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Abstract

In this dissertation we explore the birational geometry of higher-dimensional algebraic
varieties in positive characteristic, with a special emphasis on the study of varieties of
Fano type and the singularities of the Minimal Model Program.

In the first two chapters we prove that many classical statements of the Minimal Model
Program do not hold in characteristic p > 0 by exhibiting explicit counterexamples: we
construct a klt del Pezzo surface violating the Kawamata-Viehweg vanishing theorem and
Kawamata log terminal threefold singularities which are not rational in characteristic three,
purely log terminal pairs with non-normal centres and terminal Fano varieties with non-
vanishing intermediate cohomology in all positive characteristic.

Then, we discuss a joint work with H. Tanaka where we study the geometry of threefold
del Pezzo fibrations in positive characteristic. This is done by carrying out a detailed
analysis of surfaces of del Pezzo type over an imperfect field k: we bound the torsion index
of numerically trivial line bundles and we show geometric integrality of such surfaces in
characteristic at least seven. On the arithmetic side, we show that a surface of del Pezzo
type over a C1-field admits a closed point with purely inseparable residue field of bounded
degree.

Finally, in the last chapter we prove a refinement of the Base point free Theorem for nef
Cartier divisors of numerical dimension at least one on Kawamata log terminal threefolds
in large characteristic.
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1
Introduction

The discipline of Algebraic Geometry, whose origin can be traced back to the work on conics
of Apollonius of Perga in the hellenistic period, studies the possible shapes of algebraic
varieties - geometric objects defined by polynomial equations.

The ultimate goal of Algebraic Geometry lies in finding a classification theorem for
algebraic varieties. As Hartshorne points out in the introduction of his influential book
[Ha77, Section I.8] one can split the classification problem in two parts. First, we want
to achieve a birational classification. This means to construct a ‘minimal’ representative
in each birational equivalence class. The adjective minimal suggests that the internal
geometry of the variety constructed should be as simple as possible. Once this is achieved,
one can hope to construct a ‘moduli space’ parametrising minimal varieties.

In this thesis, we will mostly concentrate on the birational aspect of the classification
problem, especially from the modern point of view of the Minimal Model Program. The
first step in the birational classification of algebraic varieties were established by the Italian
school of Algebraic Geometry of Castelnuovo, Enriques and Severi (whose period span the
years 1885-1935), who completely settled the case of algebraic surfaces.

Despite the very early results on algebraic surfaces, it was not until the work of S.
Mori in the eighties that a general framework to deal with the higher dimensional case was
established. The basic idea is that most of the information on the birational geometry of
an algebraic variety X is encoded in the positivity properties of the canonical line bundle
ωX := OX(KX) = ∧dimXΩ1

X , where Ω1
X is the cotangent bundle of X. The Minimal

Model Program (in short, MMP) is an algorithm which uses KX as a compass to construct
the desired simple birational representative: starting from a smooth projective variety,
the MMP performs birational transformation which increase the positivity of KX . The
following is the leading conjecture in modern birational geometry:

11



12 Chapter 1. Introduction

Conjecture 1.1 (Minimal Model Conjecture). Let W be a smooth projective variety over
an algebraically closed field k. Then there exists a birational contraction map ϕ : W 99K X
to a projective variety with ‘mild’ (terminal) singularities such that one of the following
alternative holds.

1. There exists a projective morphism f : X → Z with connected fibres such that dim(Z) <

dim(X), −KX is f -ample and the relative Picard rank ρ(X/Z) is one. In this case
we say f is a Mori fibre space.

2. The canonical divisor KX is nef. Then one of the following alternatives hold:

(a) there exists a projective morphism f : X → Z with connected fibres such that
dim(Z) < dim(X) and KX ∼Q f∗A for an ample divisor A on Z. In this case
we say that f is a Calabi-Yau fibre space;

(b) there exists a projective birational morphism f : X → Xcan such that Xcan has
canonical singularities and KXcan is ample. We say that Xcan is a canonically
polarised variety.

The conjecture can be thought as a uniformisation statement for higher dimensional
algebraic varieties. It essentially states that that every algebraic variety can be birationally
constructed starting from three type of building blocks with pure geometry: Fano varieties
(for which KX is negative), Calabi-Yau varieties (for which KX is trivial) and canonically
polarised varieties.

The minimal model conjecture for varieties of dimension three was solved in the eighties
by Mori and later generalised to the logarithmic case (see [Mor88], [Sho93] and the book
[Kol+92]). However, Mori’s proof relied on special properties of three-dimensional varieties
and his approach revealed to be difficult to generalise to higher dimension. In 2006, in
the seminal article [BCHM10] Birkar, Cascini, Hacon and McKernan proved the minimal
model conjecture in the case of varieties of general type over any field of characteristic zero,
building on earlier work of Shokurov and Hacon-McKernan (see the monograph [Cor07]).

All the results explained in the previous paragraph have been obtained for varieties
over fields of characteristic zero. So, what happens for fields of positive characteristic?
Answering this question is particularly interesting because, while later developments in
the MMP in characteristic zero relied on the Kodaira vanishing theorem, the first results
in Mori theory (such as the cone theorem for smooth varieties) were obtained using the
bend-and-break technique, which ultimately depends on reduction to positive characteristic
and the use of the Frobenius morphism.

In recent years, starting from the work of Keel [Kee99], it has been realised that the
Frobenius morphism can sometimes act as a replacement to the failure of vanishing theo-
rems. More precisely, techniques from the theory of F -splitting have merged in the field
of birational geometry with tremendous success. In [Tan14, Tan15, Tan18a], Tanaka de-
veloped the full machinery of the logarithmic MMP for surfaces over excellent schemes.
In [HX15], the authors proved the existence of the flips for threefolds in characteristic
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p > 5 using tools from the theory of F -singularities. This was the starting point for
the development of the threefold logarithmic MMP in characteristic at least five (see
[CTX15, Bir16, BW17, HNT19]).

Motivated by these recent developments, my Ph.D. research focused on reaching a bet-
ter understanding of the birational geometry of threefolds and higher-dimensional varieties
in positive characteristic. I was particularly motivated by the following questions:

1. Which classical statements of the Minimal Model Program over the complex numbers
are still valid in positive characteristic?

2. Which pathological phenomena can appear on threefolds in low characteristic?

3. Which properties of the singularities of the Minimal Model Program are still true in
positive characteristic?

4. What can we say about the structure of the end-products of the MMP? For example,
can we classify the bad behaviour of fibres of Mori fibre spaces and of Calabi-Yau
fibre spaces for threefolds?

The above problems are all strictly connected to properties of varieties of Fano type in
positive characteristic. In the following sections, we summarise our own original contribu-
tion to the theory of minimal models in positive characteristic.

1.1. Fano varieties and singularities of the MMP in character-
istic p > 0

The Kodaira vanishing theorem, together with its vast generalisation known as Kawamata-
Viehweg vanishing theorem, is ubiquitous in the modern approach to birational geometry
over a field of characteristic zero. The most important results of the Minimal Model
Program, such as the base point free theorem ([KM98, Theorem 3.3]), the finite generation
of the canonical ring and the existence of flips ([BCHM10]) all rely on intensive applications
of vanishing theorems.

Unfortunately, Raynaud showed in [Ray78] that vanishing theorems à la Kodaira do
not hold in general for varieties over fields of positive characteristic. This failure is one of
the main obstacle to the implementation of the MMP algorithm in positive characteristic.
Since Raynaud’s example, a lot of research in positive characteristic birational geometry
focused on constructing examples of pathological varieties violating vanishing theorems
and on studying their geography (see for example [Eke88, SB91, Muk13, dCF15]).

In this context, varieties of Fano type over fields of characteristic p > 0 violating
Kodaira-type vanishing theorems revealed to be so elusive to construct that Kollár even
speculated whether such examples exist or not (see [Kol13, Remark 3.5]). Finding Fano
varieties violating the Kodaira vanishing theorem has wide-ranging consequences: it has
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been long understood that vanishing theorems for Fano varieties are strictly intertwined
with the study of the singularities of the MMP and with extension theorems.

In Chapters 3 and 4, we investigate these ideas by constructing Fano varieties that
violate vanishing theorems. Then, we use such examples to exhibit pathological behaviour
of singularities and the failure of extension theorems in positive characteristic.

1.1.1. Varieties of Fano type and Kodaira vanishing in positive charac-
teristic

In the recent article [Tot17], Totaro constructs a striking sequence of examples of smooth
Fano varieties violating the Kodaira vanishing theorem in every positive characteristic.
Before Totaro’s examples, very few classes of varieties of Fano type violating Kawamata-
Viehweg vanishing had been constructed and exclusively in small characteristic (see [LR97,
CT, Ber17, Kov18]).

An important feature of Totaro’s examples is that the dimension of the Fano varieties
he constructs grows with the characteristic. Thus it is natural to ask the following

Question 1.2 ([Tot17, Section 6]). Fix a natural number d. Does it exist a positive integer
p0(d) such that varieties of Fano type of dimension d over a perfect field k of characteristic
p ≥ p0(d) satisfy Kawamata-Viehweg vanishing?

The above question seems to be strictly related to the boundedness problem for Fano
varieties over Spec(Z). While in higher dimension Question 1.2 is widely open, the case of
surfaces has been settled by a recent work of Cascini-Tanaka-Witaszek.

Theorem 1.3 (cf. [CTW17, Theorem 1.2]). There exists a positive integer p0(2) such
that the following hold. Let X be a surface of del Pezzo type over a perfect field k of
characteristic p > p0(2). Let B be a boundary divisor such that (X,B) is klt and let D be
a Weil Q-Cartier divisor such that D − (KX +B) is big and nef. Then

H1(X,OX(D)) = 0.

We actually know more in the case of surfaces: the Kawamata-Viehweg vanishing holds
for smooth del Pezzo surfaces over any perfect field (see [CT18, Appendix A]) and even
for regular del Pezzo surfaces over an imperfect field of characteristic p > 3 (see [Das,
Theorem 1.1]).

Unfortunately, the costant p0(2) obtained in 1.3 is not explicit since it is constructed
using boundedness results for surfaces of del Pezzo type in mixed characteristic and Noethe-
rian induction.

In [CT, Theorem 4.2], the authors construct a family of klt del Pezzo surfaces in
characteristic two violating Kawamata-Viehweg vanishing, thus showing p0(2) > 2. In
[Ber17], we produce a counterexample in characteristic three. It was the first example in
literature of a variety of Fano type violating Kawamata-Viehweg in characteristic larger
than two.
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Theorem 1.4 (Theorem 3.1). Over any field k of characteristic three, there exists a pro-
jective normal k-surface T such that

1. T has klt singularities and −KT is ample;

2. ρ(T ) = 1;

3. there exists an ample Q-Cartier Weil divisor A on T such that H1(T,OT (−A)) ̸= 0.

Another well-known property of varieties of Fano type X in characteristic zero is the
vanishing of H i(X,OX) for i > 0 (and thus χ(X,OX) = 1). However, the vanishing
of the coherent cohomology of the structure sheaf of varieties of Fano type in positive
characteristic (especially of the first cohomology group) is still an open question.

The only known result in all dimensions is the beautiful theorem of Esnault [Esn03],
where she proves that smooth Fano varieties in positive characteristic satisfy the vanishing
of Witt-vector cohomology H i(X,WOX,Q) = 0 for i > 0. This vanishing was extended
to the case of threefolds of Fano type in characteristic at least five by Gongyo-Nakamura-
Tanaka (see [GNT]). As for coherent cohomology, it is well-known that surfaces of del Pezzo
type have vanishing cohomology group and if X is a smooth Fano threefold, Shepherd-
Barron shows in [SB97] that H i(X,OX) = 0 for i > 0.

We prove that there exists mildly singular Fano varieties with non-vanishing interme-
diate cohomology:

Theorem 1.5 (Theorem 4.9). Let k be a field of characteristic p ≥ 3. Then there exists a
Fano variety W with terminal singularities of dimension 2p+ 2 over k such that

H2(W,OW ) ̸= 0.

Let us remark that the existence of smooth Fano varieties with non-vanishing interme-
diate cohomology is still unknown.

1.1.2. Singularities of the MMP in positive characteristic

We shift our attention to the study of singularities of the Minimal Model Program in
positive characteristic.

One of the most important applications of Kawamata-Viehweg vanishing in charac-
teristic zero is the proof, originally due to Elkik [Elk81], that Kawamata log terminal
singularities (in short, klt) are Cohen-Macaulay and rational (see also [KM98, Theorem
5.22]). In characteristic p > 0, due to the failure of vanishing theorems, general cohomo-
logical properties of klt singularities are still largely unknown. However, according to a
local-global principle, they are expected to be strictly related to vanishing theorems for
varieties of Fano type.

As an instance of this principle, Hacon and Witaszek show in [HW17] that Kawamata
log terminal threefold singularities are Cohen-Macaulay and rational over perfect fields of
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characteristic p > p0(2) as a consequence of the Kawamata-Viehweg vanishing theorem for
log del Pezzo surfaces.

As for low characteristic, in [CT, Theorem 1.3] the authors give an example of a klt
not Cohen-Macaulay threefold in characteristic two. Building on Theorem 1.4 and using a
cone construction (see Section 2.3), we find the first examples of threefold klt singularities
which is not rational in characteristic larger than two:

Theorem 1.6 (Theorem 3.2). Let k be a field of characteristic three. Then there exists a
Q-factorial klt threefold singularity X which is not Cohen-Macaulay.

In [Tot17, Corollary 2.2], Totaro shows that there exists (not Q-factorial) terminal
singularities which are not Cohen-Macaulay in every positive characteristic by taking the
cone over the Fano varieties he constructs. Recall that rational singularities implies Cohen-
Macaulay, thus the above examples show also that klt singularities are not necessarily
rational in positive characteristic.

Another important property of singularities in characteristic zero due to Kawamata-
Viehweg vanishing is the normality of the centre S of a purely log terminal (plt) pair
(X,S + B) (see [KM98, Proposition 5.51]). The normality of plt centres is a crucial
ingredient in the proof of the existence of pl-flips in characteristic zero (see [HM07] and
[BCHM10]). It is also one of the key step for the MMP for threefolds: in [HX15, Theorem
3.1.1 and Proposition 4.1] the authors show the normality of plt centres for threefolds
over an algebraically closed field of characteristic p > 5 using tools from the theory of
F -singularities. This is the first step of their proof of the existence of pl-flips for threefolds
([HX15, Theorem 4.12]).

One might thus be led to conjecture that plt centres are normal also in positive char-
acteristic. Unfortunately, this is not the case: in [CT, Theorem 1], Cascini and Tanaka
construct an example of a plt threefold with non-normal centre in characteristic two. In-
spired by their work, in [Ber18] we use Totaro’s examples to construct non-normal plt
centres for every prime p ≥ 3

Theorem 1.7 (Theorem 4.4). Let k be any field of characteristic p ≥ 3. Then there exists
a log pair (Z, S) such that

1. Z is an affine variety over k with terminal singularities of dimension 2p + 2 and S
is a prime divisor,

2. (Z, S) is a purely log terminal pair with KZ + S Cartier,

3. S is not normal.

In Corollary 4.8 we show that the above theorem shows that the ‘Main lifting lemma’
of Hacon and McKernan (see [HM07, Theorem 5.4.21]) may fail in positive characteristic.

In Section 4.4, we present a further pathology for singularities in positive characteristic.
Over a field of characteristic zero, a well-known result of Ambro and Fujino asserts that
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the base of a Mori fibre space has klt singularities (see [Fu99, Corollary 4.6] and [Amb05,
Theorem 0.2]). Their proof uses positivity theorems which are obtained via Hodge theory.
One might thus wonder if a similar statement hold in positive characteristic. Recently
Tanaka showed in [Tana, Theorem 1.1] that the answer is negative: he constructs examples
of klt varieties admitting a Mori fibre spaces onto a basis with non-klt singularities in
characteristic two and three. Building on work on wild quotient singularities of Yasuda
([Yas17]), we construct examples in larger characteristic:

Theorem 1.8 (Theorem 4.11). Let k be a field of characteristic p ≥ 5. Then there exists
a projective contraction f : X → Y of normal k-varieties such that

1. X is a Q-factorial terminal quasi-projective variety of dimension p+ 3;

2. Y is a Q-factorial affine variety of dimension three which is not log canonical;

3. ρ(X/Y ) = 1 and −KX is f -ample, equivalently f is a Mori fibre space.

1.2. Generic fibres of del Pezzo fibrations in positive charac-
teristic

The minimal model conjecture predicts that an arbitrary variety is birational to either a
Mori fibre space, a Calabi-Yau fibre space or a canonically polarised variety. Thus, from
the point of view of the classification theory of varieties, it is particularly important to
understand the properties of Mori fibre spaces and Calabi-Yau fibre space.

In positive characteristic, the study of fibre spaces has an additional difficulty: the
failure of the generic smoothness theorem. Indeed, given a fibration f : V → B (i.e.
a proper morphism between algebraic varieties such that f∗OV = OB and dim(B) <

dim(V )), the general fibre of f may be non-normal or even non-reduced. Such fibrations
are often called in literature wild fibrations.

One can interpret the bad behaviour of the general fibres of fibrations f in terms the
geometric properties of the generic fibre Vk(B) := V ×B Spec(K(B)), which is now a variety
defined over an imperfect field. Let us recall here the difference between regular and smooth
varieties over non-perfect fields and let us explain why it is important to consider regular
varieties. We say that a variety V of dimension n is regular if for all points x in V the
local rings OV,x are regular, i.e. dimk(x)mx/m

2
x = dimOV,x where mx is the maximal ideal

of OV,x. If V is a smooth variety over k, then V is regular but the converse is true only
when k is a perfect field. However regularity is preserved by localisation and thus if V is a
k-smooth variety admitting a fibration f : V → B, the generic fibre Vk(B) remains regular.
The following shows exactly an example where Vk(B) is not smooth.

Example 1.9. Let us show with a concrete example how general fibres of a fibration
between smooth varieties can have wild behaviour in positive characteristic. Let k be an
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algebraically closed field of characteristic p > 0 and consider the p-Fermat hypersurface
(see [MS03, Sch10]):

V := {x0yp0 + x1y
p
1 + . . . xny

p
n = 0} ⊂ Pnx × Pny .

The variety V is smooth over k and the generic fibre Vk(Pn
x)

is a regular variety. However,
all the fibres of the projection πx : V → Pnx are non-reduced and the geometric generic fibre
V
k(Pn

x)
is a non-reduced scheme.

One can hope to bound the possible pathological behaviour to small characteristic if
further geometric conditions are imposed on the generic fibre. This is suggested by our
experience with the classification theorem for algebraic surfaces over algebraically closed
fields of positive characteristic (see [BM76]):

Theorem 1.10. Let k be an algebraically closed field of characteristic p > 0. Let S be a
projective surface over k and let π : S → C be a projective contraction onto a normal curve
C. Then the following hold.

1. If π : S → C is a Mori fibre space, the general fibre of π is a smooth rational curve.

2. If π : S → C is a Calabi-Yau fibre space, then the general fibre is either a smooth ellip-
tic curve or it is a cuspidal cubic. The latter case, known as quasi-elliptic fibrations,
can happen only if p ∈ {2, 3}.

The proof of Theorem 1.10 can be divided in two steps. First, one proves that the
generic fibre is geometrically integral (see for example [Bad01, Corollary 7.3]). Then the
Tate’s genus-change formula for curves (see [Tat52, Sch09]) gives a bound on the wild
behaviour of the generic fibre. For a more detailed, yet concise, discussion of the proof we
refer to [Lie13, Section 5.1].

After the development of the MMP for threefolds, it is natural to look for a char-
acterisation analogue to Theorem 1.10 on wild fibres of threefold Mori fibre spaces and
Calabi-Yau fibre spaces.

Recently, Tate’s formula has been generalised to the higher dimensional case as an
adjunction formula for the canonical divisors under purely inseparable base change of the
base fields (see [Tan18b, PW, Tanb]). One can thus hope to generalise the strategy of the
proof of Theorem 1.10 to the higher dimensional case. The case of threefold Mori fibre
spaces has especially received particular attention in recent work (see [PW, FS18, BT19]).
Let us summarise the results in the literature and explain our own contribution.

In the case of a Mori fibre spaces of relative dimension one (the so-called conic bundles)
the characterisation of wild fibres is classical: either the general fibre is a smooth rational
curve or it is a double conic and the latter case can happen only for p = 2.

In the case of a contraction π : V → B of relative dimension two (the so-called del
Pezzo fibrations), the situation is much more subtle. In [Kol91, Remark 1.2.1], Kollár
asks whether the general fibre of a threefold del Pezzo fibration is normal. Since terminal
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singularities are regular in codimension two (see [Kol13, Corollary 2.30]), this is equivalent
to show geometric normality of regular del Pezzo surfaces over imperfect fields.

As a first positive result on Kollár’s question, Patakfalvi and Waldron show that no
pathologies can appear on regular del Pezzo surfaces in sufficiently large characteristic.

Theorem 1.11 ([PW, Theorem 1.5]). Let k be a field of positive characteristic p ≥ 5. Let
X be a regular projective del Pezzo surface over k such that H0(X,OX) = k. Then X is
geometrically normal.

In a recent article, Fanelli and Schröer completely settle Kollár’s question, proving that
the general fibre of a Mori fibre space onto a curve is normal also in low characteristic.

Theorem 1.12 ([FS18, Theorem 14.1]). Let k be a field of positive characteristic p > 0, let
k be an algebraic closure of k. Suppose such that [k : kp] ≤ p, where kp =

{
x ∈ k | xp ∈ k

}
(e.g. k is the function field of a curve over an algebraically closed field). Let X be a regular
projective del Pezzo surface over k such that H0(X,OX) = k. If ρ(X) = 1, then X is
geometrically normal, i.e. X ×k k is normal.

In both of the above results, the regularity (or at least the Gorenstein) assumption on
X plays a crucial role. However, from the perspective of the log MMP, it is natural to
investigate the properties of general fibres of (KX +∆)-Mori fibre spaces, where (X,∆) is
a Kawamata log terminal threefold pair. In the log case, more pathologies on general fibres
have been constructed in literature: in [Sch07] and [Tana] the authors exhibit surfaces of
del Pezzo type with non-vanishing irregularity over any imperfect field of characteristic
p = 2, 3.

Motivated by the previous results, in a joint work with H. Tanaka (see [BT19]), we
carry a systematic study of the possible pathological behaviour on surfaces of del Pezzo
type over imperfect fields. The following is the main result of Chapter 5. Let us stress
that the most interesting case covered by the following result is when k is not perfect or
X does not admit a smooth birational model.

Theorem 1.13 (Theorem 5.3, Theorem 5.4, Theorem 5.7). Let k be a field of positive
characteristic p > 0. Let X be a surface of del Pezzo type over k such that k = H0(X,OX).
Then the following hold.

1. Let p ≥ 7. Then X is geometrically integral and H1(X,OX) = 0. If k is a C1-field,
then X has a k-rational point.

2. Let p ∈ {3, 5}. If L is a Cartier divisor on X such that L ≡ 0, then pL ∼ 0. If k is
a C1-field, then X has a k1/p-rational point.

3. Let p = 2. If L is a Cartier divisor on X such that L ≡ 0, then 4L ∼ 0. If k is a
C1-field, then X has a k1/4-rational point.

In Chapter 5, we also present various applications to the global geometry of del Pezzo
fibrations. More precisely, we prove a bound on the torsion index of relatively numerical
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trivial Cartier divisors on del Pezzo threefold fibration and the existence of a purely insep-
arable section of bounded degree (see Theorem 5.1 and Theorem 5.2). Unfortunately, we
still do not whether the general fibre of klt del Pezzo fibration is normal in characteristic
at least seven.

1.3. On the base point free theorem for threefolds in large
characteristic

Let X be a normal projective variety over k and let L be a nef Cartier divisor on X. One of
the central questions in birational geometry is to find sufficient conditions on L to ensure
it is semi-ample.

Over a field of characteristic zero, the most important semi-ampleness statement is the
Base point free theorem developed by Kawamata, Kollár, Mori, Reid and Shokurov:

Theorem 1.14 ([KM98, Theorem 3.3]). Let (X,∆) be a projective Kawamata log terminal
pair over a field of characteristic zero. Let L be a nef Cartier divisor such that nL−(KX+

∆) is a big and nef Q-Cartier Q-divisor for some n > 0. Then the complete linear system
|mL| has no base points for m≫ 0.

The proof uses heavily vanishing theorems that are not in general available over fields
of positive characteristic. Since the base point free theorem is the first step needed in
order to run the MMP, it is a natural question to ask whether it remains valid in positive
characteristic.

In [Kee99], using special properties of the Frobenius morphism, Keel proves a base
point free theorem for big and nef Cartier divisors on threefolds in positive characteristic,
but working in the category of algebraic spaces (see [Kee99, Theorem 0.5]).

Using the Minimal Model Program for threefolds in characteristic p > 5, Birkar and
Waldron extend Keel’s result to nef (but not necessarily big) divisors and show that the
contraction morphism is also projective:

Theorem 1.15 ([BW17, Theorem 1.2]). Let k be a perfect field of characteristic p > 5.
Let (X,∆) be a projective Kawamata log terminal threefold pair over k. Let L be a nef
Cartier divisor on X and assume that nL− (KX +∆) is a big and nef Q-Cartier Q-divisor
for some n > 0. Then |mL| has no base points for m sufficiently large and sufficiently
divisible.

Let us note that Theorem 2.5 is weaker than the classical base point free theorem: a
priori we have to impose m to be sufficiently divisible to conclude that |mL| is base point
free. This divisibility condition is indeed necessary in general as shown by Tanaka in [Tana,
Theorem 1.2].

However Tanaka’s examples are in characteristic two and three and thus one can ask if
the divisibility condition of Theorem 2.5 can be removed for threefolds defined over fields
of large characteristic. This is especially interesting if one is interested in effectivity results.
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In Chapter 6, we use the Kawamata-Viehweg vanishing theorem for log del Pezzo
surfaces (see Theorem 1.3) and techniques from the Minimal Model Program to prove the
stronger form of the base point free theorem for nef Cartier divisors of numerical dimension
at least one in large characteristic.

Theorem 1.16 (Theorem 6.1). There exists an integer p0 ≥ 5 such that the following
holds. Let k be a perfect field of characteristic p > p0. Let (X,∆) be a projective klt
threefold log pair over k. Let L be a nef Cartier divisor on X such that nL− (KX +∆) is
a nef and big Q-Cartier Q-divisor for some n > 0. Suppose that the numerical dimension
ν(L) is at least one. Then the linear system |mL| is base point free for m≫ 0.





2
Preliminaries

2.1. Notations and conventions

Throughout this thesis, k will denote an arbitrary field.

• For a field k, we denote k (resp. ksep) an algebraic closure (resp. a separable closure)
of k. If k is of characteristic p > 0, then we set k1/p∞ :=

∪∞
e=0 k

1/pe =
∪∞
e=0{x ∈

k |xpe ∈ k}.

• We say X is a k-variety, or simply a variety whenever the field k is clear from the
context, if X is an integral scheme that is separated and of finite type over k. We
say that X is a curve over k or a k-curve (resp. a surface over k or a k-surface, resp.
a threefold over k) if X is a k-variety of dimension one (resp. two, resp. three). We
denote by K(X) its field of rational functions.

• Let f : X → Y be a projective morphism between normal varieties. We say that f
is a contraction if f∗OX = OY .

• For a scheme X, its reduced structure Xred is the reduced closed subscheme of X such
that the induced morphism Xred → X is surjective.

• If k ⊂ k′ is a field extension and X is a k-scheme, we denote X ×Spec k Spec k
′ by

X ×k k
′ or Xk′ .

• Let X be a scheme of finite type over a field k and let k ⊂ k′ be an algebraic field
extension. We denote by X(k′) the subset of X consisting of the closed points x such
that there is a k-algebra homomorphism k(x) → k′.

23
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• Let X be a normal variety over k. We denote by KX the canonical divisor class of
X (for a more detailed discussion of canonical class on singular varieties see [Kol13,
pages 7-8]).

• We say (X,∆) is a log pair if X is a normal variety, ∆ is an effective Q-divisor and
KX +∆ is a Q-Cartier Q-divisor.

• We say that a normal variety X is Q-factorial if for any Weil divisor D there exists
an integer m such that mD is a Cartier divisor.

• Let (X,∆) be a log pair. Let f : Y → X be a proper birational morphism, where Y
is a normal variety. Then we have

KY +∆Y = f∗(KX +∆), where ∆Y = f−1
∗ ∆−

∑
Ei| f−except.

a(Ei, X,∆)Ei

for some a(Ei, X,∆) ∈ Q. The coefficients a(Ei, X,∆) are called the discrepancies
of the pair (X,∆) and they can be considered as a measure of the singularities of
the pair (X,∆). We say that (X,∆) is Kawamata log terminal (for short klt) if for
every birational morphism f : Y → X we have ⌊∆Y ⌋ ≤ 0 (or equivalently ⌊∆⌋ ≤ 0

and a(Ei, X,∆) > −1). We say that the pair is terminal if a(Ei, X,∆) > 0. For a
more detailed discussion on the singularities of the MMP we refer to [Kol13, Section
2.1].

• We say that X is a variety of Fano type if there exists an effective Q-divisor ∆ such
that (X,∆) is a log Fano pair, i.e. (X,∆) has Kawamata log terminal singularities
and −(KX +∆) is ample. If X has dimension two, we say that it is a surface of del
Pezzo type and the pair (X,∆) is said to be a log del Pezzo pair.

• For an Fp-scheme X we denote by FX : X → X the absolute Frobenius morphism.
The absolute Frobenius morphism acts on the scheme X as the identity on the
topological space and as the p-th power map on the structure sheaf. For a positive
integer e we denote by F eX : X → X the e-th iterated absolute Frobenius morphism.

• In a few occasions we will also need some notions from the theory of F -singularities.
Let X be a normal scheme over a field k of characteristic p > 0 and suppose that the
absolute Frobenius F : X → X is a finite morphism. Let ∆ be an effective Q-divisor
on X. We say that (X,∆) is F -pure if there exists e > 0 such that the morphism

OX → F e∗OX ↪→ F e∗OX(⌊(pe − 1)∆⌋)

locally splits in the category of OX -modules homomorphisms. We say that (X,∆)

is strongly F -regular if for any effective divisor E on X there exists e > 0 such that
the morphism

OX → F e∗OX ↪→ F e∗OX(⌊(pe − 1)∆⌋+ E)
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locally splits in the category of OX -modules homomorphisms.

• Let X be a normal variety and let L be a reflexive sheaf on X. We denote by
L[m] := (L⊗m)∨∨. If L is a reflexive sheaf of rank one, we say that L is a Weil
divisorial sheaf. In this case, there exists a Weil divisorD onX such that L ≃ OX(D)

and L[m] ≃ OX(mD). We say that L is Q-Cartier if there exists an m such that L[m]

is an invertible sheaf (or equivalently mD is a Cartier divisor).

• We recall some notions of positivity that appear frequently in birational geometry.
Let f : X → Y be a proper morphism between integral schemes and let L be an
invertible sheaf on X. We say tha L is f -semi-ample if there exists a positive integer
m > 0 such that the canonical map

f∗f∗L
⊗m → L⊗m (2.1)

is surjective. We say moreover it f -ample if the natural morphisms of schemes over
Y

X //

��?
??

??
??

? PY (f∗L⊗m)

yysss
ss
ss
ss
s

Y .

(2.2)

is an embedding. We say that L is f -big if if there exists a positive integer m > 0

such that the canonical map of Equation 2.1 is generically surjective and the natural
map of schemes over Y

X //

��?
??

??
??

? PY (f∗L⊗m)

yysss
ss
ss
ss
s

Y .

(2.3)

is generically an embedding. We say that L is f -nef if L · C ≥ 0 for any integral
curve C ∈ X such that f(C) is zero dimensional. When Y = Spec(k) is the spectrum
of a field, we say that the invertible sheaf L is semi-ample, ample, nef or big with no
reference to the structure morphism f : X → Spec(k). For more details and results
on positivity in algebraic geometry we refer to the books [Laz04a] and [Laz04b].

• Let L be a Cartier divisor on a variety X over k. We define the base locus Bs(L) of
L by

Bs(L) :=
∩

s∈H0(X,L)

{x ∈ X | s|x = 0} .

In particular, Bs(L) is a closed subset of X.

• We recall the basic definition of the contractions that appear when running the
Minimal Model Program. Let f : X → Y be a projective contraction between quasi-
projective normal varieties. Let (X,∆) be a klt pair. We say that f is a (KX +∆)-
extremal negative contraction if ρ(X/Y ) = 1 and −(KX +∆) is f -ample. When the
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pair (X,∆) is clear from the context, we will simply say it is an extremal negative
contraction. If dim(Y ) < dim(X) we say that f : X → Y is a Mori fibre space. If
dim(Y ) = dim(X) and the exceptional locus Ex(f) has pure codimension one, we say
that f is a divisorial contraction. If the codimension of the exceptional locus Ex(f)

is bigger than one we say that f is a flipping contraction. In the latter case, we say
that f+ : X+ → Y is the flip if it is a projective birational morphism between normal
varieties such that the exceptional locus Ex(f+) has codimension at least two and
the divisor KX+ + ∆+ is an f+-ample Q-Cartier Q-divisor, where ∆+ is the strict
transform of ∆. These notion can be extended to the dlt or log canonical setting.
For more details on the MMP we refer to [KM98] and [BCHM10].

• Let k be an algebraically closed field. For a normal surface X over k and a canonical
singularity x ∈ X (i.e. a rational double point), we refer to the table at [Art77, pages
15-17] for the list of equations of type An, Dm

n and Emn . For example, we say that
x is a canonical singularity of type An if the henselisation of OX,x is isomorphic to
k{x, y, z}/(zn+1 + xy), where k{x, y, z} denotes the henselisation of the local ring of
k[x, y, z] at the maximal ideal (x, y, z).

2.2. The Minimal Model Program in positive characteristic

In this section, we recall the results we will need from the Minimal Model Program for
surfaces and threefolds. These will be used in Chapters 5 and 6.

2.2.1. Minimal model program for excellent surfaces

In [Tan18a], Tanaka proves the minimal model conjecture for surfaces over excellent base
schemes. Since the proofs in minimal model theory often rely on induction on the dimen-
sion, this can be thought as a first step towards establishing both the MMP for arithmetic
threefolds and the MMP for threefolds over imperfect fields.

For a reference to excellent schemes we refer to [Liu02, Section 8.2.3]. For us we will
need the case where the excellent scheme B is either the spectrum of a local ring obtained
by localising an algebraic variety over a possibly non-closed point or the spectrum of a
(possibly imperfect) field.

Let us summarise some of Tanaka’s results we will use in the following.

Theorem 2.1 (MMP for excellent surfaces, cf. [Tan18a, Theorem 1.1]). Let B be a regular
excellent scheme of finite type. Let π : X → S be projective B-morphism from a integral
normal quasi-projective B-scheme X of dimension two to a quasi-projective B-scheme S.
Let ∆ be an effective R-divisor. Assume that the pair (X,∆) is log canonical. Then there
exists a sequence of birational projective S-morphisms:

X := X0
φ0−→ X1

φ1−→ . . .
φn−1−−−→ Xn =: Y,
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and divisors ∆i and ∆Y such that

∆0 := ∆,∆i := (φi−1)∗∆i−1,∆Y := ∆n

for which the following hold:

1. each Xi is an integral normal scheme,

2. ρ(Xi/Xi+1) = 1 and −(KXi/B +∆i) is φi-ample.

3. (Y,∆Y ) satisfies one of the following:

(i) KY/B +∆Y is nef over S,

(ii) There is a projective S-contraction µ : Y → Z such that dim(Z) < dim(Y ),
ρ(Y/Z) = 1 and −(KY/B +∆) is µ-ample.

The main ingredient in developing the minimal model program is the following base
point free theorem on excellent surfaces.

Theorem 2.2 (Base point free theorem for excellent surface, cf. [Tan18a, Theorem 4.2]).
Let B be a regular excellent separated scheme of finite dimension. Let π : X → S be a
projective B-morphism from a quasi-projective normal B-surface to a quasi-projective B-
scheme. Assume that there are a effective Q-divisor ∆ on X and a nef Cartier divisor D
on X which satisfy the following properties:

1. (X,∆) is a Kawamata log terminal pair,

2. D − (KX/B +∆) is π-nef and π-big, and

3. if T is the affine spectrum of a field of positive characteristic k for the Stein factori-
sation π : X → T → S of π, then either k is a perfect fied or D ̸≡ 0.

Then there exists a positive integer b0 such that |bD| is π-free for any integer b with b ≥ b0.

Remark 2.3. The remaining case where k is an imperfect field and D ≡ 0 will be settled
in Theorem 5.3.

Comment 2.4. Let us explain why, even if one is exclusively interested in birational ge-
ometry over algebraically closed fields of positive characteristic, it is natural to discuss
birational geometry over more general base schemes. The reasons for this degree of gener-
ality are mainly the following two.

1. Singularity theory: it is often convenient to localise at non-closed point of a variety
to prove statements in singularity theory. For example, the fact that terminal (resp.
canonical) singularities are regular (resp. Gorenstein) in codimension two is due to
the statement on terminal (resp. canonical) singularities of excellent surfaces (see
[Kol13, Theorem 2.29 and Theorem 2.30]). Another example is the proof that general
hyperplane sections of klt threefolds singularities are still klt in characteristic p > 5

(see [ST17, Main Theorem]). We will use this principle in the proof of Theorem 6.22.
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2. Fibrations in positive characteristic: if one is interested in properties of the generic
fibres of fibre spaces (and deduce some properties of general fibres), one has to study
varieties defined over imperfect fields.

2.2.2. Minimal model program for threefolds in characteristic p > 5

In recent years, starting from the ground-breaking result of Hacon and Xu ([HX15]) on
the existence of dlt flips for threefolds log pairs (X,∆) with standard coefficients over
an algebraically closed field k of characteristic p > 5, the Minimal Model Program for
threefolds over fields of characteristic at least five has undergone a major development (see
[CTX15, Bir16, BW17, GNT, HNT19])

Here we summarise the results of the Minimal Model Program for threefolds in charac-
teristic p > 5 that are known in the literature. We start from the base point free theorem
for klt pairs.

Theorem 2.5 ([BW17, Theorem 1.2]). Let k be a perfect field of characteristic p > 5. Let
(X,∆) be a klt threefold pair over k. Let L be a nef Cartier divisor on X and assume that
L− (KX +∆) is big and nef. Then L is semi-ample.

Next, we recall the existence of flips:

Theorem 2.6 ([HX15, Theorem 1.1], [Bir16, Theorem 1.1], [HNT19, Theorem 3.2]). Let
k be a perfect field of characteristic p > 5. Let (X,∆) be a log canonical threefold pair over
k. Let f : X → Z be a (KX +∆)-negative flipping contraction. Then its flip exists.

We now discuss the problem of termination of sequence of flips. The most general
results are the following two:

Theorem 2.7 (Special termination, cf. [GNT, Theorem 2.6], [Bir16, Proposition 5.5]).
Let k be a perfect field. Let Z be a quasi-projective variety over k. Let (X,∆) be a Q-
factorial dlt threefold pair, projective over Z. Then every sequence of (KX +∆)-flips over
Z terminates around ∆=1.

The following theorem shows the termination for a special type of MMP, called MMP
with scaling. This is an MMP where divisorial and flipping contraction are chosen with
the aid of an additional effective divisor H, which act as a compass in the choice of the
contractions. For an explanation of the algorithm of the MMP with scaling, we refer to
[BCHM10, Section 3.10].

Theorem 2.8 (Termination of MMP with scaling, cf. [BW17, Theorem 1.6], [HNT19,
Theorem 6.12]). Let k be a perfect field of characteristic p > 5. Let (X,∆) be a threefold
log pair over k. Let f : X → Z be a projective k-morphism to a quasi-projective k-scheme
Z. Then

1. If (X,∆) is klt and H is an ample divisor, then any (KX + ∆)-MMP over Z with
scaling of H terminates.

2. If (X,∆) is log canonical, then there exists a (KX +∆)-MMP which terminates.
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2.3. Cone constructions

Taking cones over normal projective varieties will be the main technical tool used in Chap-
ters 3 and 4 to construct pathological examples of singularities of the MMP in positive
characteristic. The main idea to construct such pathologies consists in considering a log
Fano variety X for which some form of Kodaira vanishing fails and then taking the cone
over X.

2.3.1. Cones of Q-Cartier Weil divisors

For the theory of cones on polarised algebraic varieties (X,L) where X is a projective
normal variety and L is an ample Cartier divisor, we refer to [Kol13, Chapter 3]. In
Chapter 3, we need to deal with a generalisation, originally due to Demazure [Dem88], of
the cone constructions to the case of ample Q-Cartier Weil divisors. We thus extend some
of the results explained by Kollár to this setting.

Let (X,∆) be a log pair of dimension n and let L be an ample Q-Cartier Weil divisorial
sheaf on X. We denote by

Ca(X,L) := Speck
∑
m≥0

H0(X,L[m])

the cone over X induced by L. The point defined by the ideal
∑

m≥1H
0(X,L[m]) is called

the vertex of the cone and we denote it by v. Over X we consider the affine morphism:

π : BCa(X,L) := SpecX
∑
m≥0

L[m] → X.

The morphism π comes with a natural section X− defined by the vanishing of the ideal
sheaf

∑
m≥1 L

[m]. The open subset of BCa(X,L)

SpecX
∑
m∈Z

L[m] = BCa(X,L) \X−,

is isomorphic to C∗
a(X,L) := Ca(X,L) \ v. We have the following diagram:

BCa(X,L)
π //

f
��

X

Ca(X,L) .

(2.4)

The birational morphism f contracts exactly the section X− of π with anti-ample Q-
Cartier divisorial sheaf OX−(X−) ≃ L∨. Given a Q-Cartier Q-divisor D on X, we can
construct a Q-divisor DCa(X,L) = f∗π

∗D on Ca(X,L).
The following result (originally due to [Wat81]) describes the divisor class group of the

cone and the condition under which the log canonical class is Q-Cartier.
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Proposition 2.9 (cf. [Kol13, Proposition 3.14]). With the same notation as in diagram
(2.4), we have

1. Pic(Ca(X,L)) = 0,

2. Cl(Ca(X,L)) = Cl(X)/⟨L⟩,

3. m(KCa(X,L) + ∆Ca(X,L)) is Cartier if and only if there exists r ∈ Q such that
OX(m(KX +∆)) ≃ L[rm]. Moreover,

KBCa(X,L) + π∗∆+ (1 + r)X− = f∗(KCa(X,L) +∆Ca(X,L)). (2.5)

Proof. Let Z be the locus where L is not a Cartier divisor and denote the open set
V := X \ Z. Since X is normal, Z has codimension at least two and thus Cl(V ) ≃ Cl(X)

and Pic(V ) ≃ Pic(X). By construction, π : π−1(V ) → V is an A1-bundle and thus
Cl(π−1(V )) ≃ Cl(V ) and Pic(π−1(V )) ≃ Pic(V ). Since π is equi-dimensional, we con-
clude that the codimension of π−1(Z) is at least two and thus

Cl(BCa(X,L)) ≃ Cl(π−1(V )) ≃ Cl(V ) ≃ Cl(X),

and analogously we have Pic(BCa(X,L)) ≃ Pic(X).
We prove (1). Let M be a line bundle on Ca(X,L). Then f∗M is trivial on X−, thus

concluding that M is trivial on Ca(X,L).
We prove (2). Since v has codimension at least two in Ca(X,L), we have Cl(Ca(X,L)) ≃

Cl(C∗
a(X,L)). Thus we have

Z[X−] → Cl(BCa(X,L)) → Cl(C∗
a(X,L)) → 0.

Since OX−(X−) ≃ L∨, we conclude (2).
We prove (3). We have π−1(V )\X− → V is a Gm-bundle. Thus there is a natural linear

equivalence Kπ−1(V ) + X−|π−1(V ) ∼ π∗KV which extends to a natural linear equivalence
KBCa(X,L) +X− ∼ π∗KX . Thus KBCa(X,L) + π∗∆+X− ∼ π∗(KX +∆). By assertion (2),
the divisor mKCa(X,L) + m∆Ca(X,L) is Cartier if and only if mKC∗

a(X,L)
+ m∆C∗

a(X,L)
is

linearly equivalent to zero. This is equivalent to m(KX +∆) ∼ rmL for some r ∈ Q. As
for the last equality, we have

KBCa(X,L) + π∗∆+ (1 + a)X− = f∗(KCa(X,L) +∆Ca(X,L)),

for some a. By restricting to X− we have

0 ∼Q (KBCa(X,L) + π∗∆+ (1 + a)X−)|X− ∼ KX +∆+ aX−|X− ∼Q rL− aL,

thus concluding.

From the point of view of the singularities of the MMP we have the following
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Proposition 2.10 (cf. [Kol13, Lemma 3.1]). With the same notation as in diagram (2.4),
let us assume that KX +∆ ∼Q rL.

1. If L is Cartier, then the pair (Ca(X,L),∆Ca(X,L)) is terminal (resp. klt) if and only
if the pair (X,∆) is terminal (resp. klt) and r < −1 (resp. r < 0).

2. If L is Cartier, then the pair (Ca(X,L),∆Ca(X,L)) is dlt if the pair (X,∆) is dlt and
r < 0.

3. If X is Q-factorial and char(k) = 0, then (Ca(X,L),∆Ca(X,L)) is klt if and only if
(X,∆) is klt and r < 0.

Proof. Assertions (1) and (2) are proven in [Kol13, Lemma 3.1]. We prove assertion (3).
Since (X,∆) is klt, we conclude by inversion of adjunction (see [KM98, Theorem 5.50])
that the pair (BCa(X,L), π∗∆+X−) is plt and the unique plt centre is X−. Since r < 0,
we have (BCa(X,L), π

∗∆+(1+ r)X−) is klt and thus by Proposition 2.9 we conclude the
proof.

Comment 2.11. Proposition 2.10 is probably the most evident instance of the general
principle that klt singularities should correspond to a local analogue of varieties of Fano
type.

We will be interested in understanding whether the singularity at the vertex of the cone
is Cohen-Macaulay or not.

For this reason, we show that the local cohomology at the vertex of the cone is controlled
by the cohomology groups of L:

Proposition 2.12. For i ≥ 2,

H i
v(Ca(X,L),OCa(X,L)) ≃

⊕
m∈Z

H i−1(X,L[m]).

Proof. Since Ca(X,L) is affine, the cohomology groups H i(Ca(X,L),OCa(X,L)) vanish for
i ≥ 1. Thus, by the long exact sequence in local cohomology (see [Ha77, Chapter III, ex.
2.3]), we have

H i
v(Ca(X,L),OCa(X,L)) ≃ H i−1(U,OU ) for i ≥ 2.

Since f is affine, we have

H i−1(U,OU ) = H i−1(X, f∗OU ) =
⊕
m∈Z

H i−1(X,L[m]),

thus concluding.
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2.3.2. Projective cones

Let X be a normal variety over k and let L be an ample Q-Cartier Weil divisor on X. We
define the projective cone of X with respect to L as in [Kol13, Section 3.1, page 97]:

Cp(X,L) = Projk
∑
m≥0

(
m∑
r=0

H0(X,L[r])xm−r
n+1 ).

It contains as an open dense subset Ca(X,L). The following result, which shows how to
compute the cohomology of the structure sheaf of Cp(X,L), is probably well-known to
experts. We include a proof for sake of completeness.

Proposition 2.13. For i ≥ 2,

H i(Cp(X,L),OCp(X,L)) ≃
⊕
m>0

H i−1(X,L[m]).

Proof. We denote by v the vertex of Ca(X,L) ⊂ Cp(X,L) and we consider the natural
inclusion

V := Ca(X,L) \ v = SpecX
∑
m∈Z

L[m] ⊂ SpecX
∑
m≤0

L[m] = Cp(X,L) \ v =: U.

Considering the long exact sequences in local cohomology (see [Ha77, Chapter III, Ex 2.3])
we have the following natural commutative diagram

. . . // Hi−1(U,OU )
δi //

i∗

��

Hi
v(Cp(X,L),OCp(X,L))

//

≃
��

Hi(Cp(X,L),OCp(X,L))
//

i∗

��

. . .

. . . // Hi−1(V,OV )
ηi // Hi

v(Ca(X,L),OCa(X,L))
// Hi(Ca(X,L),OCa(X,L))

// . . . ,

where by i we mean the natural inclusion maps. It is easy to see that the diagram

Hi(U,OU )
i∗ //

≃
��

Hi(V,OV )

≃
��⊕

m≤0H
i−1(X,L[m]) // ⊕

m∈ZH
i−1(X,L[m])

commutes where the bottom arrow is the natural inclusion, thus showing that i∗ is
injective. Since H i−1(Ca(X,L),OCa(X,L)) = 0 for i ≥ 2, we have that the maps ηi are
isomorphisms and thus we conclude that δi are injective. Therefore we have the following
commutative diagram of short exact sequences:

0 //// Hi−1(U,OU )
δi //

≃
��

Hi
v(Cp(X,L),OCp(X,L))

//

≃
��

Hi(Cp(X,L),OCp(X,L))
//

≃
��

0

0 // ⊕
m≤0H

i−1(X,L[m]) // ⊕
m∈ZH

i−1(X,L[m]) // Hi(Cp(X,L),OCp(X,L))
// 0,
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which concludes the proof.

2.4. Vanishing theorems in positive characteristic

We collect the two main tools that we use to discuss vanishing theorems on log del Pezzo
surfaces. The first one comes from a blending of Ekedahl’s cyclic construction and Bend
and Break and it has already been successfully applied to the study of varieties in positive
characteristic.

Theorem 2.14 ([Kol96, Theorem II.6.2, Remark II.6.7.2]). Let k be a perfect field. Let
X be a normal variety over k. Let L be an ample Weil Q-Cartier divisor on X such that
H1(X,L∨) ̸= 0. Assume that X is covered by a family of curves {Dt} such that X is
smooth along the general curve Dt and such that

((p− 1)L−KX) ·Dt > 0.

Then for every point x ∈ X there exists a rational curve Cx passing through x such that

L · Cx ≤ 2 dimX
L ·Dt

((p− 1)L−KX) ·Dt
.

Remark 2.15. If dim(X) = 2, the same statement holds if L is assumed to be big and
nef.

The second tool we use is a Kodaira vanishing type theorem for varieties in positive
characteristic without irregularity.

Proposition 2.16 ([CT, Lemma 3.2]). Let k be a perfect field. Let X be a normal variety
over k such that H1(X,OX) = 0 and let A be an effective Weil divisor. Then the natural
map

H1(X,OX(−A)) → H1(X,F∗OX(−pA))

is injective.

As a direct consequence we have

Theorem 2.17. Let k be a perfect field. Let X be a Cohen-Macaulay normal variety over
k of dimension n ≥ 2 such that H1(X,OX) = 0 and let A be an ample (if n = 2 it is
sufficient big and nef) and effective Cartier divisor. Then

H1(X,OX(−A)) = 0.

Proof. By Proposition 2.16 we have that h1(OX(−A)) ≤ h1(OX(−pkA)) for every k ≥ 1.
By Serre duality we have h1(OX(−pkA)) = hn−1(OX(KX + pkA)), which vanishes for k
sufficiently large by Serre vanishing (resp. see [Kol96, Chapter II, Remark 6.2.4]).
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2.5. Geometry over imperfect fields

In this section, we summarise some results on varieties defined over imperfect fields. For
us, the main motivation to consider such varieties lies in understanding the geometry of
fibrations in positive characteristic.

2.5.1. Behaviour of the canonical class under base change

Let k be an imperfect field and let X be a normal proper variety over k. Assume that k is
integrally closed in K(X), equivalently k = H0(X,OX). Let k ⊂ k′ a non-separable field
extension. Then the base change Xk′ could be non-reduced or non-normal. We consider
the natural induced morphism

f : Y := (Xk
′ )Nred → X,

where (Xk
′ )Nred is the normalisation of (Xk

′ )red. For applications to birational geometry it
is particularly important to understand the relation between KY and KX . The following
is the higher-dimensional generalisation of Tate’s genus change formula for curves:

Theorem 2.18 ([Tan18b, Theorem 4.2], [PW, Theorem 1.1], [Tanb, Theorem 3.16]). Let k
be an imperfect field and let X be a normal proper variety over k such that k = H0(X,OX).
Let k ⊂ k′ be a field extension. Let Y be the normalisation of the reduced scheme (Xk

′ )red

and let f : Y → X be the natural morphism. Then there exists an effective Weil divisor C
on Y such that

KY + (p− 1)C ∼ f∗KX .

Moreover C can be chosen to be non-zero if and only if Xk′ is not normal.

The above theorem have been successfully used to show global properties of wild fibra-
tions: rational chain connectedness of fibres of Mori fibre spaces ([Tan18b, Theorem 1.4]),
uniruledness of Calabi-Yau fibre spaces with non-normal general fibres ([Tan18b, Theorem
1.3]), smoothness of the normalisation of the general fibres ([PW, Theorem 1.4]).

2.5.2. Frobenius length of geometric non-normality

In [Tanb], H. Tanaka introduces four invariants to measure the possible bad behaviour
of varieties over imperfect fields when passing to some inseparable extension. In Chapter
5, we will study geometric non-normality of varieties over imperfect fields. Recall that a
variety X over a field k is said to be geometrically normal over k if X ×k k is normal. We
start by recalling the definition of Frobenius length of geometric non-normality (Definition
2.19) and some fundamental properties (Remark 2.20).

Definition 2.19. Let k be a field of characteristic p > 0. Let X be a proper normal
variety over k such that k = H0(X,OX). The Frobenius length of geometric non-normality
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ℓF (X/k) of X/k is defined by

ℓF (X/k) := min{ℓ ∈ Z≥0 | (X ×k k1/p
ℓ

)Nred is geometrically normal over k1/p
ℓ

}.

Properties 2.20. Let k and X be as in Definition 2.19. Set ℓ := ℓF (X/k). Let (k′, Y )

be one of (k1/p∞ , (X ×k k
1/p∞)Nred) and (k, (X ×k k)

N
red). Let f : Y → X be the natural

morphism. We summarise some results from [Tanb, Section 5].

1. The existence of the right hand side of Definition 2.19 is assured by [Tanb, Remark
5.2].

2. If X is not geometrically normal, then ℓ is a positive integer [Tanb, Remark 5.3] and
there exist nonzero effective Weil divisors D1, ..., Dℓ such that

KY + (p− 1)

ℓ∑
i=1

Di ∼ f∗KX ,

where f : Y → X denotes the induced morphism [Tanb, Proposition 5.11].

3. The ℓ-th iterated absolute Frobenius morphism F ℓX×kk′
factors through the induced

morphism Y → X ×k k
′ [Tanb, Proposition 5.4 and Theorem 5.9]:

F ℓX×kk′
: X ×k k

′ → Y → X ×k k
′.

2.5.3. Geometrically klt singularities

The purpose of this subsection is to introduce the notion of geometrically klt singularities
and its variants.

Definition 2.21. Let (X,∆) be a log pair over a field k such that k is algebraically
closed in K(X). We say that (X,∆) is geometrically klt (resp. terminal, canonical, lc) if
(X ×k k,∆×k k) is klt (resp. terminal, canonical, lc).

Lemma 2.22. Let k be a field. Let X and Y be varieties over k which are birational
to each other. Then X is geometrically reduced over k if and only if Y is geometrically
reduced over k.

Proof. Recall that for a k-scheme, being geometrically reduced is equivalent to satisfy
Serre’s condition S1 (i.e. for any local ring of the variety there exists a regular element)
and geometrically R0 (i.e. Xk is regular at its generic point). Since both X and Y are
S1, the assertion follows from the fact that being geometrically R0 is a condition on the
generic point.

We prove a descent result for such singularities.

Proposition 2.23. Let (X,∆) be a geometrically klt (resp. terminal, canonical, lc) pair
such that k is algebraically closed in K(X). Then (X,∆) is klt (resp. terminal, canonical,
lc).
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Proof. We only treat the klt case, as the others are analogous. Let π : Y → X be a
birational k-morphism, where Y is a normal variety and we write KY +∆Y = π∗(KX+∆).
It suffices to prove that ⌊∆Y ⌋ ≤ 0. Thanks to Lemma 2.22, Y is geometrically integral.
Let ν : W → Y ×k k be the normalisation morphism and let us consider the following
commutative diagram:

W

ν

y
Y ×k k

g−−−−→ Y

πk

y π

y
X ×k k

f−−−−→ X.

Denote by ψ := πk ◦ ν and h := g ◦ ν the composite morphisms. We have

KW +∆W := ψ∗(KXk
+∆k) = h∗π∗(KX +∆) = h∗(KY +∆Y ).

By [Tan18b, Theorem 4.2], there exists an effective Z-divisor D such that

h∗(KY +∆Y ) = KW +D + h∗∆Y ,

and thus ∆W = D + h∗∆Y ≥ h∗∆Y . Since (Xk,∆k) is klt, any coefficient of ∆W is < 1.
Then any coefficient of ∆Y is < 1, thus (X,∆) is klt.

If k is a perfect field, being klt is equivalent to being geometrically klt by [Kol13,
Proposition 2.15]. However, over imperfect fields, being geometrically klt is a strictly
stronger condition. Let us show with the following examples how bad singularities can
appear after base change, even if the variety we are considering is geometrically normal.

Example 2.24. We fix k to be an imperfect field of characteristic p > 0.

1. Consider the log pair (A1
k,

2
3P ), where P is a closed point whose residue field k(P ) is

a purely inseparable extension of k of degree p. This pair is klt over k, but it is not
geometrically log canonical.

2. Let t ∈ k \ kp. Let q := pe for some e > 0 and consider the following surface

X := Spec k[x, y, z]/(t+ xq + yq+1 + zq+1)

The surface X is regular, and thus klt. Let us consider the base-change to the
algebraic closure: Xk. A simple substitution w := x+ t1/q defines an isomorphism

Xk ≃ Spec k[w, y, z]/(wq + yq + zq+1).

The surface Xk is normal with a unique singular point of multiplicity q at the origin.
Thus X is geometrically normal but not geometrically log canonical if q > 3.



3
KV vanishing fails for log del Pezzo

surfaces in characteristic three

3.1. Introduction

In this chapter we show counterexamples to the Kodaira vanishing theorem on surfaces of
del Pezzo type and to the rationality of klt threefold singularities in characteristic three.
These examples answers questions of Hacon-Witaszek ([HW17, Question 5.4]) and Kovács
([Kov18]).

Inspired by an example of Keel and McKernan (see [KM99, Section 9] and [CT, Section
4]), we construct a log del Pezzo surface violating the Kawamata-Viehweg vanishing in
characteristic three:

Theorem 3.1 (See Theorem 3.14). Over any field k of characteristic three, there exists a
projective normal k-surface T such that

1. T has klt singularities and −KT is ample;

2. ρ(T ) = 1;

3. there exists an ample Q-Cartier Weil divisor A on T such that H1(T,OT (−A)) ̸= 0.

Using the cone construction of Section 2.3 and Theorem 3.1 we show:

Theorem 3.2 (See Theorem 3.17). Let k be a field of characteristic three. Then there exists
a Q-factorial Kawamata log terminal threefold singularity X which is not Cohen-Macaulay.

In the last paragraph of the section, we present a Kodaira-type vanishing theorem for
big and nef Cartier divisors on log del Pezzo surfaces of characteristic p ≥ 5, which partially
answers a question of Cascini and Tanaka (see [CT18, Remark 3.2]).

37
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Theorem 3.3 (See Theorem 3.22). Let X be a log del Pezzo surface defined over an
algebraically closed field k of characteristic p ≥ 5 and let A be a big and nef Cartier
divisor. Then,

H1(X,OX(A)) = 0.

3.1.1. Frobenius splitting and liftability

We fix a perfect field k of characteristic p > 0. For the convenience of the reader we recall
the definition of F -splitting.

Definition 3.4. Let X be a projective variety over k. We say that X is globally F-split if
for some e > 0 the natural map

OX
F e

// F e∗OX

splits as a homomorphism of OX -modules.

Remark 3.5. In the definition of F -splitting for a variety X one can equivalently ask that
for all e > 0 the OX -module homomorphism OX → F e∗OX splits.

Being globally F -split implies powerful vanishing results for the cohomology of ample
divisors on X. We will need the following result, which is a mild generalization of [BK05,
Theorem 1.2.9] to Q-Cartier Weil divisors on surfaces:

Proposition 3.6. Let X be a normal projective surface over k. If X is globally F -split,
then for any ample Q-Cartier Weil divisor A

H1(X,OX(−A)) = 0.

Proof. By Remark 3.5 we know that for any large g ≫ 0 there exists a splitting:

OX → F g∗OX → OX .

Restricting to the regular locus U and tensoring by OU (−A) we have the following splitting:

OU (−A) → F g∗OU (−pgA) → OU (−A).

Since X is a normal variety and each sheaf in the sequence is reflexive we deduce that the
splitting holds on the whole X:

OX(−A) → F g∗OX(−pgA) → OX(−A).

Passing to cohomology, we have an injection:

H1(X,OX(−A)) ↪→ H1(X,OX(−pgA)).

Let m be the Cartier index of A and let us write m = pfh where gcd(p, h) = 1. Then for
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large enough and sufficiently divisible e we have that m divides pf (pe − 1) and thus

pf (pe − 1)A is Cartier.

Now consider g = f + e. We have

−pgA = −(pe+f − pf )A− pfA.

Since X is a normal surface, any divisorial sheaf is Cohen-Macaulay and thus we can apply
Serre duality (see [KM98, Theorem 5.71]) to deduce

H1(X,OX(−pgA)) ≃ H1(X,HomOX
(OX(−pgA),OX(KX)))

∗.

Being X normal, we have HomOX
(OX(−pgA),OX(KX)) ≃ OX(KX + pgA) since both

sheaves are reflexive and they are isomorphic on U . Therefore

H1(X,OX(−pgA)) ≃ H1(X,OX(KX + pgA))∗ = H1(X,OX(KX + pfA)⊗OX((pe+f − pf )A))∗.

By choosing e sufficiently large and divisible we conclude that the last cohomology group
vanishes by Serre vanishing criterion for ample line bundles.

We recall the definition of liftability for log pairs to W2(k).

Definition 3.7 (cf. [EV92, Definition 8.11]). Let X be a smooth variety over a perfect
field k of characteristic p > 0. Let D =

∑
iDi be a snc divisor on X. We say that the

log pair (X,D) lifts to W2(k) if there exists a flat family X → Spec(W2(k)) and divisors
Di ⊂ X such that

1. the induced morphism Di → Spec(W2(k)) is flat,

2. (X,
∑

iDi) ≃ (X ×W2(k) k,
∑

iDi ×W2(k) k).

Log pairs in positive characteristic admitting a resolution satisfy strong vanishing the-
orems:

Proposition 3.8 ([CTW17, Lemma 6.1]). Let k be a perfect field of characteristic p >
2. Let (X,∆) be a klt log pair of dimension two. Suppose there exists a log resolution
π : V → X such that (V,Ex(π) + ⌈µ−1

∗ ∆⌉)) lifts to W2(k). Let D be a Weil divisor such
that D − (KX +∆) is ample. Then H1(X,OX(D)) = 0.

3.2. Keel-McKernan surface in characteristic three

In this section and in the following we fix k to be a field of characteristic three. We prove
Theorem 3.1 by constructing a log del Pezzo surface of Picard rank one not satisfying the
Kawamata-Viehweg vanishing theorem.
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3.2.1. Construction of Keel-McKernan surface in characteristic three

In [KM99, Section 9], the authors construct a family of log del Pezzo surfaces in charac-
teristic 2 violating the Bogomolov bound on the number of singular points. In [CT] it
was noted that their example gives various counterexamples to the Kawamata-Viehweg
vanishing theorem. We adapt their construction to the characteristic 3 case.

Let us consider the smooth rational curve C inside P1
x × P1

y defined by the equation:

C :=
{
([x1 : x2], [y1 : y2]) | x2y31 − x1y

3
2 = 0

}
.

We denote by πx : P1
x × P1

y → P1
x the natural projection onto the first coordinate and we

say Fp = π−1
x (p) for p ∈ P1

x is the vertical fibre over p.
The main property of C is that the morphism πx|C : C → P1

x is the relative Frobenius
morphism. Geometrically, the curve C has the following “funny” property: every vertical
fibre Fp is a triple tangent to C.

Fix a closed point p1 on C and consider the vertical fiber F1 passing through this point.
Since such a fiber is a triple tangent to C at the point p1 we perform three successive blow-
ups starting from P1

x × P1
y to separate C from F1. The order of the blow-ups is as follows:

at each step we blow-up the intersection point of the strict transform of F1 and the strict
transform of C. After these birational modifications the strict transforms of C and F1

(which, by abuse of notation, are denoted by the same letter) and the exceptional divisors
E1, G1,H1 are in the following configuration:

..
E1

.

F1

.

H1

.

G1

.

C

where all the curves are smooth and rational with the following intersection numbers:

H2
1 = −2, G2

1 = −2, F 2
1 = −3, E2

1 = −1, C · E1 = 1, E1 · F1 = 1, E1 ·H1 = 1, H1 ·G1 = 1.

Note that the self-intersection of C has dropped by 3. Performing the same operation with
other two points p2, p3 on the curve C we construct a birational morphism f : S → P1

x×P1
y

where the strict transform of C has become a (−3)-curve. Over each point pi we have
the exceptional curves Hi, Gi, Ei and the strict transform of the fibre Fi in the same
configuration as the one described above for p1.

On S there are the (−3)-curves F1, F2, F3 and three cycles of type A2 of (−2)-curves
formed by Hi and Gi for i = 1, . . . , 3. Let ψ : S → T be the birational contraction of the
curves Fi,Hi, Gi for i ∈ {1, 2, 3} and C. We can construct ψ by running a suitable MMP
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(see [Tan14]) with respect to the pair

(S,∆ :=

3∑
i=1

2

3
Fi +

3∑
i=1

1

2
(Hi +Gi) +

2

3
C),

which at each step of the MMP we contract exactly one of the curves appearing in Supp(∆).
We denote, with a slight abuse of notation, the pushforward of a divisor D via ψ with the
same letter D.

On T we have the following configuration of curves and singular points:

..
E1

.
E2

.
E3

.

= A2-type singular point

.

= A1-type singular point

Remark 3.9. The singularity at the points of type A2 (resp. A1) is formally isomorphic to
the quotient of A2

k by the action of the group scheme µ3 with weights (1, 2) (resp. (1, 1)).

The following proposition justifies why this surface is a generalization of Keel-McKernan
construction in characteristic three:

Proposition 3.10. The surface T is a klt del Pezzo surface of Picard rank one. Moreover,
−KT is numerically equivalent to E1.

Proof. It is straightforward to see that ρ(T ) = 1. Indeed, ρ(S) = 10 and the morphism ψ

contracts nine exceptional curves. Since we contract only cycle of (−2)-curves and (−3)-
curves, T has klt singularities. We are only left to show that −KT is an ample divisor. By
an explicit computation we have

ψ∗KT ∼Q KS +
3∑
i=1

1

3
Fi +

1

3
C. (3.1)

Since ρ(T ) = 1 it is enough to prove that the anticanonical divisor has the same intersection
with an effective curve as E1.

Let Fp be the fibre of the the map πx ◦ f : S → P1
x over a general point p ∈ P1

x. By the
projection formula we have:

−KT · ψ∗Fp = −ψ∗KT · Fp = −KS · Fp −
1

3
C · Fp = 1.

We also have
E1 · ψ∗Fp = ψ∗E1 · Fp =

1

3
C · Fp = 1.

Remark 3.11. It is possible to perform a similar construction for higher characteristic,
but the resulting surface has ample canonical divisor class.
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Remark 3.12. In [KM99, Section 9] the authors prove the Bogomolov bound: a log del
Pezzo surface of Picard rank one over an algebraically closed field of characteristic zero
has at most six singular points. The bound was later improved to four singular points in
characteristic zero in [Bel09]. The surface T has seven singular points and thus shows that
the Bogomolov bound cannot hold in characteristic 3. It is an open question whether the
Bogomolov bound holds for large characteristic.

We show that there are no anticanonical sections on T :

Proposition 3.13. H0(T,OT (−KT )) = 0.

Proof. By formula (3.1) we have

H0(T,OT (−KT )) = H0(S,OS(−KS −
3∑
i=1

Fi − C)).

A direct computation shows

−KS −
3∑
i=1

Fi − C ∼ f∗(−KP1
x×P1

y
−

3∑
i=1

Fi − C) +

3∑
i=1

(Gi + 2Hi + 3Ei).

Therefore

H0(T,OT (−KT )) = H0(P1
x × P1

y,O(−KP1
x×P1

y
−

3∑
i=1

Fi − C)) = H0(P1
x × P1

y,O(−2,−1)) = 0.

3.2.2. Failure of Kawamata-Viehweg vanishing theorem on T

We show that various Kawamata-Viehweg vanishing theorem fails on the surface T .
We consider the following ample Q-Cartier Weil divisor

A := E2 + E3 − E1.

Theorem 3.14. The Kawamata-Viehweg vanishing theorem fails for the Weil divisor A;
i.e.

H1(T,OT (−A)) ̸= 0.

Proof. The strategy is to pull-back the divisor to the minimal resolution S and compute
there the cohomology groups. Let us consider the pull-back of A to S as a Q-divisor:

−ψ∗A = E1+
1

3
F1+

2

3
H1+

1

3
G1+

1

3
C−E2−

1

3
F2−

2

3
H2−

1

3
G2−

1

3
C−E3−

1

3
F3−

2

3
H3−

1

3
G3−

1

3
C;

thus
⌊−ψ∗A⌋ = E1 − E2 − F2 −H2 −G2 − E3 − F3 −H3 −G3 − C.

We have
ψ∗OS(⌊−ψ∗A⌋) = OT (−A).
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Indeed, it is immediate to see that ψ∗OS(⌊−ψ∗A⌋) ⊂ OT (−A) and we only need to check
equality. Let U be an open set of T and f ∈ k(T ) be a rational function such that
divT (f) ≥ E2+E3−E1 over the open set U . Therefore it is straightforward to check that
divS(ψ∗f) ≥ E2 + F2 +H2 +G2 + E3 +H3 +G3 + E3 + F3 + C − E1, thus showing that
f ∈ ψ∗OS(⌊−ψ∗A⌋)(U).

We now compute the cohomology groupH1(OT (−A)) using the Leray spectral sequence

Ei,j2 = Hj(T,Riψ∗OS(⌊−ψ∗A⌋)) ⇒ H i+j(S,OS(⌊−ψ∗A⌋)). (3.2)

We show that Riψ∗OS(⌊−ψ∗A⌋) = 0 for i > 0. By the Kawamata-Viehweg vanishing
theorem for birational morphism between surfaces (see [Kol13, Theorem 10.4]) we just need
to check that ⌊−ψ∗A⌋ is ψ−nef:

⌊−ψ∗A⌋ · C = 2,

⌊−ψ∗A⌋ · F1 = 1, ⌊−ψ∗A⌋ ·H1 = 1, ⌊−ψ∗A⌋ ·G1 = 0,

⌊−ψ∗A⌋ · Fi = 2, ⌊−ψ∗A⌋ ·Hi = 0, ⌊−ψ∗A⌋ ·Gi = 1 for i = 2, 3.

Therefore the Leray spectral sequence (3.2) degenerates at the E2 page and we have for
all i ≥ 0:

H i(T,OT (−A)) ≃ H i(S,OS(⌊−ψ∗A⌋)).

By a direct computation we have

KS · ⌊−ψ∗A⌋ = −2 and ⌊−ψ∗A⌋2 = −6.

Therefore, by the Riemann-Roch theorem on S, we deduce

χ(T,OT (−A)) = χ(S,OS(⌊−ψ∗A⌋)) = −1,

which implies h1(T,OT (−A)) ̸= 0.

We now conclude that the surface T gives a generalization to [CTW17, Theorem 1.3]
to characteristic three.

Corollary 3.15. Over any algebraically closed field k of characteristic 3 there exists a
log del Pezzo surface T which is not globally F -split and such that for any log resolution
µ : S → T the log smooth pair (S,Exc(µ)) does not lift to W2(k).

Proof. The surface T constructed above is not globally F -split by Proposition 3.6 and
Theorem 3.14.

By Proposition 3.14 and Serre duality (see [KM98, Theorem 5.71, Proposition 5.75])
we have

H1(T,OT (KT +A)) ̸= 0.
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If the pair (S,Exc(µ)) lifted to W2(k), we could apply Proposition 3.8 to the Z-divisor
D := KT +A, thus getting a contradiction with the non-vanishing above.

3.3. A klt not Cohen-Macaulay threefold singularity in char-
acteristic three

In this section we prove there exists klt not CM threefold singularities in characteristic
three. With the same notation as in Section 2.3, let us consider the cone over the log del
Pezzo surface T :

X := Ca(T,OT (A)),

and denote the vertex by v.
We prove that X has klt singularities. If we were working over a field of characteristic

zero we would conclude immediately by Proposition 2.10. However, since we are working in
positive characteristic, we cannot apply Inversion of Adjunction and thus we need to further
study the singularities of X to conclude it is klt. We start by studying the singularities of
its partial resolution:

Y := SpecT
∑

m≥0OT (mA)
f // X.

The exceptional locus of the birational morphism π is the prime divisor E, which is isomor-
phic to T . We denote by f the natural affine map π : Y → T . We thus have the following
diagram:

Y
π //

f
��

T

X .

Proposition 3.16. The variety Y is a Q-factorial threefold with isolated singularities and
the pair (Y,E) is toroidal (hence log canonical).

Proof. To check that Y is Q-factorial it is sufficent to work in an analytic neighbourhood
of the singular locus by [Mat80, (24.E)]. The same is true to compute the discrepancies.
Thus we can reduce to study the preimage π−1(U) ⊂ Y of an analytic neighbourhood U

of the singular points of T because outside the preimage of those points the pair (Y,E) is
log smooth.

As explained in Remark 3.9, there are two different types of singular points in T . We
show the result is true for the A2-type singular points; for the A1-type singular points the
computation is similar.

Let us consider a singular point p ∈ T , which is formally isomorphic to the quotient of
A2
u,v by the group µ3 with weight (1, 2). In local coordinates,

V := A2
u,v // µ3 = Speck k[u

3, v3, uv] ≃ Speck k[x, y, z]/(z
3 − xy),

and the Weil divisorial sheaf OT (A) is isomorphic to the Weil divisorial ideal OV (−D) :=
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(x, z). In this case we have to compute the local equations for the variety:

SpecV
∑
k≥0

OV (−mD).

We have
OV (−D) = (x, z), OV (−2D) = (x, z2), OV (−3D) = (x)

and these generate the OV -algebra
∑

k≥0OV (−mD). If we set

OV (−D) = (x, z) = (a, b) OV (−2D) = (x, z2) = (c, b2) OV (−3D) = (x) = (d),

one can write the relations between the generators and show that

SpecV
∑
k≥0

OV (−mD) ≃

≃ Speck
k[x, y, z, a, b, c, d]

(z3 − xy, a2 − cx, ab− cz, a3 − dx2, ac− dx, b3 − dy, bc− dz)
.

The fibration f corresponds to the natural morphism

Speck
k[x, y, z, a, b, c, d]

(z3 − xy, a2 − cx, ab− cz, a3 − dx2, ac− dx, b3 − dy, bc− dz)
→ Speck

k[x, y, z]

(z3 − xy)
,

and the section E is the subvariety defined by the ideal (a, b, c, d).

A more conceptual way to understand the A1-fibration Y → T and its singularities is
to see it locally as a quotient of the trivial A1-bundle over A2. Let us consider the line
bundle

L := SpecA2

∑
k≥0

(u)k ≃ Speck k[u, v, s]

together with the section S = (s = 0). We have a natural action of µ3 on L of weight
(1, 2, 1) and we can construct the quotient

p : L → L // µ3.

A direct computation shows that the quotient pair (L // µ3, p(S)) is isomorphic to (Y,E).
With this description, we deduce that Y is a Q-factorial variety by [KM98, Lemma 5.16]
and that the singularities of Y are isolated.

Moreover we have shown that, near the preimage via f of the singular points of T ,
the pair (Y,E) is toroidal and thus by [CLS11, Proposition 11.4.24] we conclude it has log
canonical singularities.

Theorem 3.17. The variety X has klt singularities and it is not Cohen-Macaulay.
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Proof. By Proposition 2.12 and Theorem 3.14 we deduce

H2
v (X,OX) ≃

∑
m∈Z

H1(T,OT (mA)) ̸= 0,

thus proving X is not Cohen-Macaulay. We are left to check it is klt. We have −KT ∼Q A

by Proposition 3.10. Thus by Proposition 2.9, KX is Q-Cartier and KY ∼Q f
∗KX .

By Proposition 3.16, Y is a Q-factorial variety, the pair (Y,E) is toroidal and thus Y
is klt. This concludes that X has klt singularities.

3.4. Kodaira-type vanishing for log del Pezzo surfaces in char-
acteristic p > 0

Throughout this section, k is an algebraically closed field of characteristic p > 0. The aim
of this section is to collect some Kodaira-type vanishing results for big and nef line bundles
on klt del Pezzo surfaces for arbitrary p > 0 and to prove Theorem 3.3.

Lemma 3.18. Let X be a surface of del Pezzo type over k. Then X is a rational surface
and H i(X,OX) = 0 for i > 0.

Proof. The surface X is rational by [Tan15, Fact 3.4 and Theorem 3.5]. Let Y be the
minimal resolution. By the Kawamata-Viehweg vanishing theorem for birational morphism
between surfaces, we have H i(X,OX) ≃ H i(Y,OY ). Since Y is a smooth rational surface
we conclude.

We start by discussing the case of log del Pezzo surfaces with at worst canonical sin-
gularities.

Proposition 3.19. Let A be a big and nef Cartier divisor on a klt del Pezzo surface X
such that | −KX | ̸= ∅. Then

H1(X,OX(A)) = 0.

Proof. Since A is effective, the divisor A −KX is effective and ample by hypothesis and
thus by an application of Serre duality we have

h1(X,OX(A)) = h1(X,OX(KX −A)),

which is zero by Theorem 2.17.

Proposition 3.20. Let X be a klt del Pezzo surface over k with at most three singular non
du Val singular points. Suppose that all of them are formally isomorphic to the quotient of
A2
k by the action of a group scheme µm for some m > 0. Then for any big and nef Cartier

divisor A
H1(X,OX(A)) = 0.
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Proof. Let us recall that given a Weil divisor D on a surface X with only µm-quotient
singularities we have

χ(X,OX(D)) = χ(X,OX) +
1

2
D · (D −KX) +

∑
P∈NotCart(D)

cP (D),

where cP (D) is a rational number depending on the type of singularity of the pair (X,D)

near P (for more details see [Rei87]). In [PV07, Corollary 4.1], the authors prove that
cP (−KX) > −1 (let us note that the assumption on the characteristic of the base field is
unnecessary). Applying the Riemann-Roch formula we have

h0(OX(A−KX)) ≥ 1 +
1

2
(A2 − 3A ·KX + 2K2

X) +
∑

P∈NotCart(KX)

cP (−KX)

≥ 3 +K2
X − 3 > 0.

Thus by Proposition 2.17 we conclude h1(X,OX(KX −A)) = 0 and thus, by Serre duality,
h1(OX(A)) = 0.

Remark 3.21. By [PV07, Corollary 4.1], we have that cP (−KX) ≥ −1
3 if the singularity

P is formally a quotient of A2
k by µ3. Then the same proof of the previous Proposition

shows that on a log del Pezzo surface X with at most four non du Val singular points
which are formally quotients by the group scheme µ3, then any big and nef Cartier divisor
A satisfies H1(X,OX(A)) = 0. In particular vanishing theorems for Cartier divisors hold
on the surface T we constructed in Section 3.2, which explains why we had to look for a
Q-Cartier Weil divisor violating the vanishing theorem.

We now deduce an effective vanishing for the H1 of a positive line bundle on a log del
Pezzo surface, thus answering a question of Cascini and Tanaka (see [CT18, Remark 3.2]).

Theorem 3.22. Let X be a klt del Pezzo surface over k and let A be a big and nef Cartier
divisor. Then

1. H1(X,OX(−A)) = 0;

2. If p ≥ 5, then H1(X,OX(A)) = 0;

3. If p = 3, then H1(X,OX(2A)) = 0;

4. If p = 2, then H1(X,OX(4A)) = 0.

Proof. To prove (1), it is enough to show that H0(X,A) ̸= 0 because we can thus consider
an effective divisor D linearly equivalent to A and apply Theorem 2.17. So denoting by
f : Y → X the minimal resolution, we have

H0(X,OX(A)) = H0(Y,OY (f
∗A)).
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Since Y is a rational surface we have h2(Y,OY (f
∗A)) = h0(Y,OY (KY − f∗A)) = 0 and

therefore

h0(Y,OY (f
∗A)) ≥ 1 +

1

2
(f∗A)(f∗A−KY ) = 1 +

1

2
(A2 −KX ·A) > 0.

To prove (2), let us note that if H1(X,OX(A)) ̸= 0 we have H1(X,OX(KX −A)) ̸= 0 by
Serre duality. Let us define a Weil Q-Cartier ample divisor

L := A−KX .

Consider a covering family {Dt} of curves for X belonging to a very ample linear system.
Since L and −KX are ample we have that

(p− 1)(L ·Dt)−KX ·Dt > 0.

Therefore we can apply Theorem 2.14 for every point x ∈ X we can find a curve Cx passing
through x such that

L · Cx ≤ 4
L ·Dt

(p− 1)L ·Dt −KX ·Dt
<

4

p− 1
.

Moreover, if x ∈ X is chosen to be generic we have that A · Cx ≥ 1 since A is big Cartier
divisor and therefore

L · Cx = A · Cx −KX · Cx > 1.

Thus concluding that p < 5.
In the case where p = 3, we apply the same proof to L = 2A − KX with the same

notation to the curves Dt. In this case by Theorem 2.14 we can find that for any point x
there exists a rational curve Cx passing through x such that

L · Cx <
4

p− 1
= 2.

However choosing x generic enough we have

L · Cx = 2A · Cx −KX · Cx > 2,

thus getting a contradiction. The proof for the case p = 2 is analogous.

Remark 3.23. In the proof of assertions (2)-(4) the assumption that the singularities of
X are klt is superfluous. Indeed the same proof works for projective normal surfaces with
ample Q-Cartier anti-canonical divisor.

We conclude by discussing the special case where the linear system induced by A is
birational.

Proposition 3.24. Let (X,∆) be a log del Pezzo pair over k. Let A be a big and nef Cartier
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divisor such that the linear system |A| is base point free and the morphism associated is
birational onto the image. Then

H1(X,OX(A)) = 0.

Proof. Let f : Y → X be the minimal resolution and consider the effective divisor ∆Y such
that:

KY +∆Y = f∗(KX +∆).

Since klt surface singularities are rational, we have R1f∗OY (f
∗A) = R1f∗OY ⊗OX(A) = 0.

Thus we deduce
H i(Y,OY (f

∗A)) = H i(X,OX(A)).

By hypothesis, there exists an irreducible section C ∈ |f∗A|. The curve C is Gorenstein
with dualizing sheaf:

ωC = OY (KY + C)⊗OC .

Consider the following short exact sequence:

0 → OY → OY (C) → OC(C) → 0.

By Lemma 3.18 we have H i(Y,OY ) = 0 for i = 1, 2. Thus taking the long exact sequence
in cohomology we have

H1(Y,OY (f
∗A)) = H1(Y,OY (C)) ≃ H1(C,OC(C)).

Now, using Serre duality on C we have

H1(C,OC(C)) ≃ H1(C,ωC ⊗OC(−KY |C))) ≃ H0(C,OC(KY |C))∗.

It is easy to see that KY |C is an anti-ample divisor because

KY · C = (f∗(KX +∆)−∆Y ) · f∗A = (KX +∆) ·A−∆Y · f∗A < 0.

Therefore H0(C,OC(KY |C)) = 0, thus concluding the proof.





4
Pathologies in positive characteristic

birational geometry

4.1. Introduction

Singularities play a crucial role in the recent development of the Minimal Model Program.
Most of the results in the study of singularities in characteristic zero, such as normality
of plt centres and klt-ness of the base of Mori fibre spaces, rely on subtle applications of
the Kawamata-Viehweg vanishing theorem and semi-positivity theorems, which originate
from Hodge theoretic methods. One may thus ask whether such results still hold true in
positive characteristic.

In this chapter we show various counterexamples in positive characteristic to some
of the by now classical results on singularity theory for varieties in characteristic zero,
extending previous work of Cascini and Tanaka ([CT] and [Tana]). Let us summarise the
properties of our pathological examples:

Theorem 4.1. Let k be a perfect field of characteristic p ≥ 3. Then

1. There exists a purely log terminal pair (Z, S) of dimension 2p+2 such that S = ⌊S⌋
is not normal (see Theorem 4.4);

2. there exists a terminal Fano variety W of dimension 2p+2 such that H2(W,OW ) ̸= 0

(see Theorem 4.9);

3. if p ≥ 5, there exists a Mori fibre space f : X → Y , where X is a terminal variety of
dimension p+ 3 and Y is a threefold which is not log canonical (see Theorem 4.11).

51
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4.2. Non-normal purely log terminal centres

In this section, we construct examples of non-normal purely log terminal centres in all
positive characteristic p ≥ 3.

The main ingredient is the following

Theorem 4.2 ([Tot17, Theorem 2.1]). Let k be a field characteristic p ≥ 3. Then there
exists a smooth Fano variety X over k of dimension 2p + 1 with a very ample Cartier
divisor A such that

1. ρ(X) = 2,

2. −KX = 2A and

3. H1(X,OX(A)) ̸= 0.

Remark 4.3. The Fano varieties constructed above are homogeneous spaces under the
action of SLn with non-reduced stabilizers. They have already been a prolific source of
examples of ‘pathologies’ in positive characteristic: by taking cones over X, Totaro shows
that for every p ≥ 3 there exists a terminal not Cohen-Macaulay singularity in dimension
2p+2 ([Tot17, Corollary 2.2]). In [AZ17] the authors construct smooth Calabi-Yau varieties
in positive characteristic which are not liftable to characteristic zero by considering general
anticanonical sections of X and double covers along a general member of the linear system
| − 2KX |.

To prove the main result we consider a cone over the Fano variety X constructed by
Totaro and we show that the prime divisor induced on the cone by a smooth section E ∈ |A|
is not normal.

Theorem 4.4. Let k be any field of characteristic p ≥ 3. Then there exists a log pair
(Z, S) such that

1. Z is an affine variety over k with terminal singularities of dimension 2p + 2 and S
is a prime divisor,

2. (Z, S) is a purely log terminal pair with KZ + S Cartier,

3. S is not normal.

Proof. Let us fix a field k of characteristic p ≥ 3. Let us consider the smooth Fano variety
X with the ample divisor A of Theorem 4.2. Since A is very ample, by Bertini theorem
there exists a smooth divisor E ∈ |A|. We define the pair

(Z, S) := (Ca(X,OX(A)), ECa(X,OX(A))).

Since (X,E) is log smooth and KX+E ∼ −A we conclude by Proposition 2.9 that KZ+S

is Cartier and by Proposition 2.10 that the pair (Z, S) is dlt. Since S is the only irreducible
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component in the boundary, the pair (Z, S) is actually plt. We denote by (Y, SY ) the pair
given by (BCa(X,OX(A)), f

−1
∗ S).

We check that S is not normal. The subvariety S can be written as

S = Speck
∑
m≥0

Im(H0(X,OX(mA)) → H0(E,OE(mA)).

Let us consider the short exact sequence

0 → OX(−E) → OX → OE → 0,

and tensor it with OX(nA), where n is a positive integer. Taking the long exact sequence
in cohomology we have

H0(X,OX(nA)) → H0(E,OE(nA)) → H1(X,OX((n− 1)A)) → H1(X,OX(nA)).

Since A is ample and H1(X,O(A)) ̸= 0, we can consider, by Serre vanishing, the largest
n ≥ 2 such that H1(X,OX((n− 1)A)) ̸= 0 and H1(X,OX(nA)) = 0. Thus the morphism

H0(X,OX(nA)) → H0(E,O(nA))

is not surjective and therefore the morphism

ν : Sν := Ca(E,OX(A)|E) → S,

induced by the natural injection of k-algebras∑
m≥0

Im(H0(X,OX(mA)) → H0(E,OE(mA)) ⊂
∑
m≥0

H0(E,OE(mA))

is not an isomorphism. The morphism ν is finite and it is birational since for m > n

we have H0(E,OE(mA)) = Im(H0(X,OX(mA)) → H0(E,OE(mA)). Thus we conclude
that the variety S is not normal and that ν is the normalisation morphism, since Sν is
normal.

Remark 4.5. We note that, since ρ(X) = 2, the affine variety Z is not Q-factorial by
Proposition 2.9.

Remark 4.6. We point out that S is regular in codimension one and thus by Serre’s
criterion we deduce that S does not satisfy the S2 condition. In general, plt centres satisfy
the R1 condition also in positive characteristic as explained in [GNT, Lemma 2.5].

Remark 4.7. The normalisation morphism ν : Sν → S is a universal homeomorphism
since the morphism SY → S has connected fibers. In [GNT, Theorem 3.15], the authors
prove, assuming the existence of pl-flips, that this is always the case for plt centres on
threefolds in any characteristic.
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We show that the lifting lemma of Hacon-McKernan (see [HM07, Theorem 5.4.21]) fails
over fields of positive characteristic:

Corollary 4.8. With the same notation as in Theorem 4.4, there exists a projective bira-
tional morphism f : (Y, SY ) → (Z, S) such that

1. (Y, SY ) is log smooth and SY is a prime divisor,

2. −Exc(f) is an f -ample divisor,

3. KY + SY is semiample and big, and

4. for every m ≥ 0, the restriction map

H0(Y,OY (m(KY + SY ))) → H0(SY ,OY (mKSY )),

is not surjective.

Proof. By construction, the pair (Y, SY ) is an A1-bundle over a log smooth pair. Thus
property (1) is immediate. To show property (2) we note that the divisor −X− is f -ample
over the affine variety Z, thus it is ample. We have, by formula (2.5) of Proposition 2.9,
that

KY + SY = f∗(KZ + S),

and since KZ + S is ample on Z we conclude property (3) holds.
We now show property (4). Since S is not normal we have that the morphism

f∗OY → f∗OSY (4.1)

is not surjective. Indeed, since SY → Sν is a surjective birational projective morphism
between normal varieties, we have by Zariski’s main theorem the following commutative
diagram:

OZ
// //

≃

��

OS

��

%%JJ
JJJ

JJJ
JJ

ν∗OSν

≃

zzttt
tt
tt
tt

f∗OY
// f∗OSY .

Since OS → ν∗OSν is not surjective, we conclude that the bottom arrow is not surjective.
By Proposition 2.9 we have that KZ + S ∼ 0 and thus, using the projection formula,

we have
f∗OY (m(KY + SY )) = f∗(f

∗OZ(m(KZ + S))) = f∗OY ,

and in the same way
f∗OSY (mKSY ) = f∗OSY .
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Since Z is affine, we have therefore that the morphism in (4.1) is not surjective if and only
if

H0(Y,OY (m(KY + SY ))) → H0(SY ,OSY (mKSY )),

is not surjective for any integer m > 0, thus concluding the proof.

4.3. Terminal Fano varieties with H2(OZ) ̸= 0

In this section we construct Fano varieties with terminal singularities and non-vanishing
intermediate cohomology.

We recall the Euler sequence on a projective vector bundle. Let E be a vector bundle
of rank r + 1 on a smooth variety X and let π : PX(E) → X be the associated projective
bundle, then we have the following short exact sequence:

0 → Ω1
P(E)/X → OP(E)(−1)⊗ π∗E → OP(E) → 0,

which shows KP(E) = OP(E)(−r − 1)⊗ π∗(KX ⊗ detE).

Theorem 4.9. Let k be a field of characteristic p ≥ 3. Then there exists a Fano variety
W with terminal singularities of dimension 2p+ 2 over k such that

H2(W,OW ) ̸= 0.

Proof. Let us fix a field k of characteristic p ≥ 3 and let us consider the Fano variety
X with the ample divisor A of Theorem 4.2. We define the projective variety W :=

Cp(X,OX(A)). Since H1(X,OX(A)) ̸= 0, we conclude H2(W,OW ) ̸= 0 by Proposition
2.13. The variety W has terminal singularities since the only singular point is the vertex
of the cone Ca(X,OX(A)).

We are only left to prove that W is a Fano variety. For this it is sufficient to check that
the projective bundle π : Y := PX(OX ⊕OX(−A)) → X is Fano. On Y there is a unique
negative section X− such that OY (X

−)|X− ≃ OX(−A) and there is also a positive section
X+ such that OY (X

+)|X+ ≃ OX(A) (which shows X+ is a big and nef divisor on Y ). A
simple computation shows X+ ∼ X− + π∗A. We note that

OY (1) = OY (X
−),

and by the relative Euler sequence we have

KY = OY (−2)⊗ π∗(KX −A).

Thus we have that the anticanonical class

−KY = 2X− + π∗(3A) = 2X+ + π∗A, (4.2)
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is a big and nef divisor. To conclude that −KY is ample, we show that the null locus
Null(−KY ) (see [Laz04b, Definition 10.3.4]) is empty. By equation (4.2), the null locus
must be contained in X−, but since −KY |X− = A is ample we conclude it must be
empty.

4.4. Singularities of the base of Mori fibre spaces in positive
characteristic

The aim of this section is to construct further examples of klt varieties admitting a Mori
fibre space over a base with non-klt singularities in higher characteristic. Since our con-
struction is based on the work of Yasuda on wild quotient singularities (see [Yas14, Yas17])
we start by recalling some of his results.

We fix a field k of characteristic p > 0 and the cyclic group G := Z/pZ. Let us recall
that for every integer 1 ≤ i ≤ p we have a unique indecomposable representation of G over
k on a k-vector space of dimension i denoted by Vi, which is given by the following matrix
(i× i): 

1 1 0 0 . . . 0

0 1 1 0 . . . 0

0 0 1 1 . . . 0
. . . . . . . . . . . . . . . . . .

0 0 . . . . . . 1 1

0 0 . . . . . . 0 1


Let V be a G-representation and consider the quotient V → X := V/G. The representation
V decomposes into sum of indecomposable ones

V =

l⊕
λ=1

Vdλ

with 1 ≤ dλ ≤ p and we introduce the following invariant for X:

DV =

l∑
i=1

dλ(dλ − 1)

2
.

Theorem 4.10 ([Yas17]). Suppose DV ≥ 2. Then the quotient X is terminal (resp.
canonical, log canonical) if and only if DV > p (resp. DV ≥ p, DV ≥ p− 1).

We can now construct new examples of Mori fibre space with bad singularities on the
base.

Theorem 4.11. Let k be a field of characteristic p ≥ 5. Then there exists a projective
contraction f : X → Y of normal k-varieties such that

1. X is a Q-factorial terminal quasi-projective variety of dimension p+ 3;
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2. Y is a Q-factorial affine variety of dimension three which is not log canonical;

3. ρ(X/Y ) = 1 and −KX is f -ample, equivalently f is a Mori fibre space.

Proof. Consider the indecomposable representation of G on the three-dimensional space
V3. Since DV3 = 3 < p − 1 we have by Theorem 4.10 that the quotient Y := V3/G is not
log canonical.

Now we consider the space (P1)p with the following G action:

T (([x1 : y1], [x2 : y2], . . . , [xp : yp])) = ([xp : yp], [x1 : y1], . . . , [xp−1 : yp−1]).

Now we consider the space (P1)p × V3 and we let G act diagonally.

Claim. The quotient X := ((P1)p × V3)/G has terminal singularities.

Proof. Consider the affine charts Ux := {xi ̸= 0} ⊂ (P1)p and Uy := {yi ̸= 0} ⊂ (P1)p.
These affine charts are isomorphic to Apk. The fixed locus of T is contained in Ux ∪Uy and
T (Ux) ⊂ Ux (resp. T (Uy) ⊂ Uy). So we only need to understand the action of G on Ux×V3
and Uy × V3. Since the situation is symmetric it is sufficient to understand the action on
Ux × V3. Since the action of G on Ux × V3 is the sum of the irreducible representations
Vp ⊕ V3 and since DVp⊕V3 = p(p−1)

2 + 3 ≥ p + 1 we conclude it is terminal by Theorem
4.10.

We are only lef to prove that X → V3/G is a Mori fibre space. Consider now the
following diagram

(P1)p × V3 //

��

X

��
V3 // Y

We are only left to check that X → Y is a Mori fibre space. It is sufficient to check that
ρ(X/Y ) = 1 and this is immediate since Pic(X) ↪→ (Pic((P1)p × V3))

G = Z.

Let us note that in Theorem 4.11, the relative dimension of the fibration increases with
the characteristic p. Thus we are led to consider the following

Conjecture 4.12. Let n and d be positive integers. Does there exists p0(d) such that if
f : X → Y is a Mori fibre space where X is a klt Q-factorial variety of dimension n and
dim(X)− dim(Y ) = d, then Y has klt singularities? In particular, does there exist p0(1)?

Even in the case of threefold conic bundles, we have very little evidence for the above
conjecture. Let us note that Kollár proves that the base is smooth if the total space is
smooth (see [Kol91, Complement 4.11.2]). In [NT, Theorem 3.8] the authors prove that
the base of a threefold conic bundle has WO-rational singularities for p > 5 (recall that
klt surface singularities are rational and in particular WO-rational).

In the remaining part of the chapter, we present a partial positive result on the descent
of singularities of a Mori fibre space onto the base if the total space has Gorenstein canonical
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singularities. To achieve it, we will use some notions from the theory of F -singularities of
which we now recall the basic definitions.

Lemma 4.13. Let k be a field of characteristic p > 0. Let f : X → Y be a finite morphism
of normal k-schemes of degree n such that p - n. Then if X is F-pure (respectively, it is
strongly F -regular), then Y is F -pure (respectively, it is strongly F -regular).

Proof. The statement is local, so we can suppose that X is an affine globally F -split (resp.
globally F -regular) scheme. Choose a splitting ψ of the Frobenius morphism OX → F∗OX

in the category of OX -modules. We have the following commutative square:

OY
FY //

f#

��

F∗OY

F∗f#

��
f∗OX

f∗FX//f∗F∗OX

Since p - n, we have that 1
nTraceX/Y : f∗OX → OY is a splitting for f#. Thus a splitting

of FY is given by 1
nTraceX/Y ◦ f∗ψ ◦ F∗f

#.
For the case of strongly F -regular singularities, we fix D an effective Cartier divisor on

Y and we consider the natural commutative diagram for any integer e > 0:

OY
//

��

F e∗OY (D)

��
f∗OX

//f∗F
e
∗OX(f

∗D)

The same argument as before shows that a splitting of OX → F e∗OX(f
∗D) in the category

of OX -modules induces a splitting of OY → F e∗OY (D) in the category of OY -modules.

Proposition 4.14. Let k be an algebraically closed field of characteristic p > 5. Let X be a
Q-factorial normal quasi-projective threefold over k with klt singularities and let f : X → S

be a Mori fibre space of relative dimension one. If p does not divide the Cartier index of
KX(e.g. X has canonical Gorenstein singularities), then the surface S is Q-factorial and
has klt singularities.

Proof. The Q-factoriality of the base S of a Mori fibre space in characteristic p > 5 is
proven in [HNT19, Theorem 5.4].

We are left to prove that S is klt. Since a general fibre F is P1
k, we have by adjunction

that −KX · F = 2. Let us denote by i the Cartier index of KX . Consider L a sufficiently
ample Cartier divisor on S such that A := −iKX + f∗L is an ample Cartier divisor on
X. This implies that there exists n0 such that for any n ≥ n0, the linear system |nA|
is very ample. Let us choose n such that p - n. By [ST17, Main Theorem], we deduce
that a general section H of |nA| has klt singularities. Since H · F = 2in, the morphism
H → S is finite of degree 2in. Since p > 5, the singularities of H are strongly F -regular by
[Ha98]. Since the degree of the finite morphism H → S is not divisible by p, we conclude
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by Lemma 4.13 that the singularities of S are strongly F -regular. Since S is Q-factorial,
we conclude it is klt.

Let us note however that Conjecture 4.12 cannot be extended to the case of lc-trivial (or
log Calabi-Yau) fibrations in positive characteristic. Indeed, over a field of characteristic
zero, we have the following stronger statement on singularities due to Ambro:

Theorem 4.15 ([Amb05, Theorem 0.2]). Let k be a field of characteristic zero. Let (X,∆)

be a normal quasi-projective klt pair over k. Let f : X → Y be a contraction between
normal varieties such that KX + ∆ ∼f,Q 0. Then there exists a boundary ∆Y on Y such
that (Y,∆Y ) is a klt pair.

Unfortunately in characteristic p > 0, one cannot hope to bound the singularities of
the base of a log-canonical trivial fibration even in large characteristic as we show in the
following example, based on a generalisation due to Lorenzini and Schröer ([LS18]) to large
characteristic of the Z/2Z-wild quotients in characteristic two due to Artin (see [Art75])

Proposition 4.16. Let k be a perfect field of characteristic p ≥ 5. Then there exists a
projective contraction f : X → S of normal k-varieties with the following properties.

1. X is a smooth threefold,

2. S is a surface that is not log canonical.

3. KX ∼f,Q 0.

Proof. Let us consider the ring

A = k[x, y][u, v]/(up − xp−1u− x, vp − yp−1v − y).

Let us consider the (Z/pZ)-action

σ : (x, y, u, v) 7→ (x, y, u+ a, v + b)

on A. By the Jacobi’s criterion, the ring A is regular. As explained in [LS18, Theorem
7.5], the invariant ring under the action of σ is

AZ/pZ = k[x, y, z]/(zp − xp−1yp−1z − xpy + ypx),

where z = yu− vx. For p ≥ 5, the multiplicity at the origin multO(zp−xp−1yp−1z−xpy+
ypx) ≥ 5 and thus the singularity is not log canonical.

Let E be an ordinary elliptic curve and consider a non-zero p-torsion point a ∈ E[p]. We
have a natural (Z/pZ)-action on E given by the translation τa. So we have the equivariant
(Z/pZ)-morphism p1 : Spec(A) × E → Spec(A). Let us consider the induced morphism
f : X := (Spec(A) × E)/(Z/pZ) → Spec(AZ/pZ). We have the following commutative
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diagram:
Spec(A)× E

π //

p1

��

X

f
��

Spec(A) // Spec(AZ/pZ)

Since the action of (Z/pZ) has no fixed points on Spec(A) × E we conclude that X
is a regular scheme. Moreover π∗(KX/Spec(AZ/pZ)) ∼ 0, implies KX/Spec(AZ/pZ) ∼Q 0, thus
concluding.



5
On del Pezzo fibrations in positive

characteristic

Based on joint work with H. Tanaka.

5.1. Introduction

The minimal model conjecture predicts that an arbitrary algebraic variety is birational to
either a minimal model or a Mori fibre space π : V → B. A distinguished property of Mori
fibre spaces in characteristic zero is that any relative numerically trivial line bundles is
automatically trivial (cf. [KMM87, Lemma 3.2.5]). Let us recall that given a morphism
π : V → B a line bundle L on V is said to be π-torsion if there exists a positive integer
m > 0 such that mL ∼π 0. The smallest integer m for which mL is trivial is called the
torsion index of L. In [Tana, Theorem 1.4], Tanaka constructs counterexamples to the
same statement in positive characteristic. More specifically, if the characteristic is two or
three, then there exists a Mori fibre space π : V → B and a line bundle L on V such that
dimV = 3, dimB = 1, L ≡π 0, and L ̸∼π 0. Then it is tempting to ask how bad the torsion
indices can be.

One of the main results of this chapter is to give such an explicit upper bound of torsion
indices for three-dimensional del Pezzo fibrations.

Theorem 5.1 (Theorem 5.70). Let k be an algebraically closed field of characteristic p > 0.
Let π : V → B be a projective k-morphism such that π∗OV = OB, where V is a three-
dimensional Q-factorial normal quasi-projective variety over k and B is a smooth curve
over k. Assume there exists an effective Q-divisor ∆ such that (V,∆) is klt and π : V → B

is a (KV + ∆)-Mori fibre space. Let L be a π-numerically trivial Cartier divisor on V .

61
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Then the following hold.

1. If p ≥ 7, then L ∼π 0.

2. If p ∈ {3, 5}, then p2L ∼π 0.

3. If p = 2, then 16L ∼π 0.

We also prove a theorem of Graber–Harris–Starr type for del Pezzo fibrations in positive
characteristic.

Theorem 5.2 (Theorem 5.69). Let k be an algebraically closed field of characteristic p > 0.
Let π : V → B be a projective k-morphism such that π∗OV = OB, V is a normal three-
dimensional variety over k, and B is a smooth curve over k. Assume that there exists an
effective Q-divisor ∆ such that (V,∆) is klt and −(KV +∆) is π-nef and π-big. Then the
following hold.

1. There exists a curve C on V such that C → B is surjective and the following prop-
erties hold.

(a) If p ≥ 7, then C → B is an isomorphism.

(b) If p ∈ {3, 5}, then K(C)/K(B) is a purely inseparable extension of degree ≤ p.

(c) If p = 2, then K(C)/K(B) is a purely inseparable extension of degree ≤ 4.

2. If B is a rational curve, then V is rationally chain connected.

Theorem 5.2 can be considered as a generalisation of classical Tsen’s theorem, i.e.
the existence of sections on ruled surfaces. Tsen’s theorem was used to establish the log
minimal model program in characteristic p > 5 [BW17, Section 3.4]. Also, Tsen’s theorem
was used to show that H i(X,WOX,Q) = 0 for threefolds X of Fano type in characteristic
p > 5 when i > 0 (cf. [GNT, Theorem 1.3]).

The proofs of Theorem 5.1 and Theorem 5.2 are carried out by studying the generic
fibre X := V ×B Spec K(B) of π, which is a surface of del Pezzo type defined over an
imperfect field. Roughly speaking, Theorem 5.1 and Theorem 5.2 hold by the following
two theorems.

Theorem 5.3 (Theorem 5.45). Let k be a field of characteristic p > 0. Let X be a k-
surface of del Pezzo type. Let L be a numerically trivial Cartier divisor on X. Then the
following hold.

1. If p ≥ 7, then L ∼ 0.

2. If p ∈ {3, 5}, then pL ∼ 0.

3. If p = 2, then 4L ∼ 0.

Theorem 5.4 (Theorem 5.65). Let k be a C1-field of characteristic p > 0. Let X be a
k-surface of del Pezzo type such that k = H0(X,OX). Then
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1. If p ≥ 7, then X(k) ̸= ∅;

2. If p ∈ {3, 5}, then X(k1/p) ̸= ∅;

3. If p = 2 , then X(k1/4) ̸= ∅.

5.1.1. Sketch of the proof of Theorem 5.3

Let us overview some of the ideas used in the proof of Theorem 5.3. By considering the
minimal resolution and running a minimal model program, the problem can be reduced by
[Tan18a, Theorem 4.4(3)] to the case when X is a regular surface of del Pezzo type which
has a KX -Mori fibre space structure X → B. In particular, it holds that dimB = 0 or
dimB = 1.

The case when dimB = 0

Assume that dimB = 0. In this case, X is a regular del Pezzo surface. We first classify
Y := (X×k k)

N
red (Theorem 5.5). We then compare X×k k with Y = (X×k k)

N
red (Theorem

5.6).

Theorem 5.5 (Theorem 5.33). Let k be a field of characteristic p > 0. Let X be a
projective normal surface over k with canonical singularities such that k = H0(X,OX) and
−KX is ample. Then the normalisation Y of (X ×k k)red satisfies one of the following
properties.

1. X ×k k is geometrically normal over k. Moreover, X ×k k has at worst canonical
singularities. In particular, Y ≃ X ×k k and −KY is ample.

2. Y is isomorphic to a Hirzebruch surface, i.e. a P1-bundle over P1.

3. Y is isomorphic to a weighted projective surface P(1, 1,m) for some positive integer
m.

Theorem 5.6 (cf. Theorem 5.35). Let k be a field of characteristic p > 0. Let X be a
projective normal surface over k with canonical singularities such that k = H0(X,OX) and
−KX is ample. Let Y be the normalisation of (X ×k k)red and let

µ : Y → X ×k k

be the induced morphism.

1. If p ≥ 5, then µ is an isomorphism and Y has at worst canonical singularities.

2. If p = 3, then the absolute Frobenius morphism FX×kk
of X ×k k factors through µ:

FX×kk
: X ×k k → Y

µ−→ X ×k k.
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3. If p = 2, then the second iterated absolute Frobenius morphism F 2
X×kk

of X ×k k

factors through µ:
F 2
X×kk

: X ×k k → Y
µ−→ X ×k k.

Note that Theorem 5.5 shows that Y = (X ×k k)
N
red is a rational surface. In particular,

any numerically trivial line bundle on Y is trivial. By Theorem 5.6, if L′ denotes the
pullback of L to X ×k k, then it holds that L′4 ≃ OX×kk

in the case (3). Then the flat
base change theorem implies that also L4 is trivial.

We now discuss the proofs of Theorem 5.5 and Theorem 5.6. Roughly speaking, we
apply Reid’s idea ([Rei94, cf. the proof of Theorem 1.1]) to prove Theorem 5.5 by combining
with a rationality criterion (Lemma 5.32). As for Theorem 5.6, we use the notion of
Frobenius length of geometric normality ℓF (X/k) introduced in [Tanb] (cf. Definition
2.19, Remark 2.20). Roughly speaking, if p = 2, then we can prove that ℓF (X/k) ≤ 2 by
computing certain intersection numbers (cf. the proof of Proposition 5.34). Then general
result on ℓF (X/k) (Remark 2.20) implies (3) of Theorem 5.6.

The case when dimB = 1

Assume that dimB = 1, i.e. π : X → B is a KX -Mori fibre space to a curve B. Since X
is of del Pezzo type, we have that the extremal ray R of NE(X) that is not corresponding
to π : X → B is spanned by an integral curve Γ, i.e. R = R≥0[Γ]. In particular, Γ → B

is a finite surjective morphism of curves. If KX · Γ < 0, then the problem is reduced to
the above case (5.1.1) by contracting Γ. Even if KX · Γ = 0, then we may contract Γ and
apply the same strategy. Hence, it is enough to treat the case when KX · Γ > 0. Note
that the numerically trivial Cartier divisor L on X descends to B, i.e. we have L ∼ π∗LB

for some Cartier divisor LB on B. Then, a key observation is that the extension degree
[K(Γ) : K(B)] is at most five (Proposition 5.42). For example, if p > 5, then Γ → B

is separable. Then the Hurwitz formula implies that −KB is ample, hence LB ∼ 0. If
K(Γ)/K(B) is purely inseparable of degree pe, then it hold that Lp

e

B ∼ 0, since −KΓN

is ample. For the remaining case, i.e. p = 2, [K(Γ) : K(B)] = 4, and K(Γ)/K(B) is
inseparable but not purely inseparable, we prove that H0(B,L4

B) ̸= 0 by applying Galois
descent for the separable closure of K(Γ)/K(B) (cf. the proof of Proposition 5.44).

5.1.2. Sketch of the proof of Theorem 5.4

Let us overview some of the ideas used in the proof of Theorem 5.4. The first step is the
same as Subsection 5.1.1, i.e. considering the minimal resolution and running a minimal
model program, we reduce the problem to the case when X is a regular surface of del Pezzo
type which has a KX -Mori fibre space structure X → B.
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The case when dimB = 0

Assume that dimB = 0. In this case, X is a regular del Pezzo surface with ρ(X) = 1. Since
the p-degree of a C1-field is at most one (Lemma 5.54), it follows from [FS18, Theorem
14.1] that X is geometrically normal. Then Theorem 5.5 implies that the base change
X ×k k is a canonical del Pezzo surface, i.e. X ×k k has at worst canonical singularities
and −KX×kk

is ample. In particular, we have that 1 ≤ K2
X ≤ 9. Note that if X is smooth,

then it is known that X has a k-rational point (cf. [Kol96, Theorem IV.6.8]). Following
the same strategy as in [Kol96, Theorem IV.6.8], we can show that X(k) ̸= ∅ if K2

X ≤ 4

(Lemma 5.56). For the remaining cases 5 ≤ K2
X ≤ 9, we use results established in [Sch08],

which restrict the possibilities for the type of singularities on X ×k k. For instance, if
p ≥ 11, then [Sch08, Theorem 6.1] shows that the singularities on X ×k k are of type
Ape−1. However, such singularities cannot appear, because the minimal resolution V of
X ×k k satisfies ρ(V ) ≤ 9. Hence, X is actually smooth if p ≥ 11 (Proposition 5.47). For
the remaining cases p ≤ 7, we study the possibilities one by one, so that we are able to
deduce what we desire. For more details, see Subsection 5.6.1.

The case when dimB = 1

Assume that dimB = 1, i.e. π : X → B is a KX -Mori fibre space to a curve B. Then
the outline is similar to the one in (5.1.1). Let us use the same notation as in (5.1.1). The
typical case is that −KB is ample. In this case, B has a rational point. Then also the fibre
of π over a rational point, which is a conic curve, has a rational point. Although we need
to overcome some technical difficulties, we may apply this strategy up to suitable purely
inseparable covers for almost all the cases (cf. the proof of Proposition 5.63). There is one
case we can not apply this strategy: p = 2, KX ·Γ > 0, and K(Γ)/K(B) is inseparable and
not purely inseparable. In this case, we can prove that −KB is actually ample (Proposition
5.62).

5.1.3. Large characteristic

Using the techniques developed in this paper, we also prove the following theorem, which
shows that some a priori possible pathologies of log del Pezzo surfaces over imperfect fields
can appear exclusively in small characteristic.

Theorem 5.7 (cf. Corollary 5.50 and Theorem 5.52). Let k be a field of characteristic
p ≥ 7. Let X be a k-surface of del Pezzo type such that k = H0(X,OX). Then X is
geometrically integral over k and H i(X,OX) = 0 for any i > 0.

As a consequence, we deduce the following result on del Pezzo fibrations in large char-
acteristic:

Corollary 5.8. Let k be an algebraically closed field of characteristic p ≥ 7. Let π : V → B

be a projective k-morphism of normal k-varieties such that π∗OV = OB and dim V −
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dim B = 2. Assume that there exists an effective Q-divisor ∆ on V such that (V,∆) is
klt and −(KV +∆) is π-nef and π-big. Then general fibres of π are integral schemes and
there is a non-empty open subset B′ of B such that the equation (Riπ∗OV )|B′ = 0 holds
for any i > 0.

The authors do not know whether surfaces of del Pezzo type are geometrically normal
if the characteristic is sufficiently large. On the other hand, even if p is sufficiently large,
regular surfaces of del Pezzo type can be non-smooth. More specifically, for an arbitrary
imperfect field k of characteristic p > 0, we construct a regular surface of del Pezzo type
which is not smooth (Proposition 5.67).

5.2. Preliminaries

5.2.1. Surfaces of del Pezzo type

In this subsection, we summarise some basic properties of surfaces of del Pezzo type over
arbitrary fields. For later use, we introduce some terminology. Note that del Pezzo surfaces
in our notation allow singularities.

Definition 5.9. Let k be a field. A k-surface X is del Pezzo if X is a projective normal
surface such that −KX is an ample Q-Cartier divisor. A k-surface X is weak del Pezzo if
X is a projective normal surface such that −KX is a nef and big Q-Cartier divisor.

We study how the property of being of del Pezzo type behaves under birational trans-
formations.

Lemma 5.10. Let k be a field. Let X be a k-surface of del Pezzo type. Let f : Y → X be
the minimal resolution of X. Then Y is a k-surface of del Pezzo type.

Proof. Let ∆ be an effective Q-divisor such that (X,∆) is a log del Pezzo pair. We define
a Q-divisor ∆Y by KY +∆Y = f∗(KX +∆). Since f : Y → X is the minimal resolution
of X, we have that ∆Y is an effective Q-divisor. The pair (Y,∆Y ) is klt and −(KY +∆Y )

is nef and big. Thus there exists E effective divisor such that for all 0 < ε≪ 1 the divisor
−(KY +∆Y )− εE is ample. If ε is sufficienly small, then (Y,Γ := ∆Y + εE) is klt by the
existence of log resolution for excellent schemes (see [Lip78]). Therefore the pair (Y,Γ) is
klt and −(KY + Γ) is ample, i.e. it is a log del Pezzo pair.

Lemma 5.11. Let k be a field. Let (X,∆) be a two-dimensional projective klt pair over
k. Let H be a nef and big Q-Cartier Q-divisor. Then there exists an effective Q-Cartier
Q-divisor A such that A ∼Q H and (X,∆+A) is klt.

Proof. Thanks to the existence of log resolutions for excellent surfaces [Lip78], the same
proof of [GNT, Lemma 2.8] works in our setting.



5.2. Preliminaries 67

Lemma 5.12. Let k be a field. Let X be a k-surface of del Pezzo type. Let f : X → Y be
a birational k-morphism to a projective normal k-surface Y . Then Y is a k-surface of del
Pezzo type.

Proof. Let ∆ be an effective Q-divisor such that (X,∆) is a log del Pezzo pair. Set
H := −(KX + ∆), which is an ample Q-Cartier Q-divisor on X. By Lemma 5.11, there
exists an effective Q-Cartier Q-divisor A such that A ∼Q H and (X,∆+ A) is klt. Then
the pair (Y, f∗∆+ f∗A) is klt and KX +∆+A ∼Q f

∗(KY + f∗∆+ f∗A) ∼Q 0. It follows
from [Tan18a, Corollary 4.11] that Y is Q-factorial. By Nakai’s criterion, the Q-divisor
f∗A is ample. In particular (Y, f∗∆) is a log del Pezzo pair.

5.2.2. Geometrically canonical del Pezzo surfaces

In this subsection we collect results on the anti-canonical systems of geometrically canonical
del Pezzo surfaces we will need later.

Canonical del Pezzo surfaces over algebraically closed fields

We verify that the results in [Kol96, Chapter III, Section 3] hold for del Pezzo surfaces
with canonical singularities over algebraically closed fields.

Proposition 5.13. Let X be a canonical weak del Pezzo surface over an algebraically
closed field k. Then the following hold.

1. H2(X,OX(−mKX)) = 0 for any non-negative integer m.

2. H i(X,OX) = 0 for any i > 0.

3. H0(X,OX(−KX)) ̸= 0.

4. H1(X,OX(mKX)) = 0 for any integer m.

5. h0(X,OX(−mKX)) = 1 + m(m+1)
2 K2

X for any non-negative integer m.

Proof. The assertion (1) follows from Serre duality. We now show (2). It follows from
[Tan14, Theorem 5.4 and Remark 5.5] that X has at worst rational singularities. Then the
assertion (2) follows from the fact that X is a rational surface [Tan15, Theorem 3.5].

We now show (3). By H2(X,OX(−KX)) = 0 and the Riemann–Roch theorem, we
have h0(X,OX(−KX)) ≥ 1 +K2

X > 0. Thus (3) holds.
We now show (4). By (3), there exists an effective Cartier divisor D such that D ∼

−KX . In particular, D is effective, nef, and big. It follows from [CT, Proposition 3.3] that

H1(X,OX(−nD)) = H1(X,OX(KX + nD)) = 0

for any n ∈ Z>0. Replacing D by −KX , the assertion (4) holds. Thanks to (1) and (4),
assertion (5) follows from the Riemann–Roch theorem.
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Lemma 5.14. Let Y be a canonical weak del Pezzo surface over an algebraically closed
field k. If a divisor

∑r
i=1 aiCi ∈ | −KY | is not irreducible or not reduced, then every Ci is

a smooth rational curve.

Proof. Taking the minimal resolution of Y , we may assume that Y is smooth. Fix an index
1 ≤ i0 ≤ r. By adjunction, we have

2pa(Ci0)− 2 = −Ci0 ·

∑
i̸=i0

ai
ai0

Ci

− ai0 − 1

ai0
Ci0 · (−KY ). (5.1)

Note that both the terms on the right hand side are non-positive.
Since Y is smooth and

∑
i aiCi is nef and big, it follows from [Tan15, Theorem 2.6]

that H1(X,−n
∑

i aiCi) = 0 for n ≫ 0. Hence,
∑

i aiCi is connected. Therefore, if∑
i aiCi is reducible, the first term in the right hand side of (5.1) is strictly negative, hence

pa(Ci0) < 0.
If ai0 ≥ 2 and Ci0 · KY < 0, then the second term in the right hand side of (5.1) is

strictly negative, hence pa(Ci0) < 0. If Ci0 ·KY = 0, then Ci is a smooth rational curve
with C2

i = −2.

Proposition 5.15. Let Y be a canonical weak del Pezzo surface over an algebraically closed
field k. Let Bs(−KY ) be the base locus of −KY , which is a closed subset of Y . Then the
following hold.

1. Bs(−KY ) is empty or dim(Bs(−KY )) = 0.

2. A general member of the linear system | −KY | is irreducible and reduced.

Proof. Taking the minimal resolution of Y , we may assume that Y is smooth. Using
Proposition 5.13, the same proof of [Dol12, Theorem 8.3.2.i] works in our setting, so that
(1) holds and general members of | −KY | are irreducible.

It is enough to show that a general member of | −KY | is reduced. Suppose it is not.
Then there exist a > 1 such that a general member is of the form aC ∈ | −KY | for some
curve C. In particular, C is a smooth rational curve by Lemma 5.14. Recall that we have
the short exact sequence

0 → H0(Y,OY ) → H0(Y,OY (C)) → H0(C,OC(C)) → 0.

Since H1(Y,OY ) = 0 (Proposition 5.13), we have that h0(Y,OY (C)) = 1 + h0(C,OC(C)).
As C is a smooth rational curve, we conclude by the Riemann–Roch theorem that h0(Y,OY (C)) =

2 + C2.
We now consider the induced map

H0(Y,OY (C)) → H0(Y,OY (aC)) ≃ H0(Y,OY (−KY ))

φ 7→ φa
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Since a general member of | − KY | is of the form aD for some D ≥ 0, θ is a dominant
morphism if we consider θ as a morphism of affine spaces. Therefore, it holds that

h0(Y,OY (−KY )) ≤ h0(Y,OY (C)) = 2 + C2 = −KY · C ≤ K2
Y ,

which contradicts Proposition 5.13.

Anti-canonical systems on geometrically canonical del Pezzo surfaces

In this section, we study anticanonical systems on geometrically canonical del Pezzo sur-
faces over an arbitrary field k and we describe their anti-canonical model when the anti-
canonical degree is small.

We need the following results on geometrically integral curves of genus one.

Lemma 5.16. Let k be a field. Let C be a geometrically integral Gorenstein projective
curve over k of arithmetic genus one with k = H0(C,OC). Let L be a Cartier divisor on
C and let R(C,L) :=

⊕
m≥0H

0(C,mL) be the graded k-algebra. Then the following hold.

(i) If degk(L) = 1, then Bs(L) = {P} for some k-rational point P and R(C,L) is
generated by

⊕
1≤j≤3H

0(C, jL) as a k-algebra.

(ii) If degk(L) ≥ 2, then L is globally generated and R(C,L) is generated by H0(C,L)⊕
H0(C, 2L) as a k-algebra.

(iii) If degk L ≥ 3, then L is very ample and R(C,L) is generated by H0(C,L) as a
k-algebra.

Proof. See [Tanb, Lemma 11.10 and Proposition 11.11].

Proposition 5.17. Let k be a field. Let X be a geometrically canonical weak del Pezzo
surface over k such that k = H0(X,OX). Let R(X,−KX) =

⊕
m≥0H

0(X,OX(−mKX))

be the graded k-algebra. Then the following hold.

1. If m is a positive integer such that mK2
X ≥ 2, then | −mKX | is base point free.

2. If K2
X = 1, then Bs(−KX) = {P} for some k-rational point P .

3. If K2
X = 1, then R(X,−KX) is generated by

⊕
1≤j≤3H

0(X,−jKX) as a k-algebra.

4. If K2
X = 2, then R(X,−KX) is generated by H0(X,−KX) ⊕ H0(X,−2KX) as a

k-algebra.

5. If K2
X ≥ 3, then R(X,−KX) is generated by H0(X,−KX) as a k-algebra.

In particular, if −KX is ample, then | − 6KX | is very ample.

Proof. Consider the following condition.

(2)’ If K2
X = 1, then Bs(−KX) is not empty and of dimension zero.
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Since K2
X = 1, (2) and (2)’ are equivalent. Note that to show that (1), (2)’, and (3)–(5),

we may assume that k is algebraically closed.
From now on, let us prove (1)–(5) under the condition that k is algebraically closed. It

follows from Proposition 5.15 that a general member C of | −KX | is a prime divisor.
Since C is a Cartier divisor and X is Gorenstein, then C is a Gorenstein curve. By

adjunction, C is a Gorenstein curve of arithmetic genus pa(C) = 1. By Proposition 5.13,
we have the following exact sequence for every integer m:

0 → H0(X,−(m− 1)KX) → H0(X,−mKX) → H0(C,−mKX |C) → 0.

By the above exact sequence, the assertions (1) and (2) follow from (3) and (2) of Lemma
5.16, respectively.

We prove the assertions (3), (4) and (5). By the above short exact sequence, it is
sufficient to prove the same statement for the k-algebra R(C,OC(−KX)), which is the
content of Lemma 5.16.

Theorem 5.18. Let k be a field. Let X be a geometrically canonical del Pezzo surface
over k such that H0(X,OX) = k. Then the following hold.

1. If K2
X = 1, then X is isomorphic to a weighted hypersurface in Pk(1, 1, 2, 3) of degree

six.

2. If K2
X = 2, then X is isomorphic to a weighted hypersurface in Pk(1, 1, 1, 2) of degree

four.

3. If K2
X = 3, then X is isomorphic to a hypersurface in P3

k of degree three.

4. If K2
X = 4, then X is isomorphic to a complete intersection of two quadric hypersur-

faces in P4
k.

Proof. Using Proposition 5.17, the proof is the same as in [Kol96, Theorem III.3.5].

5.2.3. Mori fibre spaces to curves

In this subsection, we summarise properties of regular curves with anti-ample canonical
divisor and of Mori fibre space of dimension two over arbitrary fields.

Lemma 5.19. Let k be a field. Let C be a projective Gorenstein integral curve over k.
Then the following are equivalent.

1. ω−1
C is ample.

2. H1(C,OC) = 0.

3. C is a conic curve of P2
K , where K := H0(C,OC).

4. degk ωC = −2 dimk(H
0(C,OC)).
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Proof. It follows from [Tan18a, Corollary 2.8] that (1), (2), and (4) are equivalent. Clearly,
(3) implies (1). By [Kol13, Lemma 10.6], (1) implies (3).

Lemma 5.20. Let k be a field and let C be a projective Gorenstein integral curve over k
such that k = H0(C,OC) and ω−1

C is ample. Then the following hold.

1. If C is geometrically integral over k, then C is smooth over k.

2. If the characteristic of k is not two, then C is geometrically reduced over k.

3. If the characteristic of k is not two and C is regular, then C is smooth over k.

Proof. By Lemma 5.19, C is a conic curve in P2
k. Thus, the assertion (1) follows from the

fact that an integral conic curve over an algebraically closed field is smooth.
Let us show (2) and (3). Since the characteristic of k is not two and C is a conic curve

in P2
k, we can write

C = Proj k[x, y, z]/(ax2 + by2 + cz2)

for some a, b, c ∈ k. Since C is an integral scheme, two of a, b, c are not zero. Hence, C is
reduced. Thus (2) holds. If C is regular, then each of a, b, c is nonzero, hence C is smooth
over k.

Proposition 5.21. Let k be a field. Let π : X → B be a KX-Mori fibre space from a
projective regular k-surface X to a projective regular k-curve with k = H0(B,OB). Let b
be a (not necessarily closed) point. Then the following hold.

1. The fibre Xb is irreducible.

2. The equation k(b) = H0(Xb,OXb
) holds.

3. The fibre Xb is reduced.

4. The fibre Xb is a conic in P2
k(b).

5. If char k ̸= 2, then any fibre of π is geometrically reduced.

6. If char k ̸= 2 and k is separably closed, then π is a smooth morphism.

Proof. If Xb is not irreducible, it contradicts the hypothesis ρ(X/B) = 1. Thus (1) holds.
Let us show (2). Since π is flat, the integer

χ := dimk(b)H
0(Xb,OXb

)− dimk(b)H
1(Xb,OXb

) ∈ Z

is independent of b ∈ B. Since H1(Xb,OXb
) = 0 for any b ∈ B, it suffices to show that

dimk(b)H
0(Xb,OXb

) = 1 for some b ∈ B. This holds for the case when b is the generic
point of B. Hence, (2) holds.

Let us prove (3). It is clear that the generic fibre is reduced. We may assume that
b ∈ B is a closed point. Assume that Xb is not reduced. By (1), we have Xb = mC for
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some prime divisor C and m ∈ Z≥2. Since −KX ·k(b) Xb = 2, we have that m = 2. Then
we obtain an exact sequence:

0 → OX(−C)|C → OXb
→ OC → 0.

Since C2 = 0 and ω−1
C is ample, we have that OX(−C)|C ≃ OC . Since H1(C,OC) = 0, we

get an exact sequence:

0 → H0(C,OC) → H0(Xb,OXb
) → H0(C,OC) → 0.

Then we obtain dimk(b)H
0(Xb,OXb

) ≥ 2, which contradicts (2). Hence (3) holds.
We now show (4). By [Tan18a, Corollary 2.9], degk(b) ωXb

= (KX +Xb) ·k(b) Xb < 0.
Hence (4) follows from (2) and Lemma 5.19.

The assertions (5) and (6) follow from Proposition 5.20.

5.2.4. Twisted forms of canonical singularities

The aim of this subsection is to prove Proposition 5.30.
The main idea is to bound the purely inseparable degree of regular non smooth points

on geometrically normal surfaces according to the type of singularities. For this, the notion
of Jacobian number plays a crucial role.

Definition 5.22. Let k be a field of characteristic p > 0. Let R be an equi-dimensional
k-algebra essentially of finite type over k. Let JR/k be its Jacobian ideal of R over k (cf.
[HS06, Definition 4.4.1 and Proposition 4.4.4]). We define the Jacobian number of R/k as
ν(R) := ν(R/k) := dimk(R/JR/k). Note that ν(R/k) < ∞ if R/JR/k is an artinian ring
and its residue fields are finite extensions of k.

Remark 5.23. Let k ⊂ k′ be a field extension of characteristic p > 0 and let R be an
equi-dimensional k-algebra essentially of finite type over k. Then the following hold.

1. By [HS06, Definition 4.4.1], we get

JR/k · (R⊗k k
′) = JR⊗kk′/k′ .

In particular, if R/JR/k is an artinian ring and its residue fields are finite extensions
of k, then we have ν(R/k) = ν(R⊗k k

′/k′).

2. Assume that k is a perfect field. By [HS06, Definition 4.4.9], Spec (R/JR/k) set-
theoretically coincides with the the non-regular locus of Spec R.

3. Assume that R is of finite type over k. Then (1) and (2) imply that Spec (R/JR/k)

set-theoretically coincides with the the non-smooth locus of Spec R→ Spec k.

Remark 5.24. In our application, R will be assumed to be a local ring OX,x at a closed
point x of a geometrically normal surface X over k. In this case, (3) of Remark 5.23 implies
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that R/JR/k is an artinian local ring whose residue field is a finite extension of k. Hence,
ν(R/k) = dimk(R/JR/k) is well-defined as in Definition 5.22.

To treat local situations, let us recall the notion of essentially étale ring homomor-
phisms. For its fundamental properties, we refer to [Fu15, Subsection 2.8].

Definition 5.25. Let f : R → S be a local homomorphism of local rings. We say that f
is essentially étale if there exists an étale R-algebra S and a prime ideal p of S such that
p lies over the maximal ideal of R and S is R-isomorphic to Sp.

In the following we will use some basic properties of Jacobian ideals, that rely on the
fact that they are Fitting ideals. Let us recall the definition of Fitting ideals for a finitely
presented module M over a ring R. Let us choose a presentation

R⊕m A−→ R⊕n →M → 0,

and define the k-th fitting ideals Fitk(M) as the ideal generated by that (n− k)× (n− k)-
minors of the matrix A. By [SP, Tag 07Z8], this ideal Fitk(M) is indipendent on the choice
of the presentation.

If R is an equi-dimensional k-algebra essentially of finite type over k of dimension n,
then as explained in [HS06, Discussion 4.4.7] we have the equality

JR/k = Fitn(Ω1
R/k).

Lemma 5.26. Let k be a field. Let f : R → S be an essentially étale local k-algebra
homomorphism of local rings which are essentially of finite type over k. Let mR and mS be
the maximal ideals of R and S, respectively. Set k(R) := R/mR and k(S) := S/mS. Then
the following hold.

1. If M is an R-module of finite length whose support is contained the maximal ideal
mR, then the equation

dimk(M ⊗R S) = [k(S) : k(R)] dimkM

holds.

2. Suppose that R is an integral domain, R/JR/k is an artinian ring, and k(R) is a
finite extension of k. Then the equation

ν(S/k) = [k(R) : k(S)]ν(R/k)

holds.

Proof. Let us show (1). Since M is a finitely generated R-module, there exists a sequence
of R-submodules M =: M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 such that Mi/Mi+1 ≃ R/p for some
prime ideal p by [Mat89, Theorem 6.4] . Since the support of M is mR, we have p = mR.

https://stacks.math.columbia.edu/tag/07Z8
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As R → S is flat, the problem is reduced to the case when M = R/mR = k(R). In this
case, we have

k(R)⊗R S = (R/mR)⊗R S ≃ S/mRS = S/mS = k(S),

where the equality S/mRS = S/mS follows from the assumption that f is a localisation
of an unramified homomorphism. Hence, (1) holds.

Let us show (2). Set n := dimR. We use the description of the Jacobian of R via
Fitting ideals : JR/k = Fitn(Ω1

R/k) and JS/k = Fitn(Ω1
S/k). We have

JS/k = Fitn(Ω1
S/k) = Fitn(Ω1

R/k ⊗R S) = Fitn(Ω1
R/k)S = JR/kS,

where the third equality follows from (3) of [SP, Tag 07ZA]. As f : R → S is flat, we
obtain S/JS/k ≃ (R/JR/k)⊗R S. By (1) and Definition 5.22, the assertion (2) holds.

Example 5.27. Let k be a field of characteristic p > 0. Let X = Spec R be a surface
over k such that

(i) X ×k k = Spec (R⊗k k) is a normal surface,

(ii) X ×k k has a unique singular point x, and x is a canonical singularity of type Apn−1.

We prove that ν(R/k) = pn. By Remark 5.23, we have ν(R/k) = ν(R⊗k k/k). In order to
compute ν(R ⊗k k/k), it is sufficient to localise at the singular point by [HS06, Corollary
4.4.5]. Thus we can suppose that k is algebraically closed and R is a local k-algebra.

By [Art77, pages 16-17] (cf. Section 2.1), the henselisation Rh of R is isomorphic to

k{x, y, z}/(zpn + xy).

In particular there exist essentially étale local k-algebra homomorphisms R → S and
k[x, y, z]/(zp

n − xy) → S. A direct computation shows ν(k[x, y, z]/(zpn − xy)) = pn. Thus
by Lemma 5.26, we have

ν(R) = ν(S) = ν(k[x, y, z]/(zp
n − xy)) = pn.

The following is a generalisation of [FS18, Lemma 14.2].

Lemma 5.28. Let k be a field of characteristic p > 0. Let X = Spec R, where R is an
equi-dimensional local k-algebra of essentially finite type over k. Let x be the closed point
of X. Suppose that R/JR/k is a local artinian ring and its residue field k(x) is a finite
extension of k. Then [k(x) : k] is a divisor of ν(R/k).

Proof. Let R/JR/k =: M0 ⊃ M1 ⊃ · · · ⊃ Mn = 0 be a composition sequence of R/JR/k-
submodules (cf. [Mat89, Theorem 6.4]). Since R/JR/k is an artinian local ring, it holds

https://stacks.math.columbia.edu/tag/07ZA
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that Mi/Mi+1 ≃ k(x) for any i. We have

ν(R/k) = dimk(R/JR/k) =
n−1∑
i=0

dimk(Mi/Mi+1) = ndimk k(x) = n[k(x) : k].

We thus conclude that [k(x) : k] is a divisor of ν(R/k).

Lemma 5.29. Let X be a regular variety over a separably closed field k. Suppose that
Xk = X ×k k is a normal variety with a unique singular point y. Let x be the image of y
by the induced morphism Xk → X. Then the following hold.

1. [k(x) : k] is a divisor of ν(OX,x).

2. X ×k k(x) is not regular.

Proof. Since k is separably closed, the induced morphism Xk → X is a universal home-
omorphism. Note that the local ring OX,x is not geometrically regular over k. Applying
Lemma 5.28 to the local ring OX,x, we deduce that [k(x) : k] is a divisor of ν(OX,x). Thus
(1) holds. Consider the base change π : X ×k k(x) → X. Let x′ be the point on X ×k k(x)

lying over x. Note that x′ is a k(x)-rational point of X ×k k(x) whose base change by
(−) ×k(x) k is not regular. By [FS18, Corollary 2.6], we conclude that X ×k k(x) is not
regular at x′.

We now explain how the previous results can be used to construct closed points with
purely inseparable residue field on a regular surface. This will be used in Section 5.6 to
find purely inseparable points on regular del Pezzo surfaces.

Proposition 5.30. Let X be a regular surface over k. Suppose that Xk = X ×k k is
a normal surface over k with a unique singular point y. Assume that y is a canonical
singularity of type Apn−1. Let z be the image of y by the induced morphism Xk → Xk1/p

n =

X ×k k
1/pn . Then z is a k1/pn-rational point on Xk1/p

n .

Proof. Set R := OX,x, where x is the unique closed point along which X is not smooth.
Let ksep be the separable closure of k. For Rksep := R ⊗k k

sep, it follows from Example
5.27 that ν(Rksep) = pn. Lemma 5.29 implies that ksep ⊂ k(z) is purely inseparable and
[k(z) : ksep] is a divisor of pn. In particular, k(z) ⊂ (ksep)1/p

n .
Consider the Galois extension k1/pn ⊂ (ksep)1/p

n and denote by G its Galois group. For
X(ksep)1/p

n := X×k (k
sep)1/p

n , G acts on the set X(ksep)1/p
n ((ksep)1/p

n
). The unique singular

(ksep)1/p
n-rational point on X(ksep)1/p

n is fixed under the G-action. Thus it descends to a
k1/p

n-rational point on Xk1/p
n .

5.3. Behaviour of del Pezzo surfaces under base changes

In this section, we study the behaviour of canonical del Pezzo surfaces over an imperfect
field k under the base changes to the algebraic closure k.
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5.3.1. Classification of base changes of del Pezzo surfaces

In this subsection, we give classification of base changes of del Pezzo surfaces with canonical
singularities over imperfect fields (Theorem 5.33). To this end, we need two auxiliary
lemmas: Lemma 5.31 and Lemma 5.32. The former one classify Q-factorial surfaces over
algebraically closed fields whose anti-canonical bundles are sufficiently positive. Its proof
is based on a simple but smart idea by Reid (cf. the proof of [Rei94, Theorem 1.1]). A
similar idea has also been used by I. Cheltsov in [Che96]. The latter one, i.e. Lemma 5.32,
gives a rationality criterion for the base changes of log del Pezzo surfaces.

Lemma 5.31. Let k be an algebraically closed field. Let Y be a projective normal Q-
factorial surface over k such that −KY ≡ A + D for an ample Cartier divisor A and a
pseudo-effective Q-divisor D. Let µ : Z → Y be the minimal resolution of Y . Then one of
the following assertions holds.

1. D ≡ 0 and Y has at worst canonical singularities.

2. Z is isomorphic to a P1-bundle over a smooth projective curve.

3. Z ≃ P2.

Proof. Assuming that (1) does not hold, let us prove that either (2) or (3) holds. We have

KZ + E = µ∗KY

for some effective µ-exceptional Q-divisor E on Z. In particular, it holds that

KZ + E + µ∗(D) = µ∗(KY +D) ≡ −µ∗A.

Since (1) does not hold, we have that D ̸≡ 0 or E ̸= 0. Then we get

KZ + µ∗A ≡ −E − µ∗(D) ̸≡ 0,

hence KZ + µ∗A is not nef. By the cone theorem for a smooth projective surface [KM98,
Theorem 1.24], there is a curve C that spans a (KZ + µ∗A)-negative extremal ray R of
NE(Z). Note that C is not a (−1)-curve. Indeed, otherwise µ(C) is a curve and we obtain
µ∗A · C > 0, which induces a contradiction:

(KZ + µ∗A) · C ≥ −1 + 1 = 0.

It follows from the classification of the KZ-negative extremal rays [KM98, Theorem 1.28]
that either Z ≃ P2 or Z is a P1-bundle over a smooth projective curve. In any case, one
of (2) and (3) holds.

Lemma 5.32. Let (X,∆) be a projective two-dimensional klt pair over a field of charac-
teristic p > 0 such that −(KX + ∆) is nef and big. Assume that k = H0(X,OX). Then
(X ×k k)red is a rational surface.
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Proof. See [NT, Proposition 2.20].

We now give a classification of the base changes of del Pezzo surfaces with canonical
singularities.

Theorem 5.33. Let k be a field of characteristic p > 0. Let X be a canonical del Pezzo
surface over k with k = H0(X,OX). Then the normalisation Y of (X ×k k)red satisfies
one of the following properties.

1. X ×k k is geometrically canonical over k. In particular, Y ≃ X ×k k and −KY is
ample.

2. X is not geometrically normal over k and Y is isomorphic to a Hirzebruch surface,
i.e. a P1-bundle over P1.

3. X is not geometrically normal over k and Y is isomorphic to a weighted projective
surface P(1, 1,m) for some positive integer m.

Proof. Replacing k by its separable closure, we may assume that k is separably closed. Let
f : Y → X be the induced morphism and let µ : Z → Y be the minimal resolution of Y .
By [Tan18b, Theorem 4.2], there is an effective Z-divisor D on Y such that

• KY +D = f∗KX , and

• if X ×k k is not normal, then D ̸= 0.

Since −KX is an ample Cartier divisor, so is −f∗KX . Moreover, it follows from [Tan18b,
Lemma 2.2 and Lemma 2.5] that Y is Q-factorial. Hence, we may apply Lemma 5.31 to
−KY = −f∗KX +D.

By Lemma 5.32, Y is a rational surface. Thus, if (2) or (3) of Lemma 5.31 holds, then
one of (1)–(3) of Theorem 5.33 holds, as desired. Therefore, let us treat the case when (1)
of Lemma 5.31 holds. Then it holds that D = 0 and Y has at worst canonical singularities.
In this case, we have that Y = X ×k k and X is geometrically canonical. Hence, (1) of
Theorem 5.33 holds, as desired.

5.3.2. Bounds on Frobenius length of geometric non-normality

In this subsection, we give an upper bound for the Frobenius length of geometric non-
normality for canonical del Pezzo surfaces (Proposition 5.34).

Proposition 5.34. Let k be a field of characteristic p > 0. Let X be a canonical del Pezzo
surface over k with k = H0(X,OX). Let Y be the normalisation of (X ×k k)red and let
f : Y → X be the induced morphism. Assume that the linear equivalence

KY +
r∑
i=1

Ci ∼ f∗KX
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holds for some prime divisors C1, ..., Cr (not necessarily Ci ̸= Cj for i ̸= j). Then it holds
that r ≤ 2.

Proof. Set C :=
∑r

i=1Ci. We have KY + C ∼ f∗KX . If C = 0, then there is nothing to
show. Hence, we may assume that C ̸= 0. In particular, X is not geometrically normal. In
this case, it follows from Theorem 5.33 that Y is isomorphic to either a Hirzebruch surface
or P(1, 1,m) for some m > 0.

We first treat the case when Y ≃ P(1, 1,m). If m = 1, then the assertion is obvious.
Hence, we may assume that m ≥ 2. In this case, for the minimal resolution g : Z → Y , we
have that

KZ +
m− 2

m
Γ = g∗KY

where Γ is the negative section of the fibration Z → P1 such that Γ2 = −m. Note that m
is the Q-factorial index of Y , i.e. mD is Cartier for any Z-divisor D on Y . We have that

−KZ =
m− 2

m
Γ− g∗KY ≡ m− 2

m
Γ + g∗C − g∗f∗KX

Consider the intersection number with a fibre FZ of Z → P1:

2 =

(
m− 2

m
Γ + g∗C − g∗f∗KX

)
· FZ ≥ m− 2

m
+ C · g∗(FZ) + 1.

Thus we obtain
2 ≥ C · (mg∗(FZ)) ≥ r,

where the last inequality holds since mg∗(FZ) is an ample Cartier divisor. Therefore, we
obtain r ≤ 2, as desired.

It is enough to treat the case when Y is a Hirzebruch surface. For a fibre F of π : Y →
P1, we have that

−2 + C · F = (KY + C) · F = f∗KX · F ≤ −1,

hence C · F ≤ 1. There are two possibilities: C · F = 1 or C · F = 0.
Assume that C · F = 1. Then there is a section Γ of π and a π-vertical Z-divisor C ′

such that C = Γ + C ′. Consider the intersection number with Γ:

−2 + Γ · C ′ = (KY + Γ + C ′) · Γ = (KY + C) · Γ = f∗KX · Γ ≤ −1.

Therefore, we have Γ ·C ′ ≤ 1. This implies that either C ′ = 0 or C ′ is a prime divisor. In
any case, we get r ≤ 2, as desired.

We may assume that C · F = 0, i.e. C is a π-vertical divisor. Let Γ be a section of π
such that Γ2 ≤ 0. We have that

−2 + C · Γ = (KY + Γ + C) · Γ ≤ (KY + C) · Γ = f∗KX · Γ ≤ −1.

Hence, we obtain C · Γ ≤ 1, which implies r ≤ 1.
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Theorem 5.35. Let k be a field of characteristic p > 0. Let X be a canonical del Pezzo
surface over k such that k = H0(X,OX). Let Y be the normalisation of (X ×k k)red and
let

µ : Y → X ×k k

be the induced morphism.

1. If p ≥ 5, then X is geometrically canonical, i.e. µ is an isomorphism and Y has at
worst canonical singularities.

2. If p = 3, then ℓF (X/k) ≤ 1 and the absolute Frobenius morphism FX×kk
of X ×k k

factors through µ:
FX×kk

: X ×k k → Y
µ−→ X ×k k.

3. If p = 2, then ℓF (X/k) ≤ 2 and the second iterated absolute Frobenius morphism
F 2
X×kk

of X ×k k factors through µ:

F 2
X×kk

: X ×k k → Y
µ−→ X ×k k.

Proof. The assertion follows from Remark 2.20 and Proposition 5.34.

5.4. Numerically trivial line bundles on log del Pezzo surfaces

The purpose of this section is to give an explicit upper bound on the torsion index of
numerically trivial line bundles on log del Pezzo surfaces over imperfect fields (Theorem
5.45). To achieve this result, we use the minimal model program to reduce the problem to
the case when our log del Pezzo surface admits a Mori fibre space structure π : X → B.
The cases dimB = 0 and dimB = 1 will be settled in Theorem 5.36 and Proposition 5.44,
respectively.

5.4.1. Canonical case

In this subsection, we study numerically trivial Cartier divisor on del Pezzo surfaces with
canonical singularities.

Theorem 5.36. Let k be a field of characteristic p > 0. Let X be a canonical weak del
Pezzo surface over k such that k = H0(X,OX). Let L be a numerically trivial Cartier
divisor on X. Then the following hold.

1. If p ≥ 5, then L ∼ 0.

2. If p = 3, then 3L ∼ 0.

3. If p = 2, then 4L ∼ 0.
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Proof. We first reduce the problem to the case when −KX is ample. It follows from
[Tan18a, Theorem 4.2] that −KX is semi-ample. As −KX is also big, | −mKX | induces
a birational morphism f : X → Y to a projective normal surface Y . Then it holds that
KY is Q-Cartier and KX = f∗KY . In particular, Y has at worst canonical singularities.
Then [Tan18a, Theorem 4.4] enables us to find a numerically trivial Cartier divisor LY on
Y such that f∗LY ∼ L. Hence the problem is reduced to the case when −KX is ample.

Let us discuss the case where p ≥ 5. In this case by Theorem 5.35, Xk is a del Pezzo
surface with canonical singularities. Set L := OX(L) and let Lk be the pull-back to Xk.
Since Xk is a rational surface, we have H0(Xk,Lk) ̸= 0. By base change we thus have

H0(X,L)⊗k k ≃ H0(Xk,Lk) ̸= 0,

thus concluding.
We only treat the case when p = 2, as the case p = 3 is analogous. By Theorem 5.35,

the second iterated absolute Frobenius morphism

F 2
X×kk

: X ×k k → X ×k k

factors through the normalisation (X ×k k)
N
red of (X ×k k)red:

F 2
X×kk

: X ×k k → (X ×k k)
N
red

µ−→ X ×k k,

where µ denotes the induced morphism. Set L := OX(L) and let Lk be the pullback of L
to X ×k k. Since (X ×k k)

N
red is a normal rational surface by Lemma 5.32, any numerically

trivial invertible sheaf is trivial: µ∗Lk ≃ O(X×kk)
N
red

. As F 2
X×kk

factors through µ, we have
that

L4
k
= (F 2

X×kk
)∗Lk ≃ OX×kk

.

Then it holds that

H0(X,L4)⊗k k ≃ H0(X ×k k,L4
k
) ≃ H0(X ×k k,OX×kk

) ̸= 0.

Hence we obtain H0(X,L4) ̸= 0, i.e. 4L ∼ 0.

5.4.2. Essential step for the log case

In this subsection, we study the torsion index of numerically trivial line bundles on log del
Pezzo surfaces admitting the following special Mori fibre space structure onto a curve.

Notation 5.37. We use the following notation.

1. k is a field of characteristic p > 0.

2. X is a regular k-surface of del Pezzo type such that k = H0(X,OX) and ρ(X) = 2.

3. B is a regular projective curve over k such that k = H0(B,OB).
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4. π : X → B is a KX -Mori fibre space.

5. Let R = R≥0[Γ] be the extremal ray which does not correspond to π, where Γ

denotes a curve on X. Note that π(Γ) = B. Set dΓ := dimkH
0(Γ,OΓ) ∈ Z>0 and

mΓ := [K(Γ) : K(B)] ∈ Z>0. We denote by πΓ : Γ → B the induced morphism.

6. Assume that KX · Γ > 0.

Lemma 5.38. We use Notation 5.37. Then the following hold.

(7) Γ2 ≤ 0.

(8) There exists a rational number α such that 0 ≤ α < 1 and (X,αΓ) a log del Pezzo
pair.

Proof. The assertion (7) follows from Lemma 5.39 below. Let us prove (8). By Notation
5.37(2), there is an effective Q-divisor ∆ such that (X,∆) is a log del Pezzo pair. We
write ∆ = αΓ+∆′ for some rational number 0 ≤ α < 1 and an effective Q-divisor ∆′ with
Γ ̸⊂ Supp(∆′). Since NE(X) is generated by Γ and a fibre F of the morphism π : X → B,
we conclude that any prime divisor C such that C ̸= Γ is nef. In particular, ∆′ is nef.
Hence, (X,αΓ) is a log del Pezzo pair. Thus, (8) holds.

Lemma 5.39. Let k be a field. Let X be a projective Q-factorial normal surface over k
Let R = R≥0[Γ] is an extremal ray of NE(X), where Γ is a curve on X. If Γ2 > 0, then
ρ(X) = 1.

Proof. We may apply the same argument as in [Tan14, Theorem 3.21, Proof of the case
where C2 > 0 in page 20].

The first step is to prove that mΓ ≤ 5 (Proposition 5.42). To this end, we find an upper
bound and a lower bound for α (Lemma 5.40, Lemma 5.41).

Lemma 5.40. We use Notation 5.37. Take a closed point b of B and set Fb := π∗(b). Let
k(b) be the residue field at b and set d(b) := [k(b) : k]. Then the following hold.

1. KX ·k Fb = −2d(b).

2. Γ ·k Fb = mΓd(b).

3. If α is a rational number such that −(KX + αΓ) is ample, then αmΓ < 2.

Proof. Let us show (1). We have that

degk ωFb
= (KX + Fb) ·k Fb = KX ·k Fb < 0.

Hence, Lemma 5.19 implies that

KX ·k Fb = degk ωFb
= −2d(b).
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Thus (1) holds. Clearly, (2) holds.
Let us show (3). Since −(KX + αΓ) is ample, (1) and (2) imply that

0 > (KX + αΓ) ·k Fb = −2d(b) + αmΓd(b).

Thus (3) holds.

Lemma 5.41. We use Notation 5.37. Then the following hold.

1. (KX + Γ) ·k Γ = −2dΓ < 0.

2. For a rational number β with 0 ≤ β ≤ 1, it holds that

(KX + βΓ) ·k Γ ≥ dΓ(1− 3β).

3. If α is a rational number such that 0 ≤ α < 1 and −(KX + αΓ) is ample, then it
holds that 1/3 < α.

Proof. We fix a rational number α such that 0 ≤ α < 1 and −(KX + αΓ) is ample, whose
existence is guaranteed by Lemma 5.38.

Let us show (1). It holds that

(KX + Γ) ·k Γ ≤ (KX + αΓ) ·k Γ < 0,

where the first inequality follows from Γ2 ≤ 0 and 0 ≤ α < 1, whilst the second one
holds since −(KX + αΓ) is ample. Therefore, by adjunction and Lemma 5.19, we deduce
(KX + Γ) ·k Γ = degk ωΓ = −2dΓ. Thus (1) holds.

Let us show (2). For kΓ := H0(Γ,OΓ), the equation dΓ = [kΓ : k] (Notation 5.37(5))
implies that

KX ·k Γ = degk(ωX |Γ) = dΓ · degkΓ(ωX |Γ) ∈ dΓZ.

Combining with KX ·k Γ > 0 (Notation 5.37(6)), we obtain KX ·k Γ ≥ dΓ. Hence, it holds
that

(KX + βΓ) ·k Γ = (1− β)KX ·k Γ + β(KX + Γ) ·k Γ

= (1− β)KX ·k Γ + β(−2dΓ) ≥ (1− β)dΓ + β(−2dΓ) = dΓ(1− 3β).

Thus (2) holds. The assertion (3) follows from (2).

Proposition 5.42. We use Notation 5.37. It holds that mΓ ≤ 5.

Proof. We fix a rational number α such that 0 ≤ α < 1 and −(KX + αΓ) is ample, whose
existence is guaranteed by Lemma 5.38. Then the inequality mΓ < 6 holds by

2

mΓ
> α >

1

3
,
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where the first and second inequalities follow from Lemma 5.40 and Lemma 5.41, respec-
tively.

To prove the main result of this subsection (Proposition 5.44), we first treat the case
when K(Γ)/K(B) is separable or purely inseparable.

Lemma 5.43. We use Notation 5.37. Let LB be a numerically trivial Cartier divisor on
B. Then the following hold.

1. If K(Γ)/K(B) is a separable extension, then ω−1
B is ample and LB ∼ 0.

2. If K(Γ)/K(B) is a purely inseparable morphism of degree pe for some e ∈ Z>0, then
peLB ∼ 0.

Proof. We first prove (1). Assume that K(Γ)/K(B) is a separable extension. Let ΓN → Γ

be the normalisation of Γ. Set πΓN : ΓN → B to be the induced morphism. Since ω−1
Γ

is ample, so is ω−1
ΓN . Hence we obtain H1(ΓN ,OΓN ) = 0 (Lemma 5.19). Thanks to the

Hurwitz formula (cf. [Liu02, Theorem 4.16 in Section 7]), we have that H1(B,OB) = 0,
thus ω−1

B is ample (Lemma 5.19). In particular, the numerically trivial Cartier divisor LB
is trivial, i.e. LB ∼ 0. Thus (1) holds.

We now show (2). Since K(Γ)/K(B) is a purely inseparable morphism of degree pe,
the e-th iterated absolute Frobenius morphism F eB : B → B factors through the induced
morphism πΓN : ΓN → B:

F eB : B → ΓN
π
ΓN−−−→ B.

It holds that π∗
ΓNLB ∼ 0, hence peLB = (F eB)

∗LB ∼ 0. Thus (2) holds.

Proposition 5.44. We use Notation 5.37. Let L be a numerically trivial Cartier divisor
on X. Then the following hold.

1. If p ≥ 7, then L ∼ 0.

2. If p ∈ {3, 5}, then pL ∼ 0.

3. If p = 2, then 4L ∼ 0.

Proof. By [Tan18a, Theorem 4.4], there exists a numerically trivial Cartier divisor LB on
B such that π∗LB ∼ L. If K(Γ)/K(B) is separable, then Lemma 5.43(1) implies that
L ∼ 0. Therefore, we may assume that K(Γ)/K(B) is not a separable extension. Thanks
to Proposition 5.42, we have

[K(Γ) : K(B)] = mΓ ≤ 5.

Let us show (1). Assume p ≥ 7. In this case, there does not exist an inseparable
extension K(Γ)/K(B) with [K(Γ) : K(B)] ≤ 5. Thus (1) holds.
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Let us show (2). Assume p ∈ {3, 5}. Since K(Γ)/K(B) is not a separable extension
and [K(Γ) : K(B)] ≤ 5, it holds that K(Γ)/K(B) is a purely inseparable extension of
degree p. Hence, Lemma 5.43(2) implies that pL ∼ 0. Thus (2) holds.

Let us show (3). Assume p = 2. Since K(Γ)/K(B) is not a separable extension and
[K(Γ) : K(B)] ≤ 5, there are the following three possibilities (i)–(iii).

(i) K(Γ)/K(B) is a purely inseparable extension of degree 2.

(ii) K(Γ)/K(B) is a purely inseparable extension of degree 4.

(iii) K(Γ)/K(B) is an inseparable extension of degree 4 which is not purely inseparable.

If (i) or (ii) holds, then Lemma 5.43(2) implies that 4L ∼ 0. Hence we may assume that
(iii) holds. Let ΓN → Γ be the normalisation of Γ. Corresponding to the separable closure
of K(B) in K(Γ) = K(ΓN ), we obtain the following factorisation

ΓN → B1 → B

where K(ΓN )/K(B1) is a purely inseparable extension of degree two and K(B1)/K(B) is
a separable extension of degree two. In particular, K(B1)/K(B) is a Galois extension. Set
G := Gal(K(B1)/K(B)) = {id, σ}. Since LB|ΓN ∼ L|ΓN ∼ 0 and the absolute Frobenius
morphism FB1 : B1 → B1 factors through ΓN → B1, it holds that 2LB|B1 ∼ 0. In
particular, we have that H0(B1, 2LB|B1) ̸= 0. Fix 0 ̸= s ∈ H0(B1, 2LB|B1). We obtain

0 ̸= sσ(s) ∈ H0(B1, 4LB|B1)
G.

As sσ(s) is G-invariant, sσ(s) descends to B, i.e. there is an element

t ∈ H0(B, 4LB)

such that t|B1 = sσ(s). In particular, we obtain t ̸= 0, hence 4LB ∼ 0. Therefore, we have
4L ∼ 0.

5.4.3. General case

We are ready to prove the main theorem of this section.

Theorem 5.45. Let k be a field of characteristic p > 0. Let X be a k-surface of del Pezzo
type. Let L be a numerically trivial Cartier divisor on X. Then the following hold.

1. If p ≥ 7, then L ∼ 0.

2. If p ∈ {3, 5}, then pL ∼ 0.

3. If p = 2, then 4L ∼ 0.
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Proof. Let us consider the Stein factorisation X → Spec(H0(X,OX)) → Spec(k). Since
we only need to check that for a given m the space of global sections H0(X,mL) does not
vanish we can replace k with H0(X,OX) without any loss of generality.

Furthermore, replacing X by its minimal resolution, we may assume that X is regular
by Lemma 5.10. We run a KX -MMP:

φ : X =: X0 → X1 → · · · → Xn.

Since −KX is big, the end result Xn is a KXn-Mori fibre space. It follows from [Tan18a,
Theorem 4.4(3)] that there exists a Cartier divisor Ln with φ∗Ln ∼ L. Since also Xn is of
del Pezzo type by Lemma 5.12, we may replace X by Xn. Let π : X → B be the induced
KX -Mori fibre space.

If dimB = 0, then we conclude by Theorem 5.36. Hence we may assume that dimB =

1. Since X is a surface of del Pezzo type, there is an effective Q-divisor such that (X,∆)

is klt and −(KX +∆) is ample. Hence any extremal ray of NE(X) is spanned by a curve.
Note that ρ(X) = 2 and a fibre of π : X → B spans an extremal ray of NE(X). Let
R = R≥0[Γ] be the other extremal ray, where Γ is a curve on X. To summarise, (1)–(5) of
Notation 5.37 hold. There are the following three possibilities:

(i) Γ2 ≥ 0.

(ii) Γ2 < 0 and KX · Γ ≤ 0.

(iii) Γ2 < 0 and KX · Γ > 0.

Assume (i). In this case, any curve C on X is nef. Since −(KX + ∆) is ample, also
−KX is ample. Therefore, we conclude by Theorem 5.36.

Assume (ii). In this case, −KX is nef and big. Again, Theorem 5.36 implies the
assertion of Theorem 5.45.

Assume (iii). In this case, all the conditions (1)–(6) of Notation 5.37 hold. Hence the
assertion of Theorem 5.45 follows from Proposition 5.44.

5.5. Results in large characteristic

In this section, we prove the existence of geometrically normal birational models of log
del Pezzo surfaces over imperfect fields of characteristic at least seven (Theorem 5.49). As
consequences, we prove geometric integrality (Corollary 5.50) and vanishing of irregularity
for such surfaces (Theorem 5.52).

5.5.1. Analysis up to birational modification

The purpose of this subsection is to prove Theorem 5.49. To this end, we establish auxiliary
results on Mori fibre spaces (Proposition 5.47, Proposition 5.48) We start by recalling the
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following well-known relation between the Picard rank and the anti-canonical volume of
del Pezzo surfaces.

Lemma 5.46. Let Y be a smooth weak del Pezzo surface over an algebraically closed field
k. Then ρ(Y ) = 10−K2

Y . In particular, it holds that ρ(Y ) ≤ 9.

Proof. Let Y =: Y1 → Y2 → · · · → Yn = Z be a KY -MMP, where Z is a weak del Pezzo
surface endowed with a KZ-Mori fibre space Z → B. It is sufficient to prove the relation
ρ(Z) = 10−K2

Z , which is well known (cf. [KM98, Theorem 1.28]).

Proposition 5.47. Let k be field of characteristic p ≥ 11. Let X be a regular del Pezzo
k-surface such that k = H0(X,OX). Then X is smooth over k.

Proof. By Theorem 5.35, X ×k k has at most canonical singularities. By [Sch08, Theorem
6.1] such singularities are of type Ape−1. Since X ×k k is a canonical del Pezzo surface, its
minimal resolution π : Y → X ×k k is a smooth weak del Pezzo surface and we have

9 ≥ ρ(Y ) ≥ ρ(X ×k k) +
∑

x∈Sing(X×kk)

(p− 1) ≥
∑

x∈Sing(X×kk)

10,

where the first inequality follows from Lemma 5.46 and the last inequality holds by p ≥ 11.
Thus, we obtain Sing(X ×k k) = ∅, as desired.

Proposition 5.48. Let k be field of characteristic p > 0. Let X be a regular k-surface
of del Pezzo type such that k = H0(X,OX). Assume that there is a KX-Mori fibre space
π : X → B to a projective regular k-curve B. Let Γ be a curve which spans the extremal
ray of NE(X) not corresponding to π. Then the following hold.

1. If KX · Γ < 0 (resp. ≤ 0), then −KX is ample (resp. nef and big). If p ≥ 5, then
ω−1
B is ample and B is smooth over k.

2. If KX · Γ > 0 and p ≥ 7, then ω−1
B is ample and B is smooth over k.

3. If KX · Γ > 0, p ≥ 7, and k is separably closed, then Γ is a section of π and π is
smooth. In particular, X is smooth over k.

Proof. The first part of assertion (1) follows immediately from Kleimann’s criterion for
ampleness (resp. [Laz04a, Theorem 2.2.16]). Assume p ≥ 5. The anti-canonical model Z
of X is geometrically normal by Theorem 5.35 and thus H1(Z,OZ) = 0. This implies that
H1(X,OX) = 0 and H1(B,OB) = 0. Hence, the assertion (1) holds by Lemma 5.19 and
Lemma 5.20.

Let us show (2). The field extension K(Γ)/K(B) corresponding to the induced mor-
phism πΓ : Γ → B is separable (Proposition 5.42). Thus B is a curve such that ω−1

B is
ample (Lemma 5.43). Since p > 2, B is a k-smooth curve by Lemma 5.20. Thus (2) holds.

Let us show (3). It follows from Proposition 5.21(6) that π is a smooth morphism.
Hence it suffices to show that πΓ : Γ → B is a section of π. Since K(Γ) is separable
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over K(B) and B is smooth over k, K(Γ) is separable over k, i.e. K(Γ) is geometrically
reduced over k. Hence also Γ is geometrically reduced over k. Since Xk is a smooth
projective rational surface with ρ(Xk) = 2, Xk is a Hirzebruch surface and πk : Xk → Bk
is a projection. Since the pullback Γk of Γ is a curve with Γ2

k
< 0 by Lemma 5.39, Γk is

a section of πk : Xk → Bk. The base change Γk → Bk is an isomorphism, hence so is the
original one πΓ : Γ → B. Thus (3) holds.

Theorem 5.49. Let k be a separably closed field of characteristic p ≥ 7. Let X be a
k-surface of del Pezzo type such that k = H0(X,OX). Then there exists a birational map
X 99K Y to a projective normal k-surface Y such that one of the following properties holds.

1. Y is a regular del Pezzo surface such that k = H0(Y,OY ) and ρ(Y ) = 1. In particu-
lar, Y is geometrically canonical over k. Moreover, if p ≥ 11, then Y is smooth over
k.

2. There is a smooth projective morphism π : Y → B such that B ≃ P1
k and the fibre

π−1(b) is isomorphic to P1
k(b) for any closed point b of B, where k(b) denotes the

residue field of b. In particular, Y is smooth over k and Y ×k k is a Hirzebruch
surface.

Proof. Let f : Z → X be the minimal resolution of X. By Lemma 5.10, Z is a k-surface
of del Pezzo type. We run a KZ-MMP:

Z =: Z0 → Z1 → · · · → Zn =: Y.

By Lemma 5.12, the surfaces Zi are of del Pezzo type. The end result Y is a KY -Mori
fibre space π : Y → B. If dimB = 0, then Y is a regular del Pezzo surface, hence (1) holds
by Theorem 5.35 and Proposition 5.47. If dimB = 1, then Proposition 5.48 implies that
(2) holds.

Corollary 5.50. Let k be a field of characteristic p ≥ 7. Let X be a k-surface of del Pezzo
type such that k = H0(X,OX). Then X is geometrically integral over k.

Proof. We may assume k is separably closed. It is enough to show that X is geometrically
reduced [Tan18b, Lemma 2.2]. By Lemma 2.22, we may replace X by a surface birational
to X. Then the assertion follows from Theorem 5.49.

5.5.2. Vanishing of H1(X,OX)

In this subsection, we prove that surfaces of del Pezzo type over an imperfect field of
characteristic p ≥ 7 have vanishing irregularity.

Lemma 5.51. Let k be a field of characteristic p > 0. Let X be a k-surface of del Pezzo
type such that k = H0(X,OX). If X is geometrically normal over k, then it holds that
H i(X,OX) = 0 for i > 0.
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Proof. The assertion immediately follows from Lemma 5.32.

Theorem 5.52. Let k be a field of characteristic p ≥ 7. Let X be a k-surface of del Pezzo
type such that k = H0(X,OX). Then H i(X,OX) = 0 for i > 0.

Proof. We may assume that k is separably closed. Let X 99K Y be the birational morphism
as in the statement of Theorem 5.49. Lemma 5.51 implies that H i(Y,OY ) = 0 for i > 0.

Let φ : W → X and ψ : W → Y be birational morphisms from a regular projective
surface W . Since both Y and W are regular, we have that H i(W,OW ) = 0 for i > 0. Then
the Leray spectral sequence implies that H1(X,OX) = 0. It is clear that Hj(X,OX) = 0

for j ≥ 2.

In characteristic zero, it is known that the image of a variety of Fano type under a
surjective morphism remains of Fano type (cf. [FG12, Theorem 5.12]). The same result is
false over imperfect fields of low characteristic as shown in [Tana, Theorem 1.4]. We now
prove that this phenomenon can appear exclusively in low characteristic for surfaces.

Corollary 5.53. Let k be a field of characteristic p ≥ 7. Let X be a k-surface of del Pezzo
type such that k = H0(X,OX) and let π : X → Y be a projective k-morphism such that
π∗OX = OY . Then Y is a k-variety of Fano type. Furthermore, if dimY = 1, then Y is
smooth over k.

Proof. We distinguish two cases according to dimY . If dimY = 2, then π is birational and
we conclude by Lemma 5.12. If dimY = 1, then thanks to the Leray spectral sequence,
we have an injection:

H1(Y,OY ) ↪→ H1(X,OX),

where H1(X,OX) = 0 by Theorem 5.52. Therefore ω−1
Y is ample by Lemma 5.19 and Y is

smooth over k by Lemma 5.20.

5.6. Purely inseparable points on log del Pezzo surfaces

The aim of this section is to construct purely inseparable points of bounded degree on log
del Pezzo surfaces X over C1-fields of positive characteristic (Theorem 5.65). Since we
may take birational model changes, the problem is reduced to the case when X has a Mori
fibre space structure X → B. The case when dimB = 0 and dimB = 1 are treated in
Subsection 5.6.1 and Subsection 5.6.2, respectively. In Subsection 5.6.3, we prove the main
result of this section (Theorem 5.65).

5.6.1. Purely inseparable points on regular del Pezzo surfaces

In this subsection we prove the existence of purely inseparable points with bounded degree
on geometrically normal regular del Pezzo surfaces over C1-fields. If K2

X ≤ 4, then we
apply the strategy as in [Kol96, Theorem IV.6.8] (Lemma 5.56). We analyse the remaining
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cases by using a classification result given by [Sch08, Section 6] and Proposition 5.30. We
first relate the Cr-condition (for definition of Cr-field, see [Kol96, Definition IV.6.4.1]) for
a field of positive characteristic to its p-degree.

Lemma 5.54. Let k be a field of characteristic p > 0. If r is a positive integer and k is a
Cr-field, then p-deg(k) ≤ r, where p-deg(k) := logp[k : kp]. In particular, if k is a C1-field,
then p-deg(k) ≤ 1.

Proof. Suppose by contradiction that [k : kp] ≥ pr+1. Let s1, ..., spr+1 be elements of
k which are linearly independent over kp. Let us consider the following homogeneous
polynomial of degree p:

P :=

pr+1∑
k=1

six
p
i = s1x

p
1 + · · ·+ spr+1x

p
pr+1 ∈ k[x1, . . . , xpr+1].

Since s1, ..., spr+1 are linearly independent over kp, the polynomial P has only the trivial
solution in k. In particular k is not a Cr-field.

We then study rational points on geometrically normal del Pezzo surfaces of degree ≤ 4

(compare with [Kol96, Exercise IV.6.8.3]). We need the following result.

Lemma 5.55 (cf. Exercise IV.6.8.3.2 of [Kol96]). Let k be a C1-field. Let S be a weighted
hypersurface of degree 4 in Pk(1, 1, 1, 2). Then S(k) ̸= ∅.

Proof. Let us recall the definition of normic forms ([Kol96, Definition IV.6.4.2]). A homo-
geneous polynomial h ∈ k[y1, ..., ym] of degree m is called a normic form if h = 0 has only
the trivial solution in k. If k has a normic form of degree two, then the same argument as
in the proof of [Kol96, Theorem IV.6.7] works.

Suppose now that k does not have a normic form of degree two. We can write
Pk(1, 1, 1, 2) = Proj k[x0, x1, x2, x3], where deg x0 = deg x1 = deg x2 = 1 and deg x3 = 2.
Let

F (x0, x1, x2, x3) := cx23 + f(x0, x1, x2)x3 + g(x0, x1, x2) ∈ k[x0, x1, x2, x3]

be the defining polynomial of S, where c ∈ k and f(x0, x1, x2), g(x0, x1, x2) ∈ k[x1, x2, x3].
If c = 0, then F (0, 0, 0, 1) = 0. Thus, we may assume that c ̸= 0. Fix (a0, a1, a2) ∈ k3 \
{(0, 0, 0)}. Set α := f(a0, a1, a2) ∈ k and β := g(a0, a1, a2) ∈ k. Since h(X,Y ) := cX2 +

αXY + βY 2 is not a normic form, there is (u, v) ∈ k2 \ {(0, 0)} such that h(u, v) = cu2 +

αuv+ βv2 = 0. Since c ̸= 0, we obtain v ̸= 0. Therefore, it holds that F (a0, a1, a2, u/v) =
c(u/v)2 + α(u/v) + β = 0, as desired.

Lemma 5.56. Let X be a geometrically normal regular del Pezzo surface over a C1-field
k of characteristic p > 0 such that k = H0(X,OX). If K2

X ≤ 4, then X(k) ̸= ∅.

Proof. Since X is geometrically normal, then it is geometrically canonical by Theorem
5.33. Thus we can apply Theorem 5.18 and we distinguish the cases according to the
degree of KX .
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IfK2
X = 1, thenX has a k-rational point by Proposition 5.17(2). IfK2

X = 2, thenX can
be embedded as a weighted hypersurface of degree 4 in Pk(1, 1, 1, 2) and we apply Lemma
5.55 to conclude it has a k-rational point. If K2

X = 3, then X is a cubic hypersurface in
P3
k and thus it has a k-rational point by definition of C1-field. If K2

X = 4, then X is a
complete intersection of two quadrics in P4 and thus it has a k-rational point by [Lan52,
Corollary in page 376].

We now discuss the existence of purely inseparable points on geometrically normal
regular del Pezzo surfaces over C1-fields.

Proposition 5.57. Let X be a regular del Pezzo surface over a C1-field k of characteristic
p ≥ 7 such that k = H0(X,OX). Then X(k) ̸= ∅.

Proof. If X is a smooth del Pezzo surface, we conclude that there exists a k-rational point
by [Kol96, Theorem IV.6.8]. If p ≥ 11, then X is smooth by Proposition 5.47 and we
conclude.

It suffices to treat the case when p = 7 and X is not smooth. By Theorem 5.35(2),
X is geometrically canonical. By [Sch08, Theorem 6.1], any singular point of the base
change Xk = X ×k k is of type Apn−1. It follows from Lemma 5.46 that Xk has a unique
A6 singular point. Thus by Lemma 5.46 we have K2

X ≤ 3, hence Lemma 5.56 implies
X(k) ̸= ∅.

Proposition 5.58. Let X be a regular del Pezzo surface over a C1-field k of characteristic
p ∈ {3, 5} such that k = H0(X,OX). If X is geometrically normal over k, then X(k1/p) ̸=
∅.

Proof. It is sufficient to consider the case when X is not smooth by [Kol96, Theorem
IV.6.8]. By Theorem 5.33, Xk has canonical singularities.

If p = 5 and X is not smooth, then the singularities of Xk must be of type A4 or E0
8

according to [Sch08, Theorem 6.1 and Theorem 6.4]. If Xk has one singular point of type
E0

8 or two singular points of type A4, then K2
X = 1 by Lemma 5.46. Thus we conclude

that X has a k-rational point by Lemma 5.56. If Xk has a unique singular point of type
A4, it follows from Proposition 5.30 that X(k1/p) ̸= ∅.

If p = 3 and X is not smooth, then the singularities of Xk must be of type A2, A8, E0
6

or E0
8 according to [Sch08, Theorem 6.1 and Theorem 6.4]. If one of the singular points

is of the type A8, E0
6 and E0

8 , then K2
X ≤ 3 by Lemma 5.46 and we conclude X(k) ̸= ∅

by Lemma 5.56. Thus, we may assume that all the singularities of Xk are of type A2. If
there is a unique singularity of type A2 on Xk, then it follows from Proposition 5.30 that
X(k1/3) ̸= ∅. Therefore, we may assume that there are at least two singularities of type
A2 on Xk. Then it holds that K2

X ≤ 5. By [Dol12, Table 8.5 in page 431], we have that
K2
X ̸= 5, hence K2

X ≤ 4. Thus Lemma 5.56 implies X(k) ̸= ∅.

Proposition 5.59. Let X be a regular del Pezzo surface over a C1-field k of characteristic
p = 2 such that k = H0(X,OX). If X is geometrically normal, then X(k1/4) ̸= ∅.
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Proof. It is sufficient to consider the case when X is not smooth by [Kol96, Theorem
IV.6.8]. The singularities ofXk are canonical by Theorem 5.33. Hence, by [Sch08, Theorem
in page 57], they must be of type A1, A3 A7, D0

n with 4 ≤ n ≤ 8 or E0
n for n = 6, 7, 8. We

distinguish five cases for the singularities appearing on Xk.

1. There exists at least a singular point of type A7, D0
n with n ≥ 5 or E0

n for n = 6, 7, 8.

2. There are at least two singular points with one being of type A3.

3. There exists at least one singular point of type D0
4.

4. There is a unique singular point of type A3.

5. All the singular points are of type A1.

In case (1), it holds that K2
X ≤ 4. Hence, we obtain X(k) ̸= ∅ by Lemma 5.56. In

case (2), if K2
X ≤ 4, then Lemma 5.56 again implies X(k) ̸= ∅. Hence, we may assume

that K2
X = 5. Then there exist exactly two singular points P and Q on Xk such that P is

of type A3 and Q is of type A1. However, this cannot occur by [Dol12, Table 8.5 at page
431].

In case (3) we have that K2
X ≤ 5. However a D0

4 singularity cannot appear on a
del Pezzo of degree five according to [Dol12, Table 8.5 at page 431]. Thus K2

X ≤ 4 and
Lemma 5.56 implies X(k) ̸= ∅. In case (4), we apply Proposition 5.30 to conclude that
X(k1/4) ̸= ∅.

In case (5), consider X(ksep)1/2 . By Proposition 5.30, on X(ksep)1/2 there are singular
points {Pi}mi=1 of type A1 such that k(Pi) = (ksep)1/2 and their union

⨿
i Pi is the non-

smooth locus of X(ksep)1/2 . Let Y = Bl⨿
i Pi
X(ksep)1/2 be the blowup of X(ksep)1/2 along⨿

i Pi. Since each Pi is a (ksep)1/2-rational point whose base change to the algebraic
closure is a canonical singularity of type A1, the surface Y is smooth. Since the closed
subscheme

⨿
i Pi is invariant under the action of the Galois group Gal((ksep)1/2/k1/2),

the birational (ksep)1/2-morphism Y → X(ksep)1/2 descends to a birational k1/2-morphism
Z → Xk1/2 , where Z is a smooth projective surface over k1/2 whose base change to the
algebraic closure is a rational surface. It holds that Z(k1/2) ̸= ∅ by [Kol96, Theorem
IV.6.8], which implies X(k1/2) ̸= ∅.

5.6.2. Purely inseparable points on Mori fibre spaces

In this subsection, we discuss the existence of purely inseparable points on log del Pezzo
surfaces over C1-fields admitting Mori fibre space structures onto curves. We start by
recalling auxiliary results.

Lemma 5.60. Let k be a C1-field and let C be a regular projective curve such that k =

H0(C,OC) and −KC is ample. Then it holds that C ≃ P1
k. In particular, C(k) ̸= ∅.

Proof. Since C is a geometrically integral conic curve in P2
k (Lemma 5.19), the assertion

follows from definition of C1-field.
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Lemma 5.61. Let X be a regular projective surface over a C1-field k of characteristic
p > 0 such that k = H0(X,OX). Let π : X → B be a KX-Mori fibre space to a regular
projective curve B. Then the following hold.

1. Let k ⊂ k′ be an algebraic field extension. If B(k′) ̸= ∅, then X(k′) ̸= ∅.

2. If −KB is ample, then X(k) ̸= ∅.

Proof. Let us show (1). Let b be a closed point in B such that k ⊂ k(b) ⊂ k′. By
Proposition 5.21, the fibre Xb is a conic in P2

k(b). By [Lan52, Corollary in page 377], k(b)
is a C1-field, hence we deduce Xk(b)(k(b)) ̸= ∅. Thus, (1) holds. The assertion (2) follows
from Lemma 5.60 and (1) for the case when k′ = k.

To discuss the case when p = 2, we first handle a complicated case in characteristic
two.

Proposition 5.62. Let k be a field of characteristic two such that [k : k2] ≤ 2. Let X be a
regular k-surface of del Pezzo type and let π : X → B be a KX-Mori fibre space to a curve
B. Let Γ be a curve which spans the KX-negative extremal ray which does not correspond
to π. Assume that

1. KX · Γ > 0, and

2. K(Γ)/K(B) is an inseparable extension of degree four which is not purely inseparable.

Then −KB is ample.

Proof. We divide the proof in several steps. Let us note that since π : X → B is a Mori
fibre space we have that ρ(X) = 2.

Step 1. In order to show the assertion of Proposition 5.62, we may assume that

3. B is not smooth over k,

4. p-deg(k) = 1, i.e. [k : k2] = 2, and

5. the generic fibre of π is not geometrically reduced.

Proof. If (3) does not hold, then B is a smooth curve over k. Since (Xk)red is a rational
surface by Lemma 5.32, Bk is a smooth rational curve. Then −KB is ample, as desired.
Thus, we may assume (3). From now on, we assume (3).

If (4) does not hold, then k is a perfect field. In this case, B is smooth over k, which
contradicts (3). Thus, we may assume (4).

Let us prove the assertion of Proposition 5.62 if (5) does not hold. In this case, the
generic fibre XK(B) of π : X → B is a geometrically integral regular conic over K(B). Thus
it is smooth over K(B) by Lemma 5.20. We use notation as in Notation 5.37. Lemma
5.38(8) enables us to find a rational number α such that 0 ≤ α < 1 and (X,αΓ) is a log del
Pezzo pair. Then Lemma 5.40(3) implies that αmΓ < 2. Since our assumption (2) implies



5.6. Purely inseparable points on log del Pezzo surfaces 93

mΓ = [K(Γ) : K(B)] = 4, we have that α < 1/2. By the assumption (2) and α < 1/2,
the induced pair (X

K(B)
, αΓ|X

K(B)
) on the geometric generic fibre is F -pure. It follows

from [Eji, Corollary 4.10] that −KB is ample. Hence, we may assume that (5) holds. This
completes the proof of Step 1.

From now on, we assume that (3)–(5) of Step 1 hold.

Step 2. X and B are geometrically integral over k. X is not geometrically normal over
k.

Proof. Since [k : k2] = 2, it follows from [Sch10, Theorem 2.3] that X and B are geomet-
rically integral over k (note that log2[k : k2] is called the degree of imperfection for k in
[Sch10, Theorem 2.3]). If X is geometrically normal over k, then also B is geometrically
normal over k, i.e. B is smooth over k. This contradicts (3) of Step 1. This completes the
proof of Step 2.

We now introduce some notation. Set k1 := k1/2. By Step 2, X ×k k1 is integral and
non-normal (cf. [Tanb, Proposition 2.10(3)]). Let ν : X1 := (X ×k k1)

N → X ×k k1

be its normalisation. Let X1 → B1 be the Stein factorisation of the induced morphism
X1 → X → B. To summarise, we have a commutative diagram

X1
ν−−−−→ X ×k k1 −−−−→ Xy y y

B1 −−−−→ B ×k k1 −−−−→ B.

Let C ⊂ X ×k k1 and D ⊂ X1 be the closed subschemes defined by the conductors for ν.
For K := K(B), we apply the base change (−)×B Spec K to the above diagram:

V1 −−−−→ V ×K L −−−−→ Vy y y
Spec K1 −−−−→ Spec L −−−−→ Spec K,

where V := X×BK, L := K(B×kk1) = K(B)⊗kk1, and K1 = K(B1). Since taking Stein
factorisations commute with flat base changes, the morphism V1 → Spec K1 coincides the
Stein factorisation of the induced morphism V1 → Spec K.

Step 3. C dominates B.

Proof. Assuming that C does not dominate B, let us derive a contradiction. Since B is
geometrically integral over k (Step 2), we can find a non-empty open subset B′ of B such
that B′ is smooth over k and the image of C on B is disjoint from B′. Let B′

1, X
′, and X ′

1

be the inverse images of B′ to B1, X, and X1, respectively. Then the resulting diagram is
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as follows
X ′

1
≃−−−−→ X ′ ×k k1 −−−−→ X ′y y yπ′

B′
1

≃−−−−→ B′ ×k k1 −−−−→ B′.

Since X ′
1 ≃ X ′ ×k k1 = X ′ ×k k

1/2 is normal, it holds that X ′ is geometrically normal over
k.

Let π′
k
: X ′

k
→ B′

k
be the base change of π′ to the algebraic closure k. Since X ′ is

geometrically normal over k, X ′
k

is a normal surface. Note that B′
k

is a smooth curve.
Since general fibres of π′

k
: X ′

k
→ B′

k
are KX′

k
-negative and (π′

k
)∗OX′

k
= OB′

k
, general

fibres of π′
k

are isomorphic to P1
k
. Then the generic fibre of π′

k
: X ′

k
→ B′

k
is smooth, hence

so is the generic fibre of π : X → B. This contradicts (5) of Step 1. This completes the
proof of Step 3.

Step 4. The following hold.

(i) L/K is a purely inseparable extension of degree two.

(ii) V is a regular conic curve on P2
K which is not geometrically reduced over K.

(iii) V1 → V ×K L is the normalisation of V ×K L.

(iv) V ×K L is an integral scheme which is not regular.

(v) The restriction D|V1 of the conductor D to V1 satisfies DV1 = Q, where Q is a
K1-rational point.

(vi) V1 is isomorphic to P1
K1

.

(vii) K1/L is a purely inseparable extension of degree two, and K1 = K1/2.

Proof. The assertions (i)–(iii) follows from the construction. Step 3 implies (iv). Let us
show (v). For the induced morphism φ : V1 → V , we have that

KV1 +D|V1 ∼ φ∗KV .

Since −KV is ample, it holds that

0 > degK1
(KV1 +D|V1) ≥ −2 + degK1

(D|V1),

which implies degK1
(D|V1) ≤ 1. Step 3 implies that D|V1 ̸= 0, hence D|V1 consists of a

single rational point. Thus, (v) holds.
Let us show (vi). Since V1 has a K1-rational point around which V1 is regular, V1

is smooth around this point. In particular, Lemma 2.22 implies that V1 is geometrically
reduced. Then V1 is a geometrically integral conic curve in P2

K1
. Therefore, V1 is smooth

over K1. Since V1 has a K1-rational point, V1 is isomorphic to P1
K1

. Thus, (vi) holds.
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Let us show (vii). The inclusion K1 ⊂ K1/2, which is equivalent to K2
1 ⊂ K, follows

from the fact that K is algebraically closed in K(V ) and the following:

K2
1 ⊂ K(V1)

2 = K(V ×K L)2 = (K(V )⊗K L)2 ⊂ K(V ).

It follows from [BM40, Theorem 3] that the p-degree p-deg(K) is two, i.e. [K1/2 :

K] = 4 (note that the p-degree is called the degree of imperfection in [BM40]). Hence, it
is enough to show that K1 ̸= L. Assume that K1 = L. Then V1 is smooth over L by (vi).
Hence, V ×K L is geometrically integral over L. Therefore, V is geometrically integral over
K, which contradicts (5) of Step 1. This completes the proof of Step 4.

Step 5. Set-theoretically, C does not contain Γ×k k1.

Proof. Assuming that C contains Γ ×k k1, let us derive a contradiction. In this case, the
set-theoretic inclusion

f−1(Γ) ⊂ ν−1(C) = D

holds, where f : X1 → X is the induced morphism. Since B1 → B is a universal homeo-
morphism and the geometric generic fibre Γ ×B Spec K of Γ → B consists of two points,
the geometric generic fibre of D → B1 contains two distinct points. In particular, it holds
that degK1

(D|V1) ≥ 2. However, this contradicts (v) of Step 4. This completes the proof
of Step 5.

Step 6. −KB1 is ample.

Proof. It follows from Lemma 5.38(8) that there is a rational number α such that 0 ≤ α < 1

and (X,αΓ) is a log del Pezzo pair. Consider the pullback:

KX1 +D + αf∗Γ = f∗(KX + αΓ).

Take the geometric generic fibre W of π1 : X1 → B1, i.e. W = V1 ×K1 Spec K1 ≃ P1
K1

(Step 4(vi)). It is clear that −(KW + (D + αf∗Γ)|W ) is ample. Since D|V1 = Q is a
rational point (Step 4(v)), its pullback D|W =: QW to W is a closed point on W . As
−(KW + (D+ αf∗Γ)|W ) is ample, all the coefficients of B := (αf∗Γ)|W must be less than
one. Therefore, Step 5 implies that (W, (D + αf∗Γ)|W ) is F -pure. It follows from [Eji,
Corollary 4.10] that −KB1 is ample. This completes the proof of Step 6.

Step 7. −KB is ample.

Proof. As −KB1 is ample (Step 6), Lemma 5.19 implies that H1(B1,OB1) = 0. Since
K(B1) = K(B)1/2 (Step 4(vii)), the morphism B1 → B coincides with the absolute Frobe-
nius morphism of B. Hence, B1 and B are isomorphic as schemes. Thus, the vanishing
H1(B1,OB1) = 0 implies H1(B,OB) = 0. Then −KB is ample by Lemma 5.19. This
completes the proof of Step 7.
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Step 7 completes the proof of Proposition 5.62.

Proposition 5.63. Let X be a regular k-surface of del Pezzo type over a C1-field k of
characteristic p > 0 such that k = H0(X,OX). Let π : X → B be a KX-Mori fibre space
to a regular projective curve. Then the following hold.

1. If p ≥ 7, then X(k) ̸= ∅.

2. If p = {3, 5}, then X(k1/p) ̸= ∅.

3. If p = 2, then X(k1/4) ̸= ∅.

Proof. Since X is a surface of del Pezzo type, the cone theorem tells that NE(X) is rational
polyhedral and the extremal rays are generated by curves. Since ρ(X) = 2, there are only
two extremal rays and let R = R≥0[Γ] be the extremal ray of NE(X) not corresponding to
π : X → B. In particular, we have π(Γ) = B. We distinguish two cases:

(I) KX · Γ ≤ 0;

(II) KX · Γ > 0.

Suppose that (I) holds. In this case, −KX is nef and big. If p > 2, then the generic
fibre XK(B) is a smooth conic. In particular, the base change X

K(B)
is strongly F -regular.

By [Eji, Corollary 4.10], −KB is ample. Hence, Proposition 5.63 implies X(k) ̸= ∅.
We now treat the case when (I) holds and p = 2. Then −KX is semi-ample and big.

Let Z be its anti-canonical model. In particular, Z is a canonical del Pezzo surface. By
Theorem 5.35, we have ℓF (Z/k) ≤ 2. Therefore, for kW := k1/4 and W := (Z ×k kW )Nred,
W is geometrically normal over kW . In particular, H0(W,OW ) = kW = k1/4. We have the
following commutative diagram

Y
ν−−−−→ X × k1/4 −−−−→ X

f

y y y
W

µ−−−−→ Z ×k k
1/4 −−−−→ Zy y y

Spec k1/4 Spec k1/4 −−−−→ Spec k,

where µ and ν are the normalisations. It follows from Theorem 5.33 thatW is geometrically
klt and H1(W,OW ) = 0. Since the morphism Y → W is birational and W is klt by
Proposition 2.23, it holds that H1(Y,OY ) = 0.

Consider the Stein factorisation π1 : Y → B1 of the induced morphism Y → X
π−→ B.

Since H1(Y,OY ) = 0, we conclude that H1(B1,OB1) = 0. In particular, since kW is a
C1-field, it holds that B1 ≃ P1

kW
(Lemma 5.60). Thanks to [Tan18b, Theorem 4.2], we can

find an effective divisor D on Y such that KY +D = f∗KX . Since −KX is big, also −KY

is big. Fix a general kW -rational point c ∈ B1 and let Fc be its π1-fibre. Since we take c
to be general, Fc avoids the non-regular points of Y . By adjunction, ω−1

Fc
is ample. This
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implies that F is a conic on P2
kW

. Hence, Y (k1/4) = Y (kW ) ̸= ∅. Therefore, we deduce
X(k1/4) ̸= ∅.

We suppose (II) holds. We have [K(Γ) : K(B)] ≤ 5 by Proposition 5.42. If K(Γ)/K(B)

is separable, then −KB is ample (Lemma 5.43). Then Proposition 5.63 implies X(k) ̸= ∅.
Hence, we may assume that K(Γ)/K(B) is inseparable. If K(Γ)/K(B) is not purely
inseparable, then −KB is ample by Proposition 5.62. Again, Proposition 5.63 implies
X(k) ̸= ∅. Hence, it is enough to treat the case when K(Γ)/K(B) is purely inseparable.
Since [K(Γ) : K(B)] ≤ 5, it suffices to prove that X(k1/p

e
) ̸= ∅ for the positive integer e

defined by [K(Γ) : K(B)] = pe. Set C := ΓN . Since ω−1
Γ is ample, also −KC is ample.

Hence Proposition 5.63 implies C(k′) ̸= ∅, where k′ := H0(C,OC). Since

k′p
e ⊂ K(Γ)p

e ⊂ K(B),

it holds that k′pe ⊂ k. Therefore, we obtain X(k1/p
e
) ̸= ∅, as desired.

5.6.3. General case

In this subsection, using the results proven above, we prove the main result in this section
(Theorem 5.65) We present a generalisation of the Lang–Nishimura theorem on rational
points. Although the argument is similar to the one in [RY00, Proposition A.6], we include
the proof for the sake of completeness.

Lemma 5.64 (Lang-Nishimura). Let k be a field. Let f : X 99K Y be a a rational map
between k-varieties. Suppose that X is regular and Y is proper over k. Fix a closed point
P on X. Then there exists a closed point Q on Y such that k ⊂ k(Q) ⊂ k(P ), where k(P )
and k(Q) denote the residue fields.

Proof. The proof is by induction on n := dimX. If n = 0, then there is nothing to show.
Suppose n > 0. Consider the blowup π : BlPX → X at the closed point P . Since X is
regular, the π-exceptional divisor E is isomorphic to Pn−1

k(P ) by [Liu02, Section 8, Theorem
1.19]. Consider now the induced map f : BlPX 99K Y . By the valuative criterion of
properness, the map f induces a rational map E = Pn−1

k(P ) 99K Y from the π-exceptional
divisor E. Then by the induction hypothesis Y has a closed point Q whose residue field is
contained in k(P ).

Theorem 5.65. Let k be a C1-field of characteristic p > 0. Let X be a k-surface of del
Pezzo type such that k = H0(X,OX). Then the following hold.

1. If p ≥ 7, then X(k) ̸= ∅;

2. If p ∈ {3, 5}, then X(k1/p) ̸= ∅;

3. If p = 2 , then X(k1/4) ̸= ∅.
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Proof. Let Y → X be the minimal resolution of X. We run a KY -MMP Y =: Y0 → Y1 →
· · · → Yn =: Z. Note that the end result is a Mori fibre space. Thanks to Lemma 5.64, we
may replace X by Z. Hence it is enough to treat the following two cases.

(i) X is a regular del Pezzo surface with ρ(X) = 1.

(ii) There exists a Mori fibre space structure π : X → B to a curve B.

Assume (i). By Lemma 5.54, we have p-deg(k) ≤ 1. Therefore X is geometrically
normal by [FS18, Theorem 14.1]. Thus we conclude by Propositions 5.57, Proposition
5.58, and Proposition 5.59. If (ii) holds, then the assertion follows from Propositions
5.63.

5.7. Pathological examples

In this section, we collect pathological feature appearing on surfaces of del Pezzo type over
imperfect fields.

5.7.1. Summary of known results

We first summarise previously known examples of pathologies appearing on del Pezzo
surfaces over imperfect fields.

Geometric properties

We have shown that if p ≥ 7 and X is a surface of del Pezzo type, then X is geometrically
integral (Corollary 5.50). We have established a partial result on geometric normality
(Theorem 5.49). Let us summarise known examples in small characteristic related to these
properties.

1. Let F be a perfect field of characteristic p > 0 and let k := F(t1, t2, t3). Then

X := Proj k[x0, x1, x2, x3]/(x
p
0 + t1x

p
1 + t2x

p
2 + t3x

p
3)

is a regular projective surface which is not geometrically reduced over k. Since X is
an hypersurface in P3

k of degree p we have

H0(P3
k,OP3

k
) → H0(X,OX) → H1(P3

k,OP3
k
(−p)) = 0,

thus showing that H0(X,OX) = k. If the characteristic of k is two or three, then
−KX is ample, hence X is a regular del Pezzo surface.

2. There exist a field of characteristic 2 and a regular del Pezzo surface X over k such
that H0(X,OX) = k, X is geometrically reduced over k, and X is not geometrically
normal over k (see [Mad16, Main Theorem]).
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3. If k is an imperfect field of characteristic p = 2, 3 there exists a geometrically nor-
mal regular del Pezzo surface X of Picard rank one which is not smooth (see [FS18,
Section 14, Equation 27]). In [FS18, Theorem 14.8], an example of a regular geomet-
rically integral but geometrically non-normal del Pezzo surface of Picard rank two is
constructed when p = 2.

4. If k is an imperfect field of characteristic p ∈ {2, 3}, then there exists a k-surface X
of del Pezzo type such that H0(X,OX) = k, X is geometrically reduced over k, and
X is not geometrically normal over k ([Tana]).

Vanishing of H1(X,OX)

We have shown that if X is a surface of del Pezzo type over a field of characteristic p ≥ 7,
then H i(X,OX) = 0 for i > 0. Let us summarise known examples in small characteristic
which violate the vanishing of H1(X,OX).

1. If k is an imperfect field of characteristic 2, then there exists a regular weak del Pezzo
surface X such that H1(X,OX) ̸= 0 (see [Sch07]).

2. There exist an imperfect field of characteristic 2 and a regular del Pezzo surface X
such that H1(X,OX) ̸= 0 (see [Mad16, Main theorem]).

3. If k is an imperfect field of characteristic p ∈ {2, 3}, then there exists a surface X of
del Pezzo type such that H1(X,OX) ̸= 0 (see [Tana]).

Remark 5.66. Since h1(X,OX) is a birational invariant for surfaces with klt singularities,
the previous examples do not admit regular k-birational models which are geometrically
normal. This shows that Theorem 5.49 cannot be extended to characteristic two and three.

5.7.2. Non-smooth regular log del Pezzo surfaces

In this subsection, we construct examples of regular k-surfaces of del Pezzo type which are
not smooth (cf. Theorem 5.49).

Proposition 5.67. Let k be an imperfect field of characteristic p > 0. Then there exists
a k-regular surface X of del Pezzo type which is not smooth over k.

Proof. Fix a k-line L on P2
k. Let Q ∈ L be a closed point such that k(Q)/k is a purely

inseparable extension of degree p whose existence is guaranteed by the assumption that k
is imperfect. Consider the blow-up π : X → P2

k at the point Q. We have

KX = π∗KP2
k
+ E and L̃+ E = π∗L,

where E denotes the π-exceptional divisor and L̃ is the proper transform of L. Since L̃∪E
is simple normal crossing and the Q-divisor

−(KX + L̃+ ϵE) = π∗(KX + L)− ϵE
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is ample for any 0 < ϵ≪ 1, the pair (X, L̃+ ϵE) is log del Pezzo. Hence, X is of del Pezzo
type.

It is enough to show that X is not smooth. There exists an affine open subset
Spec k[x, y] = A2

k of P2
k such that Q ∈ Spec k[x, y] and the maximal ideal correspond-

ing to Q can be written as (xp − α, y) for some α ∈ k \ kp. Let X ′ be the inverse image of
Spec k[x, y] by π. Since blowups commute with flat base changes, the base change X ′

k
is

isomorphic to the blowup of Spec k[x, y] along the non-reduced ideal ((x− β)p, y), where
β ∈ k with βp = α.

Let us make the following change of coordinates over k:

x′ := x− β; y′ := y.

In this new coordinates, X ′
k

is the blowup of A2
k
= Spec k[x′, y′] along the ideal (x′p, y′). We

can directly check that X ′
k

contains an affine open subset of the form Spec k[s, y, u]/(st−
up), which is not smooth.

Remark 5.68. The surface X constructed in Proposition 5.67 is del Pezzo (resp. weak
del Pezzo) if and only if p = 2 (resp. p ≤ 3). Indeed, −E2 = [k(Q) : k] = p implies
KX ·k E = (KX +E) ·k E−E2 = −2p+ p = −p. Thus the desired conclusion follows from

KX ·k L̃ = KX ·k π∗L−KX ·k E = −3 + p.

5.8. Applications to del Pezzo fibrations

In this section, we give applications of Theorem 5.45 and Theorem 5.65 on log del Pezzo
surfaces over imperfect fields to the birational geometry of threefold fibrations. The first
application is to rational chain connectedness.

Theorem 5.69. Let k be an algebraically closed field of characteristic p > 0. Let π : V →
B be a projective k-morphism such that π∗OV = OB, V is a normal threefold over k, and
B is a smooth curve over k. Assume that there exists an effective Q-divisor ∆ such that
(V,∆) is klt and −(KV +∆) is π-nef and π-big. Then the following hold.

1. There exists a curve C on V such that C → B is surjective and the following prop-
erties hold.

(a) If p ≥ 7, then C → B is an isomorphism.

(b) If p ∈ {3, 5}, then K(C)/K(B) is a purely inseparable extension of degree ≤ p.

(c) If p = 2, then K(C)/K(B) is a purely inseparable extension of degree ≤ 4.

2. If B is a rational curve, then V is rationally chain connected.

Proof. Let us show (1). Thanks to [Kol96, Ch. IV, Theorem 6.5], K(B) is a C1-field.
Then Theorem 5.65 implies the assertion (1). The assertion (2) follows from (1) and the
fact that general fibres are rationally connected (see Lemma 5.32).
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The second application is to Cartier divisors on Mori fibre spaces which are numerically
trivial over the bases.

Theorem 5.70. Let k be an algebraically closed field of characteristic p > 0. Let π : V → B

be a projective k-morphism such that π∗OV = OB, where X is a Q-factorial normal quasi-
projective threefold and B is a smooth curve. Assume there exists an effective Q-divisor
∆ such that (V,∆) is klt and π : V → B is a (KV + ∆)-Mori fibre space. Let L be a
π-numerically trivial Cartier divisor on V . Then the following hold.

1. If p ≥ 7, then L ∼π 0.

2. If p ∈ {3, 5}, then p2L ∼π 0.

3. If p = 2, then 16L ∼π 0.

Proof. We only prove the theorem in the case when p = 2, since the other cases are similar
and easier. Since the generic fibre VK(B) is a K(B)-surface of del Pezzo type, we have by
Theorem 5.45 that 4L|VK(B)

∼ 0. Therefore, 4L is linearly equivalent to a vertical divisor,
i.e. we have

4L ∼
r∑
i=1

ℓiDi,

where ℓi ∈ Z and Di is a prime divisor such that π(Di) is a closed point bi.
Since ρ(V/B) = 1 and V is Q-factorial, all the fibres of π are irreducible. Hence, we

can write π∗(bi) = niDi for some ni ∈ Z>0. Let mi be the Cartier index of Di, i.e. the
minimum positive integer m such that mDi is Cartier. Since the divisor π∗(bi) = niDi is
Cartier, then there exists ri ∈ Z>0 such that ni = rimi.

We now prove that ri is a divisor of 4. Since K(B) is a C1-field and the generic fibre
is a surface of del Pezzo type, we conclude by Theorem 5.65 that there exists a curve Γ on
V such that the degree d of the morphism Γ → B is a divisor of 4. By the equation

ri · (miDi) · Γ = niDi · Γ = π∗(bi) · Γ = d,

ri is a divisor of 4.
Therefore, it holds that 4miDi ∼π 0. On the other hand, the divisor 4L =

∑r
i=1 ℓiDi

is Cartier, hence we have that ℓi = simi for some si ∈ Z. Therefore it holds that

16L ∼
r∑
i=1

4ℓiDi ∼
r∑
i=1

si(4miDi) ∼π 0,

as desired.





6
On the base point free theorem for

klt threefolds in large characteristic

6.1. Introduction

The base point free theorem is one of the cornerstones of the Minimal Model Program
(MMP for short) over a field of characteristic zero. Due to the failure of the Kodaira
vanishing theorem and its generalisation, it is not known whether it still holds for varieties
over fields of positive characteristic.

However, in the case of threefolds the base point free theorem has been established
with increasing generality in recent years. In the seminal article [Kee99], Keel proved
that if L is assumed to be big and nef, then it is endowed with a map (EWM) without
any restriction on the characteristic. After the development of the MMP for threefolds
([HX15]), in [Xu15, Theorem 1.1], [Bir16, Theorem 1.5] and [BW17, Theorem 1.2] the
authors prove with increasing generality that the linear system |mL| is base point free for
sufficiently large and sufficiently divisible m > 0 over perfect fields of characteristic p > 5.

Let us recall that over a field of characteristic zero, the divisibility condition on m

is indeed superfluous (see [KM98, Theorem 3.3]). Thus one may wonder whether we
can remove it also in characteristic p > 0. Unfortunately, this is not possible in low
characteristic: in [Tana, Theorem 1.2], Tanaka showed that the divisibility assumption is
indeed necessary over fields of characteristic two and three when the numerical dimension
of L is one.

The aim of this section is to present a refinement of the base point free theorem for
threefolds by proving that we can remove the divisibility assumption if the characteristic
is sufficiently large.

103
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Theorem 6.1 (Theorem 6.24). There exists a constant p0 ≥ 5 such that the following
holds. Let k be a perfect field of characteristic p > p0. Let (X,∆) be a projective klt
threefold log pair over k. Let L be a nef Cartier divisor on X such that

1. the numerical dimension ν(L)1 is at least one;

2. nL− (KX +∆) is a big and nef Q-Cartier Q-divisor for some n > 0.

Then there exists an integer m0 > 0 such that the linear system |mL| is base point free for
all m ≥ m0.

Let us recall that the numerical dimension of a nef Cartier divisor on a normal projective
variety is defined as follows:

ν(L) = max
{
k ∈ Z≥0 | Lk ̸≡ 0

}
.

Remark 6.2. The author does not know whether Theorem 6.1 can be extended to the
case where ν(L) = 0. This is related to understanding the torsion of the Picard group of
threefolds of Fano type in positive characteristic.

Apart from the intrinsic interest of understanding the differences between characteristic
zero and characteristic p birational geometry, Theorem 6.1 is important if one desires to
obtain effective statements in positive characteristic. Indeed, if the divisibility required on
m is arbitrarily large, there is no hope that the Effective base point free theorem of Kollár
(see [Kol93]) could hold in positive characteristic.

Theorem 6.1 is a consequence of the following descent result for numerically trivial
Cartier divisors under (KX +∆)-negative birational contractions, which is the main tech-
nical result of this paper.

Theorem 6.3 (Theorem 6.19). There exists a constant p0 ≥ 5 with the following property.
Let k be a perfect field of characteristic p > p0. Let π : X → Z be a projective contraction
between quasi-projective normal varieties. Suppose that there exists an effective Q-divisor
∆ ≥ 0 such that

1. (X,∆) is a klt threefold log pair;

2. −(KX +∆) is π-big and π-nef;

3. dim(Z) ≥ 1.

Let L be a Cartier divisor on X such that L ≡π 0. Then there exists a Cartier divisor M
on Z such that L ∼ π∗M .

Remark 6.4. The constant p0 in Theorem 6.1 and Theorem 6.3 comes from the Kawamata-
Viehweg vanishing theorem for log del Pezzo surfaces in large characteristic (see [CTW17,
Theorem 1.2]).
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6.1.1. Sketch of the proof

The proof of Theorem 6.3 is divided in two steps: first we discuss Cartier divisors which
are numerically trivial for pl-contractions over surfaces and threefolds (see Theorem 6.17).
Then we prove the general case (see Theorem 6.19).

Let us overview the case of pl-contractions treated in Section 6.3. Let (X,∆) be a
Q-factorial dlt threefold pair and let S be a prime divisor in ⌊∆⌋. Let π : (X,∆) → Y

be a (KX + ∆)-negative contraction where S is a prime divisor which is π-anti-nef and
dim(Y ) ≥ 2. Let L be a π-numerically trivial Cartier divisor. We aim to prove that L
is π-trivial over a neighbourhood of π(S). Since L|S is π|S-trivial (Proposition 6.5), it is
sufficient to lift sections from S to prove that L is π-trivial. In order to do so, we show
that the higher direct image R1π∗OX(L − S) vanishes. First we prove the vanishing in
the case where the fibres of π are at most one dimensional (Proposition 6.13), for which
we generalise a vanishing theorem of Das and Hacon (see Proposition 6.12). To prove
the general case of pl-contractions in Theorem 6.17, we use some techniques developed by
Hacon and Witaszek to prove the rationality of klt threefold singularities (see [HW17]).
The main ingredient for proving the vanishing of R1π∗OX(L−S) is the Kawamata-Viehweg
vanishing theorem for surfaces of del Pezzo type in large characteristic (see [CTW17]) and
the aforementioned case of pl-contractions whose maximum dimension of the fibres is one.

In Section 6.4, we prove Theorem 6.3. First in Subsections 6.4.1, 6.4.2 we discuss with
the case where dim(Z) ≥ 2. The idea is to use the MMP and by replacing a fibre of
π : X → Z with a surface of del Pezzo type by Proposition 6.10, we can apply Theorem
6.17 to conclude the descent. For the case where dim(Z) = 1, we blend the previous cases
with some results on del Pezzo fibrations proven in [BT19].

6.2. Preliminaries

6.2.1. Numerically trivial Cartier divisors on excellent surfaces

We will need descent results for numerically trivial Cartier divisors on excellent surfaces.
Thus we recall the the base point free theorem for excellent surfaces proven by Tanaka (see
[Tan18a]).

Proposition 6.5. Let B be a regular excellent separated scheme of finite dimension. Let
π : X → S be a projective B-morphism of normal quasi-projective B-schemes. Suppose
(X,∆) is a Q-factorial surface log pair where ∆ is a boundary. Let L be a π-nef Cartier
divisor on X and suppose that L− (KX +∆) is π-ample. Then the following hold.

1. Suppose that L ̸≡π 0. Then there exists b0 such that for all b ≥ b0, bL is π-free. In
particular, there exists a factorisation π : X

πL−−→ T
g−→ S such that L ∼ π∗LH for a

g-ample Cartier divisor H on T .

2. Suppose that (X,∆) is dlt and L ≡π 0 and the Stein factorisation of X → S is
X → Spec(k) → S, where k is a perfect field. Then L ∼ 0.
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Proof. Since X is Q-factorial, we can perturb the boundary ∆ and assume that ⌊∆⌋ =

0. We show (1). The first part of the statement is [Tan18a, Theorem 4.2]. As for the
remaining part, there exist Hb0 and Hb0+1 Cartier divisors on T such that b0L = π∗LHb0

and (b0 + 1)L = π∗LHb0+1. In particular, L = π∗L(Hb0+1 −Hb0), thus concluding.
We show (2). Since ν(L) = 0, then (X,∆) is a log del Pezzo pair over a perfect field. By

the Riemann-Roch formula, we have h0(L) ≥ 1. Since ν(L) = 0, we conclude L ∼ 0.

6.2.2. Pl-contractions

We introduce the notion of (weak) pl-contractions, which is a natural generalisation of the
notions of pl-divisorial contractions and pl-flipping contractions (see [GNT, Definition 3.2])
to the case of contractions of fibre type.

Definition 6.6. Let k be a field. Let (X,∆) be a dlt pair over k and let S be a prime
divisor contained in ⌊∆⌋. Let π : X → Y be a projective k-morphism between quasi-
projective normal varieties. We say that π is a (KX +∆, S)-pl-contraction (resp. a weak
(KX +∆, S)-pl-contraction) if

1. −(KX +∆) is π-ample,

2. −S is π-ample (resp. π-nef).

We collect some properties of weak pl-contractions for later use.

Lemma 6.7. Let k be a field. Let X be a normal variety over k and let S be a Q-Cartier
prime divisor. Let π : X → Y be a proper contraction between normal varieties such that
−S is π-nef. Then for all closed points x ∈ π(S), we have π−1(x) ⊂ S.

Proof. Immediate since −S is π-nef.

Lemma 6.8. Let k be a perfect field of characteristic p > 5. Let (X,∆) be a Q-factorial
threefold dlt pair over k and let S be a prime divisor contained in ⌊∆⌋. Let π : X → Y be
a weak (KX +∆, S)-pl-contraction. Then −S is π-semi-ample.

Proof. We write −S = KX +∆− (KX +∆+ S). Thus we conclude −S is π-semi-ample
by the relative base point free theorem (see [GNT, Theorem 2.9]).

Lemma 6.9. Let k be a perfect field of characteristic p > 5. Let (X,∆) be a Q-factorial
threefold dlt pair over k and let S be a prime divisor contained in ⌊∆⌋. Let π : X → Y be a
weak (KX +∆, S)-pl-contraction. Let π : X g−→ Z

h−→ Y be the relative semi-ample fibration
associated to −S given by Lemma 6.8. Assume

1. −S is not π-ample over any neighbourhood of π(S),

2. dim(Y ) ≥ 2.

Then the dimension of the fibres of g is at most one in a neighbourhood of g(S).
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Proof. The dimension of the image of S is either a surface, a curve or a point. In the first
two cases, by a dimension argument the fibres of the morphism S → π(S) must be at most
one dimensional. Thus we can assume that π(S) is a closed point. Since dim(Y ) ≥ 2, there
is a neighbourhood U of y such that the dimension of the fibres of π over U \ y is at most
one. If S gets contracted to a point by g, we have that h is an isomorphism over an open
neighbourhood of y, thus contradicting assumption (1).

The following extraction result, which motivated the definition of weak pl-contraction,
will be used repeatedly in the following. It is essentially stating that given a (KX + ∆)-
negative contraction from a threefold onto a variety of positive dimension we can replace,
after some birational modification, a fibre with a surface of del Pezzo type.

Proposition 6.10 (cf. [GNT, Proposition 2.15]). Let k be a perfect field of characteristic
p > 5. Let π : X → Z be a projective contraction of normal quasi-projective varieties over
k with the following properties:

i) (X,∆) is a klt threefold log pair,

ii) −(KX +∆) is π-big and π-nef.

iii) 0 < dim(Z) ≤ 3.

Fix a closed point z ∈ Z. Then there exists a commutative diagram of quasi-projective
normal varieties

W
ψ−−−−→ Y

φ

y yg
X

π−−−−→ Z,

and an effective Q-divisor ∆Y on Y such that

1. (Y,∆Y ) is a Q-factorial plt pair;

2. S = (g−1(z))red is an irreducible component of ⌊∆Y ⌋ and g is a weak (KY +∆Y , S)-
pl-contraction;

3. W is a smooth threefold and φ and ψ are projective birational morphisms.

In particular, S is a surface of del Pezzo type by adjunction.

6.2.3. Vanishing for pl-contractions with one dimensional fibres

In this subsection, we present a generalisation of a relative vanishing theorem of Kodaira
type in positive characteristic due to Das and Hacon (see [DH16]). This will be used in
Proposition 6.13 to prove a descent result for numerically trivial Cartier divisors on pl-
contractions with one-dimensional fibres. We refer to [Sch14] for a thorough treatment of
the trace map of the Frobenius morphism on log pairs.
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Proposition 6.11 (cf. [DH16, Proposition 3.2]). Let k be a perfect field of characteristic
p > 5. Let (X,∆ = S + Γ) be a Q-factorial threefold plt pair where S is a prime Weil
divisor and ⌊Γ⌋ = 0. Suppose that there exists an integer f > 0 such that (pf −1)(KX+∆)

is an integral divisor. Then there exists e > 0 such that the morphism induced by the trace
map of Frobenius

ψne : F
ne
∗ OX((1− pne)(KX + Γ)− pnemS) → OX(−mS).

is surjective for all n ≥ 1 and for all m ≥ 1 at all codimension two points of X contained
in S.

Proof. By the proof of [DH16, Proposition 3.2], we obtain that there exists an integer e > 0

such that the natural morphism

Fne∗ OX((1− pne)(KX + Γ)) → OX

admits a splitting in the category of OX -modules at all codimension two points of X
contained in S for all n ≥ 1 (cf. [DH16, Equations 3.4, 3.5]). By tensoring with OX(−mS)
and considering reflexive hulls, we thus deduce that

Fne∗ OX((1− pne)(KX + Γ)− pnemS) → OX(−mS)

is surjective at all codimension two points of X contained in S.

The following vanishing theorem is an easy generalisation of [DH16, Theorem 3.5].

Proposition 6.12. Let k be a perfect field of characteristic p > 5. Let (X,∆) be a Q-
factorial threefold dlt pair and let S be a prime divisor contained in ⌊∆⌋. Assume there
exists e > 0 such that (pe − 1)(KX + ∆) is integral. Let π : X → Y be a projective
contraction between normal quasi-projective varieties such that

1. the maximum dimension of the fibres of π is one;

2. π is a weak (KX +∆, S)-pl-contraction.

Let L be a Cartier divisor on X such that L is π-nef. Then for all m > 0 we have

R1π∗OX(L−mS) = 0

in a neighbourhood of π(S).

Proof. We follow the proof of [DH16, Theorem 3.5] and we show how to adapt their
arguments in order to prove the desired vanishing theorem.

Let us write ∆ = S +∆′. Since X is Q-factorial we can slightly perturb the boundary
∆′ in order to find a boundary Γ such that (X,S + Γ) is plt and (1− pf )(KX + S + Γ) is
Cartier and π-ample for some f > 0.
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If π is birational, then by Lemma 6.7 we can suppose Ex(π) ⊂ S. If dim(Y ) = 2, then
by Lemma 6.7 S is a vertical divisor for π (i.e. π(S) is an irreducible curve in Y ). Moreover,
by localising at codimension one points of Y and applying the relative Kawamata-Viehweg
vanishing theorem for excellent surfaces (see [Tan18a, Theorem 3.3]), we can suppose that
R1π∗OX(L−mS) is supported on a finite number of closed points of π(S).

Consider now e > 0 given by Proposition 6.11. Using the trace map of the Frobenius
morphism for all n ≥ 1 we have the exact sequence

0 → ker(ψne) → Fne∗ OX((1− pne)(KX + Γ) + pneL− pnemS)
ψne−−→ OX(L−mS).

Now let us split the sequence in two short exact sequences:

0 → ker(ψne) → Fne∗ OX((1− pne)(KX + Γ) + pneL− pnemS) → im(ψne) → 0; (6.1)

and
0 → im(ψne) → OX(L−mS) → Gne → 0. (6.2)

Consider the long exact sequence in cohomology obtained by applying the push-forward π∗
to the short exact sequence (6.1). Since the fibres of π are at most one dimensional, we have
R2π∗ ker(ψe) = 0. Let us denoteH = −(KX+mS−L+Γ) = −(KX+S+Γ)+(L−(m−1)S)

and let r be the Cartier index of H. Since L and −S are π-nef, we have H is π-ample for
all m ≥ 0. Write (pne − 1) = r · a + b for some positive integer a, b such that 0 ≤ b < r.
Thus we have

R1π∗(F
ne
∗ OX((1− pne)(KX + Γ) + pneL− pnemS)) =

= Fne∗ (R1π∗OX(raH − b(KX + Γ +mS − L) + L−mS)),

which vanishes for sufficiently large n > 0 by Serre vanishing. Therefore we conclude
R1π∗im(ψne) = 0.

Since ψne is surjective at codimension two points contained in S by Proposition 6.11,
we have Gne is supported on a finite number of points. Therefore R1π∗Gne = 0 and thus
we conclude R1π∗OX(L−mS) = 0.

6.3. Numerically trivial Cartier divisors on pl-contractions

In this section, we prove a descent result for numerically trivial Cartier divisors on three-
folds under weak pl-contractions over surfaces and threefolds (see Theorem 6.17).

First, in Subsection 6.3.1 we discuss the case of a weak pl-negative contraction with
fibres whose maximum dimension is one. In this case the main tool we use is the vanishing
theorem proven in Proposition 6.12.

In Subsection 6.3.2 we discuss the general case. Our strategy is based on techniques
developed by Hacon and Witaszek in [HW17] to prove that klt threefold singularities are
rational in large characteristic. The main ingredient in the proof of Theorem 6.17 are
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Proposition 6.13 and the Kawamata-Viehweg vanishing theorem for log del Pezzo surfaces
in large characteristic ([CTW17, Theorem 1.2]).

6.3.1. Descent for pl-contractions with one dimensional fibres

We apply the vanishing theorem of Proposition 6.12 to discuss descent of numerically trivial
Cartier divisors in the case of pl-contractions with one-dimensional fibres.

Proposition 6.13. Let k be a perfect field of characteritic p > 5. Let (X,∆) be a Q-
factorial dlt threefold pair over k and let S be a prime divisor contained in ⌊∆⌋. Let
π : X → Y be a projective k-morphism between quasi-projective normal varieties such that

1. the maximum dimension of the fibres of π is one;

2. π is a weak (KX +∆, S)-pl-contraction.

Let L be a Cartier divisor on X such that L ≡π 0. Then L ∼π 0 over a neighbourhood of
π(S).

Proof. Since the question is local over the base, we can assume Y to be affine. By [GNT,
Theorem 2.11] S is a normal variety. Moreover by adjunction the pair (S,DiffS(∆

′)) is dlt
where

(KX +∆)|S = KS +DiffS(∆
′),

where ∆′ = ∆ − S. Let us denote by π|S : S → T the restricted morphism. Since
−(KS +DiffS(∆

′)) is π|S-ample, Proposition 6.5 implies L|S ∼π|S 0.

By Lemma 6.7 for any y ∈ T := π(S) we have π−1(y) ⊂ S. Since L|S ∼π|S 0, it is
sufficient to prove that the morphism

π∗OX(L) → (π|S)∗OS(L)

is surjective to prove that L ∼π 0 over a neighbourhood of T . By Proposition 6.12 we have
the vanishing R1π∗OX(L− S) = 0 and thus we conclude.

6.3.2. Descent for pl-contractions over threefolds and surfaces

We begin by recalling the Kawamata-Viehweg vanishing theorem for log del Pezzo surfaces
in large characteristic (see [CTW17, Theorem 1.2]), which plays a key role in the proof of
Theorem 6.17.

Theorem 6.14. There exists a constant p0 > 0 with the following property. Let k be a
perfect field of characteristic p > p0. Let (S,∆) be a dlt surface log pair over k such that
−(KS +∆) is ample. Let B be an effective Q-divisor such that (S,B) is dlt and let L be
a Weil divisor such that L− (KS +B) is ample. Then H1(S,L) = 0.
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Proof. Fix p0 as in [CTW17, Theorem 1.2]. Let us decompose ∆ = ∆=1 +∆<1. Since S
is Q-factorial, we have that for 0 < ε≪ 1 the pair (X,∆′ := (1− ε)∆=1 +∆<1) is klt and
−(KX +∆′) remains amples. Similarly we can perturb B to B′ such that (S,B) is klt and
L − (KS + B′) is a Q-Cartier Q-ample divisor. We thus conclude by Theorem [CTW17,
Theorem 1.2].

Remark 6.15. We do not know an explicit bound on p0. However the examples con-
structed in [CT, Theorem 4.2] and [Ber17, Theorem 1.1] show that p0 > 3.

We recall the restriction short exact sequence constructed in [HW17].

Proposition 6.16. Let k be a perfect field of characteristic p > 5. Let (X,∆) be a Q-
factorial dlt threefold log pair defined over k. Let S be an irreducible component of ⌊∆⌋
and let ∆ = ∆′ + S. Let D be a Weil divisor on X. Then for all n ∈ Z≥0 there exists a
short exact sequence

0 → OX(−(n+ 1)S +D) → OX(−nS +D) → OS(Gn) → 0,

where Gn ∼Q −nS|S +D|S −∆n and ∆n ≤ DiffS(∆
′).

Proof. Since X is Q-factorial, the pair (X,S) is plt and we can apply [HW17, Corollary
3.7]. Since ∆n ≤ DiffS(0) ≤ DiffS(∆

′) we conclude.

We are now ready to prove the main result of this section.

Theorem 6.17. There exists an integer p0 ≥ 5 such that the following hold. Let k be a
perfect field of characteritic p > p0. Let (X,∆) be a Q-factorial dlt threefold log pair over
k, and let S be a prime Weil divisor contained in ⌊∆⌋. Let π : X → Y be a projective
contraction between quasi-projective normal varieties such that

1. π is a weak (KX +∆, S)-pl-contraction;

2. dim(Y ) ≥ 2.

Let L be a Cartier divisor on X such that L ≡π 0. Then L ∼π 0 over a neighbourhood of
π(S).

Proof. Consider p0 > 5 for which the statement of Theorem 6.14 holds. As in the proof of
Proposition 6.13, we write adjunction

(KX +∆)|S = KS +DiffS(∆
′)

where ∆′ = ∆ − S and we have L|S ∼π|S 0 by Proposition 6.5. Since by Lemma 6.7 for
any y ∈ T := π(S) we have π−1(y) ⊂ S, it is sufficient to prove that the morphism

π∗OX(L) → (π|S)∗OS(L)
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is surjective. To prove the surjectivity, we show the vanishing of R1π∗OX(L− S).

Let n ≥ 0 and let us consider the following exact sequence given by Proposition 6.16:

0 → OX(−(n+ 1)S) → OX(−nS) → OS(Gn) → 0,

where Gn ∼Q −nS|S −∆n for some ∆n ≤ DiffS(∆
′). We tensor with L and we consider

the following exact sequence of OY -modules:

0 → π∗OX(L− (n+ 1)S)) → π∗OX(L− nS) → (π|S)∗OS(L+Gn) →

→ R1π∗OX(L− (n+ 1)S)) → R1π∗OX(L− nS)) → R1(π|S)∗OS(L+Gn).

Thus in order to prove R1π∗OX(L− (n+1)S) = 0 for all n ≥ 0 it is sufficient to prove
the following two vanishing results in cohomology:

(i) R1(π|S)∗OS(L+Gn) = 0 for every n ≥ 0.

(ii) R1π∗OX(L−mS) = 0 for m≫ 0 and sufficiently divisible.

To prove (i) let us note that

L|S +Gn ∼Q (KS +DiffS(∆
′)−∆n) + L|S − nS|S ∼Q (KS +B) +A,

where (S,B := DiffS(∆
′)−∆n) is klt and A is (πS)∗-ample. If dim(T ) ≥ 1, we conclude by

the relative Kawamata-Viehweg vanishing (see [Tan18a, Proposition 3.2]). If dim(T ) = 0,
we have

R1(π|S)∗OS(L+Gn) = H1(S,OS(L+Gn)).

Since (S,DiffS(∆
′)) is a dlt pair such that −(KS + DiffS(∆

′)) is an ample Q-Cartier Q-
divisor, we conclude H1(S,OS(L+Gn)) = 0 by Theorem 6.14.

We now prove (ii). If −S is π-ample over a neighbourhood of T we conclude by
the relative Serre vanishing theorem. Thus we can suppose −S is not π-ample over any
neighbourhood of T . By Lemma 6.8 we can consider the semi-ample fibration over Y
associated to −S:

π : X
g−→ Z

h−→ Y,

and let us consider an integer k > 0 such that −kS = g∗H for a h-ample Cartier divisor
on Z.

Since by Lemma 6.9 the fibres of g are at most one dimensional, we can apply Propo-
sition 6.12 to deduce that Rig∗OX(L − mS) = 0 for i > 0 and m > 0. By Proposition
6.13 we have L = g∗M for some Cartier divisor M which is h-trivial. By the Grothendieck
spectral sequence, we thus deduce R1π∗OX(L −mkS) = R1h∗OZ(M +mH). Since H is
g-ample, we apply relative Serre vanishing to R1h∗OZ(M +mH) to conclude that for all
m sufficiently large we have R1π∗OX(L−mkS) = 0.
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6.4. The base point free theorem in large characteristic

The aim of this section is to prove Theorem 6.23. For this we discuss first descent of
numerically trivial Cartier divisors in the birational case (see Subsection 6.4.1) and in the
case of conic bundles (see Subsection 6.4.2). In these cases, the main techniques used
are the MMP for threefolds and Proposition 6.10 to reduce to the case of pl-contractions
proven in Theorem 6.17.

In subsection 6.4.3, we combine these results together with results on del Pezzo fibra-
tions from [BT19] to prove Theorem 6.23.

6.4.1. Birational case

In this subsection, we prove descent of numerically Cartier divisors under (KX + ∆)-
negative birational contraction of threefolds in large characteristic.

We need the following easy lemma on birational maps which are isomorphisms in codi-
mension one.

Lemma 6.18. Let k be a field. Let f : X → Z be a proper contraction of normal varieties
over k. Let us consider the following commutative diagram

X
p

  B
BB

BB
BB

B

f

��

φ // Y
q

~~}}
}}
}}
}}

g

��

W

π
��
Z ,

where p : X →W and q : Y →W are small proper birational contractions between normal
varieties. Let L be a Cartier divisor on X and suppose that there exists a Cartier divisor
M on W such that L ∼ p∗M . Then φ∗L is a Cartier divisor. Moreover, the following are
equivalent:

(i) there exists a Cartier divisor H on Z such that L ∼ f∗H,

(ii) there exists a Cartier divisor H on Z such that M ∼ π∗H,

(iii) there exists a Cartier divisor H on Z such that φ∗L ∼ g∗H.

Proof. Since φ∗L and q∗M are both Weil divisors on a normal variety and they coincide
outside a codimension two subset, we conclude that φ∗L ∼ q∗M . In particular, φ∗L is
Cartier.

We now prove that (i) is equivalent to (ii). Obviously, (ii) implies (i). If (i) holds, then
L ∼ f∗H ∼ p∗π∗H ∼ p∗M implies M ∼ π∗H. We can repeat the same proof using the
equality φ∗L ∼ q∗M to conclude (ii) is equivalent to (iii).
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Theorem 6.19. There exists a constant p0 ≥ 5 with the following property. Let k be a
perfect field of characteristic p > p0. Let π : X → Z be a projective birational morphism
between quasi-projective normal varieties. Suppose that there exists an effective Q-divisor
∆ such that

1. (X,∆) is a klt threefold log pair,

2. −(KX +∆) is π-big and π-nef.

Let L be a Cartier divisor such that L ≡π 0. Then L ∼π 0.

Proof. Fix p0 > 5 for which Theorem 6.17 holds. Since the question is local over the base,
we can assume Z to be affine and we fix z ∈ Z a closed point. By Proposition 6.10, there
exists a birational morphism g : Y → Z such that there exists an effective Q-divisor ∆Y

such that

(i) (Y,∆Y ) is a Q-factorial plt pair,

(ii) S := (g−1(z))red is an irreducible component of ⌊∆Y ⌋ and g is a weak (KX +∆, S)-
pl-contraction.

Let us consider the following diagram

W
φ−−−−→ Y

ψ

y yg
X

π−−−−→ Z,

where φ and ψ are log resolution. Denote by f := π ◦ ψ.
In order to prove the theorem, it is sufficient to prove ψ∗L ∼f 0. We first prove that

ψ∗L descends to a Cartier divisor M on Y . To accomplish this, we apply Theorem 6.17
inductively.

Claim 6.20. There exists a Cartier divisor M on Y such that ψ∗L ∼ φ∗M .

Proof. Since Y is Q-factorial variety with klt singularities, we have

KW +
∑
i∈I

Ei ∼Q φ
∗KY +

∑
i∈I

(1 + ai)Ei,

where
∪
i∈I Ei = Supp(Ex(φ)) and 1 + ai > 0 for all i ∈ I. In particular,

KW +
∑
i∈I

Ei ∼Q,Y
∑
i∈I

(1 + ai)Ei.

By [HNT19, Theorem 1.1] we can run a (KW +
∑

iEi)-MMP over Y

h : W 99KW2 99K · · · 99KWn =: T,
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which terminates with a morphism p : T → Y such that
∑

i(1 + ai)h∗Ei is p-nef. By
negativity lemma, this implies that all the divisors Ei are contracted by h. Thus p : T → Y

is a small morphism. Since Y is Q-factorial, we conclude p is an isomorphism. Since we run
a (

∑
i(1 + ai)Ei)-MMP, each step is a pl-divisorial contraction or a pl-flip. Thus we can

apply Theorem 6.17 and Lemma 6.18 inductively to conclude that there exists a Cartier
divisor M on Y such that ψ∗L ∼ φ∗M .

We can now apply Proposition 6.17 once more to shows that there exists a Cartier
divisor N on Z such that M ∼ g∗N , thus concluding the proof.

As a corollary, we obtain a descent result for numerically trivial Cartier divisors on
threefolds admitting a birational morphism over a klt pair.

Corollary 6.21. There exists a constant p0 ≥ 5 with the following property. Let k be a
perfect field of characteristic p > p0. Let π : X → Z be a projective birational morphism
between quasi-projective normal varieties. Suppose that there exists a Q-divisor B ≥ 0 such
that (Z,B) is a klt threefold. Let L be a Cartier divisor on X such that L ≡π 0. Then
L ∼π 0.

Proof. Without any loss of generality, we can assume that π : X → Z is a log resolution
for the pair (Z,B). Thus we can write

KX + π−1
∗ B +

∑
i∈I

Ei = π∗(KZ +B) +
∑
i∈I

(1 + ai)Ei.

Consider 0 < ε ≪ 1 such that 1 + ai − ε > 0 for any i ∈ I. By [GNT, Theorem 2.13] we
run a (KX + π−1

∗ B +
∑

i∈I(1− ε)Ei)-MMP over Z:

f : X 99K X1 99K · · · 99K Xn =: Y,

which ends with a relative minimal model g : Y → Z. By applying Lemma 6.18 and
Theorem 6.19 at each step of the MMP inductively, it is sufficient to prove that any
Cartier divisor N on Y which is numerically g-trivial then it is g-trivial. By negativity
lemma g is a small birational morphism and thus we have (Y, g−1

∗ B) is klt and (KY +g
−1
∗ B)

is g-trivial. In particular, −(KY +g
−1
∗ B) is g-big and g-nef and thus we can apply Theorem

6.19 once more to conclude.

6.4.2. Conic bundles

In this section we prove descent of numerically trivial Cartier divisors under (KX + ∆)-
negative contraction of relative dimension one (also known as conic bundles).

Theorem 6.22. There exists a constant p0 ≥ 5 with the following property. Let k be a
perfect field of characteristic p > p0. Let π : X → Z be a projective contraction between
quasi-projective normal varieties. Suppose that there exists an effective Q-divisor ∆ such
that
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1. (X,∆) is a klt threefold log pair,

2. −(KX +∆) is π-big and π-nef,

3. dim(Z) = 2.

Let L be a Cartier divisor on X such that L ≡π 0. Then L ∼π 0.

Proof. By Proposition 6.5, there exists open subset U ⊂ Z such that L|π−1(U) ∼π 0 and
Z \ U has codimension two. Let z be a closed point in Z \ U . By Proposition 6.10, there
exists a birational morphism g : Y → Z and an effective Q-divisor ∆Y on Y such that

(i) (Y,∆Y ) is a Q-factorial plt pair (in particular, Y is klt),

(ii) S := (g−1(z))red is an irreducible component of ⌊∆Y ⌋ and g is a weak (KX +∆, S)-
pl-contraction.

Let us consider the following diagram

W
φ−−−−→ Y

ψ

y yg
X

π−−−−→ Z,

where φ and ψ are log resolution. Since L is π-trivial outside z, to prove the statement it is
sufficient to prove φ∗L is (π ◦ψ)-trivial over a neighbourhood of z. By Corollary 6.21 there
exists a Cartier divisor M on Y such that ψ∗L = φ∗M . It is thus sufficient to prove that
the Cartier divisor M on Y is g-trivial over a neighbourhood of z. This is a consequence
of Theorem 6.17.

6.4.3. General case

We prove now the main theorem of this chapter. To deal with the remaining case of
(KX +∆)-negative contractions of relative dimension two, we combine Theorem 6.19 and
Theorem 6.22 with a result on relatively numerically trivial Cartier divisors on del Pezzo
fibrations (see [BT19, Theorem 1.1]), on the image of surfaces of del Pezzo type over
imperfect fields of characteristic at least seven (see [BT19, Corollary 5.8]) and the MMP
for Q-factorial surfaces (see [Tan18a]).

Theorem 6.23. There exists a constant p0 ≥ 5 with the following property. Let k be a
perfect field of characteristic p > p0. Let (X,∆) be a klt threefold log pair and let π : X → Z

be a projective contraction between quasi-projective normal varieties. Suppose that

1. −(KX +∆) is π-big and π-nef,

2. dim(Z) ≥ 1.

Let L be a Cartier divisor such that L ≡π 0. Then L ∼π 0.
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Proof. We can assume k is algebraically closed by a base change to an algebraic closure. By
taking a Q-factoralization ([Bir16, Theorem 1.6]) we can further assume X is Q-factorial.
If dim(Z) ≥ 2, we conclude by Theorem 6.19 and Theorem 6.22.

If dim(Z) = 1, by [GNT, Theorem 2.12] we can run a (KX +∆)-MMP over Z:

X0 := X 99K X1 99K · · · 99K Xn =: Y,

which terminates with a Mori fibre space g : Y → T over Z and let us denote by f : Y → Z

the natural morphism. Let us note that since Xk(Z) is a surface of del Pezzo type over
k(Z), we deduce that also the generic fibre Yk(Z) is a surface of del Pezzo type over k(Z)
by [BT19, Lemma 2.9].

By Corollary 6.21 it is now sufficient to prove that given M a Cartier divisor on Y such
that M ≡f 0, then M ∼f 0. We subdivide the proof according to the dimension of T . If
dim(T ) = 1, then T = Z and thus we conclude by [BT19, Theorem 1.1].

If dim(T ) = 2, we have a factorisation Y g−→ T
h−→ Z and by Theorem 6.22 there exists

a Cartier divisor N on T such that N ≡h 0. Note that T is a Q-factorial surface by
[HNT19, Theorem 5.4]. Since Yk(Z) is a surface of del Pezzo type, we deduce that the
generic fibre Tk(Z) is a Fano curve over k(Z) by [BT19, Corollary 5.8]. In particular KT

is not pseudoeffective over Z. Since T is Q-factorial, we can run a KT -MMP over Z by
[Tan18a, Theorem 1.1]:

ψ : T0 := T → T1 → T2 → · · · → Tn =: V

which terminates with a Mori fibre space p : V → Z. By Proposition 6.5 we show that
there exists a Cartier divisor D on V such that ψ∗D = N . Again by Proposition 6.5 there
exists a Cartier divisor E on Z such that D = p∗E, thus concluding that M = f∗E.

We now show our improvement of the base point free theorem in large characteristic.

Theorem 6.24. There exists a constant p0 ≥ 5 such that the following holds. Let k be a
perfect field of characteristic p > p0. Let (X,∆) be a quasi-projective klt threefold log pair
over k and let π : X → Z be a projective k-morphism of quasi-projective normal varieties.
Let L be a π-nef Cartier divisor on X such that

1. dim(Z) ≥ 1 or dim(Z) = 0 and ν(L) ≥ 1;

2. nL− (KX +∆) is a π-big and π-nef Q-Cartier Q-divisor for some n > 0.

Then there exists m0 > 0 such that mL is π-free for all m ≥ m0.

Proof. By the relative base point free theorem for threefolds ([GNT, Theorem 2.9]), L is
π-semi-ample. Let us denote by π : X f−→ Y

g−→ Z be the semi-ample fibration over Z given
by L. Since L ≡f 0, we deduce by Theorem 6.19 that there exists a g-ample Cartier divisor
H on Y such that L ∼ f∗H. Thus we conclude.
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