆κ · x)
[ ∑
m∈SSE

Anm(κ) |Emκ0〉 +
∑

m<SSE
Anm(κ) |Emκ0〉

]
. (7)

Multiplying Eq. (6), by the conjugated states E∗pκ0 (x) or E
∗
qκ0 (x) (where p ∈ SSE, q < SSE) and

integrating over the primitive cell in physical space we obtain the following two equations,

(ω2
nκ − ω

2
pκ0 )Anp =

∑
m∈SSE

HpmAnm +
∑

m<SSE
HpmAnm,

(ω2
nκ − ω

2
qκ0 )Anq =

∑
m∈SSE

HqmAnm +
∑

m<SSE
HqmAnm

(8)

and the Hab are explicitly,

Hab = −2i∆κ · 〈Eaκ0 |
∇x

a(x) |Ebκ0〉 + O
(
|∆κ |2

)
(9)

where we recall that here the function a(x) is piecewise constant. A useful point is that, using the
symmetries of the eigenstates one can select which Hab are zero. Neglecting the terms coupling
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states outside the SSE to each other we obtain, for p ∈ SSE, that

(ω2
nκ − ω

2
pκ0 )Anp =

∑
m∈SSE

Anm
©­«Hpm +

∑
q<SSE

HpqHqm

(ω2
nκ − ω

2
qκ0 )

ª®¬ . (10)

Our main interest is in the neighbourhood of the Dirac point so we set n = p ∈ SSE, and perturb
with κ = κ0 + ∆κ, then

ω2
nκ = ω

2
pκ0 + 2ωpκ0∆κ · ∇κωpκ0 + O

(
|∆κ |2

)
. (11)

Therefore the second summation in Eq. (10), coupling states within the SSE to those outside,
falls into second-order, i.e. O

(
|∆κ |2

)
, hence the first-order equation is the 4 × 4 system,(

2ωpκ0∆ωp

)
Anp =

∑
m∈SSE

HpmAnm. (12)

where ∆ωp = ωpκ − ωpκ0 and n, p ∈ SSE. Equation (12) contains the information that allows
us to determine whether an accidental Dirac degeneracy will occur. One can take this further
and notably, the higher-order corrections, that encompass the coupling between bands within the
SSE to those outside, provide the band curvature details away from a locally linear point. In that
instance, Eq. (12) is modified to a 4 × 4 matrix eigenvalue problem, where the Hamiltonian, with
components Hpm, is Hermitian [27].

2.2. Compatibility relations and creating accidental degeneracy along X M

Bands vary continuously, except possibly at accidental degeneracies where mode inversion may
occur, which in turn leads to a discontinuity of the intersecting surfaces. Hence when moving
along a continuous band of simple eigenvalues the eigenstates continuously transform; departing
from the high symmetry point X , the associated IRs describing the transformation properties of
the eigenstates smoothly transition into IRs that belong to the point groups along XΓ or X M .
In physical space both cellular structures we consider in Fig. 2 have σv spatial symmetry,

this is equivalent to σh symmetry in Fourier space. Note that the relevant symmetry, that is
responsible for gapping the Dirac cone, is the point group symmetry of the Dirac cone in κ, not
the spatial symmetries of the cellular structure. From the definition of a point group symmetry,
i.e. any symmetry operator R̂ ∈ GΓ that satisfies, R̂κ = κ mod G, where G is a reciprocal lattice
basis vector, implies that κ ∈ X M solely has the mirror symmetry operator, σh within its point
group. Similarly, for a κ ∈ ΓX , only the vertical mirror symmetry operator, σv satisfies the point
group criterion. The symmetries of the eigenstates, for a κ belonging to either of the paths, X M
and XΓ, are shown within the basis functions column of Table 2.

We now simplify the 4 × 4 system of Eq. (12) by assuming it is dominated by the two strongly
coupled bands, bands 4 and 5 with IRs A1 and B1, which will result in a 2 × 2 system. As we
move away from X , the A1, B1 IRs belonging to the C2v , see Table 1, from continuity of the
bands, transform into the IRs of the σv,h, see Table 2, and reveal compatibility relations of the
IRs. For the symmetry σh the eigenstates at X and along X M satisfy the following,

P̂σh
|EA1,B1〉 = ± |EA1,B1〉 , P̂σh

|EA,B〉 = ± |EA,B〉 (13)

where P̂ is the projection operator. The bands (A1, B1) at X are therefore compatible with (A, B)
along X M. Physically, this transition is also evident from the eigenstates. Similarly, at X and
along XΓ, the eigenstates transform under σv as,

P̂σv |EA1,B1〉 = + |EA1,B1〉 , P̂σv |EA,B〉 = ± |EA,B〉 . (14)
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The bands (A1, B1) at X are therefore compatible with (A, A) along XΓ which implies band
repulsion and, as we observe, an inability to have a band crossing along XΓ.
Importantly, note that, in deriving Eq. (12) we have only assumed that κ0 belongs to a

particular symmetry set band (surfaces 3 − 6) (the band at κ0 must be continuously connected to
the same band at X). Therefore, the compatibility relations allow us to choose any expansion
point along the the path ΓX M where the eigenfunction basis set, Eq. (5), transforms accordingly
i.e. |EA1〉 → |EA〉.

Fig. 4. (a) Fig. 4. (b) Fig. 4. (c) Fig. 4. (d)

Fig. 5. The interfaces created when regions of perturbed media neighbour its counter-rotated
twin. Panels (a) and (b) show, for the triangular case, that there are two distinct interfaces
where the triangles in opposing media are either point-to-point or face-to-face. The square
arrangement of inclusions is shown in (c) where the top left medium is oppositely orientated
to the others (used for propagation around the simple bend) and (d) where the top left and
bottom right media are oppositely orientated to the other quadrants (used for propagation in
a splitter). Red dots show interfaces with nonzero Berry curvatures, whilst purple spirals
show an overlap between regions with opposite Berry curvature where ZLMs can reside.

In order to solve the 2-band eigenvalue problem, Eq. (12), we compute the determinant of the
truncated matrix, ������ ωA1∆ωA1 −∆κx 〈ψA1 |i∂x/a|EB1〉

−∆κx 〈ψA1 |i∂x/a|EB1〉
∗ ωB1∆ωB1

������ = 0, (15)

where parity simplifies the Hermitian matrix; the eigenstates are evaluated at κ0. Solving the
eigenvalue problem yields the following result,

ωA1,B1∆ωA1,B1 = ±|∆κx 〈EA1 |i∂x/a|EB1〉 |, (16)

where the ± corresponds to the A1, B1 bands, respectively. This result implies that the A, B
bands have an identical slope, albeit with opposite gradients; hence, if, at X an instance can
be found where ωB1 > ωA1 then the bands will invariably cross along the path X M. We are
not guaranteed that an accidental degeneracy must occur along X M as parameters (the radii
of inclusions, number of inclusions, permittivity etc) could occur with ωB1 < ωA1 , but this
inequality gives a useful criteria for their existence, or otherwise. This parametric freedom
afforded by inclusion change in geometry or material tunes increases, or decreases, in the slope
thereby increasing or decreasing the distance between X and the Dirac point.
Note that the Dirac cone occurs along the spatial symmetry path, σh, of the structure due to

the opposite parities of the A, B bands; band repulsion occurs along the XΓ path [27] thereby
resulting in a partial band gap along XΓ. If ωB1 > ωA1 , then the partial gap along XΓ isolates
the Dirac cone along a portion of the IBZ path, ΓX M. Equation (16) solely demonstrates that
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Fig. 6. Edge states (ZLMs): For the interface between oppositely tilted triangles (a-c),
and squares (d-f). The real parts of the even and odd modes are shown in (a,d) and
(b,e) respectively at normalised frequencies given by the circles, (5.77, 4.69), and crosses,
(5.74, 4.62), in the dispersion curves of (c,f).

the curves cross linearly along the high-symmetry line. For a pictorial proof of the locally linear
behaviour, in all directions away from the Dirac cone, please see Figs. 1-3 in [36].
We have designed situations where either two, or four, (for triangular and square cases

respectively) pairs of Dirac points are created by an accidental degeneracy and we have shown
how they are created and given a prescription for their occurence. These Dirac points have been
gapped by a symmetry breaking perturbation and band gaps have been created.

3. Results and discussion

3.1. Edge states: Zero line modes

We aim to use our knowledge of the designed band-gaps to create situations whereby an interface
will support edge states. We begin by taking a half-space of one medium and place it above
another; the only difference between the two media being that the symmetry of the cells in the
upper and lower media is broken by clockwise and counter-clockwise rotations respectively (see
Figs. 5(a) and 5(b) for the triangular case). This has the effect, in Fourier space, of interchanging
X and Y , the Berry curvatures [37] are opposite in sign at X and Y , and hence at the interface
between such media can create valley Hall edge states; these are named zero line modes (ZLMs)
due to their origin as arising from opposite Berry curvature in the adjoining media.
We compute ZLMs by considering finite tall ribbons one cell thick with Bloch conditions
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Fig. 7. ZLMs along the face-to-face interface between media composed of oppositely tilted
triangles at normalised frequencies 5.62, 5.65, 5.67 illustrating the long-scale envelope and
concentration of field to the interface. The source position is shown circled and the direction
of the ZLM propagation is indicated by arrow, and absolute value of wavefield is shown.

Fig. 8. (a) Propagation around a π/2 bend at the interface between a quadrant of squares
oppositely orientated to the others, c.f. Fig. 5(c). (b) The three-way splitter, where the
quadrants alternate in their relative rotation, c.f. Fig. 5(d). In both panels the excitation is a
monopole source, with position shown circled, located at the leftmost edge of the crystal on
the interface between the media. The directions of the incoming ZLM and outgoing ZLMs
using arrows, and absolute value of wavefield is shown.

applied on the sides and with periodic conditions at the very top and bottom; the ribbons in the
simulations are 40 cells in length which is sufficient to ensure that the exponential decay of the
edge states does not interact with the precise boundary conditions at the top and bottom of the
ribbon. We extract decaying edge states, even and odd, around the interface where, recalling
the polarisation chosen, the even modes are the physically relevant ones. The eigenstates and
dispersion curves are shown in in Fig. 6 and the parity of the ribbon eigenstates is inherited
from the bulk eigenstates of Figs. 3 and 4. Notably the triangular and square cases have a
crucial difference: ordering of the media matters, that is, stacking the clockwise above the
counter-clockwise or vice-versa leads to two different interface types for the triangular case
whilst for the square case it is irrelevant which ordering is taken (see Fig. 5) as it only has a
single distinctive interface. Therefore, in the triangular case, the even and odd-parity modes
exist along different interfaces whilst for the square case the different parity modes are hosted on
the same interface; the orthogonality of the opposite parity modes inhibits coupling between
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them. In reality, there should only be 2 edge states in Fig. 6(f); these pertain to the even and
odd-modes. The presence of another 2 (almost overlapping) states is a numerical artifact due to
periodic conditions applied at the top/bottom of the ribbon. The differences in the interfaces
in the triangular versus square cases form a key distinction that impacts upon energy transport
around corners and splitting.

Full scattering simulations performed using the commercial finite element package COMSOL
[31] are shown in Fig. 7, these are for the even ZLM relevant for TM polarisation and for the
triangular case; very similar ZLMs are found for the square case (not shown). The excitation is a
line source just outside the leftmost edge of interface and a very clear ZLM is excited that can be
identified, on each ribbon, with the eigenstate from the ribbon. One feature that is also evident is
the long-scale wave envelope with a wavelength that alters with frequency; this can be described
via an effective medium approach [38] as applied to edge states [29].

3.2. Energy transport around a sharp bend and energy splitting

We now consider two related, yet distinct, problems: redirecting energy around a sharp bend
using just topology, see Fig. 8(a), which is the topological alternative to the photonic crystal
waveguides pioneered in [6], and a three-way energy splitter (see Fig. 8(b)). Both panels in Fig.
8 are for inclusions placed around a square; the triangular case, despite creating a clear ZLM as
in Fig. 7, is incapable of supporting a ZLM along the vertical interface as those interfaces, c.f.
Fig. 5, do not have non-zero Berry curvature. The square arrangement of inclusions has the very
useful property that the vertical interfaces are exactly the same as the horizontal ones; the added
benefit of having two reflectional symmetries in the square inclusion case is now evident as there
is now non-zero Berry curvature along both interfaces and both support the same ZLMs. It is
this insight that allows for the design of the splitter and allows transport around the bend.
To get a measure of the efficiency of the energy transport we calculate an electric intensity

along each interface, i.e. I =
∫
S
|E |2dS for equal areas and measure the efficiency as the ratio of

the outgoing intensities to that of the incoming intensity. For Fig. 8(a) the outgoing interface
gives 0.954 and for Fig. 8(b) the right, upper and lower interfaces give 0.286, 0.253 and 0.329
respectively.

We now want to optimise the transport properties. First, we may wish to minimise backscatter
from the junction. To do so we note that the Fourier separation between the Dirac point of
the unperturbed bulk dispersion curves and high-symmetry point is highly relevant for the
transmission properties of the topological guide [25, 39]; transmission improves for short
wavelength, as opposed to long wavelength, envelopes, hence, for transmission post the junction,
it is desirable to increase the distance between the Dirac cone and the point X . The latter holds
due to the connection between the bulk and projected bandstructures [40]; the Brillouin zone
reduces to one-dimension because the only relevant wavevector component is along the interface.
All wavevectors are projected onto the ΓX line in Fourier space, hence if the distance between
X and the Dirac cone is increased then the Fourier separation between oppositely propagating
modes, along the topological guide, is increased. A mechanism to do this is to alter the system
parameters; Eq. (16) demonstrates that the slopes of the A and B bands can be increased or
decreased by the system parameters thereby altering the position of the band intersection.
Second, we return to envelope wavelength and note that the distance from the source to the

junction will play a role. If we took a finite length slab then fitting an integer, or half integer,
numbers of envelope wavelengths along the lead interface gives a Fabry-Perot resonance with
perfect transmission or perfect reflection from the far edge. We can use this knowledge to tune
the system and the sharp bend is optimised by having a node of the long-scale envelope at the
junction and so the energy is smoothly transported around the corner. Whilst for the splitter, the
perfect reflection scenario concentrates energy at the junction for subsequent redistribution to the
exit leads.
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Fig. 9. The magnetic, TE, case. (a) shows a square inclusion case, (b) rotated by π/15, and
(c) the real part of the odd ZLM eigenstate (at normalised frequency 5.43).

This is the first example of a three-way splitter passively created due to its topology and as
a result of the inherited protection should be less prone to backscatter and therefore forms the
prime candidate for three-way splitting in time reversal systems.

4. Concluding remarks

We have constructed the first-ever three-way topological beam-splitter for optics. Although we
have concentrated upon the TM polarisation, it is clear that TE polarisation will also generate
splitters using the geometrical designs we present; the main change being that the odd (and not
even) modes, now excited by dipoles, would be the physically relevant fields. We briefly illustrate
this in Fig. 9 for a square C4v case; here the inclusions of Fig. 2(b) are augmented by a central
inclusion of radius 0.15d. The situation is almost identical to TM, except that the bandgap is
smaller (the action of the central inclusion is to help create the bandgap) and the decay of the
edgestate, shown in Fig. 9(c), is slower.

One crucial difference from the majority of the valleytronics literature; is that we have chosen
to operate on a square, and not hexagonal, lattice; the hexagon arrangement has several advantages
- the Dirac points are symmetry induced, and the band-gaps obtained by gapping them are broad.
However, due to the two distinct zigzag interfaces, present within hexagonal structures, and the
conservation of chirality and phase, only two-way topological energy-splitting is possible, [41–45].
For the square geometry, we have two interfaces, however due to the presence of TRS, they
are effectively identical; therefore, the conservation of chirality and phase no longer restricts
propagation along a third outgoing interface because the incoming ZLM needs only to couple to
itself along all three outgoing leads.
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