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A B S T R A C T

Wireless Sensor Networks (WSNs) will play a major role in the Internet of Things collecting

the data that will support decision-making and enable the automation of many applications.

Nevertheless, the introduction of these devices into our daily life raises serious concerns

about their integrity. Therefore, at any given point, one must be able to tell whether or not

a node has been compromised. Moreover, it is crucial to understand how the compromise

of a particular node or set of nodes may affect the network operation.

In this thesis, we present a framework to monitor the health and integrity of WSNs

that allows us to detect compromised devices and comprehend how they might impact a

network’s performance. We start by investigating the use of attestation to identify malicious

nodes and advance the state of the art by exploring limitations of existing mechanisms.

Firstly, we tackle effectiveness and scalability by combining attestation with measurements

inspection and show that the right combination of both schemes can achieve high accuracy

whilst significantly reducing power consumption. Secondly, we propose a novel stochastic

software-based attestation approach that relaxes a fundamental and yet overlooked assump-

tion made in the literature significantly reducing time and energy consumption while

improving the detection rate of honest devices.

Lastly, we propose a mathematical model to represent the health of a WSN according

to its abilities to perform its functions. Our model combines the knowledge regarding

compromised nodes with additional information that quantifies the importance of each

node. In this context, we propose a new centrality measure and analyse how well existing

metrics can rank the importance each sensor node has on the network connectivity. We

demonstrate that while no measure is invariably better, our proposed metric outperforms

the others in the vast majority of cases.
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1
I N T R O D U C T I O N

Wireless Sensor Networks (WSNs) are distributed systems composed by dedicated com-

puter devices, named sensor nodes, that are spatially scattered across an environment to

monitor physical phenomena like humidity, luminosity, temperature, among others. Such

sensors nodes work autonomously and collaboratively to relay their data towards a base

station, also known as sink node, which works as a gateway connecting the network to

the outside world. These networks have a wide range of applications [1], and, over the

last years, have been perceived as a fundamental technology that will pave the way to the

Internet of Things (IoT) [2].

While the adoption of WSNs and development of the IoT can undoubtedly bring

numerous benefits, the ingress of the so called smart or connected devices across homes,

industries, healthcare systems, and critical national infrastructure raises serious concerns

regarding the security of such systems. Compromised devices can plunder confidential

information, disseminate spurious data, or even interrupt services, all of which could

have tragic repercussions. Nonetheless, it is highly likely that such devices are going to

be attacked and compromised at some point during their lifetime. We have already seen

cases such as Stuxnet, a malware targeting industrial control systems [3], the Mirai botnet,

mainly constituted of IoT devices and believed to be the biggest distributed denial of

service (DDoS) attack to date [4], and more recently the WannaCry ransomware hitting

organizations such as the British National Health Service (NHS) [5]. Therefore, at any

given point, one must be able to tell whether or not a device is operating as it should or if

it has been compromised. Moreover, it is crucial to understand the impact the compromise
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of a particular node or set of nodes can have on the network performance and the system

as a whole.

Most of the related work on the security of WSNs focuses on securing its underlying pro-

tocols [6] or on the trust and reputation management [7] of nodes in the network. However,

by exploiting existing software vulnerabilities, an adversary can easily compromise high

reputation nodes without breaking their protocols. As observed by Gu and Noorani [8],

vulnerabilities arising from low-level memory faults, such as stack overflows [9], and

more recent, sophisticated, exploitation techniques, such as return-oriented program-

ming (ROP) [10, 11], pose a real threat to WSNs. In fact, these vulnerabilities have

already been exploited in the form of code injection attacks [12] and self-propagating

mal-packets [8]. Thus, a mechanism to verify the integrity of sensor nodes is necessary.

The integrity of a node is a binary property that indicates whether it has been modified in

an unauthorized manner or not [13]. Compromised nodes cannot be trusted as they may

malfunction or present malicious behavior.

WSNs can comprise hundreds or thousands of sensor nodes that are distributed in the

environment. In many cases, nodes are deployed in an unsystematic fashion making it

difficult to know their exact location. While it is not practical for most application scenarios,

for some of them it is not even possible to physically reach and verify the integrity of each

node composing the network. Thus, there is a need for a mechanism that not only verifies

the integrity of the nodes but a mechanism that can do this verification remotely, without

physical access to the device being verified.

Many challenges arise under these circumstances: how to scale the verification for the

high number of devices; the heterogeneous hardware and software architecture of such

devices; the limited amount of energy they have available; and the intrinsically unreliable

wireless medium in which they communicate. Nevertheless, several attestation mechanisms

have been proposed over the last years to identify compromised devices by verifying their

software integrity [14]. However, existing approaches make different assumptions over the

system and adversary models. Consequently, it is difficult to compare them and analyse
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the security properties provided by these schemes. Moreover, this lack of coherence has

already resulted in new proposals [15, 16, 17, 18, 19, 20, 21, 22, 23] being vulnerable to

formerly known attacks [24].

Unlike the integrity of a single device, the health of a network is not a binary property

indicating whether it has been compromised or not, but rather an indicator of how well it

can operate in its current state and fulfil its functions. To answer that, one must be able

to tell not only which nodes have been compromised, but also how important each node

is to the network’s operation. While the importance of a node is a reflection of the tasks

it executes, the significance of each task is application specific and varies from case to

case. The role a node plays on the network connectivity, however, depends primarily on its

topological position and can be generalized.

A number of centrality measures have been proposed in the network theory literature

to identify the most important nodes within a network [25]. However, each measure has

its own interpretation of what makes a node important. Consequently, they may provide

distinct outcomes, and there is no optimal measure that best suits all scenarios.

1.1 goal and scope

The main goal of this thesis is to develop a framework to monitor the health and integrity

of WSNs that allows us to identify compromised nodes and to understand how well the

network can operate even in the presence of compromise. To achieve this goal we first

investigate and propose two improvements to advance the state of the art of attestation

techniques towards more practical solutions. We then examine how well centrality mea-

sures rank the impact sensor nodes have on the network connectivity, and elaborate a

mathematical model capable of combining all this information and expressing the health

of a network as a single value indicating its operational level.

There are many ways an adversary can compromise nodes in a WSN. While we assume

an attacker that modifies the software running on the network nodes, the exact steps
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necessary to perform such attack are out of scope of this thesis. Similarly, many actions

can be taken once a malicious device is detected. While our health model helps us to

understand the impact a compromise has on the network and may serve as a guide to take

more effective responses we leave this as future work.

1.2 summary of contributions

The main contributions of this thesis are:

Attestation literature survey. Over the last years, several attestation techniques have been

proposed. While they all use variants of a challenge-response protocol, they make different

assumptions about what an attacker can and cannot do. Thus, they propose intrinsically

divergent validation approaches. We survey the different approaches to attestation fo-

cussing in particular on those aimed at WSNs. We discuss the motivations, challenges,

assumptions, and attacks of each approach. We then organise them in a taxonomy and

discuss the state of the art, carefully analysing the advantages and disadvantages of each

proposal. We also identify open research problems and give directions on how to address

them.

Combining attestation with measurements inspection. Attestation and measurements

inspection are different security techniques but can be used complementary towards

the same goal: ascertaining the integrity of sensor nodes in WSNs. We compare the

benefits and drawbacks of both techniques and seek to determine how to best combine

them. However, our study shows that no single solution exists, as each choice introduces

changes in the measurements collection process, affects the attestation protocol, and gives

a different balance between the high detection rate of attestation and the low power

overhead of measurements inspection. Therefore, we propose three strategies that combine

measurements inspection and attestation in different ways, and a way to choose between
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them based on the requirements of different applications. We analyse their performance

both analytically and in a simulator. The results show that the combined strategies achieve

a detection rate close to attestation, in the range 96-99%, whilst keeping a power overhead

close to measurements inspection, in the range 1-10%.

Stochastic software-based attestation. Existing software-based attestation proposals rely

on strong assumptions that hinder their deployment and might even weaken their secu-

rity. One such assumption is that using the maximum known network round-trip time

to define the attestation timeout allows all honest devices to reply in time. While this

is normally true in controlled environments, it is generally false in real deployments

and especially so in a scenario like WSNs where numerous devices communicate over

an intrinsically unreliable wireless medium. Moreover, a larger timeout demands more

computations, consuming extra time and energy and restraining the untrusted device from

performing its main tasks. We review this fundamental and yet overlooked assumption

and propose a novel stochastic approach that significantly improves the overall attestation

performance. Our experimental evaluation with devices communicating over real-world

networks demonstrates the practicality and superior performance of our approach. When

compared with the current state of the art solution, we reduce the total attestation time and

energy consumption around seven times for honest devices and two times for malicious

ones, while improving the detection rate of honest devices (8% higher true positive rate)

without compromising security (0% false positive rate).

Network health model. We propose a model to represent the health of WSNs that allows

us to evaluate a network’s ability to execute its functions even in the presence of ma-

licious devices. Our model combines the knowledge regarding which nodes have been

compromised with additional information that quantifies the importance of each node. In

particular, we investigate how well different centrality measures identify the significance

of each node for the network connectivity. In this process, we propose a new metric named
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current-flow sink betweenness. Through a number of experiments, we demonstrate that while

no measure is invariably better in identifying sensors’ connectivity relevance, the proposed

current-flow sink betweenness outperforms existing metrics in the vast majority of cases.
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1.4 thesis outline

The remainder of the thesis is structured as follows. In Chapter 2, we provide a comprehen-

sive review of attestation mechanisms in the context of WSNs and introduce fundamental
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concepts for the remainder of the thesis. Then, in Chapter 3, we show how attestation

can be combined with measurements inspection to obtain a high detection rate with low

overhead. Next, in Chapter 4, we introduce a novel stochastic software-based attestation ap-

proach that targets a fundamental assumption made by existing mechanisms significantly

improving the overall attestation performance. In Chapter 5, we present a model to express

the health of WSNs, propose a new centrality measure and analyse how well different

measures identify the significance of each node for the network connectivity. Finally, we

conclude this thesis in Chapter 6 summarizing our achievements and discussing future

work.
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2
AT T E S TAT I O N

Over the last years, several attestation techniques have been proposed in the literature

to detect malicious devices by validating their software integrity. In this chapter, we

extensively analyse the state of the art of such mechanism in the context of WSNs. We start

in Section 2.1 by giving an overview of attestation, followed by a comprehensive analysis

of the system and adversary models. We then cover common attacks and assumptions

made, and their relevance in the context of WSNs. In Section 2.2 we introduce a taxonomy

that captures the fundamental differences between existing solutions. Each distinguishing

characteristic used in our taxonomy is illustrated with a representative example taken

from the state of the art, which allow us to evaluate the advantages and disadvantages

of existing approaches. Following this analysis, we discuss open research problems and

give directions on how to tackle them in Section 2.3. Finally, we conclude the chapter in

Section 2.4.

2.1 overview

A typical attestation mechanism follows a challenge-response protocol, as shown in Fig-

ure 1. A trusted device verifies the integrity of an untrusted device which has to prove

its innocence. The devices are commonly named after their roles: Verifier and Prover, re-

spectively. The goal of the attestation procedure is to allow an honest, non-compromised,

Prover to generate a response that assures the Verifier that the prover is in a legitimate

state [26]. A compromised Prover will either generate invalid responses or will not be able

to generate a valid response within an expected time limit.
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Figure 1: Attestation overview.

It is generally assumed that the Verifier knows, in advance, the correct internal state —

the memory contents — of the Prover. Therefore, the Verifier challenges the Prover to

demonstrate that it is in a valid, expected, state. The Prover then executes an attestation

routine, which will compute and send back a response based on the challenge received

from the verifier and its internal state. The Verifier compares the answer received from the

prover with the expected one, and if there is a match then it can assert that the device

has not been compromised. However, the Verifier only awaits the prover’s response for a

limited amount of time TA, which must be at least as long as the time taken by the Prover

to execute the genuine attestation routine. If the time difference between receiving the

response and issuing the challenge, TR − TC, exceeds TA, the Verifier knows something may

be wrong with the Prover. Note here, that when performing attestation over a network,

the time delay to send and receive messages must also be taken into account. As we will

discuss further in Section 2.2, there are two different approaches regarding timing control:

strict and loose.

We are not the first to analyse the attestation process. Nonetheless, existing analyses

are built under different assumptions. For example, Datta et al. [27], Coker et al. [28] and

Francillon et al. [26] assume that the verifier and the prover need to share some secret

information, e.g., a cryptographic key. They presume that this secret is defined prior to

network deployment and that there exists some hardware support preventing the adversary
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from accessing it. Their models, however, also do not consider timing requirements. On

the other hand, Armknecht et al. [29] and Li et al. [30] focus on software-based attestation

techniques that assume no hardware support and are only concerned with attesting the

program’s memory. The analysis by Li et al. [30] also covers approaches that completely

erase the prover’s data memory. However, neither of them cover proposals that attempt to

verify the data memory instead of simply wiping out its contents.

In this work we follow in the footsteps of existing analyses, however, we aim to provide

a more comprehensive model capable of encompassing all approaches relevant for WSNs,

which allows us to evaluate the tradeoffs between different techniques. In this context,

the intrinsic characteristics of WSNs play an important role. The simplified hardware

and software architecture of sensor nodes has both a positive and negative side. As a

consequence of their reduced storage space, there is less memory available for an adversary

to explore. Furthermore, differently from general-purpose computers, each node has a well-

defined application to execute. Thus, it is easier to know what are the expected memory

contents of these devices. Moreover, sensor nodes are usually equipped with single-core

processors and have a single flow of execution, which reduces the possibilities of an

adversary to perform parallel operations during attestation. On the downside, the limited

amount of energy powering sensor nodes is certainly one of the biggest restrictions imposed.

The fact that the sensors may be placed in hostile environments and communicate over a

wireless channel which may suffer from external interference is another complication.

2.1.1 System Model

There are three entities that need to be considered when modelling an attestation mecha-

nism: the verifier V, the prover P, and the adversary A. Although attestation mechanisms

can be applied to other scenarios, we focus here only on WSNs. Therefore, both the verifier

and the prover are wireless sensor nodes. The verifier can possess more computational

power than common network nodes, but this is not mandatory. Meanwhile, the adversary
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Table 1: Notation summary.

Term Description

A Adversary
c Challenge

M Memory
Me External memory
Mp Program memory
Md Data memory

Mmmio Memory Mapped Input/Output
Mr Registers

P Prover
r Response
S Internal state

TA Attestation time limit
TC Challenge sending time
TR Response reception time
V Verifier

is either launching attacks remotely or using an already compromised network node.

Table 1 summarizes the notation adopted in this chapter.

A prover P has an internal state State(P) = S that reflects the contents of its memory

M. Ideally, all memory contents should be attested including the program memory Mp,

data memory Md, registers Mr, MMIO Mmmio, and even external memories Me. However,

each of the different attestation mechanisms covers different sections of the memory, and

in practice, some parts of M are left unverified. For instance, Spinellis [31] only checks

Mp, while Zhang and Liu [32] partially validate Md and nothing else. For simplicity, we

consider (as reflected in the adopted notation) that the state S of a prover P corresponds

only to the portions of memory being attested.

One might think that the attestation is safer when a larger amount of memory is being

covered. However, this is not necessarily so. Usually, Mp is far greater than Md but some

attacks only need to alter Md to succeed [10, 11]. Therefore, a safer approach would be to

attest all different types of memory [24]. However, even when all memories are covered, an

adversary can still perform several types of attacks. In practice, attestation only provides
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a probabilistic guarantee of the integrity of a prover. In this work, we aim to identify the

factors that influence this probability.

An attestation process has three main constituents: challenge, attest, and verify,

which are present in all the approaches described in the literature although their imple-

mentation may vary. Below we discuss each of them individually and highlight the design

principles that must be followed to provide secure attestation. As stated before, we adopt

much of previous analyses [27, 28, 29, 30, 26] while centering the discussion around WSNs.

challenge() This procedure is executed by the verifier. It outputs a random challenge c

that is transmitted to the prover and which may contain a nonce, a timestamp, memory

addresses, or even the attestation routine to be executed by P. challenge must follow

three design principles: Authenticity, Freshness, and Unpredictability. The first two principles

are essential to prevent an adversary from performing Denial-of-Service (DoS) attacks by

unrestrictively forcing P to perform attest. Nevertheless, DoS attacks are not a major

concern in attestation of sensor nodes as there are easier methods to achieve the same

effect such as channel jamming. The last principle prevents the adversary from calculating

the result of the attestation routine in advance since attest either takes as input or is itself,

the unpredictable challenge generated. Formally, this could be described as: there exists no

efficient algorithm Alg such that, for non-negligible ε,

Pr[Alg()i = Challenge()i+1 : i ∈ N+] > ε.

attest(S, c) The attestation routine is executed by the prover. It takes as input the

state S of P and the challenge c sent by V. When c is the attestation routine itself, it is

downloaded and installed in a pre-defined memory space in Mp. The goal of attest is

to compute a small attestation response r, which must directly be based on both S and

c. This drastically reduces the amount of data transmitted from P to V as otherwise the

prover would have to transmit the entirety of its memory contents to the verifier to prove
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its integrity. attest must adhere to five design principles. Authenticity allows the verifier

to confirm the source of r. Atomicity guarantees that attest is not interrupted during

execution preventing the adversary from modifying S, moving the malware around to

avoid detection, or parallelizing the computation. Unforgeability prevents an adversary

from producing the same response r, at least not faster than attest. Dynamicity in the

sense that r should reflect the actual running system, and not just some static part of the

memory. Finally, Determinism enables the verifier to reach the same result r on its own.

Formally:

Pr[∃ S 6= S′ : Attest(S, c) = Attest(S′, c)] ≤ ε

verify(E[S], c, r, TA, TC, TR) This function, executed by the verifier, takes as inputs

the expected state of the prover E[S], the challenge c that the verifier has generated, the

response r from P, the attestation time limit TA, the time when the challenge has been sent

TC and the response received TR. Verify must respect one design principle: Determinism

so that it accepts iff r reflects both S and c and TR − TC ≤ TA. Furthermore, Verify must

always accept responses from uncompromised provers. Formally:

Pr[Veri f y(E[S], c, r, TA, TC, TR) = accept|State(P) = S

∧ r = Attest(S, c)

∧ TR − TC ≤ TA] = 1

Having identified the main components, we can now formalize the interactions between

the verifier and the prover. Figure 2 shows all steps described so far, which are present

in all existing approaches. In some approaches, however, these interactions may slightly

differ. For example, they can be preceded by an additional step where the prover itself

requests to be verified. Park and Shin [33] demand that each sensor proves its integrity to

a verification server before accessing the network, so new sensors must ask to be attested

before using network resources. AbuHmed et al. [34] provide another example of variation

of the interactions: to verify the freshness and authenticity of a challenge request, a prover
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V : c R←− Challenge()
V → P : c

V : TC ← current time
P : r ← Attest(S, c)

P→ V : r
V : TR ← current time
V : Veri f y(S, c, r, TA, TC, TR)

Figure 2: Generic attestation procedure.

sends the challenge, encrypted together with a random number, back to the verifier. The

verifier then decrypts the message and sends back to the prover the encrypted random

number.

2.1.2 Adversary Model

The objective of an adversary is to compromise a sensor node without being detected by

the attestation procedure. We do not address techniques used to compromise nodes — the

interested reader may refer to [8, 12, 35] for additional information on this topic — but

rather cover the attacks an adversary may perform to overcome attestation. As observed

by Armknecht et al. [29], the adversary has two different phases to perform an attack: an

initial phase that occurs before the attestation begins, and a second one that starts when

the prover is challenged. Before attestation, the adversary can use unlimited resources and

may modify the state S of a prover at will, resulting in a new state S′. However, after being

challenged the adversary has a limited amount of time to send a response.

2.1.2.1 Attacks

A series of attacks are typically portrayed in the literature on how an adversary may

subdue the attestation process after having compromised a device. We describe each of
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them individually below.

Precomputation. An adversary can precompute all operations of the attestation routine

that are not influenced by the challenge, thus gaining time that may be used to execute

other operations during the attestation. Furthermore, if the adversary can predict the

challenges generated by the verifier, it can then precompute valid responses.

Replay. An adversary can eavesdrop a valid attestation response from a non-compromised

node, store it, and retransmit the message when challenged by the verifier. Since the re-

sponse reflects both the prover’s internal state and the challenge, this approach can only

work if both nodes execute the same program and receive the same challenge.

Forgery. The adversary can attempt to generate a valid response despite modifications

in the prover’s internal state. This can be achieved by executing a modified version of

the attestation routine or by altering memory contents in such a way that modifications

neutralize one another during response computation [24].

Memory copy. If there is enough free space in memory, an adversary can store its malicious

data and still keep a copy of the original memory contents [36]. Then, the adversary can

modify the attestation routine so that it computes a response over the memory locations

where the original contents copy is maintained.

Data substitution. This attack is a special case of the memory copy attack and occurs

when there is not enough space to keep a full copy of the original memory contents.

The adversary can then modify part of the original contents and keep a copy only of the

overwritten data [37]. In this case, the attestation routine must be adjusted to redirect

memory reads from altered memory addresses to the original contents’ copy location.
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Compression. In another special case of the memory copy attack an adversary can com-

press the original contents to obtain enough space to store its malicious data [24]. During

attestation, the adversary can then decompress the original contents on-the-fly to compute

the expected response.

High execution time variance. The execution time of the attestation routine may vary due

to clock, cache, and translation lookaside buffer (TLB) fluctuations [38]. The higher the

number of computations performed, the higher the time variance. To avoid the case where

honest provers are not able to reply in time, the challenge timeout should also include the

execution time jitter. Therefore, an adversary can execute additional instructions and still

reply within the timeout with non-negligible probability.

Collusion. Compromised nodes can act together to compute valid responses. For example,

multiple nodes that execute the same application can install the malware in different

memory locations [39]. Then, during attestation, the nodes can exchange messages to

recover the original memory contents. Another possibility is to divide the attestation

routine operations across multiple devices to speed up the computation of the response.

Impersonation. An adversary can take multiple identities and impersonate other nodes

(also known as Sybil attack [40]). In doing so, it can masquerade as a genuine node during

attestation and send an invalid response, thus making the verifier believe the original node

has been compromised. Besides, a compromised node may also impersonate the verifier

and forward the challenges it receives to a genuine node and then forward the correct

response back to the verifier.

Proxy. This attack is a special instance of collusion and impersonation attacks because

it requires a device with better computing capabilities than the prover. Whenever a com-

promised node is challenged, it forwards the challenge to this proxy device. The proxy
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keeps a copy of the node’s original memory contents and is able to impersonate it to

compute a valid response. Since the proxy device has greater computing resources, it can

also compute the attestation routine faster than common nodes.

Code reuse. Using techniques such as Return-oriented Programming (ROP) [10, 11], an

attacker can use existing code, without altering it, to execute malicious operations. By

linking together small sequences of instructions, called gadgets, present in existing pro-

grams, it is possible to perform arbitrarily complex operations. Originally, each gadget

would end with a ret instruction, and the attacker could chain different gadgets together by

modifying the stack, making them execute one after another. It was shown subsequently

that these attacks can be performed without using return operations, but also through

other instructions that alter the program control flow, such as branch, call, and jump [41].

Because gadgets are built from original program instructions, ROP attacks can circumvent

defenses that assume the adversary must modify or insert new code [11].

It is interesting to see that the majority of attacks do not require the malicious node to

interact with other devices. Only the Replay, Collusion, Impersonation, and Proxy attacks

require such interaction.

2.1.3 Assumptions

We present here the most common assumptions encountered in the literature and examine

existing exceptions and conflicts among them.

The verifier cannot be compromised by the attacker. In many cases, the verifier is the network’s

base station. Since the base station acts as a gateway connecting the sensor network to the

outside world, it is common to assume that it cannot be compromised [42]. Nonetheless,

not all approaches make this assumption. For instance, Yang et al. [39] proposes a dis-
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tributed attestation scheme where all nodes in the network can play the role of the verifier.

However, since all nodes are vulnerable to compromise, the attestation process no longer

rely on a single verifier. Instead, multiple neighbors of a node collaborate to attest it. In this

case, the attestation result also depends on how many devices an attacker has compromised.

The verifier knows the expected state of the prover. To attest that a device has not been

compromised a verifier must know what to expect from such device. In most approaches,

the verifier has complete knowledge of the software that should be running on the prover

device [43]. With this knowledge, the verifier can know the set of valid states a prover can

be. A different strategy is to issue each node with a certificate of its valid configuration [20].

This allows the verifier to attest a device without knowing its settings in detail.

The verifier knows the hardware architecture of the prover. The prover’s hardware plays a

major role in the construction of the attestation routine attest. It defines which operations

must be performed by the prover to demonstrate its integrity. For instance, attest can take

advantage of any tamper-resistant hardware available to perform its operations and protect

secret information. On the other hand, when no such hardware is available the attestation

routine has to be carefully designed. In such scenarios, attest is usually assumed to be

optimal so that an adversary cannot optimize it and execute further operations to hide

its modifications and still reply in a valid time. Therefore, the verifier must know the

microcontroller, clock speed, Instruction Set Architecture (ISA), and memory architecture

of the prover [44].

The adversary can reverse engineer the prover’s software and hardware. Commodity sensor

nodes [45, 46, 47] do not provide any tamper-resistant hardware since such nodes are

supposed to be cheap and small in size. So the node’s software is usually stored in unpro-

tected memory, which an attacker can read, reverse engineer, and modify. Therefore, the

attestation procedure cannot rely on secret information such as cryptographic keys that
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would be stored in unprotected memory. Needless to say, this assumption does not hold

for mechanisms developed targeting devices with tamper-resistant hardware.

The adversary has full control of the prover’s memory. In the absence of hardware controls to

protect the prover’s program memory, an adversary can modify the underlying software at

will. Consequently, the attacker can control the prover and all its communications and can

perform both passive and active attacks, such as eavesdropping, packet injection, replay, se-

lective forwarding, and many others. Some mechanisms explore the use of tamper-resistant

hardware, Read Only Memory (ROM), or even a Memory Protection Unit (MPU) to limit

the adversary control.

The adversary cannot modify the prover’s hardware. It is generally assumed that an attacker

cannot perform any hardware modification to the sensor node, such as attaching more

memory, altering memory access timing, or even changing the processor clock speed [44].

This assumption is usually justified in terms of the cost and practicality of the attack. Not

only would an attacker require physical access to the sensor to modify its hardware but

also the means and time to carry out the modification on a significant subset of the sensors

in the WSN. To remain consistent with this assumption one must also consider that in

such cases the attestation mechanism must similarly not rely on physical access to validate

the integrity of the node and must be done remotely. Note that attestation works as a first

line of defense, compelling the adversary to either modify individual sensors or deploy

new, already modified, sensors in the network. As observed by Park and Shin [33], other

techniques like intrusion detection systems [48, 49, 50] can be deployed in conjunction

with attestation to defend against such attacks.
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2.2 taxonomy

Over the last years, several attestation mechanisms have been proposed. Nevertheless, as

seen in Section 2.1, they make different, and sometimes conflicting, assumptions. Therefore,

they use intrinsically different ways of achieving their goals. The current literature most

commonly separates attestation into two categories: hardware- and software-based. However,

we do not believe this classification is always helpful as it hinders the comparison of

existing approaches in terms of the security properties achieved. There is more to the

process of attestation than the use or not of tamper-resistant hardware. In this section, we

review the main characteristics of existing approaches and propose a new taxonomy to

classify the different techniques proposed. This allows us to compare their advantages,

disadvantages, and vulnerabilities. Our proposed taxonomy, shown in Figure 3, identifies

eight major characteristics of attestation mechanisms, each of which can be realized in

different ways. We discuss them in more detail below.

2.2.1 Evidence Acquisition

Arguably, the biggest issue in attestation is the manner in which the verifier draws evidence

of the prover’s integrity and the extent to which this evidence can be trusted. Three main

different approaches can be identified in the literature: hardware-based, software-based, and

hybrid techniques.

Hardware-based techniques rely on tamper-resistant hardware such as the Trusted Plat-

form Module (TPM) [51] or Physical Unclonable Functions (PUFs) [52, 53]. For example,

Tan et al. [18] describes a TPM-enabled Remote Attestation Protocol (TRAP) for WSNs in

which all sensor nodes are equipped with TPMs responsible for securing preloaded secrets.

Prior to the network deployment, each node is preloaded with cryptographic keys to safely

communicate with neighboring nodes and the base station. When a node is powered on, it
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Figure 3: A taxonomy of attestation mechanisms.
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transfers control to its bootloader, which, differently from the application, cannot have its

code updated after node deployment. Therefore, the bootloader code is used as a first line

of defense. During the initialization phase, each node computes a hash of the bootloader

code, stores it into a TPM Platform Configuration Register (PCR) and uses it to seal the

cryptographic keys into the TPM. When the bootloader is running, it computes and stores

a hash of its own code. Consequently, if the bootloader code has been altered, the TPM

unseal command will fail, and the node will be unable to generate a valid attestation

response. The bootloader also computes and stores a hash of the application code into

the TPM. During attestation, the verifier, which can be any neighbor of the prover, uses

the TPM to generate a random number and encrypts it using the key shared with the

prover. It then sends the challenge to the prover and asks the base station for the value

of the prover’s hash code and its public key. Upon receiving the challenge, the prover

has to decrypt it, pass it as a nonce to the TPM, and construct a response based on the

TPM output. This response can only be correct if the application code has not been altered.

However, this approach only verifies the prover’s Mp. Therefore, it is vulnerable to ROP

attacks, which only need to alter the call stack to succeed.

Software-based techniques do not rely on secure hardware. Instead, the prover executes an

attestation routine that produces an allegedly unforgeable result. The work by Spinellis [31]

is one of the earliest on software-based attestation. The author proposes the use of reflection

to perform software integrity verification, and although the proposed approach is not

specifically designed for WSNs, its computational performance remains within the practical

limits of WSN nodes. In this approach, the verifier randomly chooses two overlapping

memory regions of the prover’s Mp, such that one region covers the initial memory

addresses and the other covers the last addresses, and they overlap somewhere in-between.

The prover then computes a cryptographic hash for each region. The verifier similarly

calculates the corresponding hash values, from its own copy of the memory being attested,

and compares them with the values received. Because the hash values cover the entire Mp

any modification to it will be detected. This, however, is based on the assumption that the
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attacker cannot interrupt the verification process and move the malware around, always

relocating it to somewhere out of the current hash computation range. Moreover, as the

hash computations are independent of one another, colliding nodes could compute them

separately and in parallel to avoid detection by timing differences. Spinellis also describes

an extension of this procedure where the prover also sends data regarding its processor

state, such as the contents of the CPU cache or a hardware performance counter. However,

as this information is not used in the hash computation, once an adversary eavesdrops a

valid response, it could simply extract this part and replay it.

We classify as hybrid techniques, approaches that do not depend on a tamper-resistant

hardware but do require specific hardware, such as ROM, to achieve attestation. For

example, Perito and Tsudik [54] present a secure code update mechanism for embedded

devices based on Proofs of Secure Erasure (PoSE). This procedure requires a small amount of

ROM to store the attestation routine and thus prevents an adversary from modifying it. The

verifier sends incompressible random noise large enough to completely fill the prover’s

writable memories. The prover, uses the code stored in ROM, to compute a Message

Authentication Code (MAC) over all data received, using the last bits as the key, and sends

it back to the verifier, which checks it. This procedure is also particularly targeted at secure

code updates as the “incompressible random noise” can be an encrypted form of the new

code for the node. Once the verifier has verified the MAC, it can then send to the prover

the key used for encryption, which the prover uses to decrypt the code and perform the

code update. The main disadvantage of this approach is the high communication overhead

it introduces. The need to transmit enough data to completely fill the prover’s writable

memories consumes significant amounts of time and energy. Furthermore, there is an

implicit assumption that nodes under attestation cannot collude.

2.2.1.1 Discussion

Tamper-resistant hardware works as a root of trust, and all the information and services it

provides are considered to be reliable thus facilitating the attestation procedure. However,
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a major drawback of hardware-based techniques is that they cannot be used on legacy

devices that do not have such hardware. Furthermore, using tamper-resistant hardware

increases both sensor cost and energy consumption making it inappropriate in a number

of scenarios. The assumption that tamper-resistant hardware is sufficient to engender trust

is also increasingly threatened as numerous types of attacks can still be explored by an

adversary [55]. Side-channel attacks such as timing [56], power [57], and electromagnetic

analysis [58] are some examples. More recently, both TPMs [59, 60, 61, 62, 63] and PUFs [64,

65, 66] have been the target of attacks. In contrast, software-based techniques do not rely on

tamper-resistant hardware. The benefits of these approaches are that they can be applied

to legacy devices and do not increase the node’s cost and size. Therefore, it is unsurprising

that the majority of attestation mechanisms proposed for WSNs are software-based. Hybrid

approaches share advantages and disadvantages of hardware- and software-based techniques.

For example, writing the attestation routine in ROM guarantees that it will not be modified

by an attacker. However, it is dependent on having a sufficient amount of space available

in the ROM, and this may not be the case with legacy devices. Furthermore, since physical

attacks are difficult and costly, the use of tamper-resistant hardware might be considered

overkill. For instance, a MPU can be used instead, to prevent illegitimate accesses to

secrets [67, 68].

There is much discussion on the feasibility of remote attestation using solely software-

based techniques. Before these schemes started being applied to WSNs — which theoreti-

cally facilitates their implementation, as sensor nodes have a much simpler architecture —

Kennell and Jamieson [43] proposed to use CPU execution side effects, such as TLB misses,

into a genuine test. The viability and reliability of using such side effects were then signifi-

cantly debated [69, 70, 71]. Castelluccia et al. [24] investigates the shortcomings of existing

approaches to embedded devices and presents two generic attacks, which have since been

refuted [72] and then reasserted [73]. They argue that it is very difficult to correctly design

attestation schemes with strict timing conditions because their implementation must be

highly optimized. They also claim that, contrary to some existing schemes, all memories of
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the prover must be attested and that doing so is quite challenging. Francillon et al. [26]

asserts that software-based techniques can be secure only if the prover and verifier commu-

nicate directly with no intermediate nodes, and thus cannot be used to perform attestation

across a network. However, Yang et al. [19] present a delay-resilient software-based attes-

tation mechanism capable of performing multi-hop attestation named Low-cost Remote

Memory Attestation (LRMA). LRMA demands the response packet to go through the

same path taken by the challenge. Relay nodes record the time when they receive each

packet and report it to the verifier which can then estimate the average single-hop delay

and detect compromised nodes by using a Bayesian classifier. Moreover, if the network is

using a Time Division Multiple Access (TDMA) based Medium Access Control (MAC) [74]

then the network delay is known. Furthermore, it is also possible to attest all network

nodes without using multi-hop attestation. For example, Seshadri et al. [42] propose an

expanding ring method, on which the base station starts by attesting nodes one hop away

from it and then asks these nodes to attest their neighbours. The verification then proceeds

in a hop-by-hop manner resembling an expanding ring. Another alternative is presented

by Yang et al. [39] where the authors propose a many-to-one attestation in which the prover’s

neighbors execute the verification procedure avoiding the need for multi-hop attestation.

2.2.2 Integrity Measurement

The internal state of a prover can comprehend its program memory, data memory, registers,

MMIO, and even external memories. Memories can be further divided into a static part

whose contents never change during normal software execution, and a dynamic part whose

contents may be inserted, removed or modified.

Static integrity measurement approaches verify only the static part of a prover’s memory.

For example, in the lightweight attestation scheme for WSNs presented by Kiyomoto and

Miyake [17] all nodes have their memory divided into two parts: a program area MP for

storing program code and data, and another area MA for attestation. Both MP and MA are
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divided in what the authors named registers (but without discussing the size of a register —

it thus could be a single memory address or a block of addresses). If the program code

is not large enough to fill MP further random data is used in order to fill it. During the

initialization phase, a sensor node randomly selects a register from one of its neighbors,

computes a hash value for it, and stores the result in MA. The node then repeats this

process, randomly selecting different registers from different neighbors until it fills MA.

During attestation, a node randomly chooses a register either from MP or MA. If it selects

a register from MP, then the node gets the corresponding MA register stored in one of

its neighbors. Otherwise, if it selects a register from MA, then it gets the corresponding

MP register stored in one of its neighbors. In both cases, the hash is recalculated from the

MP register, and the result is compared with the MA register. If the values do not match,

one or both nodes have been compromised. However, there is no way to find out which

node has been compromised and, therefore, both nodes must terminate their operation.

A terminated node stops communicating with the network to avoid the propagation of

malicious code. It is, however, possible for an adversary that successfully compromises a

node to modify the code in such a way that it never terminates, even if it does not pass

attestation. Furthermore, the attestation verifies only one register at a time, so it has poor

memory coverage and, for example, an adversary that modifies only one register has a

good chance of remaining undetected.

Dynamic integrity measurement approaches check run-time properties of the software

executing on the prover where such properties represent the behavior that must be satisfied

during the normal execution of a program. For instance, the stack frames are arranged

as a linked list, where the base pointer of a frame points to the base pointer of the

previous frame. Remote Dynamic Attestation System (ReDAS) [75] is an example of such

an approach. It automatically extracts the properties from each application’s source code

and binary in an offline phase. Then, during the program execution, any integrity violation

evidence is recorded. To prevent an adversary from modifying the recorded evidence, every

prover is equipped with a TPM. Therefore, when a violation is detected it is immediately
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sealed into the TPM. Then, when challenged by a verifier, all the prover has to do is send

the sealed information. However, ReDAS only checks a subset of all possible dynamic

system properties and measures the system integrity only at system calls. Therefore, an

adversary can still succeed if it only changes properties not covered by ReDAS, or if it

hides modifications between system calls.

2.2.2.1 Discussion

To check if a device has been compromised, the verifier must know in advance the set of

valid states for the device. Since contents in static memory regions do not change during

normal software execution, they provide a straightforward way to attest a device. The

verifier challenges the prover to calculate a checksum over these memory regions and come

up with a valid response, which turns out to be difficult to achieve unless these memory

regions have not been modified. Difficult, but not impossible. As we have seen, there are

numerous methods an adversary may use to circumvent attestation, e.g., forgery, memory

copy, and collusion attacks. If the attestation process is not carefully implemented under

realistic assumptions, the adversary may succeed. Therefore, even if a device comes up

with a valid response, it does not mean that it has not been compromised. Static integrity

measurement approaches are eminently vulnerable to ROP attacks since these attacks

use the already existing code without altering it. Just as important as verifying that the

code residing in static memory regions has not been modified, is to verify that the code is

being executed as it was meant to be. This is the aim of dynamic integrity measurement

approaches. However, due to the diversity and dynamicity of run-time properties, it is not

an easy task to identify the known good states of dynamic objects [75].
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2.2.3 Timing

In any practical implementation of an attestation mechanism, the verifier will only wait for

a limited amount of time for a prover’s response after sending a challenge. While some

proposals have a strict timing condition, others adopt a more loose approach.

SoftWare-based ATTestation (SWATT) [44] is the first attestation mechanism designed

specifically for embedded devices. It relies on strict timing of challenges and responses to

detect compromised provers. The verifier sends the prover a randomly generated nonce

that is used as the seed to the prover’s Pseudo-Random Number Generator (PRNG). The

prover then performs a cell-based pseudo-random memory traversal, iteratively reading

memory words and computing a checksum of its program memory contents. Therefore,

an adversary cannot predict the order of memory accesses, and if the memory has been

altered, the attacker has to modify the attestation routine and insert statements checking

whether the current address was modified. If that is the case, then, to get the right response,

the adversary has to redirect the memory access to the memory location where the original

value is. The authors’ main assumption is that the attestation routine is constructed in a

time-optimal way so that any modifications to it would result in a detectable increase in

computation time which the verifier would detect. So, the verifier detects compromised

provers either because the returned checksum is wrong, or because the response is delayed.

However, Castelluccia et al. [24] presents an attack that is faster than the one the authors of

SWATT considered. Furthermore, another possibility is to overclock the prover’s CPU, such

that, even if more instructions have to be executed, the total amount of time taken would

still be within the limits. Although, this would be considered a hardware modification

attack, and thus, assumed not to occur. Partly to address this, Kong et al. [76] proposed to

incorporate the outputs of a PUF into the checksum computation to overcome overclocking,

as well as impersonation attacks.

Choi et al. [77] propose a proactive code verification protocol for WSNs with loose timing

conditions. In essence, the main idea is to fill the prover’s memory so that an adversary
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has no place to hide its malicious code. The base station adopts the role of the verifier and

is assumed to share a pairwise key with every node in the network. The prover receives a

nonce from the base station and uses it as the seed to a Pseudo-random Function (PRF)

whose outputs are used to fill empty memory regions. Afterwards, the prover calculates a

hash over its memory and sends the result to the base station for verification. The issue

with this approach is that the random contents used to fill the memory are being generated

by a PRF executing on the prover. So once a node is compromised, the attacker has access

to the PRF and can use it to calculate the hash on-the-fly, without ever storing its outputs

in memory. Even if this takes more time than the normal protocol execution, the proposed

scheme does not strictly control the execution time of the attestation routine, and the

attack would pass undetected. A second issue is the use of cryptographic keys with no

tamper-resistant hardware.

2.2.3.1 Discussion

Theoretically, the larger the time limit for a prover to respond to a challenge, the higher

the number of attacks an adversary can explore. Whether an approach relies on accurate

measurements of the attestation routine execution time depends on the system model and

the assumptions made.

Approaches with strict timing conditions typically do not rely on tamper-resistant

hardware and assume a time-optimal implementation of the attestation routine. Otherwise,

an adversary could develop a faster routine and use the time saved to forge a valid

result. However, the work by Castelluccia et al. [24] highlights three limitations of these

approaches. Firstly, it is very difficult to correctly design a time-optimal attestation routine

since its implementation must be small and simple. This precludes the use of cryptographic

functions, which are complex and time consuming, and favors the use of simple instructions,

such as add and xor, which may achieve poor security. Secondly, to achieve maximum

speed, these routines are implemented in assembly, which is highly error-prone. Thirdly,

proving the run-time optimality, for both the attestation routine and best possible attack,
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remains an open research problem. Another issue with these approaches is that they need

to assume a maximum network round-trip time (RTT) so that they can define a timeout

which allows all honest provers to reply in time. However, sensor nodes communicate

over an unreliable wireless medium and can suffer from unpredictable faults and external

interference. On the other hand, approaches that do not depend on accurate measurements

of the execution time either rely on tamper-resistant hardware or make assumptions that

limit the adversary capabilities. One of the assumptions made is that if all memories of the

prover are filled, then an adversary has no space to allocate malware and still manage to

compute a valid response. However, these assumptions do not always hold. For example,

an adversary might compress the existing code in memory gaining enough space for the

malware, or colluding nodes might install the malware in different memory locations, such

that when they communicate they can recover the contents that were locally overwritten.

2.2.4 Memory Traversal

During attestation, a prover uses its memory contents as evidence of its trustworthiness.

The prover has essentially two different ways to traverse its memory: sequentially or pseudo-

randomly where the later can be further classified into cell-based or block-based.

Sequential memory traversal approaches go through a prover’s memory in an iterative

manner from start to end. For example, Park and Shin [33] present a soft tamper-proofing

scheme for WSNs based on Program Integrity Verification (PIV). The network is divided

into clusters, operated by cluster heads, named PIV Servers (PIVSs), which have better

computation and storage capabilities than normal sensors. PIVSs work as verifiers and

for each attestation round they generate a different attestation routine, PIV Code (PIVC),

which is executed by the prover. By using Randomized Hash Functions (RHFs), PIVSs

randomly encode hash computation algorithms for each PIVC created. To protect sensors

from adversaries impersonating PIVSs, there are multiple Authentication Servers (AS)

deployed over the network. An AS works as a Trusted Third Party (TTP) allowing sensor
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nodes to confirm the authenticity of PIVSs and, consequently, the PIVC. The authors do

not discuss the AS in further details stating they can either share a symmetric key with

nodes or use public-key cryptography; though again the nodes are not assumed and

are not likely to possess tamper-resistant hardware to secure cryptographic keys. Prior

to deployment, a nodes’ program memory is partitioned into multiple blocks. For each

block, a digest is calculated and stored in a database accessible by all PIVSs. The digests

are then classified into three categories: common to all nodes, common to a group of

nodes, or unique to a specific node. Therefore, the number of digests to be stored can

be greatly reduced. Before gaining access to the network, a node must prove its integrity.

Thus, during the initialization phase all nodes ask to be verified. The RHF generates

the same result if it takes either the program block or its corresponding digest as input.

Consequently, both the prover and the PIVS are able to obtain the same result. Starting

from the first address of the program memory towards the last, a checksum is computed

for each memory block and a final checksum over these checksums represents the entire

memory. The authors propose to initialize the data memory with random values that

can neither be predicted nor compressed. However, an adversary could still compress the

original software, residing at Mp, and calculate the digest for the compressed code blocks

using on-the-fly decompression techniques.

Secure Code Update By Attestation (SCUBA) [42] is a mechanism for the detection and

recovery of compromised nodes in WSNs. It relies on Indisputable Code Execution (ICE),

which guarantees untampered code execution regardless of whether the node has been

compromised or not. The approach requires each sensor node to have enough space in

ROM to store its own ID and the base station’s public key. Therefore, an adversary cannot

modify these values even after it compromises a node. The approach is similar to SWATT

and traverses the memory in a cell-based pseudo-random manner, however, it does not

verify the entire program memory, and it extends the checksum computation to include

dynamic data. Differently from Spinellis, ICE takes the CPU state — Program Counter

(PC), Data Pointer (DP), and Status Register (SR) — as input to calculate the checksum.
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To secure its untampered execution, the attestation routine disables all interrupts. Then

it computes a checksum over the memory regions containing itself, the SCUBA protocol

executable, the node ID and base station’s public key, as well as the CPU state. It sends the

result to the base station and starts the SCUBA executable, with interrupts still disabled,

guaranteeing it executes untampered. As with SWATT, the attestation routine is constructed

in such a way that the checksum will either be incorrect or its computation will be notably

longer if the routine is modified. In such cases, the base station can assume the node has

been compromised and blacklist it. Otherwise, the SCUBA protocol can further verify

the node, inspecting and repairing the rest of its memory. A downside of the proposed

scheme is that the PC may not be accessible depending on the platform. Furthermore,

Castelluccia et al. [24] describe an attack that overcomes ICE’s checksum computation

and is able to execute arbitrary code without being detected. The attack takes advantage

of the fact that the additions performed by the ICE checksum function discard the carry.

Therefore, changes in the most significant bit (MSB) may not alter the checksum result.

This allows an adversary to store a copy of the ICE function in a different memory position,

such that its address only differs from the original location in its MSBs.

2.2.4.1 Discussion

Sequential memory traversal approaches are simple to implement and efficient — they

run in linear time according to the memory size. Furthermore, they provide complete

coverage over the memory regions being verified, passing through each memory address

a single time. Nevertheless, these advantages come at the cost of a disadvantage, which

is predictability. The fact that memory addresses are checked only a single time and in a

predictable order makes it easier for adversaries to counterfeit attestation. For instance,

an adversary can move memory contents around to avoid detection. When verification

starts, malware can be moved to the end of the memory and right after the verification

passes through its original position the malware can be moved back. Another possibility is

for two colluding nodes to install the malware in different memory locations, and when
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one of them is under attestation, it asks the other for the contents it has overwritten. In

contrast, pseudo-random approaches, are intrinsically unpredictable, and not victims of the

same attacks. However, they are less efficient and provide only a probabilistic guarantee of

memory coverage. To ensure, with high probability, that each memory address is accessed

at least once, these schemes rely on the result of the Coupon Collector’s Problem [78],

which states that for a memory of size n it is necessary to perform O(n ln n) memory reads.

Consequently, some memory addresses end up being accessed multiple times introducing

unnecessary overhead. To reduce this overhead, Yang et al. [39] proposed to traverse the

memory in a block by block manner. Rather than accessing the memory one address at a

time, block-based approaches access blocks of addresses and perform xor operations within

blocks. For a block size b, O( n ln n
b ) iterations are necessary to cover each memory address

at least once. It is interesting to see that when b = 1 the scheme functions as cell-based

approaches, and when b = n it works as a sequential traversal. Choosing the size of b

is, therefore, a tradeoff between performance and security. Furthermore, as observed by

Armknecht et al. [29], if the block size is determined prior to attestation, an adversary

can perform collision attacks against block-based schemes. These are forgery attacks that

work by altering addresses inside a block in such a way that modifications neutralize one

another.

2.2.5 Attestation Routine

Most existing approaches have their attestation routine embedded in the prover’s memory

prior to the network’s deployment. However, a verifier may also generate and send the

prover different routines for each attestation round.

For example, Shaneck et al. [79] propose a remote software-based attestation framework

were the attestation routine is generated on-the-fly. The base station plays the role of

the verifier and is assumed to be within communication range of all network nodes.

Furthermore, it shares a symmetric key with each node to secure communication. At each
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attestation round the base station generates a new attestation routine and sends it to the

prover. It waits for a maximum time that comprises the time to send and receive a message,

the attestation routine execution time, and the expected network delay. The procedure

utilizes techniques such as randomization, encryption, obfuscation, and self-modifying

code to prevent an adversary from avoiding detection. They propose to use random keys

to encrypt the entire attestation routine and send a corresponding decryption routine

together with the code. This routine is also responsible for discovering the key, which

is located somewhere in the prover’s memory, hidden through opaque predicates [80].

The attestation routine has three main components: seed calculation, memory reads, and

hash computation. The first component is responsible for initializing the PRNG, which

determines the order of memory accesses. So it is in the interest of an adversary not to

modify this part, but to infer the seed value. However, the seed computation also uses

opaque predicates. The other two components are part of a loop, that reads memory

addresses and use their contents to compute the hash. As with SWATT, it is necessary to

iterate through the loop several times to cover the program memory. The second component

is the one an adversary would attempt to modify so that it could redirect memory reads.

To avoid such modifications this component has several junk instructions, which appear

to be reachable due to opaque predicates, and it self-modifies its code relocating the read

instruction at each iteration. After the hash calculation is complete, the result is sent to

the base station. The authors have neither implemented nor evaluated their proposal, so

it is difficult to discuss its security and even its feasibility. One difficulty to implement

this proposal is that several commodity sensor nodes store the executable code in flash

memories programmable only by pages. Another issue is the use of cryptographic keys to

secure communication, which, once again, is made without considering that commodity

nodes do not have tamper-resistant hardware to protect them from attackers.
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2.2.5.1 Discussion

Approaches that embed the attestation routine in the prover’s memory provide security by

design. The attestation routine is conceived to be secure, such that a prover will fail, with

high probability, to provide a valid response if either it changes the routine or the memory

contents under verification. On the other hand, approaches that generate the attestation

routine on-the-fly provide security through obscurity. Since a new routine is generated for

each attestation round, attackers cannot predict what instructions should be executed and

even less the outcome. The attestation routine may actually have vulnerabilities, but since

their implementation is hidden from opponents, these vulnerabilities are unlikely to be

explored in a timely manner.

2.2.6 Program Memory

It is possible that the program of a sensor node does not occupy its entire program memory,

thus leaving empty spaces. An adversary can, therefore, take advantage of this space to

store data used to overcome attestation. To avoid this, some approaches propose to fill the

empty space with incompressible random noise.

For example, AbuHmed et al. [34] introduce two software-based remote code attestation

procedures for WSNs. The authors also consider a scenario where the base station acts as

verifier and shares cryptographic keys with sensor nodes without any tamper-resistant

hardware. In this context they present two techniques, one pre- and one post-deployment,

to fill the empty memory space of sensor nodes with incompressible random noise. In the

pre-deployment approach, the program memory of each node is filled using a seed and the

verifier keeps a register of the seed together with the corresponding node ID. Then, during

attestation time, the verifier can generate a copy of the node’s memory to compute the

checksum and compare the result with the one received. In the post-deployment approach,

a node uses some dynamic data gathered from the environment as the seed to generate
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the noise and fill its memory. After that, the sensor transmits the seed to the verifier

and deletes it from its memory. Consequently, an adversary who compromises the node

afterwards has no space to store its malicious code, and if it does overwrite the memory,

it cannot regenerate the original contents without the seed. The authors also propose

two block-based memory traversal algorithms with variable block sizes, in contrast to

Yang et al. [39] where the size is always the same. In the first algorithm, the verifier defines

the size of the block together with the challenge. In the second algorithm, a dynamic block

size that changes during the checksum computation is used. However, both schemes are

still vulnerable to compression attacks, as an adversary can compress the original software

and calculate the digest for the compressed code blocks using on-the-fly decompression

techniques.

2.2.6.1 Discussion

Physical memory contents are typically of low entropy and thus compressible [81]. As a

result, even if empty spaces are filled with incompressible random noise it may still be

possible for an attacker to compress the original program code and gain enough space

for its malicious code [24]. To defend against this attack, Vetter and Westhoff [16] present

a code attestation mechanism with compressed instruction code. Each sensor node is

uploaded with a compressed code image, and its remaining program memory is filled

with incompressible random noise. The code image is divided into blocks of equal length

which are individually compressed. However, after compression these blocks may not have

the same size. Therefore, the program memory is divided into two sections, one to store

the compressed code blocks and another one, named Line Address Table (LAT), to store

the block’s offsets. In order to execute the compressed code, they incorporate a hardware

extension: a dedicated microcontroller uses the LAT section to decompress code blocks, and

a cache, maintained within the node’s RAM, is used to store the decompressed code block

under execution. They implemented the same attestation routine used by SWATT [44],

however, they do not have the same strict timing conditions since the memory is completely
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full. Nonetheless, the data memory is not verified, and an attacker can perform ROP attacks

or even modify the decompressed code held in the cache to compromise a node. Besides,

the need for a dedicated microcontroller to decompress code blocks is a strong limiting

factor for the applicability of this scheme.

2.2.7 Data Memory

Depending on the prover’s memory architecture, the data and program memory physical

addresses can either be shared with (von Neumann architecture) or separated from (Har-

vard architecture) one another. In the latter case, it is common for the size of the program

memory to be much bigger than the data memory. Therefore, an attacker exploring the data

memory has only a limited amount of space [79]. Also, in the Harvard architecture, the

contents of the data memory are not executable. For these reasons, some approaches do not

verify the data memory. However, attacks exploring the data memory have already been

demonstrated. For example, the work by Castelluccia et al. [24] describes a rootkit-based

attack that hides malicious code in the data memory during attestation.

Some dynamic attestation mechanisms try to verify the data memory. For example

Dataguard [32] is a software attestation scheme for dynamic data integrity based on data

boundary integrity. Each node has a unique seed, which is erased after initialization, that

is used to insert data guards, similar to canary words [82], around data objects. When

challenged by a verifier the prover sends a response based on the values of all data guards.

Therefore, if an adversary overwrites a data guard, by performing a buffer overflow

attack, for example, it will not be able to recover the original data guard value since it

no longer has the seed. However, this scheme also has its own limitations. Firstly, the

method is vulnerable to attacks that do not modify data guards. Secondly, it only provides

a coarse-grained data protection where each memory block is treated as a unique object.

Consequently, the scheme does not protect individual array elements.
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Other approaches, such as the works of Park and Shin [33] and Perito and Tsudik [54]

overwrite all contents of the data memory, erasing any malicious data in the process.

2.2.7.1 Discussion

Approaches that do not verify the data memory are inherently vulnerable to ROP attacks.

However, existing approaches that verify the data memory are not completely safe either.

Due to the difficulty to predict the behaviour of dynamic data, existing approaches only

partially cover the data memory. While erasing all the data memory is the safer approach, it

is not really attesting the memory contents. Furthermore, together with any malicious data,

these approaches also eliminate all data a node has worked to achieve prior to attestation.

2.2.8 Interaction Pattern

Most existing approaches interact in a one-to-one pattern, as depicted in Figure 1, where for

each attestation round there is one verifier and one prover. However, this is not the only

possible way to perform attestation.

For example, Jin et al. [15] propose an Unpredictable Software-based Attestation Solu-

tion (USAS) to detect compromised nodes in mobile WSNs that uses a one-to-many in-

teraction pattern by creating dynamic attestation chains. Each chain comprises a single

Initiator (I-node) and several Follower nodes (F-nodes). In each attestation round the base

station, acting as the verifier, challenges a randomly selected I-node. The challenge consists

of a random number, which is used as input for the attestation routine, and authentication

messages for the I-node and the F-nodes. When challenged, the I-node runs the attestation

routine and uses its output to challenge the F-nodes, which then execute the attestation

routine and send the result back to the base station. Prior to the network deployment,

each node has its program memory filled with pseudo-random noise and the base station

keeps a copy of the seeds used for all nodes. The base station then compares the results

from the F-nodes with the expected ones to detect compromised nodes. As long as one
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F-node result is valid the I-node can be considered genuine as well. However, if all F-nodes

return invalid results, nothing can be said about all attested nodes. In this case, either

all F-nodes have been compromised, or the I-node has been. Performing all attestation

chain, which is not a cheap operation, and not being able to affirm anything is a significant

limitation of this scheme. Another limitation of this proposal is that, even though it creates

an attestation chain, it attests only sensors that can directly communicate with the base

station to avoid intermediate nodes tampering with the messages.

Another possibility is to orchestrate a distributed attestation, in a many-to-one inter-

action pattern, where the neighbors of a node work together to attest it. For example,

Yang et al. [39] present two distributed software-based attestation schemes where sensor

nodes collaborate with each other to attest the integrity of their neighbors. The main

difference from previous approaches is that only regular nodes are involved, and this

approach does not require trusted verifiers. The authors propose to fill the empty spaces

in each sensor’s program memory with pseudo-random numbers, but differently from

Choi et al. [77], this is done prior to node deployment. For each node, a different seed

is used for generating the pseudo-random numbers. After deployment, every sensor dis-

covers and establishes a pairwise key with each of its neighbors — again, cryptographic

keys are used with no protection. In the first proposed scheme, a node splits its seed into

multiple shares, sends a separate share to each neighbor, and then deletes the seed from

memory. An attestation is triggered when more than half of a node’s neighbors detect

its abnormal behavior. In this case, all neighbors elect a cluster head, which is different

for each attestation round. The cluster head challenges the node, with a random number,

and collects the seed shares from other neighbors to recover the seed. Then it locally

computes the expected result and compares it with the response from the challenged node.

The authors propose a new method to randomly traverse the program memory: instead

of reading one memory word at a time, as was done in SWATT, they read a block of

memory addresses and perform xor operations within blocks at each iteration. By using an

appropriate block size, they are able to reduce the total amount of iterations while still
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covering the whole memory. In the second scheme, every node is also preloaded with

tuples of challenge and response to its own Mp. Instead of sending shares of the seed, a

node sends a tuple to each of its neighbors and then deletes all the tuples. When attestation

is triggered, each neighbor attests the node sequentially using the challenge and response

from the received tuple. A node is considered to be compromised if it does not pass the

majority of attestations. A limitation of these approaches is that they require a minimum

network density to work. If a node does not have enough neighbors, then it cannot be

properly attested. Furthermore, both schemes incur considerable communication overhead.

The first is more vulnerable to compromised nodes as they can send forged shares of the

seed, or even worse, be elected cluster head. In the second scheme, an adversary would

have to compromise more than half of neighboring nodes to succeed. However, this latter

scheme requires the prover to execute the attestation routine once for each of its neighbors,

which is both time and energy consuming.

2.2.8.1 Discussion

Simplicity is the main advantage of the one-to-one interaction pattern. It allows the verifier

to target each node of the network individually. However, if several nodes need to be

attested, the overall time increases linearly with the number of nodes. Attesting nodes in a

one-to-many pattern reduces the overall computation time by allowing multiple nodes to

execute the attestation routine in parallel. However, if an attestation chain is used, as in

the works of Jin et al. [15] and Asokan et al. [20], a compromised node may discredit the

entire chain. An important characteristic of both one-to-one and one-to-many approaches

is that the verifier must be a trusted entity. This has significant implications because some

proposed attestation mechanisms require the prover to be in the verifier’s communication

range. Therefore, a mobile verifier or multiple verifiers scattered across the network are

necessary. Moreover, a verifier becomes a single point of failure, if only a single one exists.

The main feature of the many-to-one pattern is that it can be performed without the use of

trusted verifiers. This has both advantages and disadvantages. The upside is that it allows
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several nodes to be attested at the same time in a distributed manner without having

a single point of failure. Besides, it closes the gap between detection of misbehaviour

and attestation, since neighboring nodes are the direct observers of a compromised node.

The downside is that it requires a minimum network density and is more vulnerable to

compromised nodes as they can not only attempt to avoid detection but can also mislead

the outcome of other nodes’ attestation.

2.2.9 Summary

Having examined all characteristics and their instances, one can realize that there is no

definitive attestation mechanism. Each approach has its own advantages and disadvantages.

Choosing the best solution for a specific scenario depends on a series of factors, such as

the assumptions made about the adversary, the environment in which the nodes are going

to be deployed, how the sensors are going to be placed across it, and the underlying nodes

hardware. Nevertheless, the discussion held in this section helps to clarify the tradeoffs

between different techniques and can serve as a guideline to anyone choosing an existing

attestation mechanism or designing a new one.

Table 2 maps, in chronological order, a representative number of attestation mechanisms

to the taxonomy illustrated in Figure 3. To the best of our knowledge, there are no

existing mechanisms that would not fit on the proposed taxonomy. Furthermore, we

believe our taxonomy still holds outside the WSNs scenario. One important note is that we

classify the mechanisms as they are first described in their original manuscripts, without

considering proposed extensions. The main observation that we make is that even after

compression and ROP attacks have been demonstrated [24] new static approaches were

proposed [15, 16, 17, 18, 19, 20, 21] that completely ignored or did not provide sufficient

protection against such attacks. We believe that an attestation mechanism should reflect

the actual running system, and not just some static part of the prover’s memory.
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2.3 open research problems

Existing attestation mechanisms are far from perfect, with much room for improvement. In

this section, we examine open research problems and give directions on how to undertake

them. We focus on four main topics, which we believe are of great importance and can

receive further attention.

2.3.1 Overoptimistic Assumptions

Problems do not cease to exist just because they were assumed not to occur. Many

attestation mechanisms rely on strong suppositions that may not hold in practice which

may hinder their deployment. Moreover, this creates a gap between assumptions made and

real adversary capabilities that may lead to security vulnerabilities. For instance, schemes

such as SWATT [44] and SCUBA [42] assume a time-optimal attestation routine and use

a strict timing condition which relies on this premise. Despite recent advances in code

optimization [85, 86, 87], proving code optimality is still an open problem. In this case, one

can draw a parallel with cryptosystems which rely on unproven assumptions, e.g. the RSA

problem [88]. By making the algorithm public, under the scrutiny of a large community,

one can have a higher confidence in the security achieved.

An additional assumption done by software-based attestation mechanisms with strict

timing conditions is that using the maximum known network RTT to define the attestation

timeout allows all honest devices to reply in time. While this assumption usually holds

in controlled laboratory environments, it is typically untrue in real deployments and

particularly so in the context of WSNs where many devices communicate over an intrinsi-

cally unreliable wireless medium and can suffer from issues such as external interference.

Furthermore, the higher the attestation timeout, the higher the number of computations

the untrusted device has to perform, consuming extra time and energy and restraining
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it from performing its primary tasks. Therefore, a mechanism that takes into account the

actual network conditions is needed.

Other approaches assume that filling the empty spaces of a prover’s program memory

leaves the adversary with no space to store its malicious code without being detected. Yet,

only two of these approaches [54, 16] are capable of defending against code compression

attacks; and they have their own limitations. Perito and Tsudik [54] require all the prover’s

writable memories to be overwritten while Vetter and Westhoff [16] require a dedicated

microcontroller.

Another type of attack that most approaches assume does not happen or impose

restrictions to their occurrence are collusion attacks. Although it is possible to imagine

solutions to these attacks, such as jamming the prover or having its neighbors monitor

its communication during attestation, the feasibility, effectiveness, and impact of these

solutions have not been analysed.

Several software-based proposals assume a secure and authentic communication channel

between prover and verifier through the use of cryptographic keys defined prior to network

deployment. However, the nodes used in these approaches do not have the necessary

hardware to protect these keys; and, oddly enough, the absence of such hardware is the

very motivation behind their development. Cryptographic keys can, however, be used on

commodity sensor nodes when determined at run-time. For example, Software Attestation

for Key Establishment (SAKE) [83] is a protocol for establishing shared keys between two

neighbouring nodes without assuming prior authentic or secret information. However,

SAKE is based on ICE, the same primitive used by SCUBA, which relies on strict time

measurements. More recently, Feng et al. [23] proposed a lightweight Attestation and

Authentication of Things (AAoT) scheme that uses the microcontroller SRAM as a PUF

to provide authentication without requiring any hardware changes. Another alternative

solution to authenticate sensor nodes is the use of radio frequency fingerprint techniques

which enable the identification of individual devices by the unique characteristics of their

radio transmitter [89, 90, 91].
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The vast majority of attestation mechanisms do not pay much attention to the prover’s

security. They are developed under the assumption that the verifier can always be trusted.

However, an adversary can take advantage of this and impersonate the verifier to perform

DoS attacks targeting honest devices. Brasser et al. [92] investigate attacks and counter-

measures under this context. They describe three attacks an adversary may explore: replay,

reorder and delay of attestation challenges. The countermeasures involve the use of a secret

key for authenticating the verifier and the use of either a challenge counter or timestamp

(which requires a synchronized clock between prover and verifier), all of which need

hardware protection.

While it is impractical for an adversary to launch a large scale attack that requires physi-

cal access to compromise a sensor node, it may be enough for an adversary to compromise

just a few selected nodes in this manner. Nevertheless, the vast majority of software-

based and hybrid approaches do not take into account physical attacks. As an alternative,

Ibrahim et al. [21] proposed Device Attestation Resilient to Physical Attacks (DARPA).

Assuming that to perform a physical attack an adversary has to capture and temporarily

disable the target sensor for a perceptible amount of time; DARPA requires all nodes to

periodically broadcast a message that serves to prove the node is active. All nodes log

these messages which can then be collected by the verifier during attestation. While the

scheme may suffer from false positives because of device or network failures, it is a first

step towards detecting physical attacks.

2.3.2 Effectiveness

WSNs are usually constituted of resource constrained nodes that have limited energy, low

processing power, and little storage space. In many application scenarios, the network

needs to operate unattended for long periods of time, so battery depletion is crucial. So

whilst ensuring the integrity of the sensor network is important, it is equally important that

security mechanisms should not have a high impact on the system performance. Attestation
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procedures typically degrade both network throughput and the node’s battery lifetime.

Furthermore, attestation only allows to ascertain the state of the prover at a particular

point in time. How often should then attestation be performed to provide assurance of the

network’s integrity whilst not depleting resources?

Chen et al. [93] present a model to analyse the frequency with which code attestation

should be performed to maximize sensors lifetime while effectively detecting compromised

nodes. However, their model considers solely designs in which attestation is invoked

probabilistically and ignores aspects such as using network monitoring information to

decide when to trigger attestation next. Their model leads then to the rather straightforward

conclusion that the frequency at which attestation must be performed depends directly on

the rate at which nodes can be compromised (compromise rate). In practice, the compromise

rate is unknown a priori and is highly dependent on many different factors such as the

network deployment, types of attack, and value and timeliness of the information sensed

by the network. For example, it has been shown that malicious packets can propagate

quickly and compromise entire networks in short periods of time [8, 94]. However, in their

analysis, Chen et al. ignore such aspects and assume a compromise rate in the range of

0.0058 to 0.0072 nodes per hour, corresponding to a node being compromised once every

five to eight days.

Further analysis is needed to determine not only when to perform attestation, but also

which devices to attest and what to do when a compromised node is detected. For example,

nodes closer to the base station may have a higher value as targets since they also forward

much of the data from peripheral nodes to the base station and vice-versa. Such aspects

should be taken into account, e.g., through different weights, when deciding which nodes

to attest. Furthermore, a compromised node can easily broadcast malicious packets to its

neighbors. So attesting the neighbours of a compromised sensor would be an effective way

of reducing the adversary compromise rate and limit diffusion.
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2.3.3 Time of Check to Time of Use

Perhaps the biggest issue when using attestation in WSNs is the gap between the Time

of Check to Time of Use (TOCTOU) [95]. Attesting a node occurs at a particular point

in time and does not guarantee that the node has not been temporarily compromised

before, or that it will not be compromised right after attestation. An adversary can perform

a TOCTOU attack as long as it has some unmeasured location to hide its malicious

data before attestation starts and is able to reinstall it after attestation ends [96]. In

fact, Castelluccia et al. [24] present a rootkit-based attack that does exactly this. The

difficulty arises from attesting all the memories of a prover. Some dynamic attestation

approaches [75, 32] try to close the TOCTOU gap by checking run-time properties of the

software execution. However, it is not always possible to predict the behaviour of dynamic

data, and these approaches end up covering only a subset of the required properties.

ICE [42] attempts to guarantee an untampered execution environment to ensure that a

piece of code runs unmodified. The limitation of this approach is that it applies solely

to self-contained code that does not invoke other software on the prover and executes

with interrupts disabled. Another approach to reduce the TOCTOU gap could be the

integration of attestation and Control Flow Integrity (CFI) [97] techniques. Protecting the

control flow of a program prevents adversaries from arbitrarily altering its execution. CFI

techniques achieve this protection by embedding control code in the original application

program. Attesting that both control and application code have not been altered is a further

indication that the original program is being executed as it was supposed to. Ferguson

and Gu [98] implement control flow protection in the context of WSNs; however, the

described scheme has not been combined with any attestation mechanism. Control-Flow

ATtestation (C-FLAT) [84] is a similar, but different, approach. Instead of embedding code

to protect the authentic application flow, it embeds code to monitor its execution path.

This allows the verifier to attest the prover’s run-time behaviour, detecting any control
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flow diversion. Nonetheless, it is important to note, that CFI is not infallible [99] and does

not ensure data flow security [100, 101, 102].

Significant effort has been dedicated recently to approaches capable of defending against

ROP attacks. These broadly fall into two categories: one, is the already mentioned CFI, while

the other is software diversification [103]. However, up to now, all proposed mechanisms

can be subverted in some way. Therefore, ideas continue to evolve, and new approaches

continue to emerge. A promising countermeasure to such attacks is the use of execute-only

memory [104, 105], which allows marking pieces of memory as executable but not readable.

However, in order to attest a device, the attestation routine needs to read the code it

executes, and, thus far, no approach integrates the two techniques.

2.3.4 Scalability

To attest a device, a verifier must know its expected internal state and hardware architecture.

In a simple WSN scenario, all the nodes may be executing the same application on the

same hardware platform, making this reasonably easy. However, even in such cases,

scalability can become an issue of effectiveness since the time and energy required to

attest all nodes can be prohibitive depending on the network size. Furthermore, in many

other situations, the network is typically heterogeneous and comprises different types of

sensors, or different cluster nodes execute different applications. In more extreme cases,

the network may contain many sensors from distinct vendors executing several different

applications. How can one then store and manage the information necessary to attest these

devices in a scalable manner? The approach proposed by Park and Shin [33] partitions

the application code into multiple blocks, calculates a digest for each block and classifies

the block according to whether it belongs to all, a group, or a unique node. Although this

method allows to significantly reduce the amount of information needed, it also has its own

security vulnerabilities. For instance, an adversary may compute the prover’s digests before

modifying its memory and then only keep a copy of the digests to pass attestation. Another
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approach is to have similar devices, which execute the same application, attesting each

other in a distributed fashion. However, to be viable, this approach requires a minimum

density of similar devices scattered across the network.

Software updates further complicate the issue. The slightest change in the software a

prover executes can impact the attestation outcome. Therefore, additional information

needs to be maintained to know which devices are running which versions. Sadeghi

and Stble [106] propose to attest a device based on the properties that it offers instead

of its software and hardware components. However, in most scenarios, property-based

attestation requires the use of a trusted third party to map the device’s components to

properties [107]. Moreover, the identification and formal definition of security properties

are still open problems [108].

A more recent approach, named Scalable Embedded Device Attestation (SEDA) [20], was

designed with the main goal of attesting a large amount of devices. The most remarkable

aspect of SEDA is that the verifier does not need to know the detailed configuration of all

provers. However, to achieve this, the approach relies on cryptographic secrets that must

be secured by hardware. With these secrets, the nodes can be issued a certificate of its valid

software configuration, during initialization or after an update, and can share the certificate

with their neighbors. Attestation is performed in a one-to-many interaction pattern, where

each device attests its neighbors and reports back to its parent. As stated in Section 2.2.8,

the main limitation of this interaction pattern is that a compromised node invalidates the

results for all the nodes following it on the attestation chain. In the worst case scenario, the

first node in the chain has been compromised, and resources used to perform attestation

are discarded. Another limitation of this approach is that it only provides a static integrity

measurement.

62



2.4 conclusions

Attestation is a critical service that enables the detection of compromised devices. However,

there is no consensus on how to perform attestation in an effective and secure manner.

Consequently, several mechanisms have been proposed over the last years. They differ not

only in design choices and implementation but also in the assumptions they make over the

system and adversary models. As we have shown in this chapter, some assumptions are

more realistic than others in the context of WSNs, and not all proposals can be considered

secure. Furthermore, we presented a taxonomy that identifies the main characteristics

of proposed solutions and surveyed the state of the art mapping existing approaches to

our taxonomy. This allowed us to discuss the tradeoffs between design choices made by

different proposals. Finally, we have identified open research issues and given directions

on how to tackle them.

Although we have centered the discussion around WSNs, we believe our taxonomy is still

relevant outside this context. Moreover, all the analysis of advantages and disadvantages of

different techniques done in this chapter can be directly applied to many Internet of Things

applications, since they will either use sensor networks or share many characteristics

in common. We hope this work serves both as a reference to avoid already committed

mistakes and as a development guideline to future attestation mechanisms.

In the following chapters, we will address some of the open research issues we have

identified, namely effectiveness and scalability in Chapter 3, and a critical overoptimistic

assumption made by software-based attestation mechanisms with strict timing conditions

in Chapter 4.
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3
C O M B I N I N G AT T E S TAT I O N W I T H M E A S U R E M E N T S I N S P E C T I O N

As seen in Chapter 2, the goal of attestation mechanisms is to ascertain whether or not a

device is compromised. However, attesting a device comes at a price: in order to be able to

receive an attestation challenge, sensor nodes must stay with their radios on in listening

mode; once a challenge is received they must perform the necessary computations; and

finally, there is a cost to transmit the response back to the verifier. Nevertheless, these

mechanisms do not indicate which and when or how often devices should be attested. As

an adversary can attack any network node, given no auxiliary information, all nodes must

be verified. The higher the attestation frequency, the earlier a compromise can be detected.

Still, this frequency has a direct impact on the network’s lifetime. Thus, there is a strict

trade-off between the security level achieved and the cost to obtain it.

To improve this trade-off, we propose the use of attestation in combination with another

security technique: measurements inspection. While attestation determines the integrity

of each node individually by inquiring its memory contents, measurements inspection

can detect malicious nodes by examining internal correlation structures between the

measurements sent by different nodes. When performed in a centralized way, for instance

by the base station, measurements inspection requires no additional computations from the

sensor nodes themselves. From this perspective, it can be considered very lightweight, as

opposed to attestation. However, the accuracy in distinguishing genuine from compromised

nodes is limited by the unpredictability of the sensed phenomenon, which introduces

uncertainty in the measurements correlations, and is also undermined when malicious

nodes collude. Therefore, our goal is to combine both techniques to maximise the benefits of

their complementary capabilities. By using measurements inspection to trigger attestation
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when something is suspicious we can keep the high reliability level of attestation and the

low cost of measurements inspection. Nevertheless, measurements inspection is a multistep

process, which means there are different ways to integrate both techniques, and it is not

obvious which combinations are better beforehand.

In this chapter, we present a study on how to best combine attestation and measure-

ments inspection. We first give an overview of how measurements inspection functions

in Section 3.1. After that we define the performance and compare the advantages and

disadvantages of both approaches in Section 3.2. In Section 3.3 we specify our assumptions

and adversary model. Then, in Section 3.4 we introduce different combination strategies

and their effect on the detection of malicious sensor nodes. In Section 3.5 we analyse the

detection performance of each scheme in terms of accuracy and attestation frequency,

which is the main factor to affect the energy consumption. Following this analysis, in

Section 3.6 we describe our simulation experiments that model the whole data generation

and transmission process in the WSN to obtain an accurate detection performance and

energy consumption. In Section 3.7 we outline how our approach contrasts with related

work. Lastly, we give our conclusions and possible directions for future work in Section 3.8.

The work presented in this chapter was done in collaboration with Dr. Vittorio Paolo Il-

liano at the time he was a colleague Ph.D. student at Imperial College London. Given his

expertise, Dr. Illiano managed specific issues regarding measurements inspection, while I

handled issues concerning attestation. Together, we designed the combination schemes,

built analyses, and implemented the simulations that follow.

3.1 measurements inspection

Measurements inspection refers to the detection of malicious data injections through

analysis of the measurements themselves. The idea is that to disrupt the information

gathered from the measurements, the injected and genuine values should not hold some

internal data properties introduced by inter-measurements correlation.
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Correlations occur in time, space, and between different sensed phenomena. In this

work, we focus on spatial correlations, defined as the relationships existing between

measurements at different points in space because in this context remaining undetected

requires compromising more sensors. Hence, the first step of measurements inspection is a

test for anomalies in the measurements correlation, i.e., their detection. However, if malicious

nodes collude, i.e., act in concert according to a common goal, malicious measurements

may be correlated and more difficult to detect. Moreover, even if the presence of malicious

measurements can be detected, colluding nodes could make genuine sensors appear

responsible for it. Thus, besides detection of malicious interference, the system also requires

a characterisation step, to identify the sensors responsible for it. Finally, faulty sensors may

also disrupt inter-measurements correlations and need to be distinguished from malicious

ones. To make such distinction, a further step, known as diagnosis, is required. Nevertheless,

this step is missing in most measurements inspection algorithms [109]. Figure 4 illustrates

the high-level architecture of a complete measurements inspection scheme.

The detection step searches for anomalies, identified as measurements that introduce an

anomalous variation when compared to the measurements of other sensors. In particular,

the anomaly is examined in the individual variation that a measurement introduces in a

small neighbourhood, contextualised into the overall variation that is observable in larger

neighbourhoods. So, the detection step does not impose any constraint to the reported

values but imposes a threshold on the variations at the low scale with respect to the higher

scales events. Thus, remaining undetected (i.e., below the detection threshold) prevents the

attacker from causing high damage (e.g., spoof a fire) and vice versa. The characteristics of

the physical phenomenon, the deployment, and the environment, determine the cross-scale

relationships, which are learnt and tested through the analysis of wavelet coefficients at

multiple scales [110].

Characterisation identifies malicious sensors through a group-wise analysis that considers

correlated measurements together, where correlations are still based on their effect on the

neighbouring measurements. For instance, if two or more measurements are consistently
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Figure 4: Measurements Inspection Scheme.

showing an increasing trend, they will be assigned to the same group. Consequently,

colluding sensors are presumably assigned to the same group, while each set of genuine

correlated sensors are assigned to different groups. Sensors are grouped together if they

are within the area characterised by the same spatial behaviour. The anomalies observed in

the detection step are then used to identify conflicts between groups, which reveal which

group is responsible for the anomaly. A conflict solving algorithm finds the anomalous

groups. The last characterisation task is to filter out sensors in the same group that have

a borderline behaviour, i.e., their measurements neither endorse nor reject the group’s

spatial behaviour.

Finally, by searching for characteristics typical of faulty sensors in the anomalous

measurements, the diagnosis step can infer whether each anomalous sensor is likely faulty

or malicious.
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Table 3: Notation summary.

Term Description

N Number of sensor nodes
C Number of malicious sensor nodes

ADT Anomaly Detection triggers
ACS

F
Sensor S fails Anomaly-based Characterisation

ADS
M

Anomaly-based Diagnosis output for sensor S is “Malicious”
MIS

F Sensor S fails Measurements Inspection
ATS

F
Sensor S fails attestation

ATS
P

Sensor S passes attestation
SG Sensor S is genuine
SM Sensor S is malicious
TE Total number of examined sensors

TM Total number of malicious sensors
TMF Total number of malicious sensors that fail a given test
TPR True Positive Rate
FPR False Positive Rate

3.2 attestation versus measurements inspection

Attestation and measurements inspection are very different in nature. Besides the difference

in performance, they also vary significantly with respect to constraints introduced, test

frequency, power overhead, and even threat model. We analyse these aspects below. Table 3

summarizes the notation used.

3.2.1 Measurements Inspection Performance

Measurements inspection is a multistep process consisting of detection, characterisation,

and diagnosis; where the probability of succeeding in each step depends on the success

of the previous steps. Success is determined by two factors: identifying as malicious only

malicious scenarios (true positives) and not genuine scenarios (false positives).

Moreover, the performance of detection is different from the performance of charac-

terisation and diagnosis. Indeed, detection operates at the granularity of the network, or
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of a cluster of nodes, while characterisation and diagnosis operate at the granularity of

sensors. For this reason, we can link the performance of detection to the random variable

C, representing the number of malicious nodes in the network. Instead, the performance

of characterisation and diagnosis are linked to the random variable SM, representing that a

generic sensor S is malicious (or dually SG, the event that a generic sensor S is genuine,

where P(SG) = 1− P(SM)).

Considering the whole measurements inspection process, a true positive is a malicious

sensor that, after anomaly detection is triggered, is characterised as anomalous and diag-

nosed as malicious. A false positive, instead, is a genuine sensor diagnosed as malicious,

after being characterised as anomalous. This can occur, e.g., because the anomaly is falsely

detected or the characterisation falsely blames that sensor. Considering the three steps

separately, the probability of having a true positive from measurements inspection is:

P(MIS
F |SM) = P(ADT ACS

F
ADS

M
|SM) =

P(ADS
M
|ACS

F
ADT SM)P(ACS

F
|ADT SM)P(ADT |C > 0)

(1)

Where MIS
F is the event that sensor S fails measurements inspection, ADT denotes the

event that the anomaly detection algorithm triggers, ACS
F

the event that characterisation

fails, and ADS
M

the events that the sensor is diagnosed as malicious.

Whereas, the probability of a false positive is:

P(MIS
F |SG) = P(ADT ACS

F
ADS

M
|SG) =

P(ADS
M
|ACS

F
ADT SG)P(ACS

F
|ADT SG)(

P(C = 0)P(ADT |(C = 0)ZZSG ) + P(C > 0)P(ADT |(C > 0)ZZSG )
) (2)

In the absence of a probabilistic model for both approaches, the probabilities can be

approximated with experimental frequencies. In particular, the probabilities listed above
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can be characterised with True Positive Rates (TPR) and False Positive Rates (FPR). Indeed,

the frequency of (MIS
F |SM) and (MIS

F |SG) correspond to the measurements inspection TPR

and FPR, which we refer to as TPRMI and FPRMI . We give a proof for the former, while an

analogous proof holds for the latter. Let TE denote the total number of examined sensors,

TM denote the total number of malicious sensors within TE, and TMF denote the total

number of malicious sensors that fail measurements inspection, then:

P(MIS
F |SM) =

P(MIS
F ∩ SM)

P(SM)
≈

TMF

TE
TM

TE

=
TMF

TM
= TPRMI (3)

With a similar reasoning the P(MIS
F |SG) can be approximated with the measurements

inspection FPR (FPRMI).

3.2.2 Attestation Performance

Attestation mechanisms are designed in such a way that compromised devices should not

be able to compute a correct response, at least not within a given time limit. In theory, a

malicious device SM always has a chance ε of correctly replying in time, for instance, in

case of a collision — when the genuine and modified memory contents output the same

checksum value — or if the device’s memory is traversed in a pseudo-random fashion and

a modified memory address is not checked. Nonetheless, if the assumptions made by the

attestation mechanism in place hold, then this chance should be negligible. Thus:

P(ATS
F
|SM) ≥ 1− ε (4)
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Whereas, a genuine node should always pass attestation. Thus, the probability of a false

positive is:

P(ATS
F
|SG) = 0 (5)

We can characterise the attestation TPR, which we refer to as TPRAT, by analysing the

frequency of the event (ATS
F
|SM). Let TE denote the total number of examined sensors,

TM denote the total number of malicious sensors, and TMF denote the total number of

malicious sensors that fail attestation, then:

P(ATS
F
|SM) =

P(ATS
F
∩ SM)

P(SM)
≈

TMF

TE
TM

TE

=
TMF

TM
= TPRAT (6)

By definition FPRAT = 0.

3.2.3 Comparison

Constraints Introduced. Measurements inspection introduces the need for a trusted inspector,

i.e., an entity which can run the anomaly detection algorithm and be trusted for its

output. Moreover, good performance is achieved when data from many sensors is available.

Therefore, it is often cheaper to make a centralized device in charge of running the

algorithm, such as the base station or a tamper-proof local coordinator node. Similarly,

attestation introduces the need for a trusted verifier to attest untrusted nodes. Furthermore,

different assumptions are made according to the attestation mechanism in place. For

instance, hardware-based and hybrid approaches require sensor nodes to be equipped
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with specific hardware, while software-based techniques nodes impose other restrictions,

such as provers being in communication range of the verifier, and so forth.

Test Frequency. Measurements inspection ascertains the measurements integrity at a

specific time. If the application layer aggregates multiple time samples, then it is convenient

to run anomaly detection on such aggregates. This results in a better aimed protection

of the application task and in a reduced detection frequency. Anomaly detection can be

run on aggregates even when the measurements of each time instant are used separately,

provided a mechanism that extends the validity of a detection check to future samples.

Attestation has analogous requirements. Measurements produced during the time of a

successful attestation are genuine. However, the sensor node may misbehave before or after

the verification is complete. The larger the time gap between attestation and measurements

transmission, the smaller the reliability.

Power Overhead. When anomaly detection is run by the sink, there is no communica-

tion overhead. On the contrary, such entity is subject to a computational overhead that

is O(NlogN) in the number of measurements [110]. Attestation instead, introduces a

communication overhead, due to the attestation protocol, and a computational overhead

to the nodes, which need to compute a response, as well as the verifier, which needs to

validate every prover’s response. Both in computation and communication, the overhead

of attestation is noticeably higher than measurements inspection.

Threat Model. On the one hand, attestation mechanisms can detect any types of attacks,

e.g., targeting integrity, confidentiality or availability aspects, as long as the adversary

modifies the software of compromised devices. On the other hand, measurements inspec-

tion can only expose attacks targeting the measurements integrity, but it can do so even in

cases attestation would not work, for instance when the adversary physically tampers with

environmental conditions, such as lighting a match close to a sensor.
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3.2.4 Trade-off Tuning

Highly Reliable Attestation. Attestation is more reliable when the Attestation Frequency (AF)

is high. Each individual sensor has its own attestation frequency, defined as the number of

attestation challenges received divided by the number of measurements sent by the same

sensor. In the following, we refer to AF as the attestation frequency averaged across all

nodes. For instance, if only one sensor is attested each time it sends a measurement, then

AF = 1/N. Assuming all sensors are equally important, they should all be attested with

the same frequency. In such case, the reliability of attestation is high when AF ≈ 1, i.e.,

when an attestation response is sent together with each measurement report. However,

with such choice, the communication overhead is three times as high on average (because

of the challenge and response messages). A noticeable computational overhead is also

present for the calculation of the attestation response. In conclusion, using AF ≈ 1 reduces

the network lifetime, requiring a high maintenance cost either to replace nodes battery or

to insert new nodes.

Low-Power Attestation. The cost of attestation can be reduced by decreasing AF. This can

be done by either increasing the time between two attestations or reducing the number of

attested sensors. However, the reliability of attestation deteriorates when the time between

two attestations, i.e., T
AF , is close to the time needed to swap the genuine software with a

malicious one, where T is the time between two measurement transmissions. A possible

way to reduce the power of attestation, is then to reduce the number of attested sensor

nodes. This can be done by selecting a random subset of nodes to attest which is small

compared to the total N nodes. Similarly to the detection step in measurements inspection,

when attestation fails for at least one sensor, a more thorough analysis can be triggered,

i.e., attesting all other nodes. Such “attestation-based detection” is reliable only when the

number of attested nodes is comparable to N − C, i.e., the number of genuine sensors.

Therefore, unless almost all sensor nodes are compromised, the power overhead cannot be

reduced significantly without a significant loss in reliability.
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Low-Power Measurements Inspection. Measurements inspection makes a reliable measure-

ments integrity check during the detection step: when the false information introduced

by malicious sensors is far from reality and there are genuine sensors whose correlation

with malicious sensors is disrupted, detection unveils the presence of malicious data. This

is generally the case when there are at least G genuine sensors, where G depends on the

WSN deployment, on the monitored physical phenomenon, and on the kind of malicious

measurements. Measurements inspection is also able to identify malicious sensor nodes

in the characterisation step. However, for this step to be as successful as detection, a

higher value for G is required. To keep power consumption at a minimum, measurements

inspection needs to accept the presence of potentially malicious sensors and identify only

the most likely compromised. Thereafter, if the remaining malicious nodes keep injecting

malicious data, the attack becomes less efficient, and they need either to make the false

measurements closer to reality or to become more detectable.

Highly Reliable Measurements Inspection. To increase the number of discovered malicious

nodes, measurements inspection needs to rely more on detection and less on characterisa-

tion. For instance, characterisation can produce just a set of mutually exclusive hypotheses

for the detected anomaly with the correspondent malicious sensors. Further investigations,

conducted in a reliable way, would then reveal which hypothesis is correct and which

sensors are malicious. This can be done by checking sensor nodes in the field, but on the

other hand it is against the goal of reducing the maintenance cost and measuring the WSN

health from within itself.

In conclusion, attestation can ascertain the measurements’ integrity, provided that it is

run close to their transmission time. Running attestation for all measurements is expensive,

but running it for an arbitrary subset decreases reliability. Measurements inspection

can detect the presence of malicious measurements and identify suspicious sensors, but

the final decision about a sensor’s maliciousness should be taken with a more reliable

approach. The two techniques complement each other as measurements inspection can
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trigger attestation in anomalous scenarios only, reducing the attestation frequency and

keeping reliability high.

3.3 assumptions and adversary model

We assume an attacker whose goal is to evoke fake events or conceal real ones while

remaining undetected. In particular, we consider the case where the adversary compro-

mises sensor nodes modifying their software to perform malicious data injection attacks.

Such malware can: (i) introduce a mismatch between the measurements observed by the

sensor and the ones reported, which are referred to as malicious measurements, (ii) make

the compromised sensors inject malicious measurements according to a common strat-

egy, (iii) overhear the measurements sent by genuine nodes, and (iv) adapt malicious

measurements in function of genuine ones to reduce the risk of introducing detectable

anomalies.

While, individually, attestation could also detect other types of attacks, e.g., to confi-

dentiality and availability, and measurements inspection could detect physical attacks

tampering measurements, we concentrate on the collaboration between both mechanisms

and leave a scenario with such events as future work.

We assume the adversary is in control of a subset of sensor nodes. The premise that

some nodes are not compromised is a consequence of the cost of compromising them. In

practice this usually holds given that sensors are not identical (e.g., different generations)

even when they monitor the same phenomenon; some sensors may be physically hard

to reach while others are easier; and some sensors will be subject to maintenance (e.g.,

because of fouling). A scenario where all nodes are compromised is, therefore, extreme.

Given that, due to low cost requirements, typical sensor nodes are not equipped with

tamper-resistant hardware, we consider the use of software-based attestation. More specif-

ically, we use SWATT [44], a software-based attestation mechanism with strict timing

conditions. This introduces a series of other assumptions: (i) the base station, which plays

75



the role of the verifier, cannot be compromised, (ii) all provers are within direct communi-

cation range and can only communicate with the verifier during attestation, (iii) there is

an authentication system in place, (iv) the adversary cannot modify the nodes’ hardware,

(v) the implementation of the attestation routine is time-optimal, and (vi) the network

maximum RTT is known a priori and is used to define the attestation timeout in such

a way that genuine nodes are always able to correctly reply in time. Note that we can

combine measurements inspection with any kind of attestation mechanism and, as long as

nodes possess the specific hardware required by hardware-based or hybrid approaches, we

can generalize the results of our study to such techniques while at the same time relaxing

the assumptions necessary for the use of software-based attestation.

Lastly, we use the measurements inspection scheme described by Illiano et al. [110],

which provides detection of sophisticated collusion attacks and also includes a characteri-

sation and a diagnosis procedure.

3.4 combination strategies

The objective of the combination is to achieve a trade-off with much higher security

confidence than measurements inspection, and a decrease in power overhead compared

with attestation. However, their combination gives rise to a full spectrum of solutions

in the trade-off between power efficiency and security, depending on how and when

measurements inspection hands over to attestation. Predicting the resulting performance

for a given choice is complex, as it depends on the interdependence of the techniques.

Moreover, we wish to perform a preliminary study the potential of the combination

independently from the performance of each single approach, to extract information that

holds in general, and subsequently consider specific state-of-the-art techniques. For this

reason, we present three different combination approaches and express their performance

as a function of the variables involved.
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Figure 5: D&A Scheme.

3.4.1 Detect and Attest

The architecture of our first proposed combination, denoted with Detect and Attest (D&A),

is shown in Figure 5. This scheme is designed to exploit only the most reliable step

in measurements inspection, which is detection, and relay the characterisation task to

attestation.

3.4.1.1 Performance

Since D&A is the series of the detection step from measurements inspection and the result

of attestation, the output TPR is the product of the TPRs of both:

TPRD&A = TPRADTPRAT (7)

A false positive occurs when measurements inspection detects an anomaly, regardless of

the presence of malicious data, and attestation fails on a genuine node. Thus, the FPR of

D&A is:

FPRD&A =
(

P(C = 0)FPRAD + P(C > 0)TPRAD

)
FPRAT (8)
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Where the term in brackets is the probability that anomaly detection triggers. This

coincides with the expected attestation frequency, since all sensor nodes are attested when

anomaly detection triggers:

AFD&A = P(C = 0)FPRAD + P(C > 0)TPRAD (9)

3.4.2 Group Subset Attestation

In our second proposed combination, Group Subset Attestation (GSA), measurements in-

spection is used in the detection step and produces the groups of possible malicious nodes,

while attestation acts as a judge to take the final decision. Its architecture is depicted in

Figure 6. We observe that GSA uses measurements inspection for detection of anomalies

and the grouping part of characterisation. Then it iteratively selects a random member for

each group and attests it. When the ratio of genuine sensors in a group outweighs the ratio

of malicious sensors or vice versa, the attestation for that group stops and the result for the

majority of sensors is applied to the whole group. The guard condition that determines

whether the number of attestations is high enough for the group is:

‖|S ∈ g : SG| − |S ∈ g : SM|‖
|g| > δGSA (10)

This condition makes sure that the ratio of genuine sensors in a group outweighs the

ratio of malicious sensors by δGSA or vice versa. GSA keeps attesting all nodes in a group

until the condition is met. When δGSA = 1, the condition is never met and GSA coincides

with D&A, but with lower values, the number of attestation is lower compared to D&A

and GSA may be more convenient.
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Figure 6: GSA Scheme.

To maximise energy efficiency, GSA may attest only one node per group. However, this

choice is only accurate if the nodes in a group are all genuine or all malicious, which

in general cannot be guaranteed. Indeed, measurements inspection is highly accurate in

the grouping from the measurements perspective, i.e., the measurements in one group

are either genuine or malicious. However, integrity violations at the node layer cannot

be identified if the measurements are genuine. When used as a standalone technique,

the identification of such malicious sensors is just delayed to the moment when the

measurements become malicious. With GSA, if a node runs a malicious software but

reports genuine data at the time it is attested, we would infer that all nodes in the same

group are malicious. This, in turn, causes a wrong detection of non-compromised nodes

whose measurements correlate with that of the malicious node.

The optimal value of δGSA makes an exhaustive attestation of groups that are mixtures of

genuine and malicious nodes, and only one for groups where nodes are either all genuine

or all malicious. The value used in our simulations (Section 3.6) is 0.25, which gives a

percentage of attested nodes around 25%.
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3.4.2.1 Performance

Note that for each group only a subset of sensors is tested, hence the TPR is:

TPRGSA = δGSATPRADTPRAT+

(1− δGSA)
(

P(S′M|g(S) = g(S′)SM)P(AS′
TF
|S′M)+

P(S′G|g(S) = g(S′)SM)P(AS′
TF
|S′G)

)
TPRAD

(11)

Where P(AS′
TF
|S′M) ≈ TPRAT and P(AS′

TF
|S′G) ≈ FPRAT.

We denoted with TPRAD the TPR of the anomaly detection part of measurements

inspection, and with P(S′M|g(S) = g(S′)SM) the probability that the sensor chosen for

attestation S′ is malicious given that the considered sensor S is malicious and belongs to

the same group as S′. Namely, if the malicious sensor node is an attested node (they are

δGSA of the total on average), then detection is correct if anomaly detection triggers and the

node fails attestation. Otherwise, the characterisation is correct only if the correct group is

selected. Thus, the FPR becomes:

FPRGSA =
(

P(C = 0)FPRAD + P(C > 0)TPRAD

)
(

FPRATδGSA + (1− δGSA)
(

P(S′M|g(S) = g(S′)SG)TPRAT

+P(S′G|g(S) = g(S′)SG)FPRAT

)) (12)

The attestation frequency here is equal to:

AFGSA =
(

P(C = 0)FPRAD + P(C > 0)TPRAD

)
δGSA (13)
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Compared with D&A, the TPR and FPR are as good or better if the anomaly-based

grouping is correct and worse otherwise, while the attestation frequency is always lower

except for the cases where δGSA equals to 1 or if all groups consist of single nodes.

3.4.3 Cascade

If the strict time constraints in attestation are always guaranteed by genuine sensor nodes,

a failed challenge response is an undisputed proof of a sensor’s maliciousness. A malicious

node found with anomaly detection, instead, may be the consequence of an unforeseen or

unprecedented scenario that caused a wrong estimate of the measurements probability.

Hence, attestation can be used to confirm a sensor node’s maliciousness after it has been

identified as such by the measurements inspection, as shown in Figure 7. We refer to this

approach as Cascade.

3.4.3.1 Performance

The TPR and FPR of the scheme are:

TPRCascade = TPRMI TPRAT (14)

FPRCascade = FPRMI FPRAT (15)
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Figure 7: Cascade Scheme.

The Cascade scheme power overhead is lower than attestation since the attestation

frequency is:

AFCascade = P(C > 0)TPRMI + P(C = 0)FPRMI (16)

This is also lower than the attestation frequency of GSA, when the measurements

inspection FPR and the number of malicious nodes are low. Instead, with higher FPR, the
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Cascade scheme makes many attestations, while the number of attestations for the GSA

scheme is upper bounded by the number of groups given in output by characterisation.

Note that if the attestation mechanism assumptions hold then TPRAT = 1 and FPRAT = 0,

so, compared with attestation, the Cascade solution trades a reduced power overhead for a

lower TPR, which coincides with that of measurements inspection.

3.5 analytical evaluation

In this section we evaluate the techniques in a WSN of 200 sensor nodes, of which a varying

number C are compromised. Sensors collect a measurement about every 4 minutes. The

probability of attack is as high as 10−2, implying that, on average, there is an attack about

every 7 hours. This value is in the same order of FPRAD, so the analytical results remain

substantially unchanged also for lower attack probabilities. When an attack occurs, the

probability that a sensor is malicious has a uniform prior distribution across all sensors (i.e.,

each sensor is malicious with probability 1/C).

The evaluation is done by calculating: (i) The Receiver Operating Characteristic (ROC)

curves, i.e., the relationship between TPR and FPR in the identification of malicious

nodes. (ii) The attestation frequency, i.e., the time between two attestations divided by

measurements transmission period, and averaged across all nodes.

The ROC curves of the combination schemes are obtained through the results of Sec-

tion 3.4. The ROC curves for measurements inspection are obtained by interpolating the

experimental curves in [110]. The ROC curves for attestation are obtained by modelling

the degradation in the reliability of attestation, when the time between two attestations

is close to the time needed to swap the genuine software with a malicious one, and vice

versa. Thus, the probability that an attacker manages to compromise a measurement and

pass attestation behaves like an exponential probability distribution:

1− e−λ( 1
AF−1) (17)
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Figure 8: ROC curves comparison varying the number of malicious sensors C1.

The parameter λ models the time needed to replace the genuine software and restore

it. In particular, we show the performance of attestation when λ = 0.5, which is the case

where the probability that a malicious node passes attestation is close to 0 when AF = 1,

and quickly increases to about 0.4 and 0.6 for AF = 1/2 and AF = 1/3, respectively.

3.5.1 ROC Curves Comparison

Figure 8 shows the ROC curves for both individual and combined techniques. In particular,

the TPR of attestation is shown for AF = {1, 1/2, 1/3}, corresponding to one attestation

run as soon as a new measurement is collected, or once every two or three measurements

are collected. The TPR decreases with the attestation frequency since a quick attacker may

substitute the original software with a malicious one, inject malicious data, and replace the

original software before attestation is run again.

Comparing Figures 8 (a), 8 (b), and 8 (c), the measurements inspection TPR curves

appear to saturate at a value around 0.5 that decreases as C increases. This is an effect of

the conservative group-wise characterisation [110] which, on the other hand, is the tool that

1 A perturbation of ±0.02 was introduced in GSA and D&A to better distinguish the curves.
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keeps the FPR close to 0 where the TPR is around 0.4. The highest TPR of measurements

inspection, achieved at the rightmost point of the ROC curve, is an upper bound to the

TPR of Cascade. Nevertheless, while measurements inspection achieves such TPR with

FPR close to 1, Cascade achieves it with FPR close to 0. The performance of D&A and GSA

is not limited by measurements inspection since they mainly exploit the detection step,

whose performance is comparable to attestation’s. Indeed, their ROC curves nearly overlap

with that of attestation.

3.5.2 Attestation Frequency Comparison

To make a fair comparison, we also consider the attestation frequency of each scheme,

since with AF ≈ 1 there is no advantage in using a combination scheme in place of simple

attestation.

Figure 9 shows that the points where Cascade performs at its best are expensive, as the

attestation frequency is close to 1. Instead, when the attestation frequency of D&A is as

low as 0.02, the TPR in Figure 8 is close to attestation. Finally, GSA has a small attestation

frequency which saturates and holds even for the highest values of TPR. In conclusion,

Cascade is generally not convenient, since it covers a point in the reliability-cost space

where reliability is close to measurements inspection and cost is close to attestation. For

D&A and GSA, the reliability is almost as high as attestation. The cost for GSA is always

comparable to measurements inspection. For D&A, the cost can be kept low for a low

decrease in reliability.

3.6 numerical simulations

In the previous section, we abstracted from the computations and network protocols

that enable the application of each combination scheme, so we address them below.
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Figure 9: AF curves comparison1.

Preliminarily, we address the process of tailoring attestation for measurements reliability,

which has not been analysed in the literature yet.

Moreover, we validate the analytical ROC curves and complete them with the time

needed to achieve a certain TPR, which corresponds to the latency in the reaction to

malicious data. Finally, we make an accurate estimation of the energy spent, which can be

obtained only after network protocols are defined. This allows us to calculate the impact

of each approach on nodes’ battery life.

To investigate accurately these parameters, we have set up simulations of a realistic

application scenario in the open-source Castalia [111] simulator. We recur to simulations as

existing datasets do not contain sophisticated injection attacks such as those we consider.

Moreover, simulations allow running both the individual and combined schemes under

exactly the same scenario, giving accurate comparisons that highlight the gains in perfor-

mance and energy consumption, and allow evaluation with more devices than it would be

practical with real nodes.

3.6.1 Simulation Settings

The simulations consider 200 nodes in a star-topology network, where the base station is

located at the centre performing the role of network coordinator, measurements sink, and at-

86



testation verifier. Sensors measure the temperature and send the observed value to the sink

about every 4 minutes. Nodes are equipped with the CC2420 RF transceiver [112], which

is common for its low-power transmissions. Namely, this device spends 57.42 mW while

transmitting (at 0dBm), 62 mW while receiving and 1.4 mW while in sleep mode [112].

For C out of 200 sensor nodes, the temperatures sent to the sink are replaced with

higher values to trigger the detection of a wildfire. This is done with the data injection

technique described in [110], which aims to overcome anomaly detection by minimising

the maximum expected correlation between genuine and compromised sensors. Indeed, if

a malicious measurement is expected to be highly correlated with a genuine measurement,

significant changes in the former would introduce obvious anomalies. The simulations are

run for all individual and combination schemes, with three different values of C: 50, 100,

and 150. After 5 hours the simulation is stopped and we calculate the TPR and FPR for the

detection of malicious nodes, and the energy consumption.

We use the 802.15.4 MAC protocol [113] because it provides us low energy consump-

tion and a hierarchical architecture. The protocol makes use of a coordinator node that

dictates how and when nodes can communicate through the use of a superframe structure,

depicted in Figure 10, which constitutes an active and an inactive period, where nodes are

allowed to transmit or switch off their communication devices to save energy, respectively.

Furthermore, at the application level we define a transmission schedule so that nodes

transmit their measurements one after the other, thus avoiding collisions. Once the sink

receives all measurements it can trigger the measurements inspection, attestation, or a

combined scheme. Note that when just measurements inspection or no scheme is in use,

the nodes can go to sleep right after they transmit their data. Whereas, if a scheme with

attestation is in place, the nodes must keep awake as they do not know in advance whether

they will be attested. Since the communication pattern is not fixed we cannot use the

canonical 802.15.4 guaranteed time slots. Also to avoid collisions, so that the network

maximum round-trip time can be reliably estimated, attestation is performed one node at
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Figure 10: 802.15.4 MAC superframe.

a time. When the sink is done attesting all nodes for a collection round, it sends a message

signalling to nodes that they can go immediately to sleep until the next active period.

3.6.2 True Positives / False Positives Results

We calculate the TPR, defined as the number of malicious nodes that are detected at least

once during the simulated attack. We do not assume the presence of intrusion reaction

systems, therefore a detected node keeps carrying out the attack. This constitutes an upper

bound on the system’s performance since both the energy consumption and the detection

of further nodes improves with the correct characterisation of malicious nodes. Indeed, a

malicious node that is detected does not need to be evaluated again by either attestation or

measurements inspection. The performance of the latter is also likely to increase, since less

malicious nodes have less benefits from collusion.

Figure 11 shows the TPR and FPR for each scheme with different numbers of malicious

sensors. Rather than their final values, we show the cumulative TPR and FPR time series.

Indeed, the time needed to achieve a certain TPR is decisive to minimise the attack’s damage.

Analogous considerations hold for the FPR. The combination technique with the best

performance is certainly D&A, whose curves are the closest to those of attestation. Since

D&A uses the detection step of measurements inspection, the TPR curves, in Figures 11 (a),
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Figure 11: TPR/FPR curves comparison with different numbers of malicious sensors C.

11 (b), and 11 (c), jump from 0 to 0.99 after 28, 28, and 10 collection rounds respectively,

which are the points where anomalies are detected and attestation is triggered.

The curves of the Cascade scheme are close to measurements inspection, but an im-

provement is brought in the FPR curve in Figure 11 (d), which is decreased from 0.15 to 0.

Higher TPR can be achieved by increasing the measurements inspection FPR and letting

attestation take care of the false positives by attesting them. However, this choice increases

the attestation frequency, as discussed in Section 3.5. The simulations also confirmed that

D&A can achieve an FPR close to 0 and a TPR around 0.99. In the case of GSA the TPR is

around 0.96 and the FPR is close to 0, especially when 50 and 100 sensor nodes out of 200

are malicious. When 150 sensors are malicious the FPR is evidently higher than D&A, but

the TPR that eventually gets close to 1 makes GSA still a valid choice. Indeed, when the

system detects that 150 out 200 sensor nodes are malicious, it means that a severe attack
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Table 4: Average energy consumption (Joules) after 5 hours.

C
Scheme

NONE MI ATT GSA D&A CASC

50 79.54 82.86 109.84 83.65 91.14 83.59

100 81.51 80.96 116.65 80.91 83.73 80.04

150 82.01 79.67 125.81 80.45 83.35 80.07

has taken place. In such scenario, generating false positives is not the main concern since

the system needs a thorough recovery and reconfiguration process anyway.

3.6.3 Energy Consumption Comparison

In Table 4, the energy consumption during simulation time, averaged across all nodes, is

reported for each scheme. First, we note that attestation has an energy consumption which

is between 33% and 58% higher compared with measurements inspection, and that the

latter does not introduce a perceptible increase with respect to the case where no security

scheme is applied (NONE in Table 4).

Compared with measurements inspection, GSA and Cascade generally demand less than

1% extra energy . The increase for D&A, instead, is between 3 and 10%. To understand

practical implications of such differences in energy consumption, we used the results

in Table 4 to retrieve the expected number of days until the batteries would drain. As

a reference, we assumed a typical power source of two alkaline long-life AA batteries,

which store an energy of 18720 Joules [114]. As reported in Table 5, we see that the average

duration of the batteries without measurements inspection nor attestation is about 48 days.

When running measurements inspection, there is no significant change in battery life. With

attestation instead, the batteries last 10 to 15 fewer days. GSA and Cascade generally cause

the batteries to last 1 fewer day, while with D&A battery life diminishes by 2 to 4 days.

90



Table 5: Days to battery depletion.

C
Scheme

NONE MI ATT GSA D&A CASC

50 49.03 47.06 35.51 46.62 42.79 46.66

100 47.85 48.17 33.43 48.20 46.58 48.73

150 47.55 48.95 31.00 48.48 46.79 48.71

3.7 related work

As we have seen in Chapter 2, the vast majority of works in the literature regarding

attestation focus on the security of the integrity verification process. How often should

attestation be performed, which nodes should be attested, and the impacts of performing

it, especially in terms of energy consumption, are not well covered [14].

Chen et al. [93] investigate how often attestation should be triggered in order to optimize

the network lifetime without degrading the detection rate of compromised nodes. They

conclude higher compromise rates require higher attestation frequencies. However, it is

difficult to know how fast an adversary can compromise network nodes. When attestation

is used to ascertain the integrity of the measurements, the attestation frequency should

be even higher, since there is a time lapse between the time a sensor node is attested

and the time when the measurement is taken, in which the sensor node could potentially

be compromised. This problem has not been addressed yet, and we solve it through the

combination with measurements inspection, which decreases the attestation frequency by

two orders of magnitude, regardless of the compromise rate.

With the ever increasing number of devices permeating our daily lives, scalability also

becomes an issue. Asokan et al. [20], Ambrosin et al. [115], and Carpent et al. [116] examine

how to scale attestation to efficiently verify a large number of devices. Our combination

scheme allows us to target the problem from a different perspective. By requiring only

a subset of devices to be attested we essentially circumvent the need for scalability, thus

incurring less overhead on nodes, while still achieving a good detection rate.
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The literature about measurements inspection is broad, but usually considers malicious

interference analogous to genuine faults [109]. Instead, the adversary may seek to stay

undetected. This is analysed only in a few works [117, 118, 119, 110]. The overhead in

computations and communications introduced by such techniques is always kept low [109].

However, measurements inspection techniques have significantly poorer detection perfor-

mance when several malicious sensor nodes collude in the injection of malicious data. For

this reason, Tanachaiwiwat and Helmy [117] propose to deploy tamper-resistant sensor

nodes that authenticate suspicious sensors. On the other hand, we are concerned with

integrity problems rather than authentication and focus on detecting malicious activity in

highly compromised networks even when nodes are not equipped with tamper-resistant

hardware.

To the best of our knowledge, no other work in the literature presents a direct comparison

between attestation and measurements inspection in WSNs, let alone their combination.

We analyse and compare both approaches in detail, focusing on the aspects that make

them complementary.

3.8 conclusions

In this chapter, we show that combining attestation with measurements inspection achieves

high accuracy in identifying malicious nodes whilst significantly reducing power consump-

tion. We proposed three combination schemes: Detect and Attest, Group Subset Attestation,

and Cascade. The first gives most relevance to the attestation step, the third stresses the

measurements inspection steps, while the second is at a point in between. In this way, the

spectrum of combinations is well covered.

We evaluated all schemes both analytically and under simulations. While the Cascade

scheme has shown to be limited by the measurements inspection’s maximum TPR, both

D&A and GSA achieve a detection rate close to attestation, around 99% and 96% respec-

tively, while keeping a power overhead close to measurements inspection, 10% and 1%.
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This is confirmed by the energy results from the simulations and is due to the dramatic

reduction in the number of attestations, which is observable in the analytical evaluation. As

a result, a good trade-off between energy and performance is achieved by both D&A and

GSA schemes. Whereas the individual techniques forced a decision between accuracy close

to 100% with power overhead of 33-58%, or accuracy close to 50% with power overhead

close to 0.
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4
S T O C H A S T I C S O F T WA R E - B A S E D AT T E S TAT I O N

In Chapter 3 we described how to combine attestation with measurements inspection and

the benefits of doing so. More specifically, we imagined a scenario using software-based

attestation with strict timing conditions and took precaution to respect its underlying

assumptions. In particular, we took special care to avoid any collisions by having only one

node transmitting at a time. Thus, we always respected the assumed maximum network

round-trip time (RTT) used by the attestation mechanism to set its timeout, which is

crucial to differentiate honest from compromised devices. However, in many cases it is not

possible to guarantee a maximum network RTT. For instance, several applications do not

have a transmission schedule and merely use a Medium Access Control (MAC) protocol

to avoid collisions, often times these networks are deployed in an environment where the

wireless medium is exposed to external interference, and nodes equipped with cheaper

radio devices are more susceptible to unpredictable faults. Furthermore, the higher the

attestation timeout, the higher the number of computations the untrusted device has to

perform, consuming extra time and energy and restraining it from performing its primary

tasks. Hence, using the maximum known network RTT to set the attestation timeout incurs

a high overhead and still does not guarantee that an honest device will always be able to

reply in time, which makes software-based attestation impractical in many scenarios.

In this chapter, we review this critical, and yet overlooked, assumption and propose a

novel stochastic software-based attestation approach. Our idea is to break the standard

single challenge-response protocol used by previous schemes into a sequence of challenges

with shorter timeouts, requiring only one of them to be correctly answered within time.

We take advantage of the fact that most of the time the actual network RTT is much smaller

94



than the maximum known RTT. Thus, we can configure a sequence of challenges in such a

way that there is a high probability at least one will be replied in time. While this approach

significantly improves the attestation performance, it remains secure against all known

attacks.

Given that we had no access to actual WSNs deployments but wanted to experiment our

proposal under realistic conditions we implemented and evaluated it using IoT devices, the

Intel Edison [120] platform, communicating over real-world uncontrolled Wi-Fi networks.

To the best of our knowledge, this is the first time software-based attestation has been

evaluated outside simulation or well-controlled environments.

The remainder of this chapter is organized as follows. We first give an overview of the

design and implementation of a software-based attestation routine and how an attacker

might attempt to bypass it in Section 4.1. Then, in Section 4.2, we review the maximum

network RTT assumption, how it is used to set the attestation timeout, and why it is not

practical. Afterwards, we describe the design of a new stochastic approach and assess

its security in Section 4.3. We then provide an analytical, Section 4.4, and experimental,

Section 4.5, evaluation comparing our proposal to the current state of the art solution. In

Section 4.6 we examine other works in the literature that also deal with the network RTT.

We draw our conclusions and discuss future work in Section 4.7.

4.1 software-based attestation routine

To put it simply a software-based attestation routine is essentially a self-checksumming

code that takes an input from and reports its result to a verifier. However, its implemen-

tation has to respect a series of properties such that an adversary trying to bypass it

will either compute the wrong result or take a distinguishable longer time to calculate

the right one. In this work, we based our implementation on the routine proposed by

Seshadri et al. [37] and we describe its main characteristics in this section.
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4.1.1 Implementation Required Properties

Time-optimal. While this property cannot be formally guaranteed, the implementation

makes use of simple instructions such as add and xor which are hard to compute with

fewer or faster operations. In addition, the implementation is organized in code blocks in

such a way that operations in one block depend on the results of the operations in the

previous one, thus preventing reordering optimizations over blocks.

CPU state inputs. Incorporating the values of the data pointer as well as the program

counter and status registers into the checksum serves to demonstrate that the code was

executed as it was meant to be. Moreover, an adversary that changes any of these values

will have to execute extra instructions to mask these changes and will suffer an execution

time overhead.

Pseudo-random memory traversal. Reading memory addresses in a pseudo-random order

prevents an attacker from knowing when a modified address is going to be accessed and

forces it monitor all memory reads.

Iterative checksum code. The attestation routine contains a checksum computation loop

that must be executed several times. Since the memory reads are inside the loop, to hide

any modified memory content an adversary would have to introduce new instructions

inside the loop, introducing a fixed overhead per iteration.

Strongly-ordered checksum function. The use of strongly-ordered functions prevents an

adversary from reordering or parallelizing operations as there is a high probability the out-

put will differ in such cases. For instance, the function a1 ⊕ a2 + a3 ⊕ a4 must be evaluated

as (((a1 ⊕ a2) + a3)⊕ a4).
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Keyed checksum. The challenge sent by the verifier is used to initialize the checksum to a

deterministic but unpredictable state.

Small code size. A small code can fit on the processor cache achieving faster and more

deterministic execution time. In addition, the adversary overhead is relatively higher the

smaller is the checksum loop.

Instruction sequencing to eliminate empty slots. Modern CPUs are capable of issuing mul-

tiple instructions every clock cycle. Therefore, the checksum code instructions must be

arranged in a sequence to avoid empty slots preventing an adversary from executing

additional instructions with no overhead.

Low variance of execution time. Once it starts the attestation routine cannot be interrupted,

thus it must execute at the highest CPU privilege level with all maskable interrupts

disabled. Furthermore, as exceptions and non-maskable interrupts cannot be disabled,

the attestation routine must replace their existing handlers with a stub handler that only

executes an interrupt return instruction. Eliminating empty slots and having small code

size also help to achieve a lower execution time variance.

4.1.2 Implementation and Attack

We have implemented our attestation routine inside the Edison’s Wi-Fi kernel driver. This

allows a node to disable interrupts and start computing the response immediately after

receiving a challenge.

The main loop of the attestation routine consists of four code blocks as illustrated in

Figure 12. The last instruction of each block is a jump to an absolute address that can point

to the first or second instruction of any block. This address is also computed within the

blocks using the current checksum value. Each block is 128 bytes in size and, to simplify
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Figure 12: Checksum main loop structure [37].

the generation of the jump addresses, all blocks are aligned in memory in such a way that

their first instructions are at addresses multiple of 128. Since the checksum function is

strongly ordered, the result depends on the execution of the code blocks in the correct

order, which in turn is defined by the sequence of jumps between blocks.

Seshadri et al. [37] describe a memory copy attack where the adversary runs a modified

version of the attestation routine on the correct memory location and computes the

checksum over a copy of the original version located somewhere else in memory. To

do so it adds a constant displacement to the data pointer, which can be done in two

ways: (i) annotating instructions that use the data pointer with a segment register, or

(ii) using an addressing mode that adds an immediate to the data pointer. Both ways

incur no execution overhead. However, they both increase the instruction length. To place

the longer instructions, the adversary would then move the blocks farther away from

each other aligning them to addresses multiple of 256, as shown in Figure 13. It can then

generate the jump addresses by left-shifting the correct address by 1 before the actual jump.

Nevertheless, the jump address is incorporated into the checksum both before and after

the jump. Therefore, the adversary has also to restore the correct address by right-shifting

it after the jump. Its overhead would then be of two instructions per iteration: one left-shift

and one right-shift.

98



Figure 13: Attack structure [37].

It was only when we tried to implement this attack that we noticed it might not work

as described. Note that when changing the block sizes the new addresses are not double

the value of the original ones. Therefore, instead of shifting the whole value we only need

to shift a few bits of the address. However, in the x86 architecture we can only shift all

32 bits of a register, its lower 16 bits, or 8 bits (0 to 7 or 8 to 15) at a time. Depending on

the position of the original code, just using a single shift instruction might not result in

the correct address, thus requiring additional instructions. While this is not a problem to

generate the address before the jump, because we can use instructions from the original

code to mask the result, it is a problem after the jump because at the beginning of a block

there are no instructions computing the jump address.

Gardner et al. [121] also base their implementation on the work of Seshadri et al. [37]

and describe a variation of the same memory copy attack. They execute the malicious

attestation code at its genuine location and place a copy of the original code one megabyte

above it. To compute the checksum over the memory of the original code they xor the

checksum target address by 0x100000 (one megabyte) immediately before the memory

read instruction. After the read, they xor it again to recover its value before the address is

incorporated into the checksum. The overhead of this attack is then two xor instructions

per iteration. We note however, that they are only able to add these two instructions in
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place because their code blocks are not exactly 128 bytes long and do not prevent simple

insertion of code.

In the end, we implemented an attack that combines ideas from the two attacks we

just described. As done by Seshadri et al., we align the blocks of our malicious version

at addresses multiple of 256. Before the jump we double the original address with an

add instruction (this is similar to a left-shift by one, but has a smaller opcode) to get the

modified address. After the jump each block code xors the address with a different mask,

thus recovering what would be the original address of the block. Therefore, our attack can

successfully compute the right response with an overhead of only two instructions per

iteration: one add and one xor.

4.2 the maximum rtt problem

Existing software-based attestation mechanisms with strict timing conditions assume that

by using the maximum known network RTT to specify the challenge timeout guarantees

all honest devices can pass attestation. To show that this assumption is not practical, we

went to the Imperial College Central Library to collect real data.

First, we scanned for available Wireless Access Points (WAPs) and Ad-hoc connections

in range and found a total of thirty six connections. Many of them were using the same

frequency, which leads to interference and performance degradation. From these, we had

access to three different channels: 1, 6, and 136. We used two Intel Edison devices to

measure the RTT. The Edison also supports Wi-Fi Peer to Peer (P2P) allowing devices to

connect directly without the need for a WAP. It provides two modes of connection, Push

Button Control (PBC) and PIN mode (PIN), which we also evaluated. Additionally, we

measured the RTT with the Edison Wi-Fi driver power management, which is used to

reduce power consumption, both on and off. Figure 14 shows the results obtained by using

one device to ping the other a thousand times for each channel.
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Figure 14: Box plot of the network round-trip time under different channels.

The variable transmission delays experienced are likely due to packet collisions, re-

transmissions, and the use of CSMA/CA (Carrier Sense Multiple Access with Collision

Avoidance) supplemented by RTS/CTS (Request to Send/Clear to Send) frames1, all of

which are influenced by the total number of devices concurrently using the network, the

traffic generated by them, as well as external interference. Note that we had no control

over these factors since we only owned two devices in the network and the measurements

were not done all at the same time. With exception to channel 1, all channels present a

smaller mean and standard deviation for measurements done with the power management

turned off. Given all variables in play, it is difficult to give an explanation for the odd

behaviour of channel 1, which is already an indicator that assuming a maximum RTT is

unpractical and inefficient. To make the network RTT more deterministic, schemes such

as SCUBA [42] assume that the prover has exclusive access to the radio channel during

attestation. However, due to external interferences, the actual RTT may be worse than

anticipated resulting in honest provers failing attestation. Nevertheless, for now, let us work

with this assumption to estimate the necessary amount of attestation routine iterations.

1 While the use of RTS/CTS frames partially avoids the hidden terminal problem it also introduces the exposed
terminal problem.
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Since the attestation routine is assumed to be implemented in a time-optimal way,

any modification an adversary makes to it will incur in computation time overhead. To

compensate this overhead, the adversary may try to reduce the network RTT between the

compromised device and the verifier in order to still reply within the attestation timeout.

In theory, an adversary can have zero RTT, in which case its time advantage would be the

maximum RTT allowed by the attestation process. Seshadri et al. also consider the time an

adversary gets from warming up the cache to avoid cache misses during execution [37].

Nevertheless, when compared to the measured RTT samples in Figure 14, this gain is

negligible. Because even the best adversary has an overhead per iteration, it is possible

to compensate its time advantage, which is fixed, by increasing the number of iterations

required.

To compute the number of iterations, three factors must be taken into account: c, the

prover’s CPU clock speed; a, the adversary time advantage; and o, the adversary overhead

per iteration of the attestation routine [37]. Furthermore, because the memory is being

traversed in a pseudo-random fashion, to guarantee, with high probability, that each

memory address is accessed at least once, based on the Coupon Collector’s Problem, the

number of iterations for a memory of size m has to be at least O(m ln m) [78]. Hence the

number of iterations i can be computed as below:

i ≥ (c · a)
o
≥ m · ln(m) (18)

The prover’s CPU clock speed and the assumed adversary overhead per iteration

are constants. Consequently the number of iterations becomes a linear function of the

allowed maximum RTT as shown in Figure 15. The Edison CPU operates at 500 MHz, and

our implementation of the best known attack, described in the previous section, has an

overhead of 1.037 CPU cycles per iteration. The scenario that requires the smaller number

of iterations, P2P PIN ch. 6 from the measurements in Figure 14 (b), would still need

to execute 211463783 iterations. Based on the measurements we have done of the time
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Figure 15: Number of iterations based on the RTT.

taken by each iteration of our implementation of the attestation routine it would take

approximately 24.6 seconds to execute this number of iterations.

According to existing approaches, regardless of the actual network conditions, the

assumed maximum RTT is always used to compute the number of iterations of the

attestation routine. Therefore, even if the network conditions are better than estimated, the

prover still has to compute a large number of iterations. For instance, as can be seen in

Figure 14 (b), 75% of the RTT samples taken from P2P PIN ch. 6 take less than 202 ms

and 50% of the samples are within the range of 26 to 139 ms. Nevertheless, a traditional

attestation mechanism would always consider the maximum RTT of 438.682 ms to compute

the number of iterations, wasting both time and energy. Furthermore, the higher the

number of iterations, the higher the execution time jitter due to clock, cache, and TLB

fluctuations. As observed by Li et al. [38], to avoid having honest provers not replying

in time, the challenge timeout should also include the execution time jitter. However, an

adversary could take advantage of this time extension to execute additional instructions

and still pass attestation with non-negligible probability. Thus, a high execution time jitter

forces a tradeoff between these two cases, both of which are not desirable.
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4.3 design

The single challenge-response protocol followed by traditional schemes limits the amount

of flexibility of the attestation process. Using a fixed timeout based on the assumed

network maximum RTT always demands a high number of attestation routine iterations

to be computed, and, due to external interference on the communication channel and

execution time jitter, still does not guarantee that an honest prover is always able to respond

within the time limit. Therefore, we propose a probabilistic attestation approach that allows

us to break the single challenge into a series of challenges with shorter timeouts whenever

the breakage is expected to be cost beneficial and there is a high probability that at least

one challenge in the series will be replied in time.

For instance, suppose that when estimating the network conditions we observe a maxi-

mum RTT of x but most RTT samples observed are smaller or equal to x/2. In this case,

rather than sending a single challenge with a timeout based on x, it is better to send a

series of N challenges each of which with a timeout based on x/2. We name this procedure

an attestation round. Note that a round might finish without the need to send all N

challenges. The verifier only sends a new challenge in the series after the current challenge

timeout expires with no response. If the prover correctly replies to a challenge in time, then

the attestation round is over, and there is no need for the verifier to send the remaining

challenges since the prover has already demonstrated its integrity. Likewise, if a prover

incorrectly replies to a challenge, before or even after its timeout, the round is also over,

and the prover is classified as compromised.

In practice, our approach is similar to performing traditional attestation multiple times

in a row using a shorter timeout and stopping either when the prover passes, fails with a

wrong response, or when all challenges of the attestation round have been sent. Observe

that in this last case we cannot say for sure whether the prover has been compromised or

not. There is always a possibility that an honest device will not be able to reply in time

to any challenge in a round. Whereas, an adversary trying to fool the attestation process
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will always reply correctly but after the timeout. Therefore, we can only use this result as

an indication of compromise. Nonetheless, we can utilize it in conjunction with additional

information, such as the outcome of previous rounds, to make a decision.

4.3.1 Assumptions

With exception to assuming a maximum network RTT a priori, we share most assumptions

made by software-based attestation mechanisms with strict timing conditions: the attesta-

tion routine is implemented in a time-optimal way; the verifier cannot be compromised by

the adversary and knows the prover’s hardware and software configuration; the prover is

in communication range of, and can only communicate with, the verifier during attestation;

an authentication system is in place, such as radio frequency fingerprint or SRAM PUF;

the adversary has full control of the prover’s software but cannot modify its hardware.

Ideally, the WAP would perform the role of the verifier. It is in direct communication

range with the provers and could easily keep track of the network RTT, it has unlimited

energy, and if it gets compromised then essentially the entire network can be considered

to be compromised. Furthermore, it could block any outgoing traffic from devices under

attestation.

4.3.2 Preparation Steps

Before starting an attestation round, the verifier has to (i) collect a sufficient amount of

network RTT samples, (ii) find the probability distribution function that best fit these

samples, and (iii) use the distribution to calculate the attestation parameters under the

desired confidence level. Table 6 summarizes the notation adopted for the remainder of

this chapter.
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Table 6: Notation summary.

Term Description

γ Time of a single iteration of the attestation routine
δ Maximum RTT allowed
a Adversary time advantage
c CPU clock speed
i Number of iterations
o Adversary’s overhead per iteration of the attestation routine in CPU cycles

N Maximum number of challenges in a round
C Number of challenges sent during attestation

E[X ] Expected value of random variable X
E Attestation energy consumption

RT (0, δ) RTT observed during attestation
T Attestation time

XT (a, b) Truncated random variable X within interval a ≤ x ≤ b
EA Attestation routine energy consumption
EP Prover energy consumption
Erx Reception energy consumption
Etx Transmission energy consumption
PA Attestation routine power consumption
Prx Reception power consumption
Ptx Transmission power consumption
TA Attestation routine execution time

4.3.3 RTT Samples Collection

We gather network RTT samples by making the verifier ping the provers sending Internet

Control Message Protocol (ICMP) echo request and waiting for echo reply packets. This can

be done in two different ways: either (i) online, when we collect new samples every time

before performing attestation; or (ii) offline, obtaining all samples only once during an

initialization phase.

On the one hand, the online collection allows us to estimate the actual network conditions

before triggering attestation enabling the use of a different timeout for each round. As

a result, if conditions are good, we can decrease the timeout, consequently reducing the

number of iterations a prover has to perform. While if conditions are bad, we can increase
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the timeout, which has the opposite effect but also increases the chances of honest provers

replying in time. To achieve this dynamic timeout behaviour we amend the challenge

message to include, besides a nonce, the number of iterations to be executed and modify

the attestation routine to also use this information as a parameter. In order to find a

distribution that best represents the actual network conditions during attestation, we allow

the use of a dynamic number of RTT samples. We collect ten samples, find the best fitting

distribution, calculate the attestation parameters and repeat this process until the time

spent collecting samples is higher than the estimated challenge timeout.

On the other hand, the offline collection benefits from not having to collect samples

and compute the attestation parameters every time. In this scenario, a large sample set is

preferable as it will be more likely to capture the average channel conditions.

4.3.4 Network Conditions Estimation

Having the network RTT samples, the next step in our proposed approach is to find the

corresponding best fitting distribution. First we use the Maximum Likelihood Estima-

tion (MLE) method to fit different distributions to the RTT samples. Then, to find the best

fitting distribution, we calculate the Sum of Squared Errors (SSE) for each distribution and

select the one with the smallest SSE.

Once a distribution is chosen we can use its corresponding Cumulative Distribution

Function (CDF) to calculate the probability of successfully sending and receiving the

challenge and response messages for any given RTT limit δ. We accept a response if it

is received within δ and reject it otherwise. Therefore, we can compute the probabilities
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of sending two, three, up to N challenges in a row, where at least one of them receives a

response within δ according to the equation below:

P(accept at least 1 response in N attempts | δ) =

1− P(reject all responses in N attempts | δ) =

1− P(reject | δ)N

(19)

4.3.5 Attestation Parameters

We can represent the effective number of challenges sent during attestation as a discrete

random variable C = {1, 2, 3, ..., N}. Both the attestation time and energy consumption

depend on the expected value of C, which can be calculated as follows:

E[C] =
N

∑
j=1

cj · P(C = cj | δ) (20)

Where P(C = cj | δ) is:

P(C = cj | δ) =


P(reject | δ)cj−1 · P(accept | δ) if cj < N

P(reject | δ)cj−1 if cj = N
(21)

The attestation time depends on C, δ, and on the execution time of the attestation routine

TA, which also depends on δ. We can denote the effective attestation time as a continuous

random variable T defined as:

T = C · (RT(0, δ) + TA(δ)) (22)

WhereRT(0, δ) denotes a truncated random variable, in the interval [0, δ], that represents

the RTT observed during attestation. We truncate it by δ because once the time limit expires
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the verifier stops waiting for the response and immediately transmits the next challenge if

there is one.

Let us denote the time taken to execute a single iteration by γ, then we can compute TA

as follows:

TA(δ) = i · γ =
(c · δ)

o
· γ (23)

Now, assuming that C and RT(0, δ) are independent, we can calculate the expected

value of T as:

E[T ] = E[C · (RT(0, δ) + TA)]

= E[C · RT(0, δ)] + E[C · TA]

= E[C] · E[RT(0, δ)] + TA · E[C]

(24)

Where, given its CDF F(r), its Probability Density Function (PDF) f (r), and the auxiliary

function g(r) = f (r) ∀ 0 ≤ r ≤ δ, the expected value of RT(0, δ) can be computed as:

E[RT(0, δ)] =

∫ δ
0 r · g(r)dr

F(δ)− F(0)
(25)

The prover’s energy consumption EP for a single challenge can be calculated as:

EP = Erx + EA + Etx (26)

Where the challenge reception energy consumption Erx can be computed as:

Erx =
Packet size

bit rate
· Prx (27)

And, similarly, the response transmission energy consumption Etx:

Etx =
Packet size

bit rate
· Ptx (28)
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While the attestation routine energy consumption EA follows:

EA = TA · PA (29)

With these equations we can define the prover’s effective energy consumption as a

discrete random variable E :

E = C · EP (30)

And its expected value:

E[E ] =
N

∑
j=1

cj · EP · P(C = cj | δ) (31)

4.3.6 Attestation Round

Once the attestation parameters are defined, a verifier can start an attestation round that

may consist of a series of challenges which respect the following specification:

1. All challenges in a round have the same timeout, and thus, require the same number

of iterations to be computed by the prover.

2. Each challenge in the series has a different nonce from the previous ones. Otherwise,

an adversary would receive a challenge, solve it expiring its timeout, but then receive

it again having the correct answer already computed and would be able to respond

in time.

3. The verifier sends a new challenge of the series immediately after the timeout of the

current challenge expires without the reception of a response.

4. Whenever a challenge is correctly responded within its timeout, the round is con-

cluded, and the prover is considered to be honest.
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5. Whenever a challenge is incorrectly responded, within or after its timeout, the round

is concluded, and the prover is considered to be compromised.

4.3.7 Security

To analyse the security of the proposed scheme we examine how it relates to existing attacks

on attestation previously described in the literature (covered in Chapter 2 Section 2.1.2).

By using a cryptographically secure pseudo-random number generator to produce a

different nonce for each challenge both the precomputation and replay attacks are no longer

feasible.

The collusion, impersonation, and proxy attacks are not valid under the adopted threat

model. As with previous schemes, we assume the prover can only communicate with

the verifier during attestation, which prevents both the collusion and proxy attacks, and

that some authentication mechanism is in place, which prevents the impersonation attack.

Nevertheless, our scheme reduces the success chances of these attacks. Since we use shorter

timeouts it becomes harder for nodes to exchange or relay messages and still reply to the

verifier in time. Furthermore, the use of shorter timeouts reduces execution time jitter, thus

also preventing the high execution time variance attack.

The forgery, memory copy, data substitution, compression, and return-oriented programming

attacks aim to overcome the attestation routine itself. While these attacks are implemen-

tation specific, our scheme can be used with different implementations. We only require

the routine to also take the number of iterations as a parameter, which has no security

implications. In traditional approaches, since the timeout is fixed, the adversary always

knows the number of iterations, while in our scheme the adversary only gets to know this

information when it receives the challenge. From the attestation routine perspective, the

fact that we may execute the routine multiple times in a row cannot be exploited since

each run is independent of the previous. There is however, a new attack that an adversary

could try to perform against our scheme, which we describe below:

111



Delay attack. Knowing that we estimate the network conditions with RTT samples, an

adversary may deliberately delay all messages handled by compromised nodes. In doing

so, the adversary can influence our estimations and increase the calculated challenges

timeout in an attempt to gain more time to perform extra computations.

Note, however, that whenever we increase a challenge timeout we also increase the

number of iterations of the attestation routine to compensate for any time advantage the

adversary may have, as shown in Equation 18 and Figure 15. Therefore, the delay attack

would be ineffective in overcoming attestation. In the worse case scenario, it would force

the use of a large timeout even though the network conditions are good, similar to what

happens with traditional attestation approaches. Nevertheless, a possible countermeasure

to this attack is to collect RTT samples from multiple provers and apply anomaly detection

techniques to exclude the malicious data introduced by the attacker.

Ultimately, our approach does not make attestation vulnerable to any existing or foresee-

able new attacks. In reality, the use of shorter timeouts hinders the execution of collusion,

impersonation, proxy, and high execution time variance attacks.

4.4 analytical evaluation

To compare results, we analyse the performance of our proposal using the RTT samples

from the same channel we used to discuss traditional approaches in Section 4.2 — P2P

PIN ch. 6 in Figure 14 (b).

As seen in Section 4.3.4, once we have the network RTT samples, we need to find

the probability distribution that best fits our data. Figure 16 shows the PDF of the top

five fitting distributions over the RTT samples. In this example the Exponential Power

Distribution (labeled exponpow) is our choice, as it is the one with the smallest SSE.

Having selected a distribution, we can then compute the probability of sending N

challenges and receiving at least one response within a given timeout. Figure 17 shows the

results of Equation 19 for N = {1, ..., 10}. It is possible to notice that the higher the number
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Figure 16: Best fitting distributions for the RTT samples.

of challenges allowed, the faster the probability of success grows. Which is intuitive, the

more messages we send, the higher is the chance that at least one of them will be replied

in time.

4.4.1 Time and Energy

Figure 18 shows the maximum and expected attestation time when determining δ under

different confidence levels. It is possible to see that the higher the confidence level, the

higher is Tmax. The reason is that T increases as δ increases, and higher confidence levels

require higher δ. On the other hand, as N increases, E[T ] decreases until it reaches a

minimum and then starts to grow. The explanation is that as N increases δ decreases, so it

is possible for the prover to reply earlier. However, when δ gets too small, it is more likely

that the prover will not be able to respond in time. Thus, more challenges are required and

the total expected time starts to increase.
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Table 7: Edison power consumption (mW).

Power Management

On Off

PTx 535 716

PRx 604 649

PA 714 839
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Figure 19: Prover’s maximum and expected energy consumption (power management off).

To calculate the energy consumption, we have measured the power consumption of

the Intel Edison and observed the values shown in Table 7. In our implementation, the

packet size, 90 bytes, is the same for both challenge and response. It includes the 802.11

data frame (38 bytes), the IP header (20 bytes), ICMP header (8 bytes), and payload (24

bytes). The channel bit rate is 54 Mbit/s. Figure 19 shows the prover’s maximum and

expected energy consumption with its Wi-Fi driver power management turned off. The

same analysis we did for the attestation time is valid here. The higher the confidence level,

the higher is Emax, and as N increases E[E ] decreases until it reaches a minimum and then

starts to grow.
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4.4.2 Summary

Since both E[T ] and E[E ] reach minimum values, we can set N to optimize either the

attestation time or energy consumption. Furthermore, to find their minimums we do not

need to compute for arbitrary values of N. Since both E[T ] and E[E ] continually decrease

as N increases until they reach a minimum, we can stop the computation whenever we

find the turning point.

Table 8 summarizes how E[C], i, and TA change under the same N by the use of different

confidence levels to estimate δ. We can also use the values from this table to compare

our performance against the one we analysed in Section 4.2. While traditional attestation

schemes are limited to the maximum RTT estimated a priori our approach enables a wide

range of options for defining the number of iterations and timeout. We demonstrated that

for these network conditions traditional approaches would require 211463783 iterations to

be performed by the attestation routine, which would take approximately 24.6 seconds to

execute plus the RTT to send the challenge and receive the response. In our best scenario,

we could choose N = 10, with 90% confidence level, and have our first challenge in the

series be responded within the timeout. This would take only 4.4 seconds plus the messages

RTT. Even if we limit ourselves to N = 1, instead of using the worst RTT measured, we can

with 99% confidence level reduce the attestation routine execution time to 17.6 seconds.

4.5 experimental evaluation

To experiment with real devices, we have implemented an honest and a malicious version

of the attestation routine, as described in Section 4.1, for the Intel Edison platform. Note

that the malicious version simulates an attacker trying to bypass attestation without being

detected. At the current stage, our implementation for the Intel Edison is still a prototype.

For instance, although the Edison is a multi-core platform, currently our implementation
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Table 8: Parameters according to confidence level.

N % E[C] δ(ms) i TA(s)

90 1.000 239.939 115660904 13.455

1 95 1.000 266.945 128679161 14.970

99 1.000 313.216 150983554 17.564

90 1.316 175.723 84706215 9.854

2 95 1.224 198.747 95804546 11.145

99 1.100 239.939 115661161 13.455

90 1.680 144.025 69426404 8.077

3 95 1.504 164.056 79082148 9.200

99 1.262 200.983 96882741 11.271

90 2.056 124.506 60017477 6.982

4 95 1.802 142.263 68577185 7.978

99 1.448 175.724 84706473 9.854

90 2.439 111.091 53550469 6.230

5 95 2.108 127.071 61253624 7.126

99 1.645 157.687 76011791 8.843

90 2.824 101.226 48795302 5.677

6 95 2.417 115.778 55810064 6.493

99 1.848 144.025 69426501 8.077

90 3.211 93.628 45132632 5.250

7 95 2.729 107.007 51581855 6.001

99 2.054 133.255 64234759 7.473

90 3.598 87.574 42214613 4.911

8 95 3.041 99.973 48191165 5.606

99 2.262 124.507 60017824 6.982

90 3.987 82.624 39828466 4.633

9 95 3.355 94.187 45402390 5.282

99 2.472 117.240 56514707 6.575

90 4.376 78.493 37836967 4.402

10 95 3.670 89.338 43064981 5.010

99 2.683 111.091 53550622 6.230
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executes on a single core. This is by no means a limitation imposed by our scheme. In

fact, our proposed stochastic approach can be applied to other platforms and to different

attestation routines, as long as the latter can take the number of iterations as a parameter

(only necessary for the online configurations). Nevertheless, our proof of concept is enough

to show the feasibility of our approach.

4.5.1 Settings

We designed our stochastic attestation to work either with online or offline RTT samples

collection, as described in Section 4.3.3. To provide a fair comparison with the current

state of the art solution, we have also implemented an online and offline version of the

traditional single challenge-response protocol, even though works in the literature only take

the offline approach. Thus, we test four different configurations: our proposed stochastic

online and stochastic offline solutions, the current state of the art solution ([44, 37, 122, 38])

maximum offline, and, for completeness, an adaptation of it which we name maximum online.

We performed our experiments in three different locations using real-world Wi-Fi

networks: (i) the already mentioned Imperial College Central Library; (ii) a residential

building where different apartments share a communal Wi-Fi; and (iii) a coworking office

space. Once again, we emphasize we had no control over the ongoing network traffic in

any of these locations.

We used Wireshark to capture the packets exchanged between the prover and the verifier,

which allowed us to picture missing packets and responses out of bound. In addition, by

putting the wireless card in monitor mode, we were able to observe all wireless traffic

during attestation rounds, which allowed us to tell how noisy each location was during our

tests. By checking MAC addresses, we have also counted the total number of distinct WAP

and Ad-hoc connections in range and unique devices observed during our experiments

— note that these numbers were not constant. Table 9 summarizes our findings. It is

interesting to see that even though the library was by far the noisiest environment, it was
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Table 9: Observed wireless conditions.

Building Library Office

Average bytes/s 27.7 K 2.67 M 23 K
Connections in range 26 213 118

Min. RTT (ms) 2.33 2.83 2.69

Max. RTT (ms) 985.76 695.13 389.56

Unique devices 625 4203 2111

the building location which presented the highest observed RTT. We also noticed that the

Edison devices were getting disconnected from the library WAP every time the attestation

routine took more than 34 seconds to execute. Whenever this happened, the device would

need to first reconnect to the WAP and only then send the attestation response, thus

elapsing the timeout. Therefore, we had to limit the maximum RTT allowed to 600 ms to

bound the attestation routine execution time and consequently avoid this from happening.

The reason for the disconnections was most likely a configuration in the library WAP as the

same did not happen in the building location. Effectively, this is another limitation of using

the maximum RTT to define the attestation timeout given that the stochastic approach is

much less likely to use long timeouts.

In each location, we first evaluated the online configurations and then used the RTT

samples they collected to evaluate the offline configurations. To find the best fitting dis-

tribution for the samples collected we use the Scipy library, which has more than eighty

distributions. To reduce the computation time, we experimented and found a subset of

distributions which performed better than others2. We then calculate the attestation pa-

rameters with 99% confidence level and select the maximum number of challenges in a

round (N) with the smallest expected energy consumption (E[E ]). On average, the stochastic

online configuration collected 16.5 RTT samples per attestation round, which took around

6.4 seconds and spent roughly more 2 seconds to find the best fitting distribution and

compute the attestation parameters. Whereas, the maximum online configuration did not

2 Those were: alpha, foldcauchy, halfcauchy, powerlognorm, fatiguelife, lomax, johnsonsu, cauchy, and gilbrat.
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Figure 20: Interaction pattern of the different approaches.

need to fit a distribution, but rather simply use the maximum RTT observed. Thus, we

used a fixed RTT sample of size ten, which took on average 3.6 seconds to collect.

For all locations we attested both the honest and malicious devices fifty times each. To

better illustrate how each configuration behaves, Figure 20 shows the first ten attestation

rounds performed in the building location. It is possible to see how the maximum number

of challenges and their timeout change from round to round in online configurations,

which is a reflection of the network conditions changing over time. Whereas the offline

configurations use the same parameters for all rounds. We explicitly show all the challenges

that could be sent during an attestation round by plotting their timeout. This enables us to

visualize how many other chances the prover still had when it passed attestation.
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Figure 21: Attestation TPR achieved under different environments.

4.5.2 True Positives / False Positives Results

Figure 21 shows the percentage of times the honest device was able to pass attestation, in

other words, the True Positive Rate (TPR), achieved by each configuration in all locations.

As can be seen, the stochastic offline configuration achieved the best results in every location

with an average of 99%, followed by the stochastic online (95%), maximum offline (91%), and

lastly maximum online (82%). All configurations presented a 0% False Positive Rate (FPR),

meaning that not even once the malicious prover was able to pass attestation. This is

expected, since we know the overhead of the adversary attack and set the number of

iterations accordingly (Equation 18), such that a malicious prover can only respond after

the timeout expires. The only way a false positive could happen in this scenario is if we

had a sufficiently high execution time jitter allowing the attacker to reply within time

occasionally. This did not occur in our experiments.
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4.5.3 Time and Energy Consumption

Figure 22 displays the attestation time measured by the verifier and energy consumption

of the honest prover for all configurations and locations. Bear in mind that it does not take

into account the time and energy spent collecting RTT samples, which is a disadvantage

of online configurations. It depicts the minimum, maximum, average (where the error

bar shows the standard deviation), and total (sum of all fifty attestation rounds) values

observed during our experiments. Note how small is the standard deviation of the maximum

offline configuration in comparison to the others. That is because it is the only configuration

that does not make use of either multiple challenges or different timeouts per attestation

round. Thus, the only things changing per round are the attestation routine execution time

jitter and the actual challenge-response RTT. It is also possible to see that the stochastic

offline configuration outperformed the others (except for the stochastic online in the library)

presenting the best overall results with an aggregate (all three locations) time of 845.55 s

and energy consumption of 648.45 J, followed by the stochastic online (1025.08 s and 815.98 J),

maximum online (1616.54 s and 1350.37 J), and maximum offline (5548.35 s and 4646.87 J).

Figure 23 shows the attestation time and energy consumption of the malicious prover,

again not considering the time and energy consumed collecting RTT samples. In this case,

the stochastic offline configuration also has a tiny standard deviation. That is because the

malicious prover always fails all challenges in a round and all rounds use the same param-

eters. Note that we are assuming an adversary that tries to bypass attestation by sending a

correct answer. If the compromised device were to send a wrong answer, then it would be

detected and the attestation rounds would end sooner. This time the maximum online config-

uration outperformed the others in every location presenting the best results (1963.65 s and

1618.64 J), while the stochastic offline is the second best (2975.28 s and 2239.85 J), stochastic

online third (3524.89 s and 2747.35 J), and maximum offline fourth (5637.77 s and 4646.87 J).
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Figure 22: Attestation time and energy consumption (honest prover).

0
10
20
30
40
50
60
70
80

Ti
m

e 
(s

)

500

1000

1500

2000

2500

Min. Max. Avg.
Building

0
10
20
30
40
50
60

En
er

gy
 (J

)

Min. Max. Avg.
Library

Min. Max. Avg.
Office

Building Library Office
Total

500

1000

1500

2000

stochastic online maximum online stochastic offline maximum offline

Figure 23: Attestation time and energy consumption (malicious prover).

123



4.5.4 Summary

It is worth mentioning that we expect the majority of devices in a network not to be

compromised, and if that is not the case, then the time and energy spent attesting malicious

devices is certainly not a primary concern. Therefore, reducing the attestation time and

energy for honest devices is much more valuable than doing the same for malicious ones.

In summary, the stochastic offline configuration presented the best overall results. In

comparison to the current state of the art solution (maximum offline configuration), it

presented an 8% TPR increase in detecting honest provers and reduced the attestation

time and energy consumption around seven times for honest devices and two times for

malicious ones. The considerably lower TPR achieved by the maximum online configuration

is reason enough to disregard it as a good option. Finally, the stochastic online configuration

is a valid second choice, but just not as good, especially when we consider the extra time

and energy required to collect RTT samples before each attestation round.

4.6 related work

To the best of our knowledge He et al. [123] and Yang et al. [19] are the only other software-

based attestation works that target the network RTT, with the later being an extension

done by the same group of authors. Their approach differs from ours as they propose a

multi-hop attestation scheme, while our scheme performs only single-hop attestation. To

attest a remote device, the verifier sends a challenge that is relayed across the network

until it reaches the prover. The prover’s response has to go back through the same path

as the challenge. Each relay node records the time when they receive the challenge and

response and report this information to the verifier. The verifier then can estimate the

average single-hop RTT and detects compromised nodes by using a Bayesian classifier.

We identify three drawbacks of this scheme. First, since both the challenge and response
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have to go through the same path the approach does not tolerate neither node failures or

node mobility. Second, to prevent a compromised relay node from modifying the reports

of other nodes, they assume the use of cryptographic keys to protect transmitted messages.

However, software-based attestation mechanisms are explicitly designed for devices that

do not possess any hardware capable of protecting such keys. Third, they assume that all

hops in the network have a similar RTT. This is not realistic since each hop may suffer

from different sources of interference. Furthermore, the experiments we realized in this

chapter have shown that even a single-hop may drastically change its conditions over time.

4.7 conclusions

In this chapter, we present a novel way of performing attestation which is a step further in

the development of practical software-based mechanisms. Instead of using the maximum

known network RTT to send a single large attestation challenge, which demands a high

number of computations to be performed, we use a series of short challenges that require

fewer computations and can be finalized whenever a correct response is given in time.

As can be seen from our experimental results, when compared to the current state of the

art solution (maximum offline configuration) our proposal (stochastic offline configuration)

considerably reduces the overall attestation time and energy consumption (around seven

times for honest devices and two times for malicious ones) while improving the detection

rate of honest devices (8% higher TPR) without compromising its security (0% FPR).

Nevertheless, all previous proposals can be adapted to follow this new interaction pattern

and benefit from its advantages.
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5
M O D E L L I N G T H E N E T W O R K H E A LT H

In the previous chapters, we looked into how security techniques such as attestation and

measurements inspection can identify compromised nodes in a network. However, just

knowing which devices have been compromised is not enough for us to understand how

the network as a whole is affected. The health of a network is not a binary property

indicating whether it has been compromised or not, but rather an indicator of how well it

can operate in its current state and fulfil its functions. Moreover, one can view the impact

of an attack from different perspectives, for instance, the effects it has on the confidentiality,

integrity, or availability of the data and services provided by the network. In this chapter,

we focus on the latter.

In particular, we view availability as a connectivity problem. Once we detect a node has

been compromised, we know we can no longer trust any data it reports. However, we also

have to consider that at any point a compromised device can stop to relay data from other

nodes that need it to reach the sink or vice-versa. For instance, a malicious node may not

forward commands from the base station to trigger a node’s actuator when an event is

detected. Besides, it makes perfect sense for a node injecting measurements not to relay

data from honest sensors so that a measurements inspection mechanism has fewer chances

of detecting the attack. Therefore, the network has to keep operating without relying on

compromised nodes, as if they were disconnected from it.

To understand the effects this has on the network we propose a mathematical model

to represent the health of WSNs. Our model combines the knowledge regarding compro-

mised nodes with additional information that quantifies the importance of each node.

More specifically, we define the significance of a node according to the tasks it performs
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and the role it plays on the network connectivity. While the value of each task is intrin-

sically dependent on the network application, the importance of a node for the network

connectivity is generalizable and depends mainly on its topological position. Intuitively, a

node that forwards traffic of a few nodes in the network should be less important than a

node that forwards traffic from one dense network segment to another.

In network theory, several centrality measures have been proposed to identify the most

important nodes in a network according to its topology, e.g., degree centrality, closeness

centrality, betweenness centrality, among others [25]. Nevertheless, no ultimate centrality

measure suits all applications, and it is usually the case that the optimal measure for

a given scenario is not the best for a different one. For instance, betweenness centrality

only considers communication along shortest paths. Conversely, current flow betweenness

centrality assumes information flows like an electrical current across the entire network.

However, WSN traffic usually originates or terminates at the sink node and does not

necessarily go through the shortest paths or spread across all network nodes. Therefore,

we propose a new metric, named current-flow sink betweenness, and evaluate which metric

is more suitable to recognize the impact each node has on the connectivity of WSNs. As of

today, no other work has explored this issue in depth.

The rest of this chapter is organized as follows. In Section 5.1 we introduce preliminary

concepts and formalise our network health model. Then, in Section 5.2 we describe

common centrality measures as well as the proposed current-flow sink betweenness

measure. Afterwards, in Section 5.3, we conduct a comprehensive performance analysis

among all of the described measures to evaluate their adaptability and suitability in the

context of WSNs and instantiate our proposed health model using the best-suited metric.

In Section 5.4 we discuss related work. Finally, in Section 5.5 we present our conclusions

and future work directions.
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5.1 network health

Our concept of network health refers to the ability of a network to properly perform its

functions. A network operates at maximum health when all of its nodes are working

correctly. As nodes fail or are even attacked, the health of the network degrades until it

becomes fully dysfunctional. Moreover, distinct nodes might have a different impact on

the network operation. We here propose a model that captures this notion and is capable

of expressing the health of WSNs into a single value.

5.1.1 Preliminary Concepts and Notation

Let W = (V, E) be a WSN modelled as an undirected graph where V represents the set

of sensors and E corresponds to the set of connectivity edges among nodes. An edge

(vi, vj) ∈ E expresses the fact that node vi is within communication range of node vj. This

relationship is symmetric, meaning edges (vi, vj) and (vj, vi) are identical. The order of the

graph is |V|, the number of nodes in the network. Whereas the size of the graph is |E|, the

number of edges.

Within a WSN, a path p = (V ′, E′) ⊆ W is a non-empty subgraph of W where

V ′ = {v0, v1, . . . , vk} is a sequence and for each vertex pair vi, vi+1 ∈ V ′, i ∈ [0, k − 1],

there exists an edge (vi, vi+1) ∈ E′ ⊆ E that links them.

Note that to represent the network as a graph, we first need to know its topology. We

assume it is either known or can be retrieved post-deployment by using a topology or

location discovery algorithm [124, 125, 126, 127, 128].

Finally, we assume a sink-to-sensors/sensors-to-sink communication model. We denote

the sink node, also known as base station, by S and the remaining nodes in the network

as V∗, such that V∗ = V − {S}. Furthermore, to simplify our analysis, we can reduce the

case with multiple base stations to a scenario with a single one. For that, we introduce an
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Figure 24: Adding an artificial node to deal with multiple base stations.

artificial node to our graph representation of the network and link it to each of the original

sink nodes as shown in Figure 24.

5.1.2 Model

We specify the health of a WSN as a combination of two main aspects: (i) the importance

of each node to the network operation, and (ii) whether or not the node in question is

contributing to the network operation. In particular, a node contributes to the network

operation if and only if it is functional and there is a safe path connecting it to the sink.

However, a node that is either not functional or that is disconnected from the sink causes

damage to the network proportionally to how important such node is.

In this context, we formally define the health of a network W = (V, E) as:

H(W) = 1−
∑

vi∈V∗
I(vi) ·

(
1−

(
F(vi) · S(vi)

))
∑

vi∈V∗
I(vi)

where I(vi) quantifies the importance of node vi, F(vi) is a boolean function indicating

if node vi is functional, and S(vi) is a boolean function indicating if there is a safe path

connecting vi to the sink.
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Every node vi is considered to be functional (F(vi) = 1) until either it fails (e.g., runs

out of energy) or is classified as compromised by the security mechanism in place. In such

cases, F(vi) will return 0.

We define a safe path as a path where all nodes involved are functional. If there is such a

path connecting node vi to the sink then S(vi) outputs 1, otherwise 0. It is worth mentioning

that computing all paths when looking for the existence of a safe path is too expensive

and not a viable solution. Instead, we take an alternative approach. First, we remove all

compromised nodes, with their corresponding edges, from our graph representation. Then

we compute the connected components in the resulting graph. If there is only one such

component, then we know there is a safe path. Otherwise, we check if vi is in the sink

component. If it is not, then there is no safe path connecting the two.

Although it is typically assumed that the sink node has an unlimited amount of energy

and cannot be compromised, for completeness, it is possible to extend our health definition

to consider such scenario:

H′(W) = F(S) · H(W)

Note that our health definition always returns a value in the interval [0, 1], where 0

denotes a completely dysfunctional network and 1 denotes the network is fully functional.

This means that the fraction being subtracted in the equation is effectively the damage

sustained by the network.

We quantify the importance of each node based on the tasks it executes as well as its

effect on the network connectivity. While different nodes might execute distinct tasks,

such as monitoring dissimilar physical phenomena, working as an actuator, among others,

the value of each task is application specific. For simplicity, we assume that all nodes in

the network perform the same tasks or tasks of equivalent values. In this case, a node’s

importance is defined solely by how it may affect the network at a connectivity level, which

is defined primarily based on its topological position. To this end, we can use centrality
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measures to identify which nodes are more important. For the remainder of this chapter

we investigate which metric is more suitable to our requirements.

5.2 centrality measures

Several centrality measures have been proposed in the literature, and while they all try

to identify the most important nodes in a network, each metric has a different concept of

what makes a node important. In this section, we give an overview of the most traditional

metrics as well as some of the more recently proposed ones, and also introduce a new

measure called current-flow sink betweenness. While we describe the main intuition behind

each measure and how to compute them, we refer the reader to their original work for

further details.

5.2.1 Degree Centrality

Degree centrality measures the number of direct connections a node has with other nodes

in the network [129]. Formally:

CD(vi) = ∑
vi 6=vj

e(vi, vj)

where e(vi, vj) is 1 if there is an edge connecting vi to vj and 0 otherwise.

5.2.2 Closeness Centrality

Closeness centrality quantifies how close, on average, a node is to all other nodes in the

network [129]. It is defined as:
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CC(vi) =
1

∑
vi 6=vj

d(vi, vj)

where d(vi, vj) is the distance — number of edges in a shortest path — between vi and

vj. Note that if there is no path between two nodes, the distance is infinite by convention.

Thus, this metric is not suitable in such scenarios.

5.2.3 Harmonic Centrality

With the same goal of closeness centrality, but still applicable to disconnected graphs,

harmonic centrality is defined as the sum of the inverted distances rather than the inverted

sum of distances [130]. Formally:

CH(vi) = ∑
vi 6=vj

1
d(vi, vj)

where 1/∞ (when there is no path from vi to vj) is 0.

5.2.4 Betweenness Centrality

Betweenness centrality measures the number of times a node appears on the shortest paths

between all pairs of nodes in the network [129]. It is formally defined as:

CB(vi) = ∑
vi 6=vj 6=vk

σ(vj, vk|vi)

σ(vj, vk)

where σ(vj, vk) is the total number of shortest paths from vj to vk and σ(vj, vk|vi) is the

number of those paths that pass through vi.
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5.2.5 Current-flow Betweenness Centrality

Whereas betweenness centrality assumes information flows over shortest paths, current-

flow betweenness centrality adopts a model where information spreads as an electrical

current [131]. Formally:

CCB(vi) = ∑
vi 6=vj 6=vk

τ(vj, vk|vi)

where τ(vj, vk|vi) is the amount of current that flows through vi when a unit of current

is injected at vertex vj and extracted at vertex vk. This metric is also known as random-walk

betweenness centrality.

5.2.6 Current-flow Closeness Centrality

While closeness centrality measures distance, current-flow closeness centrality quantifies

the absolute potential differences among the nodes in the network [132]. It is defined as:

CCC(vi) =
1

∑
vi 6=vj

p̂(vi, vj|vi, vj)

where p̂(vi, vj|vi, vj) quantifies the effective resistance between vi and vj when a unit

of current is injected at vertex vi and extracted at vertex vj. This metric is equivalent to

information centrality [133].

5.2.7 Eigenvector Centrality

Whilst degree centrality simply counts the number of connections of a node, eigenvector

centrality assigns proportional scores to a node based on the scores of its neighbours [134].

Formally:
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CE(vi) =
1
λ ∑

vi 6=vj

e(vi, vj)CE(vj)

where λ is a constant. Given the adjacency matrix A of the network, such that ai,j = e(vi, vj),

and defining a vector x = (CE(v1), CE(v2), ...) one can rewrite the previous equation as:

Ax = λx

which allows us to observe that x is the eigenvector of A with eigenvalue λ.

5.2.8 Katz Centrality

Katz centrality also defines the score of a node based on its neighbours and can be viewed

as a generalization of the eigenvector centrality [135]. It is defined as:

CK(vi) = α ∑
vi 6=vj

e(vi, vj)CE(vj) + β

where α is an attenuation factor penalizing the contribution of distant nodes while β can

give extra weight to immediate neighbors.

5.2.9 Sink Betweenness Centrality

Sink betweenness is an adaptation of betweenness centrality explicitly designed for

WSNs [136]. Since the communication in such networks is usually between sensor nodes

and the sink, instead of considering all pair of nodes, this metric only considers the shortest

paths between each node and the sink. It is formally defined as:

CSB(vi) = ∑
vi 6=vj 6=S

σ(vj,S|vi)

σ(vj,S)
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where S is the sink node.

5.2.10 Current-flow Sink Betweenness Centrality

In the same way sink betweenness adapts betweenness centrality, we here propose to adapt

the current-flow betweenness centrality to only take into account the paths terminating at

the sink. Formally:

CCSB(vi) = ∑
vi 6=vj 6=S

τ(vj,S|vi)

5.2.11 Discussion

Figure 25 illustrates how each of the metrics presented in this section views the importance

of the nodes in a network. As can be seen, different metrics have distinct concepts of what

makes a node important and can, therefore, lead to diverging results, which means that no

metric suits all cases and the optimal measure in a given scenario is usually not the best

for a different one.

One limitation of centrality measures is that they do not necessarily specify the relative

importance between nodes. While nodes are ranked from most to least important, a node

with a score of 9 may not be three times more important than a node with a score of 3.

Furthermore, the characteristics used to identify the most important nodes do not always

generalize to the remaining nodes in the network. In such cases, aside from the most

important nodes, the rankings might be meaningless [137].
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Figure 25: Node score value coloured according to different centrality measures.
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5.3 evaluation

Since distinct centrality measures have different interpretations of what makes a node

important, our objective is to analyse the performance of such metrics in ranking the

impact that each node has on the connectivity of WSNs. However, there is no standard

procedure to carry out an analysis of this kind. Therefore, we performed three different

experiments, which we describe below in this section. Lastly, once we determine which

centrality measure is best-suited for our needs, we instantiate our health model using the

metric ranking as an approximation of nodes’ importance.

5.3.1 Settings

In all experiments, we used the NetworkX [138] python package to generate the network

graphs and compute the centrality measures scores. While centrality measures are usually

evaluated over the Erdős-Rényi or Barabási-Albert models, in this work, we use Random

Geometric Graphs (RGG) as they are a more realistic representation of WSNs [139, 140, 141].

Nodes are placed uniformly at random in the unit square, and any two nodes are connected

by an edge if the distance between them is within a transmission radius r. Aside from

requiring the network to be connected, we do not impose any other restrictions on the

network structure, such as a minimum k-connectivity, presence or absence of cycles, or

centralizing the sink node.

5.3.2 Counting Paths

When we examine the connectivity of a WSN, we are not particularly interested in the

connection between any two arbitrary nodes. Instead, we are concerned about nodes being

connected to the sink. Therefore, one way of measuring the network connectivity is by
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counting the total number of paths connecting the sink to each node in the network,

let us name this value TPS . We can then temporarily disconnect each node, one at a

time, to recompute the number of paths between the sink and the other nodes, which

we denote by RPS . Finally, we can rank the nodes such that node i outranks node j

if TPS − RPSi
> TPS − RPSj

or simply RPSi
< RPSj

. Meaning, a node whose disconnection

removes more paths is considered more important.

For this experiment, we assume the ranking obtained by counting paths as the ground

truth and analyse the correlation with each ranking given by the centrality measures

described in Section 5.2. We do this computation over 100 random geometric graphs

of order 15. In particular, we compute the Kendall’s τ and the Spearman ρ correlation

coefficients. Both values range in the interval [−1, 1] indicating strong disagreement

around −1, no correlation around 0, and strong agreement around 1. Thus, the higher the

correlation value, the better is the metric. Typically, Spearman correlation coefficients tend

to be higher than Kendall’s.

The mean correlation coefficients over the 100 graphs can be seen in Table 10. We can

observe that the current-flow sink betweenness measure presents the highest correlation,

followed by sink betweenness and closeness centrality, while Katz, eigenvector, and de-

gree centrality present the lowest values. Also, except for the eigenvector centrality, the

Spearman ρ is higher than Kendall’s τ for all metrics. Which means that the eigenvec-

tor centrality is probably giving low ranks to some nodes that receive high ranks when

counting paths or vice-versa.

There are two issues when counting all paths connecting the sink to network nodes. The

first issue is that counting all these paths can be really expensive — which is the reason

why this experiment is only performed over graphs with 15 nodes. While a single path

can be found in O(V + E) time, the number of paths in a network can be enormous, for

instance, O(n!) for a complete graph of order n. The second issue is that not all paths

contribute to the sink connectivity. Let us consider the paths {S , v1, v3} and {S , v1, v2, v3}.
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Table 10: Mean correlation coefficients between metrics and ranking by counting paths.

|V| Centrality Kendall τ Spearman ρ

15

Degree 0.192659 0.209119

Closeness 0.313026 0.365837
Harmonic 0.259808 0.302857

Betweenness 0.293757 0.360487

Cf betweenness 0.286593 0.360374

Cf closeness 0.276209 0.312523

Eigenvector 0.190848 0.180138

Katz 0.185320 0.194818

Sink betweenness 0.333496 0.390212
Cf sink betweenness 0.481101 0.577486

Node v2 is not giving the sink an alternative independent path to v3 since it still requires

node v1 which is already considered in the first path.

5.3.3 Counting Node Independent Paths

Any two paths in the network that connect the same two non-adjacent nodes are said to be

node-independent if they do not have any internal nodes in common. According to Menger’s

theorem, the number of node-independent paths between two nodes is always equal to the

minimum number of nodes that must be removed to disconnect them.

This experiment is the same as the previous one, except this time we rank a node n by

counting the remaining number of independent paths between the sink and each other

network node when n is temporarily disconnected. Table 11 shows the mean correlation

coefficients over 100 graphs of order 50. It is possible to notice that, in comparison to the

previous experiment, the correlation of some metrics increased while others decreased.

Current-flow sink betweenness still has the highest correlation, but this time is followed by

current-flow betweenness, betweenness, and sink betweenness, these three presenting very

similar results. Katz, eigenvector, and degree centrality measures still exhibit the lowest

correlations. This time the Spearman ρ is higher than Kendall’s τ for all metrics.
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Table 11: Mean correlation coefficients between metrics and ranking by counting node
independent paths.

|V| Centrality Kendall τ Spearman ρ

50

Degree 0.117484 0.147835

Closeness 0.254139 0.327075

Harmonic 0.220759 0.287228

Betweenness 0.408120 0.511300
Cf betweenness 0.408739 0.516205

Cf closeness 0.227013 0.292216

Eigenvector 0.122902 0.163820

Katz 0.095954 0.124506

Sink betweenness 0.408180 0.496516
Cf sink betweenness 0.516054 0.632177

Table 12: Mean correlation coefficients between metrics and ranking by counting an ap-
proximation of node independent paths.

|V| Centrality Kendall τ Spearman ρ

50

Degree 0.130927 0.165050

Closeness 0.249960 0.321991

Harmonic 0.226517 0.295999

Betweenness 0.390498 0.491875
Cf betweenness 0.400498 0.506592

Cf closeness 0.221726 0.286106

Eigenvector 0.138828 0.184423

Katz 0.115615 0.151474

Sink betweenness 0.391404 0.477312
Cf sink betweenness 0.511963 0.626929

100

Degree 0.065708 0.089039

Closeness 0.217286 0.290192

Harmonic 0.187782 0.254746

Betweenness 0.340509 0.438525
Cf betweenness 0.343290 0.441455

Cf closeness 0.198794 0.267816

Eigenvector 0.089037 0.122594

Katz 0.031533 0.049557

Sink betweenness 0.330092 0.416705
Cf sink betweenness 0.457480 0.575776
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Although counting independent paths is less expensive than counting all paths this

method still does not scale to large networks. We can improve its performance by using an

approximation algorithm that gives a lower bound on the number of node-independent

paths between two nodes [142]. Table 12 shows the results when using this algorithm over

100 graphs of order 50 and 100 graphs of order 100. The results on graphs of order 50 are

very similar to the ones achieved without the approximation. While the mean correlation

of every metric decrease on graphs of order 100, the analysis remains the same, thus

indicating a similar behaviour on larger graphs.

5.3.4 Disconnecting Nodes

Another way of analysing the performance of different centrality measures is to simulate

an attack that disconnects nodes sequentially (following the ranking provided by each

metric) and observe the effects on the network [143, 144].

Once more we emphasize that, in the context of WSNs, we are interested in monitoring

the number of nodes that remain connected to the sink. If the network gets fragmented

into multiple components, only the nodes connected to the sink will continue to be

functional since they will be the only ones capable of reporting their data and receiving

new instructions. Accordingly, we assume an attack strategy that always disconnects the

highest ranking node within the sink component until the sink is isolated. Figure 26

illustrates this process for a graph of order 50. Note that the goal is not to simply isolate

the sink as fast as possible. If that was the case, one could merely disconnect all of the

sink’s neighbours and be done with it. There is a subtle difference. For instance, a node

that is only connected to the sink and nothing else has no impact on the connectivity of

the other nodes in the network. We are looking for a metric that is capable of identifying

the most important nodes and, in the average case, this metric will be able to isolate the

sink faster (requiring fewer disconnections) than others.
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Figure 26: Sink component size as nodes are removed by highest score according to each
centrality measure.

There are two possible disconnection strategies. The first one computes the centrality

scores only once before removing any node. The second strategy recomputes the centrality

scores for the remaining nodes of the sink component after each disconnection. We

evaluate both strategies over graphs of different orders and the results are shown in

Table 13 and Table 14. We compute the mean (µ) and standard deviation (σ) of the number

of disconnected nodes and also rank the metrics among themselves (columns 1st, 2nd, ....,

10th) according to the number of nodes they need to disconnect to isolate the sink in each

graph. Note that there can be ties, for instance, in the example illustrated in Figure 26,

the rank would be: 1st current-flow sink betweenness and current-flow betweenness, 3rd

current-flow closeness and closeness, 5th betweenness and sink betweenness, 7th harmonic,

8th eigenvector, 9th degree, and 10th Katz. The ranking fields of each row sum up to 100
1

while column sums might exceed 100 due to ties.

While the mean and standard deviation allow us to think about the average case, the

ranking allows us to see that no metric is always better (fewer disconnections for sink

isolation) than the others. However, we can observe that when using the first strategy,

1 Eigenvector and Katz centrality measures may fail to converge after a maximum number of iterations and
are not ranked in such cases. We used the default parameters from NetworkX — 100 and 1000 maximum
iterations respectively.
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Table 13: Disconnecting nodes using the first strategy.

|V| Centrality µ σ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

50

Degree 17.4 5.0 3 2 8 7 10 12 8 27 17 6

Closeness 15.5 4.9 8 4 5 5 16 21 17 14 9 1

Harmonic 15.6 4.5 5 5 7 12 20 16 24 5 5 1

Betweenness 14.0 4.6 2 3 25 21 7 10 14 4 7 7

Cf betweenness 12.8 4.1 2 10 32 22 10 9 5 6 3 1

Cf closeness 14.8 4.9 8 8 14 11 17 20 7 11 4 0

Eigenvector 18.9 7.1 13 1 2 1 2 4 4 9 8 28

Katz 17.7 5.6 9 4 10 3 4 5 5 18 29 12

Sink betweenness 10.1 4.6 35 32 10 6 3 5 3 5 1 0

Cf sink betweenness 8.2 3.4 79 12 5 1 1 2 0 0 0 0

100

Degree 33.9 8.0 0 3 4 5 7 10 6 32 25 8

Closeness 28.2 10.8 1 7 8 6 20 17 12 10 16 3

Harmonic 28.3 9.5 2 5 5 9 15 18 36 5 5 0

Betweenness 23.6 8.5 0 3 16 33 10 10 10 8 10 0

Cf betweenness 19.9 7.0 0 15 44 19 9 7 4 2 0 0

Cf closeness 26.4 10.1 5 10 7 14 16 22 15 5 5 1

Eigenvector 34.4 14.5 5 1 4 3 4 1 3 12 7 17

Katz 33.7 10.6 2 4 4 5 4 8 7 19 23 6

Sink betweenness 16.9 8.7 18 41 13 9 6 5 3 3 2 0

Cf sink betweenness 10.8 5.2 88 7 3 1 0 1 0 0 0 0

500

Degree 204.8 54.8 0 1 2 1 22 14 16 38 6 0

Closeness 203.2 72.5 0 3 3 3 8 11 22 43 7 0

Harmonic 190.9 68.2 0 1 4 9 8 26 40 10 2 0

Betweenness 134.0 47.5 0 0 7 56 15 12 7 2 1 0

Cf betweenness 83.9 32.9 0 39 48 8 3 2 0 0 0 0

Cf closeness 172.3 57.6 0 2 7 10 43 28 8 2 0 0

Eigenvector 240.5 95.6 0 2 2 2 1 1 2 5 29 0

Katz 107.0 0.0 0 0 0 1 0 0 0 0 0 0

Sink betweenness 79.9 52.7 1 52 27 10 4 5 1 0 0 0

Cf sink betweenness 17.9 11.2 100 0 0 0 0 0 0 0 0 0
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Table 14: Disconnecting nodes using the second strategy.

|V| Centrality µ σ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

50

Degree 17.0 4.2 0 0 2 1 1 4 10 46 36 0

Closeness 11.4 2.9 6 4 26 7 23 24 6 2 1 1

Harmonic 13.9 3.3 0 2 6 2 3 14 66 7 0 0

Betweenness 10.1 2.7 3 5 58 14 14 6 0 0 0 0

Cf betweenness 9.9 2.7 3 5 63 15 13 0 1 0 0 0

Cf closeness 10.9 2.4 6 6 34 8 30 14 1 1 0 0

Eigenvector 10.0 0.0 0 0 0 0 0 1 0 0 0 0

Katz 16.8 3.6 0 0 1 1 0 1 9 51 33 0

Sink betweenness 7.0 3.1 89 7 1 1 1 1 0 0 0 0
Cf sink betweenness 7.0 3.0 85 12 2 1 0 0 0 0 0 0

100

Degree 33.7 7.0 0 0 0 0 0 0 4 65 31 0

Closeness 18.1 4.6 0 2 9 8 29 47 5 0 0 0

Harmonic 25.3 6.3 0 0 0 1 3 3 90 3 0 0

Betweenness 14.3 4.0 1 2 50 35 11 1 0 0 0 0

Cf betweenness 14.3 4.2 3 1 67 14 9 5 1 0 0 0

Cf closeness 16.8 4.0 0 2 13 11 54 20 0 0 0 0

Eigenvector - - 0 0 0 0 0 0 0 0 0 0

Katz 32.9 7.4 0 0 0 0 0 0 1 38 39 0

Sink betweenness 8.8 3.8 87 13 0 0 0 0 0 0 0 0
Cf sink betweenness 9.1 4.0 73 25 2 0 0 0 0 0 0 0

500

Degree 197.3 31.9 0 0 0 0 0 0 4 96 0 0

Closeness 70.1 17.2 0 0 0 0 65 35 0 0 0 0

Harmonic 139.2 30.5 0 0 0 0 0 0 96 4 0 0

Betweenness 40.1 11.3 0 0 33 67 0 0 0 0 0 0

Cf betweenness 36.9 10.3 0 1 72 26 1 0 0 0 0 0

Cf closeness 77.0 22.0 0 0 1 1 33 65 0 0 0 0

Eigenvector - - 0 0 0 0 0 0 0 0 0 0

Katz 170.0 11.0 0 0 0 0 0 0 0 0 2 0

Sink betweenness 14.3 6.7 62 38 0 0 0 0 0 0 0 0
Cf sink betweenness 13.5 6.1 78 22 0 0 0 0 0 0 0 0
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current-flow sink betweenness outperforms the other measures in most cases. In the

second strategy, current-flow sink betweenness is slightly worse than sink betweenness

for graphs of order 50 and 100, but is slightly better for graphs of order 500. We can

also notice that when using the second strategy, fewer nodes have to be disconnected to

isolate the sink. This approach is more time-consuming though, since the metric has to be

recomputed several times. Therefore, choosing a particular strategy involves a trade-off

between efficiency and computation power.

5.3.5 Bringing it all together

To instantiate the health model described in Section 5.1.2 we need to know the network

topology, the importance of each node to the network operation, and which nodes are

functional. Assuming we have the network topology, we can then compute the current-flow

sink betweenness rank and use it as an approximation of nodes importance. We can use

the results of the security mechanism in place (for instance, the attestation mechanism or a

combination of attestation with measurements inspection as seen in the previous chapters)

to determine whether a node is functional or compromised. With this information, we can

determine which nodes have a safe path to the sink and finally compute the health value.

Figure 27 illustrates the health evaluation of a network over time. Compromised nodes

are shown in red, while nodes that are functional but do not have a safe path to the sink

are shown in grey. Note that the health values might be different from the percentage

of nodes connected to the sink at each point in time. For instance, on the top right case,

when only one node has been compromised the health evaluates to H(W) = 0.9 while

there is a total of 23 nodes out of 24 still connected to the sink (23/24 = 0.96). That is

because by using the current-flow sink betweenness we can get a better approximation of

the connectivity impact in terms of how well connected the remaining nodes are. Observe

also that in this example we are assuming all nodes execute the same tasks or tasks of

equivalent value. However, if that was not the case, then we could use an additional
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function f (vi) that determines the value of each node’s tasks, and use that function in

conjunction with the current-flow sink betweenness ranking adding their values to specify

each node importance (I(vi) = f (vi) + CCB(vi)).

5.4 related work

Centrality measures have been previously applied in WSNs to fulfil several tasks, such as

routing [136, 145, 146], topology control [147, 148, 149, 150], access control [151], connectiv-

ity restoration [152], clustering [153], and target tracking [154] to cite a few. While some of

these works even propose new centrality measures, none of them perform a comprehensive

analysis comparing metrics as shown in here. Moreover, none of these works are concerned

with measuring the network health and the damage caused by a compromised node.

Labatut and Ozgovde [155] illustrate the applicability of different topological measures

for the analysis of WSNs through simulated experiments. However, they only cover one

centrality measure, betweenness, and an adapted version of it, sink-betweenness. Jain and

Reddy [156], on the other hand, give a general overview of how some centrality measures

could be applied to WSNs. Nonetheless, their work has no analytical evaluation or actual

experiments to further support and evidence their claims.

The work of Cartledge et al. [144] is closer to our notion of connectivity damage

and network health. Nevertheless, the authors assume that nodes can still meet their

responsibilities even if they are part of different disconnected components. This is not

the case in WSNs since nodes that are disconnected from the sink will never be able to

report their data or receive new commands. For the same reason, the well-known work

from Albert, Jeong, and Barabási [143] which quantifies damage measuring the size of the

largest connected component, the average size of the remaining components and the mean

vertex-vertex distance is not directly applicable to WSNs.
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Figure 27: Health evaluation over time.
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5.5 conclusions

In this chapter, we have proposed a model capable of expressing the health of a WSN

as a single value in the range [0, 1], where 0 means the network is not operational and

1 means it is working to its maximum capacity. A fundamental aspect to this model is

the importance attributed to each node. In particular, we focused on how a node affects

the network connectivity. To this end, we have performed an extensive analysis on how

well centrality measures can rank the impact of each sensor node based on its topological

position. We have conducted three different experiments which involved counting paths,

independent paths, and disconnecting nodes from the network according to the metrics

scores. Our results show that no metric is superior in all cases. However, we have proposed

a novel metric named current-flow sink betweenness which is able to outperform existing

metrics in most of the cases.
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6
C O N C L U S I O N S

WSNs are becoming increasingly pervasive and will play a vital role in the IoT. Securing

such systems is of utmost importance, and many defense solutions have been proposed to

protect them from known attacks. However, the cybersecurity landscape is continuously

evolving as new attacks emerge and, while prevention techniques are essential, they are

not enough.

In this thesis, we have presented a framework to monitor the health and integrity of

WSNs that allows us to comprehend to what degree a network can operate even in the

presence of compromise. More specifically, this framework consists of security techniques

to identify compromised devices and a mathematical model capable of expressing the

network operational level.

Regarding security techniques, we focused on the use of attestation mechanisms to

detect malicious devices. Not that other techniques could not be employed. So much so

that we also proposed the use of attestation in combination with measurements inspection.

However, the ability of attestation to detect, as long as the adversary modifies the software

running on compromised devices, any type of attack (e.g., targeting confidentiality, integrity

or availability) is what drew our attention, since it allows its use in many scenarios. While

attestation is ineffective against physical attacks tampering a device’s hardware, these

attacks are difficult to scale. On top of that, most recent high-profile attacks, such as Stuxnet

and the Mirai botnet, were performed exploiting software vulnerabilities.

As for the network operational level, we focused our evaluation on the impacts an attack

might have on the network connectivity since it is crucial, in a WSN, for nodes to remain
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connected to the sink. Nevertheless, our proposed model to represent the health of a

network can be easily extended to take into account other factors.

In the remainder of this chapter, we briefly summarize our main achievements and point

out future research directions.

6.1 summary

In Chapter 2, we introduced a taxonomy that distinguishes the main characteristics of

existing attestation mechanisms which allowed us to examine the tradeoffs between their

design choices. We also identified four main topics that constitute open research issues:

overoptimistic assumptions, effectiveness, time of check to time of use, and scalability;

three of which we addressed in this thesis.

In Chapter 3, we proposed the combination of attestation with measurements inspection

and designed three combination schemes: Detect and Attest, Group Subset Attestation,

and Cascade. We evaluated all schemes both analytically and under simulations and

showed that the D&A and GSA schemes offer a detection performance very close to

attestation while consuming significantly less energy. While attestation provides accuracy

close to 100% with a power consumption overhead of 33-58% and measurements inspection

has an accuracy close to 50% with overhead close to 0, the combination schemes allows us

to choose an accuracy in the range 96-99% with an overhead in the range 1-10%.

In Chapter 4, we reviewed a critical assumption made by software-based attestation

mechanisms and proposed a novel stochastic approach. Instead of using the maximum

known network RTT to send a single large attestation challenge, we take advantage of the

fact that most of the time the actual network RTT is much smaller. Therefore, we use a

series of short challenges in such a way that there is a high probability at least one will be

replied in time. Our experimental results in real networks showed that when compared to

the current state of the art solution our proposal reduces the overall attestation time and

energy consumption around seven times for honest devices and two times for malicious
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ones, while improving the detection rate of honest devices (8% higher TPR) without

compromising security (0% FPR).

In Chapter 5, we introduced a mathematical model to represent the health of WSNs that

outputs a single value indicating its operational level. This model combines the knowledge

regarding which nodes have been compromised with additional information that quantifies

the importance of each node. In particular, we focused on the importance of each node for

the network connectivity and investigated how well centrality measures can rank the nodes.

In this process, we proposed a new metric named current-flow sink betweenness. Through a

number of experiments, we show that no measure is invariably better in identifying sensors’

connectivity relevance. However, our proposed metric outperforms existing measures in

the vast majority of cases.

6.2 future research directions

When designing our attestation and measurements inspection combination schemes, we

assumed an adversary performing malicious data injection attacks by modifying the code

running on compromised devices. It is possible to expand our threat model to consider

further attacks. For instance, an adversary that physically tampers with environmental

conditions, or that quietly compromises nodes until it controls the majority of them to

only then start injecting data. Attestation would not detect the first type of attack, while

measurements inspection would have a poor detection performance in the second. In

such extreme cases each technique should be able to raise alarms on their own. Further-

more, we could bring even more techniques into the mix, such as misuse-based intrusion

detection [157], and evaluate the benefits of the resulting schemes.

While intuitively our stochastic software-based attestation approach hinders the exe-

cution of collusion, impersonation, and proxy attacks it would be interesting to perform

further experiments to analyse exactly to which extent it prevents this attacks. Also, the

performance of our stochastic approach could be possibly improved with the use of ma-
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chine learning techniques to estimate the channel conditions and compute the parameters

for the attestation rounds.

Although we proposed a general model to represent the health of WSNs, we focused our

evaluation on the impacts to the network connectivity. Moreover, we analysed connectivity

from a topological perspective. However, an actual routing protocol might not be able to

find certain paths, disconnecting nodes that could remain connected. Furthermore, it would

be interesting to evaluate the relationship between the connectivity impact estimation

and routing algorithms in terms of packet delivery ratio, end-to-end delay, and network

lifetime. While we investigated the use of centrality measures to identify the significance of

each node, other techniques, such as core graphs and core paths [158, 159], could possibly

better estimate a node’s connectivity impact. Additionally, it is possible to extend our

current model to consider cases where nodes can have different levels of functionality

rather than a boolean functional/not functional representation as well as incorporating

confidentiality aspects that impact a network’s health. Finally, we believe our health model

can be used not only to guide decisions after an attack is detected but can also support

pre-deployment assessment stages.
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