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Abstract

In this thesis, a high-order incompressible Navier-Stokes solver is developed in the
Python-based PyFR framework. The solver is based on the artificial compressibility
formulation with a Flux Reconstruction (FR) discretisation in space and explicit
dual time stepping in time. In order to reduce time to solution, explicit convergence
acceleration techniques are developed and implemented. These techniques include
polynomial multigrid, a novel locally adaptive pseudo-time stepping approach and
novel stability-optimised Runge-Kutta schemes.

Choices regarding the numerical methods and implementation are motivated as
follows. Firstly, high-order FR is selected as the spatial discretisation due to its low
dissipation and ability to work with unstructured meshes of complex geometries. Be-
ing discontinuous, it also allows the majority of computation to be performed locally.
Secondly, convergence acceleration techniques are restricted to explicit methods in
order to retain the spatial locality provided by FR, which allows efficient harnessing
of the massively parallel compute capability of modern hardware. Thirdly, the solver
is implemented in the PyFR framework with cross-platform support such that it can
run on modern heterogeneous systems via an MPI + X model, with X being CUDA,
OpenCL or OpenMP. As such, it is well-placed to remain relevant in an era of rapidly
evolving hardware architectures.

The new software constitutes the first high-order accurate cross-platform imple-
mentation of an incompressible Navier-Stokes solver via artificial compressibility. The
solver and the convergence acceleration techniques are validated for a range of turbu-
lent test cases. Furthermore, performance of the convergence acceleration techniques
is assessed with a 2D cylinder test case, showing speed-up factors of over 20 relative
to global RK4 pseudo-time stepping when all of the technologies are combined. Fi-
nally, a simulation of the DARPA SUBOFF submarine model is undertaken using the
solver and all convergence acceleration techniques. Excellent agreement with previ-
ous studies is obtained, demonstrating that the technology can be used to conduct
high-fidelity implicit Large Eddy Simulation of industrially relevant problems at scale
using hundreds of GPUs.
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Chapter 1

Introduction

1.1 High-Order Methods

The Computational Fluid Dynamics (CFD) community benefits from a wide range of

methods for solving flow problems. Currently, nominally second-order accurate Finite

Volume (FV) methods underpin the majority of industrial CFD, due to their robust-

ness, and ability to work on unstructured meshes of complex geometries. However,

over the past three decades, significant research has been undertaken into developing

methods with increased spatial orders-of-accuracy. These high-order methods have

been shown to offer superior accuracy to low-order methods, with the same or lower

computational cost [1, 2], and have demonstrated potential for performing scale-

resolving turbulent simulations more efficiently than their low order counterparts.

However, issues remain, especially in terms of industrial adoption. These include a

high memory footprint for implicit time stepping, and the challenge of generating

high-order curved element meshes [2, 3].

Early attempts at developing high-order accurate spatial discretisations were based

on Finite Difference (FD) and purely spectral approaches [4, 5]. These methods are

computationally very efficient but they require using curvilinear block structured or

fully structured grids which limits their use in applications that involve highly complex

geometries. The first spatially compact high-order approach suitable for unstructured

grids was the Discontinuous Galerkin (DG) method by Reed and Hill [6] for simulating
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neutron transport. Later, it was popularised and applied to CFD by Cockburn et al.

[7, 8]. DG is formulated using the integral representation of the governing system by

combining a Finite Element (FE) type polynomial approximation inside the element,

and a FV type interface flux. Other popular high-order schemes with a resemblance

to nodal DG are the Spectral Difference (SD) methods by Liu et al. [9, 10], which

are a generalised version of the staggered grid Chebyshev multidomain method by

Kopriva and Kolias [11]. A more recent approach is the Flux Reconstruction (FR)

method proposed by Huynh [12] which unifies nodal DG and SD schemes within a

single framework.

1.2 Modern Hardware

When combined with explicit time stepping, discontinuous high-order schemes, in-

cluding all schemes in the FR framework, retain a compact stencil making them

well-suited for solving hyperbolic conservation laws. This spatial locality results in

minimal communication between elements, which is of particular importance for mod-

ern hardware platforms that are characterised by an abundance of compute capabil-

ity relative to memory bandwidth, extensive parallelism, and low memory per core.

GPU-accelerated high-order implementations of hyberbolic systems have been stud-

ied extensively over the past decade. One of the earliest attempts was by Klockner

et al. [13], who used an explicit GPU-accelerated DG method to solve Maxwell’s

equations. Subsequently, Castonguay et al. [14, 15] and Lopez et al. [16] developed

GPU-accelerated compressible Navier-Stokes solvers with FR discretisation. More

recently, Witherden et al. [17, 18] and Jacobs et al. [19] introduced open-source

Python-based frameworks for solving the compressible Navier-Stokes equations that

support all modern backends via run-time code generation. Both frameworks, PyFR

by Witherden et al. and OpenSBLI by Jacobs et al., are massively parallel via the

MPI + X approach, where X can be OpenMP for conventional CPUs, CUDA for

Nvidia GPUs or OpenCL for AMD GPUs. PyFR uses the FR discretisation in space

and also supports heterogeneous computing [20]. OpenSBLI uses the high-order FD
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method in space and allows easy system extensions with nearly-mathematical syntax.

The utility of both frameworks have been demonstrated for a range of compressible

flow problems [1, 21, 22, 23].

Significant research has also been undertaken into high-order methods with im-

plicit time-stepping [24, 25, 26, 27, 28, 29]. However, published research on their im-

plementation for modern hardware appears to be very limited because of challenges

related to very high storage requirements and increased global communication. Some

of the early attempts demonstrating the potential and also highlighting the challenges

of implicit time stepping on modern hardware, include work by Watkins et al. [30]

and Lou et al. [31] on steady Euler equations and work by Aissa et al. [32] on

Reynolds-averaged Navier-Stokes equations (RANS).

1.3 Incompressible Flows

Flows are known to behave as incompressible when the Mach number M = V/c,

describing the ratio of the advection velocity V and the speed of sound c, approaches

zero. Real-life applications involving effectively incompressible flows can be found

in a range of sectors and fields of research, including the maritime and automotive

industries, meteorology, hydrology and astrophysics.

Solving incompressible flow problems using the compressible Navier-Stokes equa-

tions at low M is known to be sub-optimal. Rieper [33] specified three deficiencies

related to the approach when M approaches zero:

• Stiffness: Large disparity between the acoustic wave speed and advection ve-

locity imposes a very strict limit on the explicit time-step size.

• Cancellation: The background pressure is proportional to 1/M2. At low M ,

the pressure fluctuations relative to the background pressure can become so

small that they cannot be captured within machine precision. This causes

numerical round-off error.

• Accuracy: In [34], it was shown via asympotic analysis that standard Riemann
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solvers introduce artificial diffusion that is proportial to 1/M . When local M

approaches zero, the excess artificial diffusion can deteriorate solution accuracy.

More effective solution strategies for incompressible flows can be divided into

three categories. The first solution strategy is to simulate incompressible flows using

a compressible solver but at a compromise M [35, 36, 37]. Instead of prescribing

M based on the physics of the application, which may be very low, it can be set in

the range of M ≈ 0.2− 0.3, yielding a reasonable balance between physical accuracy

and the effects of low-Mach deficiencies. The second solution strategy is low-Mach

preconditioning in which the governing equations are modified to specifically tackle

the aforementioned deficiencies. The system preconditioning techniques [38] decrease

the acoustic wave speed close to the advection speed by altering the characteristics

of the system. This procedure allows a much larger explicit time-step to be taken,

but the temporal accuracy is lost unless the approach is combined with the dual time

stepping technique [39, 38]. In addition to preconditioning the system, numerical

flux preconditioners i.e. low-Mach Riemann solvers can be used adjust the amount

of artificial viscosity in the low-Mach regime. These low-Mach Riemann solvers have

been demonstrated to improve accuracy and stability especially at very low M [33].

The third solution strategy is solving the incompressible Navier-Stokes equations,

where the density is kept constant and pressure relates directly to the divergence of

the velocity field. This reduces the number of governing equations to be solved since

energy does not have to be considered.

The most common techniques for solving the incompressible Navier-Stokes equa-

tions are the pressure-based operator splitting methods, in which the computation of

the velocity field and pressure field is decoupled. A typical algorithm of such type

consists of first performing an explicit advection step for computing an intermediate

velocity field, followed by solving the pressure with a second order elliptic Poisson

equation. This pressure is then used to correct the velocity field. The high-order

continuous Galerkin (CG) method, as in the Nektar++ solver [40, 41, 42], has been

favoured as the spatial discretisation scheme in pressure-based formulations since it

requires less globally coupled degrees of freedom for solving the Poisson equation com-
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pared to DG. Nevertheless, several variants of pressure-based methods with DG have

also been proposed [43, 44]. Early attempts of this type were found to suffer from

instabilities with coarse grids and small time steps, and only recent advances in stabili-

sation techniques have allowed the approach to be applied to implicit LES simulations

[45]. Another discretisation technique that has showed potential for pressure-based

incompressible formulations is the Hybridized Discontinuous Galerkin (HDG) method

[46, 47]. HDG retains the advantages of a discontinuous discretisation while reducing

the number of globally coupled degree by forming the global linear system over a set

of variables which exist only at the element boundaries. This so-called trace is as-

sembled by applying static condensation to the degrees of freedom located inside the

elements. Furthermore, for applications only involving simple geometries, FD meth-

ods with immersed boundary treatment on cartesian grids, as in the Incompact3D

solver [48, 49, 50, 51], are an attractive alternative to FE type methods. Their main

advantage is that they allow an efficient Poisson solve via Fast Fourier Transforms.

In pressure-based incompressible methods, solving the Poisson equation discretely

leads to a linear system, solution of which is known to be a challenge on modern

hardware architectures due to global couplings. The literature on pressure-based in-

compressible algorithms targeting modern hardware is limited. Roca el al. [52] have

proposed a GPU-accelerated sparse matrix-vector product for incompressible HDG.

Comprehensive work on the topic has been undertaken by Karakus et al. [53] who

introduced a GPU-accelerated DG solver that uses a semi-lagragian subcycling ap-

proach and computes the pressure with a preconditioned conjugate gradient method.

The technology appears promising but its source-code is not public and its applica-

tions have been so far limited to 2D laminar test cases. A project that is also closely

related to incompressible CFD is the development of the GPU-accelerated algebraic

multigrid library AmgX [54] by Nvidia. The library can be used to outsource the

Poisson solve to Nvidia GPUs.

An alternative to pressure-based methods is the Artificial Compressibility Method

(ACM) of Chorin [55]. Rather than projecting the pressure with a Poisson equation,

a coupling pressure term is added to the continuity equation, which leads to a hy-
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perbolic system that satisfies the divergence free velocity constraint in the limit of

steady state. Similar to low-Mach precondition techniques, ACM alters the charac-

teristic wave speeds to reduce system stiffness which destroys time accuracy and dual

time stepping [56] is required for unsteady simulations. In the dual time stepping

approach, physical time is discretised with a backward difference scheme, whose so-

lution is found by marching the governing equations in pseudo time. Therefore, in

the context of the ACM, the divergence free velocity constraint is satisfied at each

physical time step up to a given tolerance. The ACM formulation is well-suited for

modern hardware architectures if explicit dual time stepping is used together with

a high-order discontinous discretisation, such as FR, due to minimal communication

between elements.

There have been various attempts to apply the ACM in a high-order context. Bassi

[57] first succeeded in applying the approach with DG to solve steady incompressible

flow problems. Later, Liang et al. [58] extended the method to SD schemes in 2D,

providing support for unsteady flows via dual time stepping. Recently, Cox et al.

[59] successfully applied the method with FR in 2D, and introduced fully implicit

pseudo-time stepping for accelerating the convergence.

1.4 Motivation

In this project, a high-order incompressible Navier-Stokes solver is developed in the

Python-based PyFR (www.pyfr.org) [17] framework. The solver is based on the ACM

formulation with the FR discretisation in space and explicit dual time stepping in

time. In order to reduce time to solution, existing and new explicit convergence

acceleration techniques are developed and implemented.

Choices regarding the numerical methods and implementation are motivated as

follows. Firstly, high-order FR is selected as the spatial discretisation due to its low

dissipation and ability to work with unstructured meshes of complex geometries. Be-

ing discontinuous, it also allows the majority of the computation to be performed

locally. Secondly, convergence acceleration techniques are restricted to explicit meth-
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ods in order to retain the spatial locality provided by FR, which allows efficient har-

nessing of the massively parallel compute capability of modern hardware. Thirdly,

the solver is implemented in the PyFR framework with cross-platform support such

that it can run on modern heterogeneous systems via an MPI + X model, with X

being CUDA, OpenCL or OpenMP. As such, it is well-placed to remain relevant in

an era of rapidly evolving hardware architectures.

The new software constitutes the first high-order accurate cross-platform imple-

mentation of an incompressible Navier-Stokes solver via artificial compressibility. The

technology has applications in a range of sectors, including the maritime and automo-

tive industries, such as studying the wakes of submarines to improve their tail design

or minimising the drag of racing cars. All solver technologies presented in this thesis

are released open-source as part of the PyFR code base.

1.5 Outline

The thesis is structured as follows. Chapter 2 summarises the FR discretisation

for mixed unstructured grids, and Chapter 3 introduces relevant time-integration

techniques. Chapter 4 describes the unsteady artificial compressibility method for

computing incompressible flows with FR. Furthermore, the chapter details the cross-

platform implementation of the unsteady artificial compressibility method and the

required changes to the PyFR framework. The remainder of the thesis focuses on ex-

plicit convergence acceleration techniques, each given in a separate chapter. Chapter

5 focuses on P -multigrid, Chapter 6 focuses on locally adaptive pseudo-time stepping

and Chapter 7 on FR-optimal Runge-Kutta schemes. All convergence acceleration

chapters include the relevant theory, implementation, performance study and valida-

tion. The performance study is undertaken with a 2D cylinder to allow comparison

across different technologies, whereas validation is undertaken with a range of turbu-

lent test cases. In Chapter 8, the utility of the solver at scale is demonstrated with a

simulation of the DARPA SUBOFF submarine model. Finally, conclusions are drawn

in Chapter 9.
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Chapter 2

Flux Reconstruction

2.1 Formulation

The presentation of the FR discretisation for unstructured grids closely follows those

of [17, 60]. Consider a finite solution domain Ω in Euclidean space RND with a coor-

dinate system x = xi ∈ RND , where ND is the number of dimensions. A conservation

law in the domain takes the form

∂uα
∂t

= −∇ · fα , (2.1)

where uα = uα(x, t) is the solution state for a field variable α and fα = fα(uα,∇uα)

is the associated flux. The domain is discretised using a set of suitable element types

ε, such as line elements in ND = 1, quadrilaterals and triangles in ND = 2, and

hexahedra and tetrahedra in ND = 3. The elements in the discretised domain must

conform according to

Ω =
⋃
e∈ε

Ωe , Ωe =

|Ωe|⋃
n=1

Ωn , Ω =
⋂
e∈ε

|Ωe|⋂
n=1

Ωn = ∅ , (2.2)

where the subscript e refers to an element type and |Ωe| is the number of elements of

that type.

For efficient numerical implementation, all operations are performed in a trans-

26



formed space with a coordinate system x̃ = x̃i ∈ RND . Each physical element Ωe is

mapped into its respective transformed standard element Ω̃e ∈ RND via a mapping

function

x̃ =M−1
en (x) , (2.3)

x =Men(x̃) . (2.4)

The Jacobian matrices and determinants related to the mapping are defined as

J−1
en = J−1

enij =
∂M−1

eni

∂xj
, Jen = Jenij =

∂Meni

∂x̃j
, (2.5)

J −1
en = det J−1

en =
1

Jen
, Jen = det Jen . (2.6)

Using the above relations, the transformed flux and transformed gradient of the so-

lution can be written as a function of the physical solution as

f̃enα(x̃, t) = Jen(x̃)J−1
en (Men(x̃))fenα(Men(x̃), t) , (2.7)

∇̃uenα(x̃, t) = JTen(x̃)∇uenα(Men(x̃), t) , (2.8)

where ∇̃ = ∂/∂x̃i. Moreover, Equation 2.1 can be expressed in terms of the trans-

formed divergence of the transformed flux as

∂uenα
∂t

= −J −1
en ∇̃ · f̃enα . (2.9)

Figure 2-1 illustrates the mapping between physical and transformed spaces for a

quadrilateral element.
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Figure 2-1: Mapping between physical and transformed spaces for a quadrilateral
element.

In the FR method, piece-wise discontinuous polynomials of order P are used

to represent the solution within each element. Take {x̃uei} to be a set of solution

points associated with a given standard element type, where 0 ≤ i < Ne, with Ne

being the number of solution points. The solution points are often referred to as

degrees of freedom (per field variable) and their number depends on the selected

polynomial order and point distribution. Examples of such point distributions are

Gauss-Legendre or Gauss-Lobatto points, when ND = 1, Witherden-Vincent points

[61] for triangles, when ND = 2, and Shunn-Ham points [62] for tetrahedra, when

ND = 3. For tensor-product elements Ne = (P + 1)ND . In addition to the solution

points, a set of element-type-specific flux points {x̃fi }, where 0 ≤ i < N f
e , with N f

e

being the number of flux points, are defined at the element interfaces. For tensor

product elements N f
e = Nface(P + 1)ND−1, where Nface is the number of faces. Each

element interface, apart from those at the domain boundaries, contains the flux points

of two neighbouring elements. For a given flux point pair eij and e′i′j′, the mapping

function must return the same physical location according to

Men(x̃fei) =Me′n′(x̃
f
e′i′) . (2.10)

Figure 2-2 illustrates a second order quadrilateral element with Gauss-Legendre so-

lution points and flux points neighbouring a second order triangular element with
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Williams-Shunn solution points and Gauss-Legendre flux points.

xuquad

xfquad

xutri

xftri

Figure 2-2: A second order quadrilateral element with Gauss-Legendre solution points
and flux points neighbouring a second order triangular element with Williams-Shunn
solution points and Gauss-Legendre flux points.

The set of solution points {x̃uei} can be used to define a nodal basis set {lei(x̃)} of

order P (Ne) that spans a polynomial space P and satisfies the property lei(x̃
u
ej) = δij.

Following the methodology in [63], the nodal basis can be formed by first defining

any orthonormal basis set {Lei(x̃)} that spans P , and calculating the entries in the

associated Vandermonde matrix Veij = Lei(x̃
u
ej). Subsequently, a nodal basis can be

constructed as lei(x̃) = V−1
eijLej(x̃). Figure 2-3 plots the nine nodal basis functions of

a 2nd order quadrilateral element with Gauss-Legendre solution points, illustrated as

blue nodes. For each basis function, the value at the associated solution point takes

a value of one whereas the values at the rest of the solution points are zero.

For computing the right-hand-side, the first step is obtaining the discontinuous

solution at the flux points from the interpolating solution polynomial as

ufejnα = uueinαlei(x̃
f
ej) . (2.11)
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These values are used to find a common interface solution at the flux points via

Cufeinα = Cufe′i′n′α = C(ufeinα, u
f
e′i′n′α) , (2.12)

where C(uR, uL) is a scalar function that returns the common solution, with R and L

denoting the interpolated solution states on the right and left side of the boundary,

respectively. The second step is to compute the gradient of the solution at the solution

points. For this purpose, an FR correction function gfei(x̃) is formed, which satisfies

ˆ̃nej · gfei(x̃
f
ej) = δij , (2.13)

where ˆ̃nej is the outward facing normal vector. This allows the transformed gradient

of the solution at the solution points to be computed as

∇̃u
u

einα =
(

ˆ̃n∇̃
)
ej
· gfej(x̃uei){Cαu

f
ejnα − u

f
ejnα}+ uueknα∇̃lek(x̃uei) , (2.14)

which transforms into physical space as

∇uueinα = J−Tein∇̃u
u

einα , (2.15)

where J−Tein = J−Ten (x̃ei). As a third step, the transformed discontinuous flux at the

solution points is evaluated as

f̃ueinα = JeinJ−1
einfα(uueinα,∇uueinα) , (2.16)

and its normal component at the flux points is evaluated as

f̃ f⊥einα = lej(x̃
f
ei)

ˆ̃nei · f̃uejnα . (2.17)

The fourth step is to compute the common normal fluxes at the flux point pairs with

a function Fα(uR,∇uR, uL,∇uL, n̂), that comprises of performing a Riemann solve

for the inviscid part and using the LDG approach for the viscous part. The common
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values are assigned as

Fαf f⊥einα = −Fαf f⊥e′i′n′α = Fα(ufein,∇ufein, u
f
e′i′n′ ,∇ufe′i′n′ , n̂ein) , (2.18)

where

∇ufeinα = lejn(x̃fei)∇uuejnα , (2.19)

and they are transformed into the standard element space via

Fαf̃ f⊥einα = J f
einneinFαf

f⊥
einα , (2.20)

with nein being the magnitude of the physical normal at a flux point. Finally, the

divergence of the continuous flux can be computed as

(
∇̃ · f̃

)u
einα

= ∇̃ · gfej(x̃uei){Fαf̃
f⊥
ejnα − f̃

f⊥
ejnα}+ f̃ueknα · ∇̃lek(x̃uei) . (2.21)

This serves as the discrete representation of the flux divergence, and the solution can

be advanced in time by integrating

∂ueinα
∂t

= −
(
J −1

)u
ein

(
∇̃ · f̃

)u
einα

. (2.22)
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Figure 2-3: Basis functions of a second order quadrilateral element with Gauss-
Legendre solution points, illustrated as blue nodes.

2.2 Correction Functions

The FR correction functions gfei(x̃) distribute the effects of the common interface

solution and flux states to the element-interior degrees of freedom, which allows in-

formation to propagate between neighbouring elements. The selection of the FR

correction function affects the stability and dispersion relations of the FR scheme. In

the original paper on FR, Huynh [12] identified correction functions for recovering ex-

isting nodal DG and SD schemes for 1D linear advection, and a family of alternative
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correction functions with varying stability and spatial accuracy properties. These

schemes are generally referred to as the g-schemes. Building on Huynh’s work on

1D linear advection, Vincent al. [64] identified a one parameter family of correction

functions for recovering a range of schemes, referred to as the Vincent-Castonguay-

Jameson-Huynh (VCJH) schemes, which they proved to be energy stable. The range

of VCJH schemes was extended to advection-diffusion problems in 1D by Castonguay

[65], and more recently Vincent et al. [66] extended the VCHJ family to multi-

parameter schemes. Furthermore, Allaneau and Jameson [67], Williams and Jameson

[68], and Zwanenburg and Nadarajah [69] have showed that all energy stable VCHJ

schemes can be cast as filtered DG schemes. The 1D correction functions can be ex-

tended to multiple dimensions using tensor products for hexahedral and quadrilateral

elements as shown in [12, 70]. Correction functions for simplex elements, including

triangles and tetrahedra, have been formulated by Huynh [71], Castonguay et al. [72]

and Williams and Jameson [73, 68].

As seen from Equations 2.21 and 2.14, only the divergence of the FR correction

function is required for the FR algorithm. The divergence of the FR correction

function must sit in the same space as the solution

∇̃ · gfei(x̃) ∈ PP , (2.23)

which makes it of order P + 1 for tensor product elements. For simplex elements the

vector correction function sits in a Raviart-Thomas space [74] of order P . As shown

in [18], the divergence of the DG correction function for a flux point j at a standard

element interface ∂Ω̃ei can be computed as

∇̃ · gfe(ij)(x̃) = Lek(x̃)

∫
∂Ω̃ei

ˆ̃n · gfe(ij)(̃s)Lek (̃s)ds̃ (2.24)

= Lek(x̃)

∫
∂Ω̃ei

le(ij)(̃s)Lek (̃s)ds̃ . (2.25)

For convenience, the flux point index convention used previously in this instance is

divided into two components i and j, where i runs over the standard element interfaces
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and j runs over the flux points on that interface. Figure 2-4 plots ∇̃ · gfe(ij)(x̃) for

a second order quadrilateral element with Gauss-Legendre flux points, illustrated as

blue nodes. The index i = 0 corresponds to the interface at constant ỹ = −1, i = 1

to the interface at constant x̃ = 1, i = 2 to the interface at constant ỹ = 1, and i = 3

to the interface at constant x̃ = −1.

Figure 2-4: Divergence of the correction functions ∇̃ · gfe(ij)(x̃) for a second order
quadrilateral element with Gauss-Legendre flux points, illustrated as blue nodes.
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2.3 Polynomial Aliasing

Aliasing driven instabilities affect a range of high-order FE methods. In DG for-

mulations that use the integral weak form, the origin of aliasing driven instabilities

manifests from under-integration of non-linear terms [75]. However, in FR which is

based on a differential formulation, their origin is more subtle [76].

Consider a 1D interpolating solution polynomial

ũ(x̃) = ũui li(x̃) ∈ PP . (2.26)

For a non-linear flux function f = u2, the true flux polynomial would sit in a higher

order space as

f̃ true(x̃) = [ũ(x̃)]2 ∈ P2P . (2.27)

However, since a discontinous flux polynomial f̃ aprx(x̃) in the FR algorithm is con-

structed as

f̃ aprx(x̃) = f̃ui li(x̃) ∈ PP , (2.28)

where f̃ui = [ũ(x̃ui )]
2 are only evaluated at P+1 solution points, an implicit collocation

projection of the P2P polynomial into the PP space occurs. This results in unresolved

modes (P+1 to 2P ) having their energies erroneously aliased to the resolved modes (1

to P ). In the context of FR, Jameson and Vincent et al. [77, 76, 64, 66] demonstrated

that these aliasing errors lead to instability. Specifically, they considered a broken

Sobolev norm of the solution defined as

||u||2P,2 =

|Ω|∑
n=0

∫ xn+1

xn

(un)2 +
c

2

(
∂Pun
∂xP

)2

dx , (2.29)

where c is the free VCJH correction function parameter. For energy stability

d

dt
||u||2P,2 ≤ 0 . (2.30)
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For non-linear problems it can be shown [77] that

1

2

d

dt
||u||2P,2 = Θ +

|Ω|∑
n=0

εn , (2.31)

where Θ is a term that can be proven to be Θ ≤ 0 for VCJH schemes, and

εn = Jnε̃i
∫ 1

−1

∂ũ

∂x̃
Li(x̃) dx̃ , (2.32)

where

ε̃i =

∫ 1

−1

f̃ aprxLi dx̃−
∫ 1

−1

f̃ trueLi dx̃ (2.33)

are the aliasing errors and Li are the normalised Legendre polynomials. Clearly, if

these aliasing errors are non-zero, εn is non-zero. Since the sign of εn cannot be

guaranteed, the stability condition in Equation 2.30 may be violated and aliasing

driven instabilities can occur.

To circumvent aliasing errors, three approaches can be considered [18]. Firstly,

a favourable set of solution points, such as Gauss-Legendre points, can be used to

minimise the error in Equation 2.33 as shown in [76]. Secondly, an exponential filter

can be applied to the high order modes as they tend to be most affected by aliasing as

shown in [63, 78]. Thirdly, projection to the solution space can be improved with anti-

aliasing. In this approach, instead of evaluating f̃ui directly from the flux function,

they are computed via an L2-projection to reduce or completely eliminate the error

defined by Equation 2.33. The modal expansion that is obtained via L2-projection

can be expressed as

f ?(x̃) = γ?i Li(x̃) , (2.34)

where

γ?i =

∫ 1

−1

Li(x̃)f true(x̃) dx̃ (2.35)
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are the modal expansion coefficients that minimise the L2-error between f ?(x̃) and

f true(x̃). The expansion coefficients can be computed exactly up to machine precision

with a quadrature rule of sufficient degree as

∫ 1

−1

Li(x̃)f true(x̃) dx̃ = wqjLi(x̃
q
j)f

true(x̃qj) , (2.36)

where the superscript q refers to a variable at quadrature points and wqj are the

quadrature weights. The number of quadrature points required for a given degree

depends on the rule. For example, the Gauss-Legendre quadrature rule can integrate

polynomials of degree 2N q−1 and lower exactly with N q number of quadrature points.

As a guide, a flux polynomial of order P should be anti-aliased using a quadrature

with N q = (P + 2) in 1D.

In PyFR, volume flux anti-aliasing is performed by first over-sampling the solution

and its gradient at a set of higher order quadrature points as

uqejnα = uueinαl
u
ei(x̃

q
ej) , (2.37)

∇uqejnα = ∇uueinαluei(x̃
q
ej) , (2.38)

and subsequently computing the transformed flux as

f̃ qejnα = JejnJ−1
ejnfα(uqejnα,∇uqejnα) . (2.39)

This allows the anti-aliased flux at the solution points to be computed as

f̃ueinα = Lek(x̃
u
ei)w

q
ejLek(x̃

q
ej )̃f

q
ejnα . (2.40)

If the elements are curved, the transformation into physical space in Equation 2.22

can also introduce aliasing. This can be addressed with flux divergence anti-aliasing,

in which the transformed fluxes and gradients at the quadrature points are com-

puted following the procedures in Equations 2.37 - 2.39, and the divergence of the
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transformed flux at the quadrature points is computed as

(
∇̃ · f̃

)q
einα

= ∇̃ · gfej(x̃
q
ei){Fαf̃

f⊥
ejnα − f̃

f⊥
ejnα}+ f̃ qeknα · ∇̃lek(x̃

q
ei) . (2.41)

The anti-aliased divergence of flux at the solution points can be computed as

(
∇̃ · f̃

)u
einα

= Lek(x̃
u
ei)w

q
ejLek(x̃

q
ej)
(
∇̃ · f̃

)q
einα

. (2.42)

Anti-aliasing can also be applied at the interfaces in case of non-linear interface flux

functions. In this approach, the solution and its divergence are first interpolated to

quadrature points at the boundaries as

ufqejnα = uueinαlei(x̃
f
ej) , (2.43)

∇ufqejnα = ∇uueinαlei(x̃
f
ej) , (2.44)

where the superscript fq denotes a quantity at the interface quadrature points. Using

these values, the transformed common interface flux can be computed via

Fαf fq⊥ejnα = −Fαf fq⊥e′j′n′α = Fα(ufqejn,∇ufqejn, u
fq
e′j′n′ ,∇ufqe′j′n′ , n̂ejn) , (2.45)

Fαf̃ fq⊥einα = J fq
einneinFαf

fq⊥
einα . (2.46)

Finally, the anti-aliased surface flux at the flux points can be computed as

Fαf f⊥ejnα = Lfek(x̃
f
ei)w

fq
ej L

f
ek(x̃

fq
ej )Fαf fq⊥ejnα , (2.47)

where Lfek are the interface basis functions and wfqej are their associated weights.
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Chapter 3

Dual Time Stepping

3.1 Overview

The dual time stepping integration technique treats an unsteady problem as consec-

utive steady-state problems. Most commonly, the physical time is treated implicitly

with a backward difference formula (BDF) schemes allowing large physical steps to

be taken, and the solution to the steady-state problem is found iteratively by march-

ing the equations in pseudo-time. In this study, the pseudo-time stepping techniques

are restricted to explicit Runge-Kutta (RK) schemes to allow efficient use of modern

hardware architectures. Since temporal accuracy is unnecessary in pseudo-time, the

explicit RK schemes can be combined with any convergence acceleration techniques,

such as P -multigrid and local pseudo-time stepping. Section 3.2 details explicit RK

schemes, Section 3.3 details implicit BDF schemes and Section 3.4 details the dual

time formulation of the two.

3.2 Explicit Runge-Kutta Schemes

Consider an ODE of the form
du

dt
= g(t, u) . (3.1)
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Explicit RK methods for solving Equation 3.1 can be written in the general form

un+1 = un + ∆t
s∑
i=1

biki , (3.2)

ki = g(t+ ci∆t, u
n + ∆t

i−1∑
j=1

aijkj) , (3.3)

where n denotes a time level, s is the stage count, A = aij is an s × s strictly lower

triangular matrix, and b = bi and c = ci are vectors of length s. The coefficients of

a generalised explicit RK scheme are typically presented in a Butcher tableau [79]

c A

b
. (3.4)

The constraints for an explicit RK scheme are

ci =
s∑
j=1

aij , (3.5)

s∑
i=1

bi = 1 , (3.6)

aij = 0, j ≥ i . (3.7)

By applying an order q accurate RK scheme to a linear test problem du/dt = ωu,

where ω ∈ C, a single time step can be expressed as

un+1 = P (s,q)(z)un , (3.8)

where z = ω∆t and

P (s,q)(z) =
s∑
j=0

γjz
j (3.9)

is the associated stability polynomial [80]. The coefficients of the stability polynomial

must satisfy

γj =
1

j!
, 0 ≤ j ≤ q , (3.10)
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to obtain order q temporal accuracy. The stability polynomial of an explicit RK

scheme can be calculated from the Butcher tableau as

P (s,q)(z) = 1 + zbT (I− zA)−1 e =
|I− zA + zebT |
|I− zA|

, (3.11)

where e is a vector of ones. The stability region S of the RK scheme is defined as

S =
{
z ∈ C : |P (s,q)(z)| ≤ 1

}
, (3.12)

and the linear stability condition is

ω∆t ⊆ S . (3.13)

Simply put, the method remains stable for a given ∆t if ω∆t lies within a unit circle.

Furthermore, the same analysis applies to equations involving spatial derivatives such

as linear advection ∂u/∂t = ∂u/∂x. In this case, it is required that

|P (s,q)(ωδ∆t)| ≤ 1 ∀ωδ (3.14)

where ωδ are the eigenvalues associated with the spatial discretisation of ∂u/∂x which

can be obtained via von Neumann analysis. This topic will be revisited in Chapter 7.

Embedded Runge-Kutta pairs are a family of RK schemes of consecutive temporal

orders q and q − 1 for which A and c are equal. This property allows the temporal

truncation error of the embedded pair to be estimated as

ξ(t+ ∆t) = ∆t
s∑
i=1

(b
(s,q)
i − b(s,q−1)

i )ki . (3.15)

For a given truncation error tolerance, the time-step size can be controlled such

that the scheme remains stable. This procedure will be detailed in Chapter 6. The

Butcher tableaus of the classical RK4 scheme and the RK3(2)4[2R+] embedded pair

[81], which are used in the numerical experiments in later Chapters, are shown in
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Tables 3.1 and 3.2.

Table 3.1: Butcher tableau of the classical RK4 scheme.

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

Table 3.2: Butcher tableau of the RK3(2)4[2R+] embedded pair, where the first row

of b are the b
(4,3)
i coefficients resulting in third order temporal accuracy and the second

row are the b
(4,2)
i coefficients resulting in second order accuracy.

0

c2
11847461282814
36547543011857

c3
1017324711453
9774461848756

3943225443063
7078155732230

c4
1017324711453
9774461848756

8237718856693
13685301971492

− 346793006927
4029903576067

b
(4,3)
i

1017324711453
9774461848756

8237718856693
13685301971492

57731312506979
19404895981398

−101169746363290
37734290219643

b
(4,2)
i

15763415370699
46270243929542

514528521746
5659431552419

27030193851939
9429696342944

−69544964788955
30262026368149

ci = Ai,i−1 +
∑i−2

j=1 +b
(4,3)
j−2 , 2 ≤ i ≤ 4

3.3 Implicit Backward Difference Formula Schemes

BDF schemes are a range of implicit multistep methods that can be formulated as

un+1 =
s−1∑
i=0

Bi+1u
n−i + ∆tB0g(tn+1, un+1) , (3.16)
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where Bi are the BDF-coefficients. Table 3.3 shows the BDF-coefficients for the most

commonly used schemes. The stability polynomial of BDFs can be defined as

P (z) =
s−1∑
i=0

Bi+1ξ
i + (1−B0z)ξs . (3.17)

The stability condition is that all roots of the stability polynomial must satisfy

{z ∈ C : |ξ| ≤ 1}. The BDF schemes are A-stable up to 2nd order. With higher

order BDFs, two unstable regions form near the real axis. However, these regions

are very small for the third order accurate BDF3, meaning it is still stable for a wide

range of z. Moreover, it has been successfully applied to unsteady flow simulations

[82].

Table 3.3: Coefficients for the BDFs

B0 B1 B2 B3

Backward-Euler 1 1 – –
BDF2 2

3
4
3

−1
3

–
BDF3 6

11
18
11

− 9
11

2
11

3.4 Dual Time Formulation

A dual time formulation of an ODE can be written as

∂u

∂τ
+
∂u

∂t
= g(t, u) , (3.18)

where ∂u/∂τ is the pseudo-time derivative which is marched towards zero and ∂u/∂t

is the physical time derivative. Consider treating the ODE implicitly in physical time.

Using a BDF2 scheme to discretise the physical time derivative gives

∂u

∂τ
= −3un+1 − 4un + un−1

2∆t
+ g(tn+1, un+1) , (3.19)
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where n is the physical time-level counter. Furthermore, consider treating the ODE

explicitly in pseudo-time. Using a forward Euler scheme to discretise the pseudo-time

derivative gives

un+1,m+1 − un+1,m

∆τ
= −3un+1,m+1 − 4un + un+1

2∆t
+ g(tn+1, un+1,m) , (3.20)

where ∆τ is the pseudo-time step and m is the pseudo-time level counter. Note that

the leading term in the physical time derivative is treated implicitly also in pseudo-

time which is referred to as point-implicit source term treatment [84]. Subsequently,

expanding the term as

un+1,m+1 = un+1,m + un+1,m+1 − un+1,m , (3.21)

substituting it to Equation 3.20 and grouping the pseudo-time terms gives

(
1 +

3∆τ

2∆t

)
un+1,m+1 −

(
1 +

3∆τ

2∆t

)
un+1,m = −∆τ

[3un+1,m − 4un + un+1

2∆t

+ g(tn+1, un+1,m)
]
. (3.22)

Solving for un+1,m+1 gives the final discretised form of

un+1,m+1 = un+1,m − ∆τ

1 + 3∆τ
2∆t

[
3un+1,m − 4un + un+1

2∆t
+ g(tn+1, un+1,m)

]
. (3.23)

When the solution is integrated with respect to pseudo-time, the physical time deriva-

tive can be considered as a source term for the right-hand side that is updated at every

pseudo-time step. After each pseudo-time step, m is incremented by one. Pseudo-time

steps are repeated until the solution in physical time is deemed to have converged.

Convergence criteria include that the point-wise L2 or L∞-norm of the pseudo-time

residuals are reduced below a given tolerance, or a maximum number of pseudo-time

steps have been exceeded. After each successful pseudo-time cycle, m is restarted

from zero, and n is incremented by one.
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Chapter 4

Artificial Compressibility Method

4.1 Formulation

In the ACM formulation of the incompressible Navier-Stokes equations, the conser-

vative variables in three dimensions are

uα =



p

vx

vy

vz


, (4.1)

where p is the pressure and vx, vy, and vz are the velocity components in the x, y,

and z directions, respectively. The fluxes are defined as

fα = f e
α − fv

α =


f e
αx

f e
αy

f e
αz

−

fv
αx

fv
αy

fv
αz

 , (4.2)

where

f e
αx =



ζvx

v2
x + p

vxvy

vxvz


, f e
αy =



ζvy

vyvx

v2
y + p

vyvz


, f e
αz =



ζvz

vzvx

vzvy

v2
z + p


, (4.3)
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fv
αx = ν



0

∂vx
∂x

∂vy
∂x

∂vz
∂x


, fv
αy = ν



0

∂vx
∂y

∂vy
∂y

∂vz
∂y


, fv
αz = ν



0

∂vx
∂z

∂vy
∂z

∂vz
∂z


, (4.4)

with ζ being the artificial compressibility relaxation factor and ν the kinematic vis-

cosity.

The artificial compressibility equations are equivalent to the incompressible Navier-

Stokes equations apart from the modified continuity equation. The basis for the

continuity equation is

∂ρ∗

∂τ
+
∂ρvx
∂x

+
∂ρvy
∂y

+
∂ρvz
∂z

= 0 . (4.5)

where ∂ρ∗/∂τ is the artificial density pseudo-time derivative that disappears in the

limit of steady-state and ρ is the constant physical density [55]. The artificial density

pseudo-time derivative can be expanded with the chain rule as

∂ρ∗

∂τ
=
∂ρ∗

∂p

∂p

∂τ
. (4.6)

From the definition of isentropic speed-of-sound, the artificial wave speed can be

defined as

c =

√
∂p

∂ρ∗
. (4.7)

Solving Equation 4.7 for ∂ρ∗/∂p and substituting it into Equation 4.6 gives

∂ρ∗

∂t
=

1

ζ

∂p

∂τ
, (4.8)

where ζ = c2. Substituting Equation 4.8 into Equation 4.5 yields the ACM continuity

equation
∂p

∂τ
= −

(
∂ζvx
∂x

+
∂ζvy
∂y

+
∂ζvz
∂z

)
. (4.9)

46



Due to the modified continuity equation, the ACM formulation of the incompress-

ible Navier-Stokes equations is hyperbolic in nature, allowing artificial pressure waves

with finite speeds. These waves distribute the pressure and disappear in the limit of

pseudo steady-state. Eigenvalues of the inviscid flux Jacobian matrices

Ji =
∂f e

αi

∂u
, (4.10)

are

λi = {vi − ci, vi, vi, vi + ci} , (4.11)

where ci =
√
v2
i + ζ is the pseudo speed of sound in directions i ∈ {x, y, z}. The

pseudo speed of sound monotonically decreases with decreasing artificial compress-

ibility relaxation factor ζ which can be adjusted to reduce the system stiffness. The

common interface flux is defined as

Fα(uL,∇uL, uR,∇uR, n̂) = F e
α(uL, uR, n̂)−Fv

α(uL,∇uL, uR,∇uR, n̂) , (4.12)

where F e
α(uL, uR, n̂) is the inviscid part and Fv

α(uL,∇uL, uR,∇uR, n̂) is the viscous

part. Throughout the study, the inviscid part is computed with the Rusanov Riemann

solver [83] as

F e
α(uL, uR, n̂) = n̂ · {1

2
(f e

L + f e
R)}+

1

2
max(λn)(uL − uR) , (4.13)

where λn = Vn + cn, with cn =
√
V 2
n + ζ, Vn = (n̂ · vR + n̂ · vL)/2 and v = vi.

Furthermore, the viscous interface flux is computed using the local discontinuous

Galerkin (LDG) approach following [63] as

Fv
α(uL,∇uL, uR,∇uR, n̂) = n̂ · {(1

2
+ β)fv

L + (
1

2
− β)fv

R}+ τ(uL − uR) , (4.14)

where β = 0.5 and τ = 0.1 are prescribed to control the degree of upwinding/down-

winding and the solution jump penalisation at the interface. The common interface

47



solution needed for the gradient computation is calculated as

Cα(uL, uR) =

(
1

2
− β

)
uL +

(
1

2
+ β

)
uR . (4.15)

The dual time stepping formulation applied to the artificial compressibility equa-

tions can be written as

∂uα
∂τ

= −
(
Iα
∂uα
∂t

+∇ · fα
)
, (4.16)

where Iα = {0 1 1 1}T is employed as a coefficient for the physical time derivative to

eliminate it from the continuity equation, forcing the solution to be driven towards a

divergence free state according to

lim
τ→∞

[
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

]
= 0 . (4.17)

For an s-stage RK scheme in pseudo-time and an sb-stage BDF scheme in physical

time, the equation for performing a single pseudo-time step becomes

un+1,m+1
α = un+1,m

α +
s∑
i=1

∆τbi
αPI

ki , (4.18)

ki =−∇ · fα(un+1,m
α + ∆τ

i−1∑
j=1

aijki)

− Iα
∆tB0

(
un+1,m
α +

sb−1∑
j=0

Bj+1u
n−j
α

)
,

(4.19)

where αPI = 1+ bi∆τ/B0∆t the scaling coefficient which purpose is to limit ∆τ when

∆τ � ∆t [84]. With explicit pseudo-time steppers this is rarely the case and αPI = 1

is enforced in this study.
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4.2 Implementation

4.2.1 PyFR Overview

PyFR is a cross-platform framework for solving advection-diffusion problems using

the FR approach. One of the main advantages of PyFR is that it produces platform

portable code with a single implementation using Python and Mako. Figure 4-1

provides an overview of the framework. PL is the hardware independent Python layer

which constitutes the main body of the framework. PL initialises the data layout,

precomputes all necessary matrices, and defines the chain of kernel calls that drive

the simulation. Distributed memory parallelism and input/output are also handled

by PL. Mesh partitioning, when required, is outsourced to METIS [85].

The kernels called by PL can be divided into matrix multiplication kernels MKs

and pointwise kernels PKs. The MKs are used for all operations where a time-

wise constant operator matrix multiplies a large state matrix, such as interpolation,

extrapolation and anti-aliasing. An example is interpolation of field variables from

the solution points onto the flux points, which is performed for a given element type

as

Uf
e = M0

eU
u
e , (4.20)

where

(Uu
e )j(nα) = uuejnα , dimUu

e = Ne ×Nv|Ωe| , (4.21)

(Uf
e )i(nα) = ufeinα , dimUf

e = N f
e ×Nv|Ωe| , (4.22)

(M0
e)ji = lej(x̃

f
ei) , dimM0

e = N f
e ×Ne. (4.23)

All MKs are off-loaded to GEMM (GEneral Matrix Multiply) subroutines from vendor

supplied BLAS (Basic Linear Algebra Subprograms) libraries or bespoke GiMMiK

[86] and LIBXSMM [87] kernels. The latter two kernel libraries leverage the a priori

known structure/sparsity of the operator matrices and can considerably reduce wall-
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clock time in certain circumstances [86].

PKs are used for operations that require pointwise calculations, such as computing

non-linear fluxes, Riemann solves and boundary conditions. They are built at runtime

by passing platform-unified Mako kernel templates to a Mako derived templating en-

gine that produces low level platform specific source code. The low level code is then

compiled as shared libraries and linked to the PL at runtime. The templating engine

automatically generates appropriate indexing for vectorisation and efficient memory

accesses, which vary across platforms. With CUDA and OpenCL backends, PyCUDA

and PyOpenCL [88] Python wrappers handle the kernel compilation, memory alloca-

tion, data transfers and execution.

PL

- Operator & state matrices

- Kernel calls

- MPI

- I/O

Hardware Specific Kernels

C/OpenMP

CUDAOpenCL

MKs

- Interpolation

- Extrapolation

- Anti-aliasing
...

BLAS Libraries

- Vendor BLAS

- GiMMiK

- LIBXSMM

PKs

- Flux functions

- Riemann solvers

- Boundary conditions
...

Mako Templates

- Templating engine

- Low level source code

- Compile & link

Figure 4-1: The structure of the PyFR framework.

4.2.2 AC Systems

The artificial compressibility solver was implemented as modules under the pyfr/-

solvers/ directory. Specifically, two solvers were implemented; aceuler containing

only the inviscid part and acnavierstokes containing the full set of equations. Figure

4-2 illustrates the structure of the ACM solvers in PL, where the class names have

been unified to represent both aceuler and acnavierstokes solvers.

At the top of the ACM solver hierarchy is the ACSystem class which inherits a

pipeline of kernel calls to perform the FR discretisation of an arbitrary advection-
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diffusion equation as described in Chapter 2. To complete the discretisation for the

ACM equations, ACSystem also binds four subclasses: ACElements, ACInternalInt,

ACMPIInt and ACBoundaryInt that set the state vector uα and register all PKs for

computing the ACM fluxes.

The ACElements class registers the PKs for computing fluxes f̃uα at internal solu-

tion points. The common interface flux treatment Fαf̃ fα is divided into MPI-rank-local

PKs and message passing PKs, which are registered in Internal and MPIInt classes,

respectively. This approach allows the data exchange and rank-local computation to

happen simultaneously [18]. Additionally, kernels for computing the common inter-

face solution Cαufα are needed for all interface classes that require the viscous flux

calculation. The BoundaryInt class registers all boundary condition PKs. All PKs

can be found under the pyfr/solvers/ac*/kernels directories.

ACSystem ∇̃ ·�

ACInternalInt ACBoundaryInt ACMPIIntACElements

Fαf̃fα , Cαu
f
αuα, f̃uα

Figure 4-2: The class hierarchy of the artificial compressibility systems.

Figure 4-3 demonstrates the two-step procedure for registering a PK to the PL. As

an example, only a PK for computing the discontinuous flux f̃uα that is registered to the

ACNavierStokesElements PL class is considered. First, the kernel must be registered

to the backend by providing the location of the Mako template, which is done on

line 6. Second, the kernel must be added to the pointwise kernels dictionary as a

lambda function, which is done on line 11. The lambda function must specify keyword

arguments for all variables that are passed from PL to PK, which include pointers to

the input and output matrices u (state) and f(flux), a pointer to the mapping matrix

smats, and auxiliary constant variables to facilitate templating tplargs and dims.

Figure 4-4 shows the templated implementation of the discontinuous flux kernel

tflux that is registered to PL in Figure 4-3. Input and output arguments on lines

5 to 6 correspond to the keyword arguments in the lambda function. The template
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consists of inviscid flux and viscous flux add macro functions on the lines 21 and

36, which work as individual building blocks for the template. These macro functions,

which form the expression for the inviscid and viscous fluxes, are expanded on lines

10 and 11. Within the macros, the flux expression is unrolled using a Python-like

loop syntax which has direct access to the templating variables passed from Python

via tplargs. The ${} tags denote a placeholder for variable substitution.

1 class ACNavierStokesElements(BaseACFluidElements ,
2 BaseAdvectionDiffusionElements):
3 def set backend(self, backend, nscalupts , nonce):
4 super().set backend(backend, nscalupts , nonce)
5
6 backend.pointwise.register(’pyfr.solvers.acnavstokes.kernels.tflux’)
7
8 tplargs = dict(ndims=self.ndims, nvars=self.nvars,
9 c=self.cfg.items as(’constants’, float))
10
11 self.kernels[’tdisf’] = lambda: backend.kernel(
12 ’tflux’, tplargs=tplargs, dims=[self.nupts, self.neles],
13 u=self.scal upts inb , smats=self.smat at(’upts’),
14 f=self. vect upts
15 )

Figure 4-3: Registering the tflux PK. which computes the discontinuous flux f̃uα , to
the ACNavierStokesElements PL class.
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1 <%inherit file=’base’/>
2 <%namespace module=’pyfr.backends.base.makoutil’ name=’pyfr’/>
3
4 <%pyfr:kernel name=’tflux’ ndim=’2’
5 u=’in fpdtype t[${str(nvars)}]’
6 smats=’in fpdtype t[${str(ndims)}][${str(ndims)}]’
7 f=’inout fpdtype t[${str(ndims)}][${str(nvars)}]’>
8 // Compute the flux (F = Fi + Fv)
9 fpdtype t ftemp[${ndims}][${nvars}];
10 ${pyfr.expand(’inviscid flux’, ’u’, ’ftemp’)};
11 ${pyfr.expand(’viscous flux add’, ’u’, ’f’, ’ftemp’)};
12
13 // Transform the fluxes
14 % for i, j in pyfr.ndrange(ndims, nvars):
15 f[${i}][${j}] = ${’ + ’.join(’smats[{0}][{1}]*ftemp[{1}][{2}]’
16 .format(i, k, j)
17 for k in range(ndims))};
18 % endfor
19 </%pyfr:kernel>
20
21 <%pyfr:macro name=’inviscid flux’ params=’s, f’>
22 fpdtype t v[] = ${pyfr.array(’s[{i}]’, i=(1, ndims + 1))};
23 fpdtype t p = s[0];
24
25 // Mass flux
26 % for i in range(ndims):
27 f[${i}][0] = ${c[’ac-zeta’]}*v[${i}];
28 % endfor
29
30 // Momentum fluxes
31 % for i, j in pyfr.ndrange(ndims, ndims):
32 f[${i}][${j + 1}] = v[${i}]*v[${j}]${’ + p’ if i == j else ’’};
33 % endfor
34 </%pyfr:macro>
35
36 <%pyfr:macro name=’viscous flux add’ params=’uin, grad uin , fout’>
37 % for i, j in pyfr.ndrange(ndims, ndims):
38 fout[${i}][${j+1}] += -${c[’nu’]}*grad uin[${i}][${j+1}];
39 % endfor
40 </%pyfr:macro>

Figure 4-4: The Mako template to generate the tflux PK.

4.2.3 Boundary Conditions

In PyFR, boundary conditions are imposed via three ghost states. First, in Equa-

tion 4.13 at the boundaries, the right-hand-side solution state uR is replaced with a

prescribed inviscid ghost state BRieuR. Second, in Equation 4.14 at the boundaries,

the right-hand-side solution state uR is replaced with a viscous ghost state BLDGuR,

which can differ from the inviscid ghost state. Third, also in Equation 4.14, the

right-hand-side gradient state ∇uR is replaced with a gradient ghost state BLDG∇uR.
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Standard Boundary Conditions

The following boundary conditions are available for the ACM solvers. A velocity inlet

condition is imposed via ghost states defined as

BRieuα = {pL vbx vby vbz}T , (4.24)

BLDGuα = BRieuα , (4.25)

BLDG∇uα = 0 , (4.26)

where the superscript b denotes a user-specified free-stream value and the subscript

L denotes the domain-side state. A pressure outlet condition is imposed via ghost

states defined as

BRieuα = {pb vxL vyL vzL}T , (4.27)

BLDGuα = BRieuα , (4.28)

BLDG∇uα = 0 . (4.29)

A no-slip wall is imposed via ghost states defined as

BRieuα = {pL 2vwx − vxL 2vwy − vxL 2vwz − vxL}T , (4.30)

BLDGuα = {pL vwx vwy vwz }T , (4.31)

BLDG∇uα = ∇uαL , (4.32)

where the superscript w denotes the wall-velocities which are zero for stationary wall.

A slip-wall is imposed via ghost states defined as

BRieuα = {pL vxL − 2n̂xVnL vyL − 2n̂yVnL vzL − 2n̂zVnL}T , (4.33)

BLDGuα = BRieuα , (4.34)

BLDG∇uα = 0 . (4.35)
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Characteristic Riemann-Invariant Boundary Condition for ACM

In addition to the standard boundary conditions, a new characteristic boundary con-

dition was developed. The boundary condition was found to be substantially less

reflective than standard velocity inlet and pressure outlet BCs. The characteris-

tic BC is based on Riemann invariants derived in [57]. The boundary condition is

parametrised by a target free-stream pressure p∞ and velocity v∞. In addition, a

free-stream artificial compressibility factor ζ∞ is given, which is often required to be

significantly larger compared to the global ζ in Equation 4.3. It was found empirically

that setting ζ∞ to be larger than the global artificial compressibility factor ζ made

the boundary less reflective.

The 1D Riemann invariants in the interface normal direction are defined as

Γ∞ = p∞ +
1

2

[
v⊥∞(v⊥∞ − c∞)− ζ∞log(v⊥∞ + c∞)

]
, (4.36)

ΓL = pL +
1

2

[
v⊥L (v⊥L + cL) + ζ∞log(v⊥L + cL)

]
, (4.37)

where pL is the pressure interpolated from the interior solution, v⊥L = n̂ · vL, with

vL being the velocity interpolated from the interior domain, v⊥∞ = n̂ · v∞, cL =√
(v⊥L )2 + ζ∞, and c∞ =

√
(v⊥∞)2 + ζ∞. Using these relations, the normal velocity at

the boundary can be computed using a Newton-Raphson method as

v⊥,i+1
b = v⊥,ib −

f(v⊥,ib )

f ′(v⊥,ib )
, (4.38)

where the superscript i is the iteration counter, and

f(v⊥b ) = cbv
⊥
b + ζ∞log(v⊥b + cb) + Γ∞ − ΓL , (4.39)

f ′(v⊥b ) = 2
(v⊥b )2 + ζ∞

cb
, (4.40)

with cb =
√

(v⊥b )2 + ζ∞. The process converges to machine precision in less than

5 iterations which in PyFR are fully unrolled by the templating engine. Using the
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converged v⊥b , the individual velocity components at the boundaries can be calculated

as

vb =

vL + n̂(v⊥b − n̂ · vL) if n̂ · vL ≥ 0

v∞ + n̂(v⊥b − n̂ · v∞) if n̂ · vL < 0

 . (4.41)

Finally, the boundary ghost states are prescribed as

BRieuα = BLDGuα =

ΓL − 1
2

[
vb(v

⊥
b + cb + ζ∞log(v⊥b + cb)

]
vb

 , (4.42)

BLDG∇uα = 0 . (4.43)

4.2.4 Dual Integrator

Dual time stepping was implemented as modules under the pyfr/integrators/ direc-

tory. At the top of the class hierarchy is the DualIntegrator (DI) class which is

a composite of DualController (DC) and DualStepper classes (DS). The DC class

handles the physical time management and plugin calls, and DS sets the physical

time-stepping scheme. Currently available options for physical time-stepping are:

Backward-Euler, BDF2 and BDF3. For solving the pseudo-steady-state problem, DI

initialises an instance of DualPseudoIntegrator (DPI) class which is a composite of

DualPseudoController (DPC) and DualPseudoStepper (DPS). The DPC class handles

the pseudo-time management i.e. convergence monitoring, and implements pseudo-

time step control techniques. Currently available options for pseudo-time step control

are: None and local-PI, which is detailed in Chapter 6. The DPS sets the pseudo-time

stepping scheme. Currently available options for pseudo-time stepping are: Euler,

tvd-RK3, RK4, RK34, RK45.

Masking axnbpy Kernels

To facilitate the implementation of DI, some changes had to be made to the PyFR

framework. The first of these was the implementation of masking axnbpy kernels.
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The axnbpy kernels are PKs that compute point-wise sums of the form

A0 = c0A0 + c1A1 + c2A2 ..., (4.44)

where Ai are solution-sized matrices and ci are arbitrary real number coefficients. The

previous versions of the axnbpy kernels were unaware of the packing methodology

making them unable to mask the entries associated with each field variable. This

functionality is needed when the physical time-derivate is added to the momentum

equations, and when computing the residuals of independent field variables.

PyFR utilises the Array of Structures of Arrays (AoSoA) packing methodology

which is illustrated in Figure 4-5. The different shades illustrate the structures i.e.

conserved variables in state matrices. AoSoA combines the advantages of Array of

structures (AoS) and Structure of Arrays (SoA) methodologies. Firstly, it allows

accessing different variables with a constant stride independent of element type. Sec-

ondly, it allows coalesced memory access for a single field-variable if k is provided

according to hardware specifications.

Ne

Nv|Ωe|

Figure 4-5: AoSoA (k = 3) packing methodology with Nv = 3.

The masking axnpby kernels were written for all backends separately. Figure 4-6

shows the implementation for the CUDA backend. In the code, the field variables as

masked by the SOA IX(j, k, ncola) function on lines 17, 24 and 31 that returns

the correct global indices via

SOA IX(j, v,Nv) =

(
j

k
·Nv + v

)
k + j mod k , (4.45)
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where j is a column index, v is the field variable being masked and Nv is the total

number of field variables. Figure 4-7 shows an example of the usage in a PL function

that computes the right-hand side in Equation 4.16. In the code, line 3 computes

the negative divergence of the flux, line 6 gets the coefficients for the physical time

stepping scheme, lines 9-10 prepare the kernel and the matrices to be added, and

line 11 adds the kernel to the execution queue. The masking is parametrised by the

self. subdims variable which takes values [1:Nv] to add the physical time derivative

only to the momentum equations.

1 <%inherit file=’base’/>
2 <%namespace module=’pyfr.backends.base.makoutil’ name=’pyfr’/>
3
4 global void
5 axnpby(int nrow, int ncolb, int ldim, fpdtype t* restrict x0,
6 ${’, ’.join(’const fpdtype t* restrict x’ + str(i)
7 for i in range(1, nv))},
8 ${’, ’.join(’fpdtype t a’ + str(i) for i in range(nv))})
9 {
10 int i = blockIdx.y*blockDim.y + threadIdx.y;
11 int j = blockIdx.x*blockDim.x + threadIdx.x;
12 int idx;
13
14 if (j< ncolb && a0 == 0.0)
15 {
16 % for k in subdims:
17 idx = i*ldim + SOA IX(j, ${k}, ${ncola});
18 x0[idx] = ${pyfr.dot(’a{l}’, ’x{l}[idx]’, l=(1, nv))};
19 % endfor
20 }
21 else if (j< ncolb && a0 == 1.0)
22 {
23 % for k in subdims:
24 idx = i*ldim + SOA IX(j, ${k}, ${ncola});
25 x0[idx] += ${pyfr.dot(’a{l}’, ’x{l}[idx]’, l=(1, nv))};
26 % endfor
27 }
28 else if (j< ncolb)
29 {
30 % for k in subdims:
31 idx = i*ldim + SOA IX(j, ${k}, ${ncola});
32 x0[idx] = ${pyfr.dot(’a{l}’, ’x{l}[idx]’, l=nv)};
33 % endfor
34 }
35 }

Figure 4-6: The axnpby kernel for the CUDA backend that is able to mask individual
field variables.
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1 def rhs with dts(self, t, uin, fout):
2 # Compute -div f
3 self.system.rhs(t, uin, fout)
4
5 # Coefficients for the physical stepper
6 svals = [sc/self. dt for sc in self. stepper coeffs]
7
8 # Physical stepper source addition -div f - dQ/dt
9 axnpby = self. get axnpby kerns(len(svals) + 1, subdims=self. subdims)
10 self. prepare reg banks(fout, self. idxcurr , *self. stepper regidx)
11 self. queue % axnpby(1, *svals)

Figure 4-7: PL function for computing the right-hand side in 4.16 by leveraging the
masking axnbpy kernel.

Convergence Monitoring

With dual time stepping, it is necessary to monitor the convergence of individual field

variables via global norms such as the L2-norm defined as

L2
α =

√∑|ε|
e=1

∑|Ωe|
n=1

∑Ne
i=1(Ru

einα)2

|ε||Ωe|Ne

, (4.46)

or L∞-norm defined as

L∞α = max|Ru
ein|α , (4.47)

where

Ru
einα =

uueinα(τ + ∆τ)− uueinα(τ)

∆τ
. (4.48)

To allow this, new reduction kernels were implemented for each backend. Note

that the terminology below is adopted from the CUDA programming model. In the

OpenCL programming model, shared memory is called local memory and a thread

block is called a work group, but their functions are the same.

Computing global residual norms efficiently for individual field variables can be

challenging due to the AoSoA packing methodology and hierarchical memory archi-

tecture of modern hardware. A reduction operation is not arithmetically intensive,

as the number of active threads are recursively halved. Therefore, the reduction al-

gorithm was developed to maximise the memory bandwidth by leveraging the shared

memory of each thread block, the latency of which can be up to 100 times lower than

that of the global device memory. Furthermore, the reduction kernel implementation
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was tailored for the AoSoA packing methodology.

Figure 4-8 illustrates the operation of the reduction kernel. In the first stage,

when all the threads are active, the algorithm is cascaded making use of every thread

to calculate the element-wise residual by reducing sequentially along the number of

solution points (y-direction). Simultaneously, each thread masks the element-wise

residuals of each variable and loads them into shared memory arrays (Nv shared

memory arrays in each block). This approach maximises the amount of work when

all the parallel threads are active. After the first step, each block computes the block-

wise residual with a strided reduction. Mako templating is used to unroll the reduction

loop and to manage the field variable masking. Moreover, a synchronisation barrier

is placed after each stage of the reduction. Often the x-dimension of the solution

matrix is not divisible by the block dimension. The remainder elements which fall

into the last block are reduced with a variable-sized loop using interleaved addressing

[89]. By doing this the shared memory arrays do not have to be initialised as zeros.

After all stages of the reduction, 0-index threads of each block contain the block-wise

residuals each field variable, which are subsequently copied back to global memory

and then to the host. Finally, the reduction across blocks and MPI ranks is delegated

to NumPy and MPI4Py on the host.
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Block 0 Block 1 Block 2 Block 3

Ne

Nv|Ωe|

1. Compute R, reduce in y and
load to shared memory.

Nv

|Ωe|

blockDim.x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 0 1 2 3
2. Reduction within blocks per
field variable.

0 1 0 1

0 0

Nv gridDim.x

Nv

3. Reduction across blocks and
MPI ranks using NumPy and
MPI4Py.

Figure 4-8: Structure of the reduction kernel implementation for computing a global
norm of residuals for individual field variables. The numbering corresponds to thread
indices threadIdx.x.
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Chapter 5

P-multigrid

5.1 Overview

The efficiency of dual time stepping depends on the rate of convergence in pseudo-

time. The disadvantage of using explicit schemes in pseudo-time is that their stability

region is limited by the CFL condition making them inefficient at eliminating low

frequency error modes on fine grids [90]. The issue can be addressed by adopting

implicit schemes to allow much larger pseudo-time steps [59]. However, the trade-off

with implicit schemes is that their storage requirements are significantly higher due

to the size of the flux Jacobian matrices, which so far appears to have prohibited their

use in large scale 3D applications at high orders. Moreover, many methods for solving

the resulting linear system, such as LU-SGS or ILU-GMRES, are not scale invariant

and increasing the amount of parallelism reduces the numerical effectiveness of the

preconditioner.

The first convergence acceleration technique that was implemented was the P -

multigrid approach (perhaps better referred to as multi-P ). It attempts to circumvent

the CFL condition by correcting the solution at different polynomial levels. Without

altering the computational grid, low order representations of the solution, which ex-

hibit a less restrictive CFL limit, can be used to propagate information with a larger

∆τ . Another quality of P -multigrid is that when the solution is projected to a lower

order space, the low frequency error modes appear as higher frequencies respective to
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the resolution, which allows explicit steppers to eliminate them more effectively.

5.2 Methodology

Dual time stepping with P -multigrid follows the procedures detailed in Chapter 4 with

the difference that an additional source term arising from a lower order representation

of the solution is added to Equation 4.16. The spatially discrete form of the governing

equation is
∂uueinlα
∂τ

= Ru
einlα − rueinlα , (5.1)

where

Ru
einlα = −

[(
J −1

)u
einl

(
∇̃ · f̃

)u
einlα

+ Iα
∂uueinlα
∂t

]
, (5.2)

with l denoting the P -multigrid level and reinlα being the additional source term which

is zero when l = P . Following the methodologies in [58] and [90], a single P -multigrid

V-cycle can be formulated according to Algorithm 1.

In this work, the restriction operator Ir is constructed using the generalised Van-

dermonde matrix as

Ir = VTel′ ĨV−Tel , (5.3)

where Vel′ = Leil′(x̃
u
ejl′), Vel = Leil(x̃

u
lej), with l′ denoting the level onto which the

solution is projected, and Ĩ is an non-square matrix of zeros, except on its main

diagonal, where it has entries of one. The approach corresponds to transforming the

nodal solution into a modal representation, removing the highest order mode, and

transforming back to a nodal basis. Prolongation is simply performed as Lagrangian

interpolation according to

Ip = leil(x̃
u
ejl′) . (5.4)

In addition the pseudo-time step size at each level is scaled by a user-specified pa-

rameter ατ as ∆τl′ = ατ∆τl, with l′ < l, due to less restrictive CFL limits at lower

levels.
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for l ∈ {P, ..., lmin + 1} do
for i ∈ {0, ..., Nitersl} do

Smooth according to Equation 5.1
end
Calculate residual defect dl = rl −R(ul)
Restrict solution u0

l−1 = Ir(ul) and store it
Restrict defect dl−1 = Ir(dl)
Evaluate source rl−1 = R(u0

l−1) + dl−1.

end
for l ∈ {lmin, ..., P} do

for i ∈ {0, ..., Nitersl} do
Smooth according to Equation 5.1

end
Calculate correction ∆l = u0

l − ul
Prolongate correction ∆l+1 = Ip(∆l)
Add correction ul+1 = ul+1 + ∆l+1

end
for i ∈ {0, ..., Niterslmax} do

Post-smoothing at the highest level according to Equation 5.1
end

Algorithm 1: A single P -multigrid V-cycle between polynomial levels P and lmin,
where Nitersl denotes the number of smoothing iterations at level l. All indices
apart from the level index have been dropped for simplicity.
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5.3 Implementation

The P -multigrid implementation is structured around a DualMultiPIntegrator

(DMPI) class which replaces the standard DualPseudoIntegrator (DPI) if P -

multigrid convergence acceleration is enabled. The DMPI class initialises several

MultiPPseudoIntegrator (MPPI) classes, one for each P -multigrid level. All MPPIs

are a composite of PseudoController (PC) and PseudoStepper (PS), similar to the

standard (DPI), but with certain overridden methods. This allows different pseudo-

time stepping schemes and controller methodologies to be used at different levels. In

addition, each MPPI initialises an instance of a System class which can compute ∇̃ · f̃

at each level and also allows level-dependent anti-aliasing options. Different MPPIs

only communicate via the restriction and prolongation operations that are specified

by DMPI. Figure 5-1 illustrates the structure of the P -multigrid implementation.

DualMultiPIntegrator

MPPI3(PC, PS)

System: P=3

MPPI2(PC, PS)

System: P=2

MPPI1(PC, PS)

System: P=1

MPPI0(PC, PS)

System: P=0

restrict() prolongate()

Figure 5-1: The structure of the P -multigrid implementation, consisting of an
DualMultiPIntegrator class that launches several MultiPPseudoIntegrators that
comprise of a PseudoController and a PseudoStepper.

5.4 2D Cylinder at Re = 100

5.4.1 Problem Specification

The performance of P -multigrid was first studied with a laminar 2D cylinder test

case at Re = 100, based on the cylinder diameter and free-stream velocity. Two

simulations were performed: Case Cyl-1 using RK4 pseudo-time stepping and case

Cyl-2 using P -multigrid with RK4 smoothing.
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Figure 5-2 shows the mixed unstructured computational grid used in the simula-

tions. With the cylinder diameter being 1, the domain consists of a half-circular inflow

section with a diameter of 50, and a rectangular wake section with a length of 70.

The boundary layer mesh is an O-grid with a height of 0.5 containing 264 quadrilat-

eral elements, whereas the rest of the domain was meshed with 19, 174 triangles. All

boundary elements are quadratically curved. The Riemann-invariant-based boundary

condition was prescribed at all far-field boundaries with p∞ = 1, v∞ = {1 0}T and

ζ∞ = 100. The boundary condition was found to be substantially less reflective than

conventional BCs used in [58, 59]. A no-slip condition was prescribed on the cylinder

surface. The initial condition at t = 0 was set as uα = {1 1 0}T .

Figure 5-2: The computational grid used in the 2D cylinder simulations (left). A
zoom view close to the cylinder (right).

Both cases were run with P = 4 and ζ = 4 on a single Nvidia P100 GPU us-

ing double precision. The Gauss-Legendre solution point distribution was used for

quadrilateral elements and the Williams-Shunn solution point distribution was used

for triangular elements. The Gauss-Legendre flux point distribution was used for all

interfaces. All flux evaluations were performed without anti-aliasing. Physical time

was discretised with a BDF2 scheme, where ∆t = 2.5 × 10−2. To ensure impartial

performance comparisons, the fixed pseudo-time step size ∆τ = 4 × 10−4 was found

by optimising the convergence via manual bisection for Cyl-1. In Cyl-2, P -multigrid

convergence acceleration was performed with a 5-level cycle 1-1-1-1-2-1-1-1-3, where

the integers denote the number of iterations corresponding to polynomial levels 4-3-2-

1-0-1-2-3-4, and ατ was set to 2.0. Both cases were run with a convergence tolerance
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such that the point-wise L2-norm of the largest velocity residual always driven be-

low 10−5. The L2-norm of the velocity divergence, which is directly proportional to

pressure residual, was approximately 10−4 for both cases.

5.4.2 Results

Table 5.1 shows the runtime parameters of the cases together with mean drag coef-

ficients CD, Strouhal numbers St and wall-times. The statistics were measured for

a period of 100 time units in a fully developed quasi-steady-state from t = 250.1250

to t = 350.1250. It can be seen that both cases produce identical mean CD and

St, which are in line with those of Cox et al. (CDref = 1.339 and Stref = 0.164),

who used implicit pseudo-time stepping with LU-SGS. Moreover, Figure 5-3 shows

that temporal evolution of the drag coefficients overlap. The graph of Cyl-2 has been

shifted in t such that it is in phase with Cyl-1 because of slight differences in initial

transients. From the wall-times, it can be seen that P -multigrid gives a speed-up

factor of 6.27 compared to RK4 pseudo-time stepping.

Table 5.1: Summary of the 2D cylinder cases at Re = 100, where PS denotes the
pseudo-stepper, P -MG denotes P -multigrid, WT denotes the wall-time, and SUF
denotes the speed-up factor relative to Cyl-1.

Case PS P -MG ατ WT SUF CD St

Cyl-1 RK4 Off - 13:22:23 1.00 1.339 0.166
Cyl-2 RK4 On 2.0 02:07:57 6.27 1.339 0.166
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Figure 5-3: Temporal evolution of the drag coefficient for the 2D cylinder case between
t = 300 and t = 350. The graph of Cyl-2 has been shifted in t such that it is in phase
with Cyl-1.

5.5 3D Taylor-Green Vortex at Re = 1, 600

5.5.1 Problem Specification

A 3D Taylor-Green vortex test case at a Reynolds number Re = 1, 600 based on the

diameter and peak velocity of the initial vortices was studied to assess the performance

of P -multigrid for a turbulent flow problem and to verify platform independence. In

the test case, a set of large vortices interact with each other, transition to turbulence,

and finally decay via viscosity. Initial conditions defining vortices with a diameter of

1 and a peak velocity of 1 were prescribed as

vx = sin(x)cos(y)cos(z) , (5.5)

vy = −sin(x)cos(y)cos(z) , (5.6)

vz = 0 , (5.7)

p = 1 +
1

16
[cos(2x) + cos(2y)] [cos(2z) + 2] , (5.8)
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in a periodic domain −π ≤ x, y, z ≤ π. Figure 5-4 shows volume renderings of the

vorticity magnitude for the initial condition and during the enstrophy peak at t = 8.

A total of three double precision simulations were performed on two state-of-

the-art platforms. Case TGV-1 was run with the CUDA backend on two Nvidia

Tesla P100 GPUs using RK4 pseudo-time stepping. Case TVG-2 was run with the

CUDA backend on two Nvidia Tesla P100 GPUs using P -multigrid with RK4 smooth-

ing. Case TGV-3 was run with the OpenMP backend on two Intel Xeon Phi 7210

KNL manycore processors using P -multigrid with RK4 smoothing. Due to the ex-

tra memory required by the dual time stepping registers and P -multigrid levels, the

simulations could not fit into the memory of a single P100 GPU. For an unbiased

comparison, all simulations were launched with the optimal GEMM kernel config-

uration which was found a priori by systematically studying the effect of GiMMiK

and LIBXSMM cut-off parameters on the performance. On P100 GPUs, the optimal

performance was achieved by offloading all matrix multiplications with number-of-

non-zero elements less than 1800 to GiMMiK, which means that only the restriction

and prolongation operator between P = 4 and P = 3 were computed by cuBLAS.

On Intel Xeon Phi 7210 KNLs, LIBXSMM outperformed any combination of MKL

and GiMMiK and was thereby globally enforced by setting its cut-off based on ma-

trix size to 100,000. Moreover, to achieve optimal performance, MCDRAM of the

Intel Xeon Phi 7210 KNL processors was configured to work in the flat mode, and an

MPI + OpenMP approach with two MPI ranks per node was used to saturate the

interconnects.

All cases were performed on a hexahedral mesh of 52× 52× 52 equisized elements

using PyFR v1.7.5. The solution polynomial order used in this study was P = 4

with a Gauss-Legendre solution point distribution. The Gauss-Legendre flux point

distribution was used for the interfaces. All flux evaluations were performed without

anti-aliasing. No subgrid-scale turbulence model or spatial filtering was applied, and

the simulation can be considered as implicit LES. Physical time was integrated using

a BDF2 scheme with a time step size ∆t = 0.006, and the artificial compressibility

factor was fixed as ζ = 3. To ensure impartial comparisons, all simulations where
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performed with a pseudo-time step size ∆τ = 0.0014 that was optimised for TGV-1

via bisection approach. A 5-level cycle 1-1-1-1-2-1-1-1-3, where the integers denote the

number of iterations corresponding to polynomial levels 4-3-2-1-0-1-2-3-4, was used in

the P -multigrid accelerated simulations TGV-2 and TGV-3 with ατ = 1.75. In this

instance, to exclude the effects of convergence monitoring on the measured wall-times,

all simulations were performed with a fixed number of pseudo-iterations per physical

time step, specifically three cycles for the P -multigrid accelerated cases, and 75 RK4

iterations for the single-level case. These values were selected heuristically to ensure

both the P -multigrid and single-level cases achieved similar levels of convergence.

Furthermore, it was verified a posteriori that the velocity field divergence was on

average 1.25 times lower for the P -multigrid accelerated cases compared with the

single level case, leading to conservative estimates for any P -multigrid speed-up.

Table 6.1 shows a summary of the cases.

(a) (b)

Figure 5-4: Vorticity magnitude for the TGV-2 case at (a) t = 0 and (b) t = 8.
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Table 5.2: Summary of Taylor-Green Vortex simulations.

Case P -Multigrid Iterations Backend Platform

TGV-1 Off 75 RK4 CUDA P100
TGV-2 On 3 cycles CUDA P100
TGV-3 On 3 cycles OpenMP KNL

5.5.2 Results

Figure 5-5 plots the temporal evolution of D, the solution-point-wise L2-norm of the

velocity field divergence evaluated at the end of each physical time step, for TGV-1

and TGV-2. It was found that D was on average 1.25 times lower for the P -multigrid

accelerated cases compared with the single level case. It can also be seen that the

effectiveness of P -multigrid is most apparent at the beginning of the simulation, when

lengths scales are larger, due to more effective low wave number smoothing. When

the large vortices break into smaller structures near the enstrophy peak at t = 8, the

low wave number smoothing associated with P -multigrid becomes less important, and

both TGV-1 and TGV-2 converge to the same level.

Figure 5-5: The temporal evolution of the solution-point-wise L2-norm of the velocity
field divergence D evaluated at the end of each physical time step.
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Figure 5-6 shows the dissipation of the total kinetic energy

− dEk
dt

= − d

dt

(
1

|Ω|

∫
Ω

v · v
2

dx

)
, (5.9)

and the temporal evolution of enstrophy

ε =
1

|Ω|

∫
Ω

ω · ω
2

dx , (5.10)

where ω is the vorticity vector. The volume integrals were computed using quadra-

ture rules, the quadrature nodes being the 4th order Gauss-Legendre solution points.

Figure 5-6 also includes reference results from van Rees et al. [91] who used an in-

compressible pseudo-spectral code with 5123 degrees of freedom, and compressible

PyFR results at M = 0.1 from Vermeire et al. [1] with identical resolution to the

current setup. Three observations can be made. Firstly, results of TGV-2 and TGV-

3 are identical which verifies the platform and backend independence. Secondly, the

P -multigrid accelerated TVG-2 produces slightly more accurate results than TGV-1,

which is in line with the better convergence observed in Figure 5-5. Thirdly, the

P -multigrid accelerated TGV-2 results are more accurate than the low-Mach com-

pressible solution from Vermeire et al. [1] at the enstrophy peak at t = 8, and ho-

mogeneous turbulence decay phase t > 15, which suggest that the ACM formulation

captures the incompressible physics better than a compressible low-Mach approach.
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(a)

(b)

Figure 5-6: The temporal evolution of (a) kinetic energy dissipation and (b) enstrophy.

Table 5.3 shows the wall-times for each case. The results confirm that P -multigrid

yields an over 3.5 times speed-up compared to single level pseudo-time stepping, while

maintaining slightly better solution accuracy and convergence. The results also show

that the OpenMP backend on Intel Xeon Phi 7210 KNLs is approximately 2.5 times

slower than the CUDA backend on Nvidia Tesla P100s. To put the wall-times in

context, the compressible M = 0.1 simulation of Vermeire et al. was repeated on

the same Nvidia Tesla P100 hardware as Cases 1 and 2, using the configuration
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file provided in the Electronic Supplementary Material of [1]. The wall-time of the

compressible M = 0.1 simulation with P = 4 and adaptive explicit RK45 time

stepping was 05:44:02 on two Nvidia Tesla P100 GPUs. This is 1.6 times longer than

the time required for TGV-2 to complete, further demonstrating the utility of an

ACM approach with P -multigrid convergence acceleration.

Table 5.3: Wall-times of Taylor-Green vortex simulations.

TGV-1 TGV-2 TGV-3

Wall-time (hh:mm:ss) 12:45:44 03:38:12 09:07:14

5.5.3 Strong Scaling

A strong scaling study was undertaken to demonstrate the scalability of the solver. A

turbulent jet test case at Re = 10, 000 was used in the study to obtain scaling numbers

that are more descriptive of a practical application. The scaling runs were performed

on a mesh with 247,250 hexahedral and 596,500 prismatic elements with P = 4. The

scaling was studied with and without P -multigrid convergence acceleration. With

P -multigrid, the cycle was prescribed as 1-1-1-1-2-1-1-1-3, where the integers denote

the number of iterations corresponding to polynomial levels 4-3-2-1-0-1-2-3-4, with

ατ = 1.7, and 3 cycles were performed within each physical time-step. Without P -

multigrid 75 RK4 pseudo-time steps were performed within each physical time-step.

Both pseudo-time stepping techniques lead to D ≈ 8 × 10−4. The full results of the

simulation have been published in [60]. Apart from a different pseudo-time stepping

technique, the jet test case configuration is identical to the one used for validation in

Chapter 7.

Figure 5-7 shows strong scaling from 9 fully loaded Nvidia P100 GPUs to 144

Nvidia P100 GPUs with and without P -multigrid acceleration. Strong scaling in

both cases is almost linear up to 36 Nvidia P100 GPUs after which both cases start

to tail off. The P -multigrid accelerated case experiences quicker decline due to the

presence of low-order iterations with fewer degrees of freedom. For example, on 144
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Nvidia P100 GPUs, there are only 1.64 P = 0 solution points per CUDA core, whereas

the corresponding number at P = 4 is over 146.

Figure 5-7: Strong scaling of the incompressible jet on Nvidia Tesla P100 GPUs with
P -multigrid (P -MG) and without P -multigrid (RK4) .
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Chapter 6

Locally Adaptive Pseudo-Time

Stepping

6.1 Overview

Local pseudo-time stepping is a widely-used technique for accelerating steady-state

convergence explicitly [92, 93, 38]. The majority of current local pseudo-time stepping

approaches compute the local pseudo-time step size for element n of type e from the

hyperbolic CFL criterion as

∆τen <
hen

max(|λi|en)
, (6.1)

where hen is the characteristic length of the element, and max(|λi|en) is the local

spectral radius of the inviscid flux Jacobian. For viscous dominated flows it is also

necessary to consider the parabolic CFL limit defined as

∆τen <
h2
en

2µ
, (6.2)

where µ = ρν, with ρ being the density for compressible Navier-Stokes formulations.

Definition of h is often based on heuristics and it can have a considerable effect on the

performance and accuracy of local time stepping as shown in [94]. With unstructured
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grids two popular definitions are the radius of an inscribed sphere or the distance to

the element boundary along a streamline [95, 96].

6.2 Methodology

As an alternative to previous approaches, a local pseudo-time stepping technique

based on adaptive error control with embedded pair RK schemes is proposed. The

main advantage of the technique is that it does not require an expression for the char-

acteristic element size, which is difficult to obtain reliably for curved mixed-element

meshes. It also allows a finer level of locality for high-order nodal discretisations, such

as FR, since the local time-steps can vary between solution points and field variables.

Additionally, it is well-suited to work with P -multigrid convergence acceleration since

the pseudo-time steps can be locally projected onto different solution bases.

Embedded pair RK schemes give two approximations of the solution at the next

time level, each depending on a different set of b coefficients. In pseudo-time, the

difference between these two approximations, often called a truncation error, can be

approximated as

ξuejnα(τ + ∆τuejnα) = ∆τuejnα

s∑
i=1

(b
(s,q)
i − b(s,q−1)

i )kuiejnα (6.3)

for a field variable α at solution point j within element n of type e. In the current

study, the local pseudo-time steps ∆τuejnα will be controlled such that the truncation

error remains small, and the method remains stable. Specifically, a normalised error

σuejnα =
ξuejnα(τ + ∆τuejnα)

κ
, (6.4)

is kept close to unity, where κ is a user-specified error tolerance parameter. With a

PI-controller, the pseudo-time step adjustment factor is computed as

(fPI)
u
ejnα =

[
(σcurr)

u
ejnα

]−φ/q [
(σprev)uejnα

]−χ/q
, (6.5)
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where φ = 0.4, χ = 0.7 [79], and the subscripts curr and prev denote the errors

computed at the current and previous pseudo-time steps. For improved robustness,

the PI-adjustment factor is subsequently scaled by a safety factor fsafe, and limited

by maximum and minimum factors fmax and fmin as

fuejnα = min(fmax,max(fmin, fsafe(fPI)
u
ejnα)) . (6.6)

The new pseudo-time step sizes are computed as

(∆τnew)uejnα = max(∆τmin,max(∆τmax, f
u
ejnα∆τuejnα)) , (6.7)

with absolute minimum and maximum pseudo-time step limits ∆τmin and ∆τmax. In

this work, the maximum pseudo-time step limit is defined as ∆τmax = fτ∆τmin, where

fτ is a user-specified parameter.

The approach differs from physical time-step adaptation in several ways. Firstly,

in physical time-step adaptation, it is often the case that a global physical time-step

is adjusted by controlling a global error. In locally adaptive pseudo-time stepping, all

operations are kept completely local and independent for each field variable. Secondly,

in physical time-step adaptation it is common practice to reject steps that result in

σ > 1, and retake them with a smaller step size. In locally adaptive pseudo-time

stepping, retaking steps is unnecessary as long the they remain stable. By setting

the adjustment factors fmax conservatively e.g. fmax = 1.01 and fmin = 0.98, the

error can be allowed to exceed the tolerance by a small value momentarily as it will

be corrected back within the limits during the next step. Third, in locally adaptive

pseudo-time stepping, absolute minimum and maximum limits should be prescribed

for the pseudo-time step size to restrict large oscillations. The minimum limit also

serves as the initial value for the pseudo-time steps.
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6.3 Implementation

The embedded pair explicit Runge-Kutta schemes were implemented as PS classes

and the local PI-controller was implemented as a PC class. In addition, two PKs had

to be implemented; one for computing the local error estimates and the other for

multiplying the right-hand-side of Equation 4.16 with the local pseudo-time steps.

6.4 Combining with P -Multigrid

To further accelerate pseudo-steady-state convergence, the locally adaptive pseudo-

time stepping technique can be coupled with the P -multigrid. Since each MPPI in P -

multigrid comprises of an arbitrary PC and PS, locally adaptive pseudo-time stepping

can be enabled by simply prescribing PC as the PI-controller and PS as any of the

embedded pair explicit RK schemes. Two different approaches for combining P -

multigrid were studied. The first approach let all MPPIs perform pseudo-time step

control independently of each other. Despite its potential for being fully automated,

it lacked robustness in finding the local pseudo-time steps at the intermediate levels

and was therefore discarded. The second approach performs the pseudo-time step

control only at the highest level MPPI and the local pseudo-time steps are projected

onto different bases locally. Additionally, the projected values at lower levels are

increased with a user-specified scaling factor due to less restrictive CFL limits. The

second approach was found to be superior in terms of robustness, and it also has a

smaller memory footprint and computational overhead, since only the highest level

performs the pseudo-time step adaptation.

A single P -multigrid V-cycle with locally adaptive pseudo-time stepping at the

highest level can be performed according to Algorithm 2. The pseudo-time steps are

restricted to lower levels with

Irτ = ατVTel′ ĨV−Tel , (6.8)

where the leading coefficient ατ is a scaling factor which takes a user-specified value
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to increase the local pseudo-time steps sizes due to less restrictive CFL limits at lower

levels.

6.5 2D Cylinder at Re = 100

6.5.1 Problem Specification

The performance of locally adaptive pseudo-time stepping was first studied with a 2D

cylinder test case at Re = 100 using the same setup as in Section 5.4. Two simulations

were performed: Case Cyl-3 with locally adaptive RK3(2)4[2R+] pseudo-time step-

ping and case Cyl-4 with P -multigrid acceleration and locally adaptive RK3(2)4[2R+]

smoothing.

As in Section 5.4, both cases were run with P = 4 and ζ = 4 on a single Nvidia

P100 GPU using double precision and physical time was discretised with a BDF2

scheme, where ∆t = 2.5 × 10−2. The locally adaptive pseudo-time stepping param-

eters were set as fmax = 1.01, fmin = 0.98, κ = 10−6 and ∆τmin = 4 × 10−4, and

fτ = 8.0 in both cases. P -multigrid convergence acceleration was performed with

a 5-level cycle 1-1-1-1-2-1-1-1-3, where the integers denote the number of iterations

corresponding to polynomial levels 4-3-2-1-0-1-2-3-4, and ατ = 1.6. As in Section 5.4,

both cases were run with a convergence tolerance such that the point-wise L2-norm of

the largest velocity residual was always driven below 10−5. The L2-norm of the veloc-

ity divergence, which is directly proportional to pressure residual, was approximately

10−4 in both cases.

6.5.2 Results

Table 1 shows the runtime parameters, mean drag coefficients CD, Strouhal numbers

St, and wall-times of the new cases together with the data of cases Cyl-1 and Cyl-2

from Chapter 5. The statistics of the new cases were measured for the same period

of 100 time units between t = 250.1250 and t = 350.1250 as Cyl-1 and Cyl-2. It

can be seen that all cases produce identical CD and St. Furthermore, Figure 6-1
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for l ∈ {P, ..., lmin + 1} do

if l=P then

for i ∈ {0, ..., Nitersl} do
Pseudo-step Equation 5.1 to update ul
Update ∆τl with locally adaptive pseudo-time stepping

end

else

for i ∈ {0, ..., Nitersl} do
Pseudo-step Equation 5.1 to update ul

end

end

Calculate residual defect dl = rl −R(ul)

Restrict solution u0
l−1 = Ir(ul) and store it

Restrict defect dl−1 = Ir(dl)

Restrict pseudo-time steps ∆τl−1 = Irτ (∆τl) with ατ > 1

Evaluate source rl−1 = R(u0
l−1) + dl−1

end

for l ∈ {lmin, ..., P} do

for i ∈ {0, ..., Nitersl} do
Pseudo-step Equation 5.1 to update ul

end

Calculate correction ∆l = u0
l − ul

Prolongate correction ∆l+1 = Ip(∆l)

Add correction ul+1 = ul+1 + ∆l+1

end

for i ∈ {0, ..., NitersP} do
Pseudo-step Equation 5.1 to update uP
Update ∆τP with locally adaptive pseudo-time stepping

end
Algorithm 2: A single P -multigrid V-cycle with locally adaptive pseudo-time step-
ping polynomial between levels P and lmin, where Nitersl denotes the number of
smoothing iterations at level l. All indices apart from the level index have been
dropped for simplicity.
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shows that the temporal evolution of the drag coefficients agrees with the previous

runs. From the wall-times, it can be seen that locally adaptive pseudo-time stepping

leads to a speed-up factor of 4.16 compared to RK4 pseudo-time stepping. Although

not as effective as P -multigrid acceleration with a speed-up factor of 6.27, it is still

substantial. Combining the two techniques together yields a total speed-up factor of

15.24.

Table 6.1: Summary of the 2D cylinder cases at Re = 100, where PS denotes the
pseudo-stepper, LAPTS denotes locally adaptive pseudo-time stepping, P -MG de-
notes P -multigrid, WT denotes the wall-time, and SUF denotes the speed-up factor
relative to Cyl-1.

Case PS LAPTS P -MG fτ ατ WT SUF CD St

Cyl-1 RK4 Off Off - - 13:22:23 1.00 1.339 0.166
Cyl-2 RK4 Off On - 2.0 02:07:57 6.27 1.339 0.166
Cyl-3 RK3(2)4[2R+] On Off 8.0 - 03:12:53 4.16 1.339 0.166
Cyl-4 RK3(2)4[2R+] On On 8.0 1.6 00:52:40 15.24 1.339 0.166

Figure 6-1: Temporal evolution of the drag coefficient for the 2D cylinder case between
t = 300 and t = 350. The graphs of Cyl-2 - Cyl-4 have been shifted in t such that
they are in phase with Cyl-1.

6.5.3 Adaptivity Analysis

To better understand the underlying adaptation mechanisms, temporal and spatial

behaviour of local pseudo-time step sizes were studied with Cyl-4. Figures 6-2a-d
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show the instantaneous z-vorticity field ωz and fields of local pseudo-time step sizes

∆τenα, with α ∈ {p, vx, vy}, at t = 340.35. The pseudo-time step sizes were taken

from the last pseudo-time step after the convergence criterion had been reached, and

averaged over solution points. Two observations can be made. Firstly, the approach

is able to adapt to the element size and shape. This is most evident in the struc-

tured boundary layer block and its immediate vicinity, where the pseudo-time step

sizes grow monotonically with increasing element size. Secondly, the approach is able

to vary between different field variables and adapt to their local values. The varia-

tion between field variables can be seen in the boundary layer where ∆τenp exhibits

considerably larger values than ∆τenvx and ∆τenvy . Adaptation to the local values

is most visible for ∆τenp, where areas of reduced pseudo-time step sizes resemble

the von Karman vortices in the wake section. Figure 6-3 shows the temporal evolu-

tion of the pseudo-time step sizes ∆τα for a single solution point of level l = P at

P = (8.474, 1.155), which is in a triangular element located near the center of the

upper vortex street. The location of the probe is illustrated as a cross in Figures

6-2a-d. It can be seen that all pseudo-time step components experience a periodic

reduction with a frequency that is half of the shedding frequency. This demonstrates

that all pseudo-time step components at the probe location reduce and rise back up

as a vortex passes.

Figures 6-4a-c show a close-up of the pseudo-time step sizes associated with solu-

tion points ∆τuejnα at level l = P near the cylinder trailing edge at t = 340.35. It can

be seen that the solution points closest to the element corners are the most restric-

tive, closely followed by the other solution points near the interfaces. The interior

solution points are considerably less restrictive than the interface points. This obser-

vation supports our assertion that locally pseudo-time stepping approaches based on

a reference length would be difficult to implement for nodal high-order schemes.
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(a)

(b)

(c)

(d)

Figure 6-2: (a) Instantaneous vorticity field ωz at t = 340.35 for Cyl-4. Fields of
pseudo-time step sizes (b) ∆τenp, (c) ∆τenvx and (d) ∆τenvy at t = 340.35 for Cyl-4.
The cross is the location of the probe P .
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Figure 6-3: Temporal evolution of ∆τα at the probe location P , which is in a triangular
element.

(a)

(b) (c)

Figure 6-4: Fields of pseudo-time step sizes (a) ∆τueinp, (b) ∆τueinvx and (c) ∆τueinvx at
individual solution points of l = P near the cylinder trailing edge at t = 340.35 for
Cyl-4.
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6.6 SD7003 Airfoil at Re = 60, 000

6.6.1 Problem Specification

An SD7003 airfoil simulation at Re = 60, 000 based on the chord length and free-

stream velocity was performed to assess locally adaptive pseudo-time stepping in a

turbulent case. Figure 6-5 shows the unstructured computational grid used in the

study. With the chord length being 1, the domain consists of an inflow section with a

diameter of 20, and a rectangular wake section with a length of 20. The domain width

in the span-wise direction was selected as 0.2. The total element count was 137,916,

consisting of only hexahedra. The Riemann-invariant-based boundary condition was

prescribed at all far-field boundaries with p∞ = 1, v∞ = {1 0 0}T and ζ∞ = 100. This

boundary condition was found to be substantially less reflective than conventional

BCs in [58, 59]. A no-slip condition was prescribed on the airfoil surface. The initial

condition at t = 0 was set as uα = {1 1 0 0}T .

One complete simulation with P = 4 and ζ = 3 was run on 32 Nvidia P100

GPUs using double precision. The Gauss-Legendre point distribution was used for

the solution points and the interfaces. No subgrid-scale turbulence model or spatial

filtering was applied, and the simulation can be considered as implicit LES. Physical

time was discretised with BDF2, where ∆t = 1 × 10−3. Locally adaptive pseudo-

time stepping with P -multigrid convergence acceleration was used in pseudo-time

with fmax = 1.001, fmin = 0.998, κ = 10−6, ∆τmin = 3.6 × 10−5, and fτ = 7.0.

The P -multigrid cycle was prescribed as 1-1-1-1-4-1-1-1-6, where the integers denote

the number of iterations corresponding to polynomial levels 4-3-2-1-0-1-2-3-4, with

ατ = 1.7. Additionally, volume flux anti-aliasing with quadrature degrees 11-9-7-5-3-

5-7-9-11 was performed at P -multigrid levels.

The simulation was run in three stages. First, the flow was developed with P = 1

up to t = 25.011. Second, the simulation was restarted and run up to t = 45.024 with

P = 4 to settle transients. Third, flow statistics were measured between t = 45.024

and t = 70.043. The case was run with a convergence tolerance such that the point-

wise L2-norm of the largest velocity residual was always driven below 10−4. The L2-
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norm of the velocity divergence, which is directly proportional to pressure residual,

was approximately 10−3.

Figure 6-5: The computational grid used in the 3D SD7003 airfoil simulations (left).
A zoom close to the airfoil body (right).

6.6.2 Results

Figure 6-6 plots Q-criterion iso-surfaces coloured by instantaneous velocity V at

t = 59.5460. The simulation captures the characteristic features described in [97];

a laminar separation bubble is formed at the leading edge which breaks up into tur-

bulence via Kelvin-Helmholtz vortices. Qualitatively the turbulent structures are

well-resolved throughout the domain.

Table 6.2 shows a comparison of the simulation data with compressible low-Mach

data from Beck et al. [97] using DG and Vermeire et al. [1] using FR. In addition,

low-speed experimental data from Selig et al. [98] are provided. The separation

and reattachement points were measured from the time and span-averaged velocity

in the chord-wise direction V c = vxcos(8◦) + vysin(8◦), which is visualised in Figure

6-7. It can be seen that all numerical results over-estimate the drag coefficient CD

compared to the experiments. The biggest differences across the numerical results

are observed in the lift coefficients CL and reattachement points xrea. The current

simulation results are within the bounds of those reported by [97, 1] except for xrea

which was found to be higher, but still close to the high-resolution P = 8 results of

Beck et al.
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Figure 6-6: Q-criterion iso-surfaces coloured by instantaneous velocity V at t=59.546.

Figure 6-7: Time and span-averaged velocity field in the chord-wise direction Vc.

Table 6.2: The current simulation data and reference data for the SD7003 case at
Re=60,000. INS abbreviates Incompressible Navier-Stokes and NS the compressible
Navier-Stokes equations.

Formulation Method CD CL xsep xrea

Current AC INS FR P = 4 0.052 0.923 0.033 0.346
Beck et al. [97] M = 0.1 NS DG P = 8 0.050 0.932 0.030 0.336
Beck et al. [97] M = 0.1 NS DG P = 3 0.045 0.923 0.027 0.310
Vermeire et al. [1] M = 0.2 NS FR P = 4 0.059 0.941 0.045 0.315
Selig et al. [98] - Exp. 0.029 0.920 - -
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In addition to the complete simulation, four additional runs starting from t =

45.532 were undertaken for a single flow pass over the chord. Specifically, case SD-

1 was undertaken without any convergence acceleration using global RK4 pseudo-

time stepping with a constant ∆τ = 3.7 × 10−5 that was optimised with a bisection

approach, case SD-2 was performed with P -multigrid acceleration alone, case SD-3

with locally adaptive RK3(2)4[2R+] pseudo-time stepping alone and case SD-4 with a

combination of the two. All cases utilised the same run-time parameters as the full run

and converged such that the point-wise L2-norm of the largest velocity residual was

driven below 10−4. Table 6.3 shows the runtime parameters, wall-times, and speed-up

factors for each case. It can be seen that locally adaptive pseudo-time stepping alone

leads to a speed-up factor of 2.46 compared to RK4 pseudo-time stepping. Combining

locally adaptive pseudo-time stepping with P -multigrid yields a total speed-up factor

of 11.65 compared to RK4 pseudo-time stepping.

Table 6.3: Summary of the SD7003 performance runs, where PS denotes the pseudo-
stepper, LAPTS denotes locally adaptive pseudo-time stepping, P -MG denotes P -
multigrid, WT denotes the wall-time, and SUF denotes the speed-up factor relative
to SD-1.

Case PS LAPTS P -MG fτ ατ WT SUF

SD-1 RK4 Off Off - - 21:43:08 1.00
SD-2 RK4 Off On - 1.7 04:28:58 4.84
SD-3 RK3(2)4[2R+] On Off 7 - 08:50:47 2.46
SD-4 RK3(2)4[2R+] On On 7 1.7 01:51:54 11.65
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Chapter 7

Optimal Runge-Kutta Schemes

7.1 Overview

To further accelerate the convergence, optimal explicit RK schemes for high-order FR

discretisations were developed [99]. These schemes aim to reduce the total number of

pseudo time steps required by increasing the maximum allowable pseudo-time step.

The optimisation of the schemes was undertaken by Vermeire, and the implementation

and validation by Loppi. Only a summary of the optimisation methodology is given

in this Chapter. For details see [99].

7.2 Methodology

A stability polynomial of an explicit RK scheme can be represented as

P (s,q)(z) =
s∑
j=0

γjz
j , (7.1)

in which the coefficients γj must satisfy

γj =
1

j!
, 0 ≤ j ≤ q , (7.2)
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to obtain a temporal accuracy of order q. Since the temporal accuracy in pseudo-time

is not required, only a first order accurate stability polynomial of the form

P (s,1)(z) = 1 + z +
s∑
j=2

γjz
j , (7.3)

is considered. The coefficients {γ2, γ3, . . . , γs} are optimised to yield the largest pos-

sible pseudo-time step ∆τopt subject to

|P s,q(∆τωδ)| − 1 ≤ 0, ∀ωδ , (7.4)

where ωδ are the eigenvalues associated with a given spatial discretisation which can

be obtained via von Neumann analysis.

The von Neumann analysis for FR follows Huynh [12], Vincent et al [100], and

Vermeire et al. [101, 102]. Consider a linear advection equation

∂u

∂t
+
∂u

∂x
= 0 , (7.5)

with fully upwinded fluxes. The solutions to Equation 7.5 can be represented as plane

waves

u = eI(θx−ωt) , (7.6)

where θ is the wave number and I =
√
−1. For the purpose of analysis, a uniform

mesh with an element width h = 1 is considered. This allows FR to be cast for any

element as
∂ûδ

∂t
= −2Dûδ −

(
f̂CL − 2lT ûδ

)
gξL, (7.7)

in which the vector notations

ûδ[i] = ui(−1) , (7.8)

D[i, j] =
dlj
dx̂

(x̂i) , (7.9)

gξ[i] =
dgl
dx̂

(x̂i) , (7.10)
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with f̂CL being the upwind interface flux and gl the left correction function, have

been adopted from [99, 100].

For Equation 7.7, Bloch plane wave solutions of the form

ûδ = e
I
(
nθ
δ−ωδt

)
v̂δ (7.11)

are sought, where θ
δ

is a given baseline wavenumber −π ≤ θ ≤ π and v̂δ is a vector.

Furthermore, the upwind interface flux can be expressed as

f̂CL = 2rT e
I
(
nθ
δ−θδ−ωδt

)
v̂δ . (7.12)

Substituting Equations 7.11 and 7.12 into Equation 7.7 yields an eigenvalue problem

Qv̂δ = ωδv̂δ , (7.13)

where

Q = −2I
[
D + gξL

(
rT e−Iθ

δ

− lT
)]

, (7.14)

ωδ are the eigenvalues and v̂δ are the right eigenvectors of Q that can be computed

numerically for a given θ
δ
. Using these eigenvalues, the maximum allowable pseudo-

time step of a given stability polynomial P (s,1)(z) can be computed according to

Equation 7.4. Thus, it is possible to optimise P (s,1)(z) by varying its γi coefficients

such that it yields the largest possible pseudo-time step size. After finding optimal

γi, a Butcher tableau can be determined. For more details on finding the optimal

coefficients and generating the associated Butcher tableau, see [99, 80].

7.3 Optimal schemes for FR-DG

7.3.1 Normal Schemes

By setting the g to be the FR-DG correction function in the von Neumann analysis,

and following the optimisation procedure in [99], the optimal schemes for DG were
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obtained. The optimisation was undertaken by Vermeire for a range of stage-counts

s and solution polynomial orders P . It was observed that for a given polynomial

degree, optimal RK schemes with more stages have a larger stability limit, whereas

for a given number of stages, optimal RK schemes for higher polynomial degrees have

a smaller stability limit.

Figure 7-1 plots normalised maximum pseudo-time steps for FR-DG P = 4 opti-

mal schemes with stage-counts between 2 and 7. Figure 7-2 plots a sampling of the

eigenspectra for the FR-DG P = 4 scheme scaled by the maximum stable pseudo-time

step size as ωωωδ∆τopt alongside contours of |P (s,q)(z)|. It was observed that schemes

with a low number of stages were unable to use large portions of the region of absolute

stability. However as the number of stages, and hence degrees of freedom available

for optimisation, was increased, the scaled eigenspectra and boundary of the region of

absolute stability began to overlap. This observation suggests that, for an RK scheme

with enough stages, the optimiser described in [99] is able to generate a scheme whose

stability boundary mimics the shape of the eigenspectra of the spatial discretisation.

Based on the stability analysis, the optimised schemes allow maximum stable pseudo-

time step sizes (normalised with the stage count) that are nearly a factor of two larger

than those for the classical RK4 scheme. The speed-up factors observed in numerical

experiments in [99] were found to be in line with these theoretical results. Table

7.1 shows the Butcher tableau for the FR-DG P = 4 optimal seven-stage Opt-RK7,1

scheme.

93



Figure 7-1: Normalised optimal pseudo-time step sizes for FR-DG P = 4 optimised
schemes with different stage counts.

7.3.2 Embedded Pair Schemes

Building on the work in [99], the same optimisation framework has been used to find

optimal embedded pair RK schemes for FR-DG by Vermeire, Loppi and Vincent.

The optimal embedded pair RK schemes were found by restricting both schemes of

the pair to first order temporal accuracy and optimising such that the stability region

of the scheme that takes the step is larger than the scheme that is only used for the

truncation error approximation. Table 7.1 shows the Butcher tableau for the FR-DG

P = 4 optimal ten-stage Opt-RK10,1,1 scheme.
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Figure 7-2: Stability polynomial contours for FR-DG P = 4 optimised schemes with
different stage counts together with ωωωδ∆τopt obtained via von Neumann analysis (cir-
cles).
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7.4 2D cylinder at Re=100

7.4.1 Problem Specification

The performance of the optimal RK schemes was first studied with the 2D cylinder

at Re = 100 using the same setup as in Sections 5.4 and 6.5. Four simulations were

performed: Case Cyl-5 using optimal seven-stage Opt-RK7,1 pseudo-time stepping

alone, case Cyl-6 using locally adaptive pseudo-time stepping with the optimal ten-

stage embedded pair Opt-RK10,1,1 scheme, case Cyl-7 using P -multigrid with seven-

stage Opt-RK7,1 smoothing, and case Cyl-8 using P -multigrid and locally adaptive

pseudo-time stepping with Opt-RK10,1,1 smoothing.

A fixed pseudo-time step ∆τ = 1.4×10−3 was used for Cyl-5 and Cyl-7 which was

found via bisection approach that resulted in best performance. The locally adaptive

pseudo-time stepping parameters were set as fmax = 1.01, fmin = 0.98, κ = 10−6,

∆τmin = 1.9 × 10−3, and fτ = 8.0 for Cyl-6. The same values were used in Cyl-

8 apart from fτ which was prescribed as fτ = 4.0. The P -multigrid convergence

acceleration was performed using a 5-level cycle 1-1-1-1-2-1-1-1-3, where the integers

denote the number of iterations corresponding to polynomial levels 4-3-2-1-0-1-2-3-4,

with ατ = 2.0 in Cyl-7 and with ατ = 1.6 in Cyl-8.

7.4.2 Results

Table 7.3 shows the run-time parameters of all cases together with mean drag co-

efficients CD, Strouhal numbers St, and wall-times. The results of Cyl-1 - Cyl-4

from Sections 5.4 and 6.5 are provided as reference to complete a full comparison

of convergence acceleration techniques and their combinations. The statistics of all

cases were measured for the same period of 100 time units between t = 250.1250

and t = 350.1250. It can be seen that all cases produce identical mean CD and St.

Furthermore, Figure 7-3 shows that the temporal evolution of the drag coefficients

agree with those of Cyl-1 - Cyl-4.

From the wall-times it can be seen that Opt-RK7,1 alone yields a speed-up factor
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of 1.95 compared to RK4 pseudo-time stepping. Using the locally adaptive pseudo-

time stepping with Opt-RK10,1,1 yields a speed-up factor of 8.80. Using Opt-RK7,1

as the P -multigrid smoother yields a combined speed-up of 13.94. P -multigrid and

locally adaptive pseudo-time with Opt-RK10,10,1 yields a speed-up factor of 21.26. The

results demonstrate that all convergence acceleration techniques can be combined for

increased performance. However, to allow the combinations to run robustly, the user-

specified parameters have to be decreased from their peak values. This behaviour

may be partially explained by the fact that the pseudo-time steps at lower P levels

considerably exceed the physical time step size which is known to cause instabilities

[84]. Nevertheless, the total speed-up factor of over 20 relative to RK4 pseudo-

time stepping is substantial, considering that only explicit convergence acceleration

techniques are used.

Figure 7-3: Temporal evolution of the drag coefficient for the 2D cylinder case between
t = 300 and t = 350. The graphs of Cyl-2 - Cyl-8 have been shifted in t such that
they are in phase with Cyl-1.
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Table 7.3: Summary of the 2D cylinder cases at Re = 100, where PS denotes the
pseudo-stepper, LAPTS denotes locally adaptive pseudo-time stepping, P -MG de-
notes P -multigrid, WT denotes the wall-time, and SUF denotes the speed-up factor
relative to Cyl-1.

PS LAPTS P -MG fτ ατ WT SUF CD St

Cyl-1 RK4 Off Off - - 13:22:23 1.00 1.339 0.166
Cyl-2 RK4 Off On - 2.0 02:07:57 6.27 1.339 0.166
Cyl-3 RK3(2)4[2R+] On Off 8.0 - 03:12:53 4.16 1.339 0.166
Cyl-4 RK3(2)4[2R+] On On 8.0 1.6 00:52:40 15.24 1.339 0.166
Cyl-5 Opt-RK7,1 Off Off - - 06:51:24 1.95 1.339 0.166
Cyl-6 Opt-RK10,1,1 On Off 8.0 - 01:31:12 8.80 1.339 0.166
Cyl-7 Opt-RK7,1 Off On - 2.0 00:57:32 13.94 1.339 0.166
Cyl-8 Opt-RK10,1,1 On On 4.0 1.6 00:37:44 21.26 1.339 0.166

7.5 Turbulent Jet at Re = 10, 000

7.5.1 Problem Specification

To validate the optimal RK schemes for a turbulent flow problem, an incompressible

round jet at Re = 10, 000 based on the jet diameter and midline velocity of the

inflow was studied. The test case was chosen since experimental data is available

for comparison [103], and it has relevance to many industrial application areas and

natural flow phenomena, such as hydrojet propulsion, cooling systems, and seafloor

plumes. Influential experiments and a general theory of incompressible turbulent

round jets are discussed in the review of Lipari and Standsby [104]. Round jets at

various Reynolds numbers have also been studied numerically, closest to our setup

being DNS by Boersma [105] at Re = 5, 000 and explicitly filtered LES by Bogey and

Bailly [106] at Re = 11, 000. However, both of these studies have been performed

with compressible codes at higher Mach numbers, 0.6 and 0.9, respectively.

Figure 7-4 shows the computational grid in the yz-plane at x = 0 together with

a schematic of the simulation setup in the xy-plane at z = 0. The diameter of the

jet was 0.5. The origin was located at the center of the jet as it enters the domain.

A two dimensional unstructured circular grid of diameter 24 was extruded in x for a

distance of 50 in 250 equally sized steps. The resulting 3D mesh contained 247,250

hexahedral elements in the center of the domain 0 < r < 2.5, where r =
√
y2 + z2,
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and 596,500 prismatic elements elsewhere. The virtual origin is located at (x0,0,0),

which is the starting point of the self-similar region associated with a linear velocity

decay and spreading rate [104].

The jet inflow profile with a peak velocity of 1.0 was imposed as

Vjet(r) = 0.5− 0.5tanh [20 (r − 0.25)] . (7.15)

A no-slip boundary condition was imposed at the vertical front interface outside the

jet inflow zone and a pressure outlet boundary condition with p∞ = 10 was used

for the outlet. The lateral far-field wall was specified as a non-entraining slip wall

boundary which leads to a weak backflow at large r, as fluid is being drawn from the

vicinity of the edges. A sponge layer was found to be necessary to dissipate the jet

before it impinged on the outlet. Specifically, it was imposed via a spatially dependent

source term S defined as

S = (uα − uout
α ) [0.5 + 0.5tanh (0.5 (x− 45))] , (7.16)

where uout
α = {10 0 0 0}T .

Figure 7-4: Computational grid in the yz-plane at x = 0 together with a schematic
of the simulation setup in the xy-plane at z = 0. The virtual origin is located at
(x0,0,0).

A single simulation was performed with a solution polynomial order P = 4, and
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ζ = 2.5. The Gauss-Legendre solution point distribution was used for hexahedral ele-

ments and the Gauss-Legendre-Williams-Shunn solution point distribution was used

for prismatic elements. The Gauss-Legendre flux point distribution was used for

quadrilateral interfaces and the Williams-Shunn flux point distribution was used for

triangular interfaces. All flux evaluations were performed without anti-aliasing. No

subgrid-scale turbulence model or spatial filtering was applied, and the simulation

can be considered as implicit LES. The BDF2 scheme was used for physical time and

the optimal RK7,1 scheme for P = 4 was used in pseudo-time. Constant time steps

of ∆t = 0.004 and ∆τ = 0.0027 were used throughout the simulation.

The jet was initially developed up to t = 520 to damp initial transients using 15

pseudo-iterations within each physical time step. The simulation was then restarted

with a convergence criterion of 5× 10−5 for the velocity residuals and statistics were

collected up to t = 1220. The real time steps converged within 18 to 24 pseudo-

iterations, resulting in the L2-norm of divergence ∇ · v = 1
ζ
∂p
∂τ

being approximately

6× 10−4.

7.5.2 Results

Figure 7-5 shows a volume rendering of the instantaneous velocity field to visualise

the shape of the jet. The experimental study by Panchapakesan and Lumley [103]

at M ≈ 0.01 − 0.02 and Re = 11, 000 is used as a reference for all flow statistics.

To find the location of the virtual origin, the time-averaged midline axial velocity

decay was shifted in x to fit a linear constant decay rate through the origin. The

midline velocity decay shifted by x0 = 1.6 is shown in Figure 7-6a together with the

experimental rate observed by Panchapakesan and Lumley [103]. It can be seen that

the predicted linear velocity decay region matches with the reference before the sponge

starts gradually dissipating the velocity. Figure 7-6b shows the average axial velocity

with respect to the self-similarity coordinate η. In addition to averaging in time, the

results were spatially averaged along conical surfaces defined by η(r, x) = r
x−x0 in the

self-similar region 12 ≤ x ≤ 30 and normalised by the mean midline velocity vc. From

Figure 7-6b, it can be seen that the mean axial velocities agree with the reference
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data across the entire self-similarity region. Figures 7-7a and 7-7b show the mean

axial and radial velocity fluctuations in the self similar region. Both graphs indicate

that the simulation is able to accurately capture velocity fluctuations in agreement

with the experimental data. These results demonstrate that the optimal RK schemes

combined with a BDF scheme are suitable for simulating turbulent flows, and that

this approach can correctly predict mean flow and turbulent quantities.

Figure 7-5: Volume rendering of the instantaneous volumetric velocity field at t =
1220.
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(a) (b)

Figure 7-6: (a) The mean axial mid-line velocity decay rate. (b) The mean axial
velocity along the self-similarity coordinate.

(a) (b)

Figure 7-7: (a) Self-similar mean axial root-mean-square velocity fluctuations. (b)
Self-similar mean radial root-mean-square velocity fluctuations.
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Chapter 8

DARPA SUBOFF

8.1 Problem specification

In this Chapter, P -multigrid, locally adaptive pseudo-time stepping and optimal

RK schemes are used together to simulate flow over an idealised version of the

DARPA SUBOFF submarine model [107] at Re = 1.2 × 106 based on the length

of the hull and free-stream velocity. The idealised geometry in this study comprise

of the axisymmetric hull, sail and stern appendages. The DARPA SUBOFF case

has been previously studied experimentally by Jimenez et al. without stern ap-

pendages [108] at 1.1 × 106 ≤ Re ≤ 67 × 106 and with stern appendages [109] at

4.9× 105 ≤ Re ≤ 1.8× 106. Numerically Kumar and Mahesh [110] studied only the

hull at Re = 1.1× 106 using LES with a FV discretisation. The version including the

sail and appendages has been studied by Posa and Balaras [111] at Re = 1.2 × 106

using LES with a FD immersed boundary method, and by Bhushan et al. [112] at

Re = 1.2× 107 using hybrid RANS/LES techniques with a FV method.

8.1.1 Meshing

The mesh for the DARPA SUBOFF configuration was generated using Pointwise

V18.2R2. Figure 8-1 shows an xz-slice of the mesh at y = 0, where the submarine

diameter D = 0.508 and length L = 4.356. The mesh topology consists of structured
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boundary layer blocks in the vicinity of the model surface and unstructured blocks in

the far-field. The total element count is 4,984,353, comprising of 4,772,275 hexahedral

elements and 212,260 prismatic elements. The boundary layer blocks were generated

such that the first P = 4 Gauss-Legendre solution point is at approximately z+ =

uτz/µ = 2.5, with uτ =
√
τw being the wall-shear stress reported in [111].

The mesh was generated by first creating a so-called butterfly topology on the

bow (nose) and the tip of the stern (tail), which are illustrated in Figures 8-2a and b.

Subsequently, these were extruded as structured blocks of hexahedra all the way to

the inlet and outlet to avoid a singularity at the mid-line. Furthermore, unstructured

surface meshes of triangles were generated for the tips of the stern appendages and

the sail as illustrated in Figures8-2c and d. These were extruded as prism blocks to

the far-field. After such extrusions, 2D meshes of quadrilaterals and triangles were

generated between the structured blocks at y = 0 and revolved 360◦ over all areas that

are axisymmetric. Finally, structured blocks of hexahedra were generated between

the stern appendages and around the sail.

Figure 8-1: Computational grid for the idealised DARPA SUBOFF model sliced on
the xz-plane at y = 0.
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(a) (b)

(c) (d)

Figure 8-2: Surface mesh close-ups of the (a) bow, (b) stern, (c) stern appendages,
and (d) sail.

Generating curved boundary meshes is one of the biggest challenges in the high-

order community. With high-order compact discretisations, curving the surface mesh

is crucial to represent the geometrical features accurately without requiring exces-

sively small elements. The latest release of Pointwise implements high-order curved

element mesh generation. In Pointwise v18.2 [113], the curving approach consist of

first elevating the degree of the linear mesh with additional nodes and projecting them

on top of a Computer Aided Design (CAD) model. Finally, perturbations, which are

defined as the distance between the linear boundary and the projected boundary, are
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spread to the interior domain using a weighted smoothing method. Pointwise v18.2

performs all these steps automatically during the mesh export step. However, prior

to the export step, all linear surfaces nodes have to be restricted on top the CAD

model. This can be done by applying the ‘project onto database’ function to each

boundary domain. Furthermore, high-order solver attributes, such as mesh degree

and the number of smoothing steps have to be specified. Figure 8-3 illustrates linear

and quadratically curved representations of the sail surface.

(a) (b)

Figure 8-3: A (a) linear and (b) quadratically curved sail surface.

8.1.2 Configuration

One complete simulation with P = 4 and ζ = 4 was run on 256 Nvidia P100 GPUs

using double precision. The Gauss-Legendre solution point distribution was used for

hexahedral elements and the Gauss-Legendre-Williams-Shunn solution point distri-

bution was used for prismatic elements. The Gauss-Legendre flux point distribution

was used for quadrilateral interfaces and the Williams-Shunn flux point distribution

was used for triangular interfaces. No subgrid-scale turbulence model or spatial fil-

tering was applied, and the simulation can be considered as implicit LES. Physical

time was discretised with BDF2, where ∆t = 1× 10−3. P -multigrid convergence ac-

celeration and locally adaptive pseudo-time stepping with the FR-DG P = 4 optimal
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10-stage RK10,1,1 embedded pair scheme was used in pseudo-time with fmax = 1.01,

fmin = 0.98, κ = 5×10−7, ∆τmin = 4×10−5, fτ = 2.5 and ατ = 1.6. The P -multigrid

cycle was prescribed as 1-1-1-1-4-1-1-1-6, where the integers denote the number of

iterations corresponding to polynomial levels 4-3-2-1-0-1-2-3-4. Additionally, volume

flux anti-aliasing for hexahedral elements was performed with quadrature degrees 11-

9-7-5-3-5-7-9-11, and volume flux anti-aliasing for prismatic elements was performed

with quadrature degrees 10-8-5-4-2-4-5-8-10. The Riemann-invariant-based boundary

condition was prescribed at all far-field boundaries with p∞ = 1, v∞ = {1 0 0}T and

ζ∞ = 120, and a no-slip condition was prescribed on the model surface. The initial

condition at t = 0 was set as uα = {1 1 0 0}T .

Tripping was found to be necessary to induce transition of the hull boundary

layer. This was prescribed as a source term which imposes a wall-normal force 0.5

hull diameters D down-stream from the tip of the bow, mimicking the effect of a

trip wire used in the experiments [108, 109]. A similar strategy was used to trip the

boundary layer in previous numerical studies [111, 110].

The simulation was run in three parts. First, the flow developed up to t = 9.002

with P = 1. Second, the simulation was restarted with P = 4 and run up to

t = 36.795. Third, statistics were gathered between t = 36.795 and t = 54.762.

In total, the simulation took 73,216 GPUh.

8.2 Parallel Efficiency

Parallel efficiency of the SUBOFF case between N = 128 and N = 256 was studied

by running the simulation for one characteristic time unit tc = V/D, where V∞ is the

free-stream velocity. The GPU memory loading was approximately 70% at N = 128

and 35% at N = 256. Figure 8-4 plots the strong scaling between the measurement

points. A parallel efficiency of 1.82/2.0 = 0.91 was observed at N = 256 which

is in line with 3.48/4 = 0.87 parallel efficiency obtained for the incompressible jet

case with P -multigrid under 25% load at N = 36 in Figure 5-7. As locally adaptive

pseudo-time stepping and optimal RK schemes do not introduce any load imbalance or
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inter-element communication, they should have minimal effect on the strong scaling.

The high parallel efficiency observed at N = 256 justifies it as a cost-effective job size

for the full simulation.

Figure 8-4: Strong scaling of the DARPA SUBOFF case with P -multigrid (P -MG).
The red line indicates ideal strong scaling.

8.3 Results

Previous studies have shown that the wake of the SUBOFF configuration is charac-

terised by a bimodal behaviour. This behaviour can be seen as two local maxima in

the turbulent stress profiles. It originates from the thickening boundary layer along

the contracting stern and is enhanced by the presence of the stern appendages. Figure

8-5 illustrates the flow in this region with iso-surfaces of the Q-criterion coloured by

the velocity magnitude V at t = 54.762.

Figure 8-6 shows the vorticity magnitude |ω| on the xz-plane at y = 0. It can be

seen that the tripping mechanism quickly transitions the laminar boundary layer to

turbulence, and the turbulent boundary layer keeps developing over the entire length

of the hull. Furthermore, the sail and the stern appendages generate highly turbulent

wakes which merge into the stern boundary layer wake downstream. Figures 8-7a-c

show the time-averaged turbulent kinetic energy k = (v′z
2

+ v′y
2

+ v′z
2
)/2 on the xz-
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plane at y = 0, on the xy-plane at z = 0, and on a diagonal plane that is rotated

45◦ in the x-direction, respectively. The bimodal behaviour can be clearly observed

as two streaks of high k in all of the plots.

Figure 8-5: Iso-surfaces of the Q-criterion coloured with the velocity magnitude V at
t = 54.762.

Figure 8-6: Vorticity magnitude |ω| on xz-plane at y = 0 and t = 54.762.
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(a)

(b)

(c)

Figure 8-7: Turbulent kinetic energy on the (a) xz-plane at y = 0, (b) xy-plane at
z = 0, and (c) diagonal plane that is rotated 45◦ in x-direction.

Figure 8-8a plots vx/Ve at a measurement location that is 6D down-stream from

the tip of the stern at y = 0, where Ve is the free-stream velocity outside of the wake.

Figure 8-8b plots (Ve − vx)/v0, where v0 is the maximum velocity defect, against

z/l0, where l0 is the half-wake width, 6D downstream from the tip of the stern. The

experimental data of Jimenez et al. [109] and numerical data of Posa et al. [111] are
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given as a reference. It can be seen that the quantities are overall well-predicted. The

main axial velocity vx/Ve is slightly over-estimated in the vicinity of the mid-line, but

excellent agreement with the experimental data is achieved elsewhere.

Figures 8-9a-c plot the time-averaged root-mean-square velocity fluctuations scaled

by Ve, 6D downstream from the tip of the stern. The turbulent quantities are on the

whole in line with previous studies. From Figure 8-9a, it can be seen that v′x/Ve

agrees with the experimental data well, apart from in the immediate vicinity of the

mid-line. From Figure 8-9b, it can be seen that notably better agreement with the

experimental data is observed for v′z/Ve, compared to the results of Posa and Balaras.

From Figure 8-9b it can be seen that the cross-term v′xv
′
z/Ve result also compares

favourably with the experimental result 8-9b, especially on the sail side with positive

z.

(a) (b)

Figure 8-8: (a) (vx/Ve) and (b) Ve − vx/v0 at a measurement location that is 6D
down-stream from the tip of the stern at y = 0.
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(a) (b)

(c)

Figure 8-9: (a) v′x/Ve and (b) v′z/Ve at a measurement location that is 6 hull diameters
down-stream from the tip of the stern at y = 0.

Figure 8-10 shows the time-averaged pressure field on the xz-plane at y = 0.

Figure 8-11 shows the time-averaged pressure coefficient Cp = p̄−p∞
1
2
V 2
∞

on the model

surface at y = 0 together with the result of Bhushan et al. [112]. From Figure 8-10 it

can be seen that regions of high pressure are formed on the front face of sail and the

stern appendages. They are also observed as peaks of Cp in Figure 8-11. Overall, Cp

is in very good agreement with the reference data. The negative peak of Cp in the

bow region is due to the tripping term and should be disregarded. The other strong

negative peak near x/L = 0.85 occurs in a very small region at the leading edge of

the stern appendages. The origin of this peak requires further investigation.

On the whole, the obtained results demonstrate that the artificial compressibil-
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ity solver with P -multigrid, locally adaptive pseudo-time stepping and optimal RK

schemes can be used to conduct high-fidelity implicit LES of industrially relevant

problems at scale using hundreds of GPUs.

Figure 8-10: Average pressure p̄ on the xz-plane at y = 0.

Figure 8-11: Pressure coefficient on the hull surface at y = 0
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Chapter 9

Conclusions

9.1 Summary

A high-order incompressible Navier-Stokes solver was developed in the Python-based

PyFR (www.pyfr.org) [17] framework. The solver was based on the ACM formu-

lation with the FR discretisation in space and explicit dual-time stepping in time.

Choices regarding the numerical methods and implementation were motivated as fol-

lows. Firstly, high-order FR was selected as the spatial discretisation due to its low

dissipation and ability to work with unstructured meshes of complex geometries. Be-

ing discontinuous, it also allows the majority of computation to be performed locally.

Secondly, convergence acceleration techniques were restricted to explicit methods in

order to retain the spatial locality provided by FR, which allows efficient harnessing

of the massively parallel compute capability of modern hardware. Thirdly, the solver

was implemented in the PyFR framework with cross-platform support such that it can

run on modern heterogeneous systems via an MPI + X model, with X being CUDA,

OpenCL or OpenMP. As such, it is well-placed to remain relevant in an era of rapidly

evolving hardware architectures. The implementation of the artificial compressibility

solver was detailed in Chapter 4.

In order to decrease time to solution, three explicit convergence acceleration tech-

niques were developed. Chapter 5 described P -multigrid which was validated for a

Taylor-Green vortex test case at Re = 1, 600. Chapter 6 described locally adaptive
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pseudo-time stepping which was validated for an SD7003 test case at Re = 60, 000.

Chapter 7 described optimal Runge-Kutta schemes which were validated for a round

jet at Re = 10, 000. The results of all validation cases were found to be in very good

agreement with previous experimental and numerical studies.

In addition to the turbulent validation test cases, a performance study with a 2D

cylinder test case at Re = 100 was undertaken using all possible convergence accelera-

tion combinations. Figure 9-1 summarises the achieved speed-ups relative to classical

RK4 pseudo-time stepping. Of the individual techniques, P -multigrid achieved the

best performance, leading to a speed-up factor of 6.27. The best performing combi-

nation of two techniques was P -multigrid and locally adaptive pseudo-time stepping,

leading to a speed-up factor of 15.24. Combining all convergence acceleration tech-

niques lead to a speed-up factor of 21.26.

Finally, the artificial compressibility solver and all of the convergence accelera-

tion techniques was applied to simulate a DARPA SUBOFF submarine model at

Re = 1.2 × 106 in Chapter 8. Excellent agreement with previous studies was ob-

tained, demonstrating that the artificial compressibility solver with P -multigrid, lo-

cally adaptive pseudo-time stepping and optimal RK schemes can be used to conduct

high-fidelity implicit LES of industrially relevant problems at scale using hundreds of

GPUs.
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Cyl-3 (LAPTS)

4.16

Cyl-2 (P -MG)

6.27

Cyl-5 (Opt-RK)

1.95

Cyl-4

15.24

Cyl-6

8.80

Cyl-7

13.94Cyl-8

21.26

Figure 9-1: A summary of the speed-ups of all convergence acceleration combinations
relative to RK4 pseudo-time stepping for the 2D cylinder cases Cyl-1 - Cyl-8.

9.2 Future Work

In the short term, future work should involve investigation of additional steady-state

convergence acceleration techniques. For example, residual splitting and explicit

residual averaging [114] techniques are likely to be well-suited for the current solver.

In residual splitting, the residual is split into convective and diffusive parts and the

diffusive part is frozen within a pseudo-time step in order to save computational cost.

In residual averaging, the residual at each point is replaced with a weighted average

of residuals at neighbouring points to increase maximum allowable pseudo-time step

size. Neither technique has so far been applied in the context of high-order FR.

In the medium to long term, future work should focus on extending the physics

capabilities of the solver such that it can be applied to a wider range of hydrodynamic

problems. This work should include extension two two-phase flows via level sets

[115] or the volume-of-fluid method [116] and extension to hydroacoustics via the

hydrodynamic/acoustic splitting approach [117].
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[3] M. Turner, J. Peiró, and D. Moxey, “Computer-aided design curvilinear mesh
generation using a variational framework,” Computer-Aided Design, vol. 103,
pp. 73–91, 2018.

[4] D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods: theory
and applications, vol. 26. Siam, 1977.

[5] S. K. Lele, “Compact finite difference schemes with spectral-like resolution,”
Journal of computational physics, vol. 103, no. 1, pp. 16–42, 1992.

[6] W. H. Reed and T. R. Hill, “Triangular mesh methods for the neutron transport
equation,” Los Alamos Report LA-UR-73-479, no. 836, p. 10, 1973.

[7] B. Cockburn, S. Hou, and C.-W. Shu, “TVB Runge-Kutta local projection
discontinuous Galerkin finite element method for conservation laws II : General
framework,” Mathematics of Computation, vol. 52, no. 186, pp. 411–435, 1989.

[8] B. Cockburn, S. Hou, and C.-W. Shu, “The Runge-Kutta local projection dis-
continuous Galerkin finite element method for conservation laws IV : The multi-
dimensional case,” Mathematics of Computation, vol. 54, no. 190, pp. 545–581,
1190.

[9] Y. Liu, M. Vinokur, and Z. J. Wang, “Spectral difference method for unstruc-
tured grids I: Basic formulation,” Journal of Computational Physics, vol. 216,
no. 2, pp. 780–801, 2006.

118



[10] Z. J. Wang, Y. Liu, G. May, and A. Jameson, “Spectral difference method for
unstructured grids II: Extension to the Euler equations,” Journal of Scientific
Computing, vol. 32, no. 1, pp. 45–71, 2007.

[11] D. A. Kopriva and J. H. Kolias, “A conservative staggered-grid Chebyshev mul-
tidomain method for compressible flows,” Journal of Computational Physics,
vol. 125, no. 1, pp. 244–261, 1996.

[12] H. T. Huynh, “A flux reconstruction approach to high-order schemes including
discontinuous Galerkin methods,” in 18th AIAA Computational Fluid Dynamics
Conference, 2007.
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