
Adjoint-Based Mixing Enhancement
for Binary Fluids

a thesis presented for the degree of

Doctor of Philosophy of Imperial College London

and the

Diploma of Imperial College

by

Maximilian F. Eggl

Department of Mathematics

Imperial College

180 Queen’s Gate, London SW7 2BZ

June 2019



I certify that this thesis, and the research to which it refers, are the product of

my own work, and that any ideas or quotations from the work of other people,

published or otherwise, are fully acknowledged in accordance with the standard

referencing practices of the discipline.

Signed:

1



Copyright

The copyright of this thesis rests with the author. Unless otherwise indicated, its

contents are licensed under a Creative Commons Attribution-Non Commercial 4.0

International Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or

format. You may also create and distribute modified versions of the work. This is

on the condition that: you credit the author and do not use it, or any derivative

works, for a commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to

others by naming the licence and linking to the licence text. Where a work has

been adapted, you should indicate that the work has been changed and describe

those changes.

Please seek permission from the copyright holder for uses of this work that are not

included in this licence or permitted under UK Copyright Law

2



Thesis advisor: Professor Peter J. Schmid Maximilian F. Eggl

Adjoint-Based Mixing Enhancement for Binary Fluids

Abstract

Mixing is a fundamental fluid process that dominates a great many natural phe-

nomena and is present in a wide variety of industrial applications. Therefore,

studying the characteristics and optimisation of this process may lead to a signif-

icant impact in many fields. This thesis presents an analytical and computational

framework for optimising fluid mixing processes using embedded stirrers based on

a non-linear direct-adjoint looping approach. The governing equations are the non-

linear Navier-Stokes equations, augmented by an evolution equation for a passive

scalar, which are solved by a Fourier-based spectral method. Stirrers are em-

bedded in the computational domain by a Brinkman-penalisation technique, and

shape and path gradients for the stirrers are computed from the adjoint solution.

The relationship between this penalisation approach and the adjoint will be ex-

amined through the derivation of a dual system of equations, and three different

optimisation scenarios of increasing complexity, each focusing on different opti-

misation parameters, are considered. Within the limits of the parameterisations

of the geometry and the externally imposed bounds, significant improvements in

mixing efficiency are achieved in all cases.
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1
Introduction

The mixing of binary fluids is a problem of fundamental concern in fluid dynamics,

as its mechanisms play an important role in a wide variety of industrial fields and

in many fluid processes encountered in daily life. Therefore, the study of this

phenomenon has drawn great interest in the research community.

The study of mixing can broadly be split into two areas, theoretical and application-

driven. The theoretical aspects of mixing have been studied in great detail, and

there exists a vast body of literature pertaining to all aspects of mixing for binary

fluids. Aspects that have been studied include the formulation of emulsions and

the stirring mechanics used to create them1, mixing in stratified flows2,3 as well as

the optimisation of mixing4. For example, Stokes mixing, i.e., the mixing of highly

viscous fluids, has drawn great interest in the research community, exemplified by

papers by Spencer et al.5 who identified stretching and cutting or folding as the

primary mechanisms of mixing, Chien et al.6 and Ottino et al.7, who found that

chaotic mixing can be induced from laminar mixing by varying the oscillations of

the walls, and Mohr et al.8 who argued for a simplified analysis of viscous mixing

by ignoring interfacial tension. Their simplification formed the basis for most sub-

sequent developments in the mixing of viscous fluids. Concurrently, at the other

end of the spectrum, turbulent mixing, i.e., the mixing of binary fluids mostly by

17



inertial effects, has been studied extensively, such as in the articles by Corrsin et

al.9,10 and Batchelor11. More recently, mixing has been linked to chaotic processes

and chaotic advection, as the accepted consensus is that turbulence naturally leads

to ‘better’ mixing12. This consensus was subsequently studied widely and verified

experimentally13. Thus, a trend has arisen where mixing is achieved by using tech-

niques that inject energy into the system to generate turbulence and, therefore,

achieve better mixing14,15. Turbulence has also been a subject of study in mixing

of stratified fluids, e.g., Linden16, who suggested that turbulence existed for all

values of the ratio of buoyancy and flow shear and argued that there must be some

overall stratification where mixing is most optimal. This was also studied by Tang

et al.17, who put a value on this optimal stratification and confirmed Linden’s

supposition.

Another area of particular interest, due to our reliance on this specific concept

throughout this thesis, is the issue of choosing an appropriate mixing measure.

This includes the early work by Danckwerts18, who showed that mixtures can

be expressed by two statistically-defined quantities, the scale and the intensity of

segregation, by Tryggvason et al.19 who utilised the stretching of the interface as

a mixing measure, and, more recently, by Mathew et al.20 who took inspiration

from mathematical measure theory.

This small selection of articles is intended to demonstrate the incredible breadth

of study that has gone into mixing, and we have by no means covered or exhausted

the available literature. For those who wish to consult a more in-depth review of

the different aspects of mixing theory, we can suggest the books by Uhl21, Paul et

al.22 and Ottino23.

These monographs and investigations focus on the more theoretical aspects of

fluid mixing, but are less representative of the studies that concentrate on the

applications of mixing in natural or technological phenomena. Samples of the

latter category include the spreading and mixing of pollutants in the ocean24, the

ventilation of a building25,26, the mixing of air and fuel for subsequent combustion27

or the mixing in microfluidic devices28,29. Further fields of application include

the food processing, pharmaceutical and consumer-product industry where even

modest improvements of mixing efficiency would translate into immediate and

significant cost-reductions as well as a more consistent quality of the final product.
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Mixing in industrial applications is often accomplished by stirrers, i.e., moving

bodies of a given shape embedded in a mixing vessel, whose task it is to produce

long filaments30 which subsequently diffuse. This two-step shearing-diffusion pro-

cess, which is principally at the core of binary fluid mixing by stirrers, has been

recognised as a fundamental mechanism5 and has been studied extensively to gain

insight and to guide control strategies. Following this strategy, we will consider in

this thesis the case of stirrer-induced mixing, its challenges and its optimisation.

From a computational point of view, several difficulties arise from the treatment

of the embedded stirrers, in particular the treatment of the fluid-structure interac-

tion between these moving bodies and the binary fluid. Various options exist, and

have been pursued by previous studies, such as body-fitted meshes31 or fictitious

domains32. However, these techniques are often restricted to simple configura-

tions or are excessively costly due to the need to remesh at each time step (after

the solid body has been moved). An attractive alternative to these methods is

the Brinkman-penalisation approach which will be adopted in this thesis and will

provide the necessary flexibility and efficiency to treat more complex geometries

and flow configurations. Introduced by Arquis et al.33, solutions obtained by the

penalisation method have been rigorously shown to converge to the correspond-

ing solutions of the Navier-Stokes equations34 for the respective complex domain.

Supporting studies, including an asymptotic analysis of this convergence process,

are summarised in Liu et al.35, and applications to high Mach-number flows36 and

turbulent flow past cylinders37, among many other examples, have demonstrated

the effectiveness and flexibility of this approach. Brinkman-penalisation has also

been invoked by Chantalat et al.38, coupled with a level-set technique to express

optimal geometries, and applied by Bruneau et al.39 to optimise the shape of stir-

rers. The appeal of this method lies in its simple derivation and straightforward

numerical implementation.

A second difficulty arises when considering the choice of parameterisation for the

stirrers. Even though the point-by-point definition of the penalisation method

allows for an extensive and diverse number of solid shapes40, this excessive dimen-

sionality does not lend itself to realistic and applicable optimisation outcomes.

The choice of reducing the dimensions of the design space alters the final opti-

misation result, as more exotic, yet optimal, shapes are excluded. Consequently,
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care must be applied in selecting a suitable parameterisation to represent the

embedded stirrers. Examples of shape parameterisations are Bézier curves41 or

Hermite splines42. However, while these methods allow for a wide range of possi-

ble complex shapes, they quickly reach a break-even point between flexibility and

computational cost. Instead, we turn to a Fourier-based shape parameterisation,

also referred to as Fourier descriptors43. Relying on Fourier series, we are thus able

to choose the dimensionality of the control space without substantially compro-

mising the design space. The effectiveness of this approach will be demonstrated

in a later section.

A further complication of the mixing problem lies in the non-linear nature of its

underlying governing equations. Optimising stirring strategies using a gradient-

based approach will have to cope with the solution of non-linear equations and

the checkpointing problem for the dual/adjoint system. The complexity of the

flow does not furnish equilibrium points about which to linearise, rather the full

non-linear problem has to be tackled, and non-linear adjoint looping techniques44

have to be employed for the stirrer geometry and/or stirrer paths.

With these challenges identified, and respective algorithms chosen, we can then

attempt to enhance mixing via stirrer-based strategies using a non-linear direct-

adjoint optimisation framework. Several previous studies have attempted the

control and optimisation of mixing processes and these include, among others,

optimal control of mixing via entropy maximisation of a flow governed by two

orthogonal shear flows45, and optimal mixing of binary fluids by optimising the

mix-norm46,47,48. A concise review of measuring mixing as well as mixing optimi-

sation is given in Ottino49 as well as in Thiffeault50. The specific combination of

Brinkman-style penalisation and adjoint techniques applied to the optimisation of

mixing will be the methods of choice considered in this study. The same combi-

nation has been employed to address natural convection problems51, applied to

the Lattice-Boltzmann method52 and used in the study of shape optimisation of

square deferentially heated cavities53,54, which most closely approaches the focus

of this thesis; a pure application to mixing processes is lacking at this point.

A fundamental question of using this combined approach relates to the interchange-

ability of the numerical representation of the geometry by Brinkman-penalisation

and the resulting adjoint variables. Specifically, we have to consider (i) the opti-
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misation of the penalised dual (backward) system or (ii) the dual of the penalised

forward Navier-Stokes equations. The former case retains the freedom of employ-

ing other fluid-solid interaction methods, while in the latter, the adjoint system

naturally inherits complex-geometry boundary conditions without additional con-

siderations for the derivation of the adjoint system.

In either case, we aim at a fully computational framework to inherit the flexibility,

efficiency and accuracy of the fluid-structure treatment by Brinkman-penalisation

combined with the effective convergence of the PDE-constrained optimisation

method to reach a local minimum in a given mixing norm, and thus achieve a

better mixed state of the binary system.

The considered test cases and their underlying geometries, namely a circular con-

tainer with one or more embedded moving stirrers, are taken with a view to in-

dustrial applications, where cylindrical mixing containers with rotating stirrers

in motion are commonplace55. Initially, we solely consider simple configurations

within which the algorithm can prove its mettle and provide noticeable improve-

ments in mixing efficiency. We then turn to including more complex shape param-

eterisations and time dependent optimisation parameters, where the framework

successfully identifies strategies which greatly increase mixing in all cases.

The rest of this thesis is organised in the following manner; in chapter §2 we present

the governing equations of the fluid system, in conjunction with the geometrical

configuration and basic assumptions. Additionally, we consider the application

of the Brinkman-penalisation method to these governing equations to model the

fluid-solid interactions. This is followed by an in-depth discussion of the adjoint,

including the two alternative adjoint derivations mentioned above. Furthermore,

the numerical treatment of the governing equations is discussed, and we propose a

formulation that is particularly amenable to deriving the dual/adjoint set of equa-

tions. Both the approaches introduce the concept of an augmented Lagrangian,

albeit of slightly different forms. Next, we consider the parameterisation of the

stirrer geometry together with our mixing system, before concluding the chap-

ter by reviewing mixing measures. We then turn to the numerical algorithm and

implementation thereof in chapter §3. We present the modifications that were

required to adapt the open-source fluid-solid interaction code (FLuSI56) to fit the

requirements of our study. We then proceed by discussing the implementation of
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the dual/adjoint system and combining it with the forward solver in a non-linear

adjoint looping routine. Furthermore, we present a step-by-step summary of the

optimal-mixing algorithm. In chapter §4, we demonstrate the efficacy of the al-

gorithm by presenting test cases of initially simple geometries. The optimisation

of the rotation and eccentricity of our stirrers are intended to validate our adjoint

derivation and implementation. These examples have been chosen to probe and

assess the convergence and optimisation behaviour of the algorithm, and results

range from simple (and anticipated) to more difficult (and less intuitive). They

are intended to gain experience with the optimisation strategy, which in turn will

guide us in the following chapters where more complex setups are studied. The

first study of these more complex geometries is presented in chapter §5, where

we consider the optimisation of stirrer shapes. Due to the flexible nature of the

parameterisation the results are less intuitive and less predictable, yet result in

significant increase in mixing efficiency. Lastly, we present our most complex op-

timisation cases in chapter §6, namely the optimisation of a velocity profile along

a given circular path. Despite the complexity of this system, our approach leads

to significant results and much promise for future mixing optimisation endeav-

ours. Conclusions are offered in chapter §7. The appendices will provide details

on various derivations from the text.
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2
Mathematical Framework

2.1 Governing equations and general assumptions

Throughout this thesis we will consider the mixing processes of a binary, misci-

ble fluid. The governing equations below are sufficiently general to include non-

Newtonian effects and some of the adjoint derivations will refer to these factors.

The underlying governing equations that define the motion of our fluid are the

incompressible Navier-Stokes equations, which in primitive form read

∂tu + u · ∇u +∇p−Re−1∇ · (f(u)∇u) = 0, (2.1a)

∇ · u = 0, (2.1b)

with u defined as the velocity vector, p as the pressure field and f(u) generally

denotes a tensor that can describe non-Newtonian effects. We note that if we set

f(u) = 1, we recover the Navier-Stokes equations for Newtonian fluids. We have

stated the equations in non-dimensional form, using an appropriate characteristic

length (L0) and velocity (u0) based upon which the dependent and independent

variables are rendered dimensionless. This process introduces the non-dimensional

fluid viscosity as the inverse Reynolds number with Re = u0L0

ν
and ν as the kine-
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Figure 2.1: Example of a studied system: A binary fluid encompassed by a moving circular wall
and mixed by embedded stirrers

matic viscosity.

To fully describe a mixing process an additional equation is introduced that tracks

the two fluids (and their mixing) in the form of a passive scalar θ. This passive

scalar, which takes on the value of θ = 0 in fluid one, θ = 1 in fluid two, and values

in-between for a mixture of the two fluids, is governed by an advection-diffusion

equation of the form

∂tθ + u · ∇θ − Pe−1∇2θ = 0. (2.2)

Another non-dimensional parameter, namely the Péclet number, Pe, is defined as

Pe = u0L0

κ
and represents the ratio of the rate of advection of the scalar field by

the velocity field to the rate of diffusion, κ. The passive scalar will be used to

track the composition of the binary fluid, to measure mixedness of our fluid and

to subsequently design active stirring strategies to optimise this mixedness.

The mixing of the fluid will primarily be achieved using solid stirrers embedded

within the fluid. To this end, we introduce the quantities, xR and xri , which refer

to the position of the outer wall and i embedded stirrers, respectively. With the

introduction of these quantities, it is now possible to define boundary conditions
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for our scalar and velocity fields as follows

u(xR, t) = uR, (2.3a)

u(xri , t) = uri , (2.3b)

∂Rθ(xR, t) = ∂rθ(xri , t) = 0, (2.3c)

∂Rp(xR, t) = ∂rp(xri , t) = 0, (2.3d)

i.e., we impose no-slip conditions on the boundaries of the solids as well as no

out-flow for the scalar field. Furthermore, for the purpose of this study we impose

the following initial conditions

u(x, 0) = 0, (2.4a)

θ(x, 0) = θ0(x). (2.4b)

where θ0 is a step function with one in the upper half-plane and zero in the lower

half-plane. An example set-up with two embedded stirrers moving on a circular

path can be seen in figure 2.1.

2.2 Fluid-solid interactions

As stirrers will be used to achieve fluid mixing, our problem can be categorised as

a fluid-structure interaction problem. To model the boundary conditions, as well

as the interaction of the solids with the fluids, we will use a Brinkman-penalisation

method33. Its appeal lies in the simple modification of the governing Navier-Stokes

equations by adding external forcing terms. These terms model our solid bodies

as Brinkman-style porous media with vanishing permeability Cη. This method has

been shown to converge to the exact solid-fluid solution as Cη tends to zero34; fur-

thermore, it is able to enforce Dirichlet as well as Neumann boundary conditions

on the respective flow variables. The advantage of this method lies in its rather

simple implementation, its flexibility in imposing complex boundary conditions,

and its numerical efficiency. Moreover, moving solids are straightforwardly treated

by remapping masks to a new position, without any need for remeshing or so-

phisticated grid operations. We will provide a brief overview here; for alternative
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applications of this method, or a more in-depth coverage of this method, the reader

is referred to Schneider et al.57.

In preparation for the fact that we will deal with multiple embedded solids with

independent characteristics we will introduce χi, a mask function of the i-th solid,

where a solid can be either the wall or a stirrer, by defining

χi(x, t) =


1, if x ∈ Ωs,i,

0, if x ∈ Ωf ,

0, if x ∈ Ωs,j 6=i,

(2.5)

with Ωs,i denoting the i-th solid domain and Ωf stands for the fluid domain. The

global mask χ for our computational domain is then given as

χ(x, t) =
∑
i

χi(x, t). (2.6)

The mask χ acts as an indicator function which distinguishes between the solid

part (χ = 1) and the fluid part (χ = 0) of the computational domain. This

indicator function then allows us to supplement the Navier-Stokes equations (2.1)

by external driving terms that impose the given velocity of the i-th solid, denoted

by us,i, on the fluid and thus model the motion of individual bodies through the

fluid.

Assuming Einstein summation over identical indices, we can then state the pe-

nalised Navier-Stokes equations as

∂tu + u · ∇u +
χ

Cη
u− χi

Cη
us,i +∇p−Re−1∇ · (f(u)∇u) = 0, (2.7a)

∇ · u = 0, (2.7b)

where Cη is the permeability of the solids (which, for simplicity, we take identical

for all solids). It has been shown56 that an optimal value of Cη is proportional to

(∆x)2, and this leads to accurate numerical results. Recalling the definition of χi,

we note that the equations above reduce to the Navier-Stokes equations (2.1) in

the fluid domain (χ = 0).

26



Proceeding to the governing equations for the passive scalar θ, we also have to apply

penalisation terms to enforce no-flux boundary conditions (2.3) at the various

solids. The scalar field equation (2.2) then becomes58

∂tθ + (1− χ)u · ∇θ + χi (us,i · ∇θ)−∇ ·
([
Pe−1 (1− χ) +

χ

Cη

]
∇θ
)

= 0. (2.8)

The terms (1− χ)u · ∇θ and ∇ · ([Pe−1 (1− χ) + χ/Cη]∇θ) prevent the passive

advection or diffusion of the passive scalar field θ, respectively, into any of the

solids; the term χi (us,i · ∇θ) transports the scalar field with the velocity of the

i-th solid.

To complete the penalisation process, we need to define the solid properties of the

stirrers, i.e., the solid velocity of the stirrers themselves. This is equivalent to the

boundary conditions defined in (2.3). For the sake of brevity and consistency with

the literature, we will replace ur by us and define it as follows

(us,i)1 = 1(ωCi
)1 + ωih1(φ), (2.9a)

(us,i)2 = 1(ωCi
)2 + ωih2(φ), (2.9b)

χi = gi(x, t), (2.9c)

where ωCi
is the velocity of the centre of solid i, ωi the rotational velocity of the

solid i and φ the angle between x − x0 (x0 being the centre of the stirrer) and

the horizontal. Lastly, we introduce the vector-valued function h, since rotation

is more conveniently defined in polar coordinates (yet we work in Cartesian coor-

dinates). This transforms the radial velocity from one coordinate system to the

other as follows

h1(φ) =
√

(x2 − x2
0) sinφ, (2.10a)

h2(φ) =
√

(x2 − x2
0) cosφ. (2.10b)
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2.3 Adjoint derivation

We begin by introducing the following inner products which will be used exten-

sively throughout the derivation

||a(x, t)||22 =
1

VolΩ

∫
Ω

a(x, t)2 dΩ, (2.11)

〈a(x, t), b(x, t)〉 =

∫ T

0

∫
Ω

a(x, t)Hb(x, t) dΩ dt, (2.12)

(c(x), d(x)) =

∫
Ω

c(x)Hd(x) dΩ, (2.13)

[e(x, t), f(x, t)]R =

∫ T

0

∮
δR

e(x, t)Hf(x, t) dx dt, (2.14)

where Ω is our given domain and (·)H refers to the conjugate transpose of the

relevant matrix or vector.

2.3.1 Cost functional

The key to any optimisation problem is the successful choice of a given cost func-

tional to be minimised or maximised. To begin, we will define our state and

constraint vectors as follows

qi =

(
ui

θ

)
, si =

(
us,i

χi

)
. (2.15)

Then we can introduce a cost functional of the following form

J = g(qi, si) (2.16)

where g is some general function. We leave J purposely as general as possible,

as we may choose to optimise with respect to different quantities and introduce a

variety of constraints. We now turn to the definition of the adjoint variables and

the derivation of their respective governing equations.
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2.3.2 Penalisation and adjoint

Before we begin with the adjoint derivation there is one consideration we need to

make, namely the treatment of boundary conditions in the adjoint process. There

are two approaches we can take; the first of which involves deriving the adjoint of

the unpenalised Navier-Stokes equations (2.1) with the corresponding boundary

conditions (2.3). From there we can then apply the penalisation technique to these

adjoint equations to model the interaction of the adjoint variables with the solid

stirrers. This is an adjoint-first, penalisation-second approach.

On the other hand, we can consider the fully penalised Navier-Stokes equations

(2.7) and (2.9), and derive the adjoint equations from these. In this case, the

boundary conditions are already inherently embedded in the governing equations,

and therefore by extension into the adjoint formulation. While this is very ele-

gant and flexible, added complexity comes from the extra terms that need to be

considered and treated. This is a penalisation-first, adjoint-second approach.

While we wish to emphasise that both approaches are valid and do not want to

introduce a bias towards one or the other, we observed that the latter strategy

(penalisation-first) was significantly easier and intuitive than the former (adjoint-

first). The adjoint-first approach was derived and tested numerically, however there

were complications that will be elaborated later on. However, we demonstrate the

derivation nonetheless for completeness sake. Therefore, we begin by studying the

derivation of the adjoint-first, penalisation-second approach.

2.3.3 Penalisation of adjoint derivation

The first step in the optimisation process is deriving the relevant adjoint equations

from the governing equations (2.7). As the derivation does not change significantly

we will choose the tensor f as the identity matrix, i.e., we consider a Newtonian

fluid for this adjoint derivation.

At this point we wish to make a note; our cost functional J has been defined as

generally as possible. However, depending on certain choices, it may only have

exclusive dependencies on either u or θ, which means that explicit dependencies

of some or all of our state variables might be missing from our cost functional.
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The minimisation of our cost functional, J , has to be accomplished subject to

our state variables satisfying our governing equations. This PDE-based constraint

can be achieved by embedding the governing equations as well as J in a single

combined functional, i.e., an augmented cost functional L. This augmented cost

functional then takes the following form

L = J−〈u†, ∂tu + u · ∇u +∇p−Re−1∇2u〉 − 〈p†,∇ · u〉
− 〈θ†, ∂tθ + u · ∇θ − Pe−1∇2θ〉 − [u†R,u(xR, t)− uR]R

− [u†r1 ,u(xr1 , t)− ur1 ]r1 − [u†r2 ,u(xr2 , t)− ur2 ]r2 . (2.17)

The above demonstrates that all governing equations and boundary conditions

have been enforced using Lagrange multipliers denoted by (·)†; these multipliers

are the adjoint variables that will subsequently supply our optimisation with sen-

sitivity information. The key to deriving the optimality conditions is then the

minimisation of the augmented cost functional L. This is accomplished by taking

the first variation of (2.17) and setting it to zero, i.e., enforcing δL = 0. However,

as this term depends on several independent variables, we necessarily require all

first variations with respect to all variables to be zero. In this vein, we note that

the variation with regard to the adjoint variables recovers the governing equations,

i.e., u† ensures the time evolution of u, p† enforces the continuity equation and

θ† imposes the passive scalar equation. Lastly, the boundary conditions of the

embedded wall and stirrers are ensured by the uR,ur1 and ur2 terms, respectively.

It is the variation of the state variables that leads to governing equations for the

adjoint variables. Therefore, we begin by first considering the first variation with

respect to u〈
∂L
∂u

, δu

〉
=

〈
∂J
∂u

, δu

〉
− 〈u†, ∂tδu + δu · ∇u + u · ∇δu−Re−1∇2δu〉︸ ︷︷ ︸

(?)

− 〈p†,∇ · δu〉︸ ︷︷ ︸
(??)

−〈θ†, δu · ∇θ〉︸ ︷︷ ︸
(???)

−[u†R, δu]δR − [u†r1 , δu]δr1 − [u†r2 , δu]δr2 .

(2.18)

As the starred terms are significant in length, we will consider them all individually

before combining them in the final step. We will begin by considering (?) and,
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to make the ensuing derivation cleaner, we will move from a vector to component

form. We use the Einstein summation convention of shared indices to recover the

vector dot product. This results in

(?) =

∫ T

0

∫
Ω

u†i (∂tδui + δuj∂jui + uj∂jδui −Re−1∂j∂jδui) dΩ dt.

(2.19)

To derive the adjoint equation it is necessary to isolate δu in the expression above.

This is accomplished by performing integration by parts across either the time or

space integrals to finally obtain

= (u†i , δui)
t=T
t=0 − 〈∂tu

†
i , δui〉+ 〈u†j∂iuj, δui〉+ [u†iujn

R
j , δui]δR + [u†iujn

r1
j , δui]δr1

+ [u†iujn
r2
j , δui]δr2 − 〈uj∂ju

†
i , δui〉 − [Re−1u†in

R
j , ∂jδui]δR − [Re−1u†in

r1
j , ∂jδui]δr1

− [Re−1u†in
r2
j , ∂jδui]δr2 + [Re−1∂ju

†
in

R
j , δui]δR + [Re−1∂ju

†
in

r1
j , δui]δr1

+ [Re−1∂ju
†
in

r2
j , δui]δr2 − 〈Re−1∂j∂ju

†
i , δui〉, (2.20)

where n?j is the outward pointing normal of solid ?. We can now collect all terms

that contain the same inner products

= (u†i , δui)
t=T
t=0 + 〈−∂tu†i + u†j∂iuj − uj∂ju

†
i −Re−1∂j∂ju

†
i , δui〉

+ [u†iujn
R
j +Re−1∂ju

†
in

R
j , δui]δR + [u†iujn

r1
j +Re−1∂ju

†
in

r1
j , δui]δr1

+ [u†iujn
r2
j +Re−1∂ju

†
in

r2
j , δui]δr2 − [Re−1u†in

R
j , ∂jδui]δR

− [Re−1u†in
r1
j , ∂jδui]δr1 − [Re−1u†in

r2
j , ∂jδui]δr2 . (2.21)

As the derivation of the other terms is done in an identical manner, we relegate

the explicit calculations to appendix B and will just present the results of the

rearrangement and simplifications here

(??) = [p†nRi , δui]δR + [p†nr1i , δui]δr1 + [p†nr2i , δui]δr2 − 〈∂ip†, δui〉, (2.22)

(? ? ?) = 〈θ†∂iθ, δui〉. (2.23)
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Substituting these results into (2.18) and collecting like terms we finally arrive at〈
∂L
∂ui

, δui

〉
= 〈∂J

∂u
+ ∂tu

†
i − u

†
j∂iuj + uj∂ju

†
i +Re−1∂j∂ju

†
i + ∂ip

† − θ†∂iθ, δu〉

− (u†i , δui)
t=T
t=0 − [u†iujn

R
j +Re−1∂ju

†
in

R
j + p†nRi + u†R,i, δui]δR

+ [Re−1u†in
R
j , ∂jδui]δR − [u†iujn

r1
j +Re−1∂ju

†
in

r1
j + p†nr1i + u†r1,i, δui]δr1

+ [Re−1u†in
r1
j , ∂jδui]δr1 − [u†iujn

r2
j +Re−1∂ju

†
in

r2
j + p†nr2i + u†r2,i, δui]δr2

+ [Re−1u†in
r2
j , ∂jδui]δr2 . (2.24)

As we wish to impose δL = 0, we note that each of the terms under the different

inner products must also equate to zero. Thus, the first line of (2.24) implies the

following condition

∂tu
†
i − u

†
j∂iuj + uj∂ju

†
i +Re−1∂j∂ju

†
i + ∂ip

† = θ†∂iθ −
∂J
∂u

. (2.25)

In order to set the terms with ∂jδui to zero, we must enforce the following boundary

condition

u† = 0 on δR, δr1, δr2. (2.26)

Additionally, we observe that p† takes the following value on the boundaries of the

solids

p†nri = −Re−1∂ju
†
in

r
j − u

†
r,i for r = R, r1, r2. (2.27)

We note that equation (2.27) can be rearranged to obtain u†r,i (the boundary

adjoint velocity) on the boundaries

u†r,i = −Re−1∂ju
†
in

r
j−p†nri for r = R, r1, r2. (2.28)

We observe that equation (2.27), and its rearranged form, contain two unknown

quantities, p† and u†r,i, and as such the system is underspecified. We will need to

impose some value for one of the two quantities to be able to calculate the other.

However, as the quantity of interest is u†r,i, and for which we do not wish to impose

some value, we will choose to set p†. We will aim to mirror the system of equations
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from Foures et al.59, who find the boundary adjoint velocity, u†r,i, to be

u†r,i = −Re−1∂ju
†
in

r
j for r = R, r1, r2. (2.29)

This implies that we shall impose p† = 0 on the solid boundaries, but of course

other values are possible and may lead to better solutions.

Lastly, we turn to the terms that are evaluated at specific times. These give us

the final time condition for u† as follows

u†(x, T ) = − ∂J
∂u|T

. (2.30)

Combining these boundary conditions with the governing equation (2.25) yields

the full evolution equation for u†. We now turn to the derivation of p† by taking

the first variation of L with respect to p〈
∂L
∂p
, δp

〉
= −〈u†,∇δp〉 (2.31)

= −
∫ T

0

∫
Ω

u†i∂iδp dΩ dt (2.32)

= −[u†in
R
i , δp]δR − [u†in

r1
i , δp]δr1 − [u†in

r2
i , δp]δr2 , δp]δr2 + 〈∂iu†i , δp〉.

(2.33)

Based on our previous assumption that u† vanishes on the boundaries, we can see

that this term simply reduces to

∇ · u† = 0, (2.34)

which mirrors the continuity equation of our forward velocity variable. To complete

the set and arrive at the governing equation for θ† we turn to the first variation of L
with respect to θ. The calculation does not differ in method from the previous two

derivations, and so we will only present the resulting expression (the full derivation

can be seen in appendix B)

∂tθ
† + ui∂iθ

† + Pe−1∂i∂iθ
† = −∂J

∂θ
, (2.35)
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with boundary conditions

∇θ† · n = θ† = 0. (2.36)

The terminal conditions for θ† are seen to be

θ†(x, T ) = − ∂J
∂θ|T

. (2.37)

Therefore, if we summarise all computed evolution equations we have the following

system governing the adjoint variables

∂tu
†
i − u

†
j∂iuj + uj∂ju

†
i +Re−1∂j∂ju

†
i + ∂ip

† = θ†∂iθ −
∂J
∂u

, (2.38a)

∇ · u† = 0, (2.38b)

∂tθ
† + ui∂iθ

† + Pe−1∂i∂iθ
† = −∂J

∂θ
. (2.38c)

We note that these equations mirror the governing equations (2.7), with similar

forms of the momentum, continuity and passive scalar equations. The diffusion

terms both in u† and θ† carry a positive sign, and therefore these equations can

be seen as anti-diffusive. For the geometry pictured in figure 2.1 the complete

boundary conditions are as follows

u† = 0, (2.39a)

u†r,i = −Re−1∂ju
†
in

r
j , (2.39b)

∇θ† · nr = θ† = 0. (2.39c)

Finally, we have temporal conditions of the form

θ†(x, T ) = − ∂J
∂θ|T

, (2.40a)

u†(x, T ) = − ∂J
∂u|T

. (2.40b)

Next, we derive the optimality conditions which will enable us to update our mixing

strategies and obtain optimal ones. This is achieved by taking the first variation

of the cost functional with respect to the control quantities, i.e., u†R and u†r1,r2 ,
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leaving us with

∂L
∂uR

= u†R, (2.41a)

∂L
∂ur1,r2

= u†r1,r2 . (2.41b)

There is no particular reason that these quantities should be zero. However, we

can note60

∇uR
J =

∂L
∂uR

, (2.42a)

∇ur1,r2
J =

∂L
∂ur1,r2

(2.42b)

and therefore we can define an expression for the cost functional with respect to

the control variables, i.e.,

∇uR
J = u†R, (2.43a)

∇ur1,r2
J = u†r1,r2 . (2.43b)

By employing a gradient-based optimisation algorithm, we are therefore able to

obtain optimal control strategies for these quantities and thus obtain a minimal

value for J where the norm of the above gradient (2.43) vanishes.

With the full adjoint derivation now completed, we need to combine these equa-

tions with the Brinkman-penalisation framework introduced in equations (2.7).

Using a similar style of analysis as in Angot et al.34, we arrive at the following

penalised equations

∂tu
† − u† · ∇uT + u · ∇u† +Re−1∇2u† +∇p† = θ†∇θ − ∂J

∂u
− χ

Cn
u†, (2.44a)

∂tθ
† + (1− χ)u · ∇θ† + χ(us · ∇θ†) +∇ ·

(
[Pe−1(1− χ) + κχ]∇θ†

)
= 0, (2.44b)

where u† · ∇uT = u†j∂iuj. Note that we do not include u† − us in (2.44) as

we are not interested in the adjoint velocity ,u†, in the interior of the solid and

thus extend the boundary condition (2.39), i.e., we impose u† = 0 in the various

solids. Similarly to the forward solution we adopt an operator splitting approach
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to ensure ∇ · u† = 0 by enforcing

∇2p† = ∇ ·
(
u† · ∇uT − u · ∇u† + θ†∇θ − χ

Cn
u†
)
. (2.45)

The full system above provides a basis in achieving optimal control of our chosen

problem. However, we note that choosing the boundary condition of p† = 0 on

the boundaries of the solids leaves ambiguities in the proper treatment of the solid

stirrers within the adjoint framework. Furthermore, as no us terms appear in the

above formulation of u†, it is not clear what the relation of the adjoint quantity to

the movement of the solids is. A full numerical version was implemented, however,

it showed numerical instabilities near the boundaries. These instabilities may

arise from the treatment of p†, but finding the optimal value of this quantity at

the solid boundaries is not trivial.

Considering these caveats, we present the above derivation to illustrate the prin-

ciples of the continuous adjoint as well as produce a set of equations that are

independent of any numerical framework and that can be used, e.g., in a body-

fitted mesh approach61.

In what follows, we will turn to the penalisation-first, adjoint-second approach

mentioned previously. This choice avoids any unnecessary assumptions on the

boundary conditions; all conditions inherently encoded into the governing equa-

tions are transformed naturally into the adjoint framework.

2.3.4 Adjoint of penalised system

Discretising the governing equations

As mentioned previously, the starting point for this adjoint derivation are the

penalised governing equations (2.7). We wish to avoid the component-wise analysis

of the last section due to its complicated and cluttered nature. Instead, we intend

to first spatially discretise our equations. To this end, we will replace the spatial

derivatives with a multiplication of the discretised velocity, pressure and scalar

fields by a Fourier spectral differentiation matrix. We begin by introducing the
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discrete analogue

∂

∂xj
→ Aj, (2.46)

where Aj is a n2 × n2 matrix where n is the number of grid points in a single

dimension. More specifically, we define Aj in the following terms

Aj = WHiKjW, (2.47)

where W is the symmetric Fourier matrix, K is a diagonal matrix of associated

wave numbers and i =
√
−1. To represent the associated gradient vector ∇, we

introduce the matrix A= [A1,A2,A3]. Furthermore, this results in the state vari-

ables being similarly discretised, i.e., u and us,i become 3×n2 matrices containing

the fluid and solid velocity components, respectively. We note that (us,i)j is a

1 × n2 vector and refers to the jth velocity component of the ith solid. χ, θ and

p are 1 × n2 vectors that represent the mask, scalar field and pressure, respec-

tively. With these new terms, and assuming Einstein summation convention, we

introduce the spatially discretised form of the governing equations

∂tu + uj ◦ [Aju] +
χ

Cη
◦ u− χi

Cη
◦ us,i + Ap−Re−1Ai

[
Fij(u) ◦ (Aju)

]
= 0,

(2.48)

Aiui = 0,

(2.49)

∂tθ − Ai
([
Pe−1 (1− χ) + κχ

]
◦ Aiθ

)
+ (1− χ) ◦ uj ◦ [Ajθ]

+χi ◦ (us,i)j ◦ [Ajθ] = 0,

(2.50)

where ◦ is defined as the Hadamard element-wise product (see Horn et al.62).

More details on specific calculations and relations of the Hadamard product can

also been found in appendix A. The variable Fij denotes the discrete version of the

tensor describing non-Newtonian material behaviour. Similarly to the continuous

case, we enforce the continuity equation by utilising an operator-splitting approach
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in addition to a pressure Poisson equation

AjAjp+ Ai (uj ◦ [Ajui]) + Ai

[
χ

Cη
◦ u− χi

Cη
◦ us,i

]
−Re−1Ai

[
Fij(u) ◦ (Aju)

]
= 0.

(2.51)

Numerical implementation of masks

The representation of solid bodies on an underlying Cartesian grid calls for a

transfer of geometric information onto the background mesh. This transfer is

accomplished by a mollified delta-function, smoothing the otherwise discontinuous

mask onto the grid and thus avoiding numerical inaccuracies and instabilities63.

We choose the widely used piece-wise defined function

χi(x, t) =


1, for |f | < ri,

1

2

(
1 + cos

(
π(f − ri)

2h

))
for ri < |f | < ri + 2h,

0, otherwise,

(2.52)

where f denotes a parametric representation for the solids and ri is the distance

from the centre of solid i to grid point x. We note that h is proportional to the

grid size,
√

∆x, and as ∆x→ 0 the function χi tends to a Heaviside function56.

Derivation of adjoint system

Returning to our state, q, and constraint vectors, s, as defined previously in (2.15),

we can also introduce a spatially discretised cost functional of the form

J = G(qi, si) (2.53)

where G is the spatially discretised version of the previous general function g.

To include the dependencies of the various state variables on the optimisation

variables, it is necessary to form an augmented Lagrangian as before. We do not

need to include the boundary conditions as separate terms as these are implicitly

encoded into the governing equations by our spatial discretisation. However, if we
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wish to optimise the shape, the velocity along a path and/or the rotational speed,

these extra terms need to be incorporated into L

L = J −
∫ T

0

(u†)Hk M {Equation (2.48)}k︸ ︷︷ ︸
?

+ p†,HM {Equation (2.51)}︸ ︷︷ ︸
??

+ θ†,HM {Equation (2.50)}︸ ︷︷ ︸
???

+ω†,HCi
M[ωCi

− w] + ω†,Hi M[ωi − z]

+ χ†,Hi M[χi − gi(x, t)] dt, (2.54)

where w, z and gi are the given previous values of ωCi
, ωi and χi, respectively. M

is a symmetric, positive-definite weight matrix taking into account grid resolution

and spatial integration weights. As we are working on a equidistant grid of n× n
mesh points, the weight matrix is simply a diagonal matrix of the form

M =
1

n2
I, (2.55)

where I is the identity matrix. We note that the u†, p† and θ† variables perform

the same role as in the previous derivation. The new terms ω†Ci
, ω†i and χ†i express

the initial conditions of the mask variables associated with these quantities.

We note that the optimality condition is obtained by taking the first variation

of L with respect to all its dependent variables to zero. As the variation with

respect to the adjoint variables recovers the governing equations, we will proceed

to turn to the first variation of the state variables to obtain the evolution equa-

tions of the discretised adjoint variables. As there is no longer an explicit spatial

dependence in this derivation, the isolation of the variational terms, (δ(·)), can be

solely performed by vector manipulations and integration by parts for the temporal

derivatives.

We will demonstrate the manipulation of the ∂
∂u

term as a representative example.

We note that the mask variables have no explicit u dependence and thus vanish.
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We are then left with∫ T

0

(
∂L
∂ui

)
δui dt =

∫ T

0

(
∂J
∂ui

)
δui dt−

∫ T

0

(
∂(?)

∂ui

)
δui dt

−
∫ T

0

(
∂(??)

∂ui

)
δui dt−

∫ T

0

(
∂(? ? ?)

∂ui

)
δui dt. (2.56)

We follow the same strategy as the previous derivation by considering all terms

separately, beginning with (?)∫ T

0

(
∂(?)

∂ui

)
δui dt =

∫ T

0

(
∂

∂ui

{
(u†)Hk M(∂tu + uj ◦ [Aju] +

χ

Cn
◦ u +

χi
Cn
◦ us,i

+ Ap−Re−1 [Ai[Fij(u) ◦ (Aju)]])

})
δui dt (2.57)

=

∫ T

0

(u†i )
H∂tδui + (u†i )

Hδuj ◦ [Ajui] + (u†i )
H{uj ◦ [Ajδui]}

+ (u†i )
H

[
χ

Cn
◦ (δui)

]
− (u†i )

HRe−1Al[Flj(u) ◦ (Ajδui)]

− (u†k)
H

[
Re−1Al

[(
∂Flj(u)

∂ui
δui

)
◦ Ajuk

]]
dt.

(2.58)

The task is to isolate the first variation δui from all terms and transfer any operator

acting on it onto the remaining terms of the scalar product. In this effort, we take

advantage of the algebra for the Hadamard product, explained in appendix A.

Continuing from above we obtain

= [u†iδu]T0 +

∫ T

0

−(∂tu
†
i )
Hδui + (u†k ◦ [Ajuk])

Hδuj +
(
AHj [uj ◦ u†i ]

)H
δui

−Re−1
[
AHj [Fkj(u) ◦ AHk u

†
i ]
]H

δui

−Re−1

[(
∂Flj(u)

∂ui

)H
(AHl u

†
k ◦ (Ajuk))

]H
δui dt. (2.59)

Next, we collect matching terms and gather them into their respective time do-
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mains to arrive at

= [u†iδu]T0 +

∫ T

0

[
−(∂tu

†
i ) + (u†k ◦ [Aiuk]) + AHj [uj ◦ u†i ] +

χ

Cn
◦ (u†i )

−Re−1AHj [Fkj(u) ◦ AHk u
†
i ]−Re−1

(
∂Flj(u)

∂ui

)H
(AHl u

†
k ◦ (Ajuk))

]H
δui dt.

(2.60)

We note that the calculation for the other two terms, (??) and (???), proceed in a

similar fashion, and therefore we will relegate the explicit calculation to appendix

C. Nevertheless, we will present the result of these two terms below∫ T

0

(
∂(??)

∂ui

)
δui dt =

∫ T

0

[
AHk p

† ◦ [Aiuk] + AHj [uj ◦ AHi p†] +
χ

Cη
◦ AHi p†

−Re−1AHj (Fkj(u) ◦ AHk AHi p†)

−Re−1

(
∂Flj(u)

∂ui

)H
AHl A

H
k p
† ◦ (Ajuk)

]H
δui dt,

(2.61)∫ T

0

(
∂(? ? ?)

∂ui

)
δui dt =

∫ T

0

[
(1− χ) ◦ θ† ◦ [Aiθ]

]H
δui dt. (2.62)

Substituting these terms into equation (2.56) and collecting like terms we arrive

at∫ T

0

(
∂L
∂ui

)
δui dt = −[u†iδu]T0 −

∫ T

0

[
−
(
∂J
∂ui

)H
− (∂tu

†
i ) + (u†k ◦ [Aiuk])

+ AHj [uj ◦ u†] +
χ

Cn
◦ (u†i )−Re−1AHj [Fkj(u) ◦ AHk u

†
i ]

−Re−1

(
∂Flj(u)

∂ui

)H
(AHl u

†
k ◦ (Ajuk)) + AHk p

† ◦ [Aiuk]

+ [uj ◦ Aj]HAHi p† +
χ

Cη
◦ AHi p† −Re−1AHj (Fkj(u) ◦ AHk AHi p†)

−Re−1

(
∂Flj(u)

∂ui

)H
AHl A

H
k p
† ◦ (Ajuk)

+ (1− χ) ◦ θ† ◦ [Aiθ]

]H
δui dt. (2.63)
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The optimality condition arises from the requirement that all these terms are equal

to zero and, therefore, we can conclude the following

u†i |T =
∂J
∂ui

∣∣∣∣
T

, (2.64)

and

∂tu
†
i − (u†k + AHk p

†) ◦ [Aiuk]− AHj [uj ◦ (u†i + AHi p
†)]− χ

Cn
◦ (u†i + AHi p

†)

+Re−1AHj

(
Fkj(u) ◦ AHk

(
u†i + AHi p

†
))
− (1− χ) ◦ θ† ◦ [Aiθ]

+Re−1

(
∂Flj(u)

∂ui

)H
(AHl (u†k + AHk p

†) ◦ (Ajuk)) +

(
∂J
∂ui

)H
= 0.

(2.65)

In the above expression there arises a recurring term, which we can replace to

simplify (2.65), i.e., by defining Π†i = u†i + AHi p
†, we arrive at

∂tu
†
i − Π†k ◦ [Aiuk]− AHj [uj ◦ Π†i ]−

χ

Cn
◦ Π†i +Re−1AHj (Fkj(u) ◦ AHk Π†i )

+Re−1

(
∂Flj(u)

∂ui

)H
(AHl Π† ◦ (Ajuk))− (1− χ) ◦ θ† ◦ [Aiθ] +

(
∂J
∂ui

)H
= 0.

(2.66)

The above expression states the temporal evolution equation for u†. No assump-

tions had to be made regarding boundary conditions and the additional complexity

due to the penalisation terms was tolerable in this derivation. Furthermore, since

any information about the solids is implicitly encoded into the masks, we have

arrived at a flexible formulation that is independent of the number of solids we

choose to embed. Next, we turn to the variations with respect to p and θ to arrive

at the remaining adjoint equations. The procedure for deriving these expressions

is identical to the one discussed above, and therefore shall be omitted here (the

full derivation can be found in appendix C). Nonetheless, we present the resulting
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equations for completeness sake

p : AHj Π†j −
(
∂J
∂p

)H
= 0, (2.67)

θ : ∂tθ
† − AHj [(1− χ) ◦ uj ◦ θ†]− AHj [χi ◦ (us,i)j ◦ θ†]

+ AHi ([Pe−1(1− χ) + κχ] ◦ AHi θ†) +

(
∂J
∂θ

)H
= 0. (2.68)

Combining the above set of equation into one system, we arrive at the full adjoint

system

∂tu
†
i − Π†k ◦ [Aiuk]− AHj [uj ◦ Π†i ]−

χ

Cn
◦ Π†i +Re−1AHj (Fkj(u) ◦ AHk Π†i )

+Re−1

(
∂Flj(u)

∂ui

)H
(AHl Π†k ◦ (Ajuk))− (1− χ) ◦ θ† ◦ [Aiθ] +

(
∂J
∂ui

)H
= 0,

(2.69)

AHj Π†j −
(
∂J
∂p

)H
= 0,

(2.70)

∂tθ
† − AHj [(1− χ) ◦ uj ◦ θ†]− AHj [χi ◦ (us,i)j ◦ θ†]

+AHi ([Pe−1(1− χ) + κχ] ◦ AHi θ†) +

(
∂J
∂θ

)H
= 0,

(2.71)

where Π†i is defined as before, and the final time conditions are defined by

u†(x, T ) =
∂J
∂ui

∣∣∣∣
T

, θ†(x, T ) =
∂J
∂θ

∣∣∣∣
T

. (2.72)

We see that the adjoint equations mirror the penalised governing equations we

started with. In particular, Π† can be regarded as an ‘augmented’ adjoint pres-

sure, which satisfies the continuity equation. This term arises due to the operator

splitting approach we utilise when solving the governing equations. We make one

final observation before turning to the optimality conditions, namely the value of

Fkj(u). If Fkj(u) is of the form such that ∇ · (∇Hf(u)∇)u) = 0 (which arises
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from the right hand side of the Poisson equation) modifications are necessary as

certain terms no longer exists. Therefore, we make the caveat that when f(u) is

of this form, the Π† terms in equation (2.69) are replaced by u† (shown in red in

the equation below) , as the non-Newtonian term in the pressure Poisson equation

(2.51) is identically zero, i.e.,

∂tu
†
i − Π†k ◦ [Aiuk]− AHj [uj ◦ Π†i ]−

χ

Cn
◦ Π†i +Re−1AHj (Fkj(u) ◦ AHk u

†
i )

+Re−1

(
∂Flj(u)

∂ui

)H
(AHl u

†
k ◦ (Ajuk))− (1− χ) ◦ θ† ◦ [Aiθ] +

(
∂J
∂ui

)H
= 0.

(2.73)

With the adjoint equations in place, it remains to derive the optimality conditions

to close our optimisation problem, i.e., the equations that define χ†, ω† and u†C

χ†i =

[
θ† ◦ [Ajθ]−

Π†j
Cη

]
◦ (uj − (us,i)j) + (κ− Pe−1)AHj θ

† ◦ Ajθ +

(
∂J
∂χi

)H
,

(2.74)

(ω†Ci
)j = χHi

(
Π†j
Cn
− (θ† ◦ [Ajθ])

)
+

(
∂J

∂(us,i)j

)H
, (2.75)

ω†i = (χi ◦ hj(φ))H
(

Π†j
Cn
− (θ† ◦ [Ajθ])

)
+

(
∂J

∂(us,i)j

)H
. (2.76)

We have now presented the full optimisation framework for a geometrically pe-

nalised non-Newtonian fluid. In the context of this thesis we will use this set of

equations to optimise mixing, but it is also possible to consider entirely different

physical phenomena and their optimisation. We have purposely left the definition

of J as general as possible as we want to demonstrate that the optimisation frame-

work is largely independent of the chosen measures and constraints. Throughout

this thesis, we choose a range of cost functionals that have been tailored to the

quantities of interest.

When considering the above system of equations, we note that we have to simul-

taneously solve the direct and adjoint equations, as well as the optimality con-

dition. Rather than following this procedure, it is customary to solve the direct
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and adjoint equations exactly, and to iterate on the optimality condition, until a

user-specified criterion is satisfied. With this approach we use the gradient with

respect to the control variables to advance the solution towards an optimum. We

recall that our system is non-linear, which necessarily implies that we may not

achieve convergence to a global optimum; instead, only a local optimum may be

guaranteed.

As a last note we wish to state that we only considered Newtonian fluids in our

computational experiments, i.e., f(u) = 1. While the framework above is laid out

for non-Newtonian effects, and indeed a computational implementation has been

written, encountered challenges in verifying the accuracy of our results, primarily

computational in nature, motivated the concentration on the Newtonian case for

this thesis.

2.4 Shape parameterisation

We will induce mixing in our binary fluids by embedding moving stirrers of a

given geometry. Even though our formalism allows for a point-by-point definition

and manipulation of the stirrer geometry, we will instead choose to restrict our

design space and, in view of equation (2.52), choose a set of low dimensional pa-

rameterisations that ensures that the problem remains numerically tractable. For

verification purposes we will consider stirrers of elliptical cross section to illustrate

the optimisation capabilities. Once this verification is complete, we will tackle

more complex parameterisations. The elliptical cross sections are introduced by

using the follow parameterisation

f =

[(
(x− x0,i) cosαi − (y − y0,i) sinαi

ai

)2

+

(
(x− x0,i) sinαi + (y − y0,i) cosαi

bi

)2] 1
2

, (2.77)

where x0,i and y0,i denote the centre of the elliptical solid i, ai and bi are the

two perpendicular axes, respectively, and αi is the angle of attack with respect

to the horizontal coordinate direction. This parameterisation will yield a lower-

dimensional version of general shape optimisation. It is possible to optimise the
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axes ai and bi independently, however, as we seek to enforce a constant cross-

sectional area of our stirrers, we will enforce aibi = 1. The above simplifications

for the optimisation of the stirrer shape carries through to the optimality condition

that furnishes, together with the optimisation routine, a new and improved geom-

etry after each iteration. With the area constraint in place we only control the

axis ai and reformulate the cost functional gradient with respect to our (restricted)

control variables, expressed in terms of the adjoint variable a†i , as follows

a†i =

∫ TF

0

∂L
∂ai

dt,

=

∫ TF

0

∂L
∂χi

∂χi
∂f

∂f

∂ai
dt. (2.78)

In the above expression the gradient
∂L
∂χi

follows directly from equation (2.54).

For the first of the two remaining terms we can see from equation (2.52) that

∂χi
∂f

=


0, |f(x, y, ai, bi)| < ri,

− π

4h
sin

(
π(f − ri)

2h

)
, ri < |f(x, y, ai, bi)| < ri + 2h,

0, otherwise.

(2.79)

The remaining derivative
∂f

∂ai
is conceptually straightforward but algebraically

unwieldy
∂f

∂ai
= −(x− x0,i) cosαi − (y − y0,i) sinαi

a3
i f

. (2.80)

The above expressions can then be substituted into (2.78) to obtain a definitive

expression for a†i .

2.5 Choosing a specific cost

Up to this point the definition of our cost functional has been left rather general,

partly to demonstrate the independence of the framework from a precise cost-

46



functional, partly to illustrate the flexibility of the adjoint approach. However, as

we are particularly interested in the mixing of binary fluids, it now becomes neces-

sary to commit to some measure that allows us to optimise our mixing strategies.

To this end, we consider a mathematical definition of mixing.

2.5.1 Defining mixing

Several papers have considered the design of effective mixing measures50,60,64,

where a study of energy norm, variance and mix-norm have been compared and

evaluated. While all measures have been successful in generating efficient mixing

strategies within an optimisation framework, the most effective has been found to

be the mix-norm defined by

||(θ)||MN =
1

VΩ

∫
Ω

||∇k(θ(x, t))||dΩ. (2.81)

We note that k = 0 is equivalent to the variance of the passive scalar. The mix-

norm, which is a Sobolev norm of fractional and/or negative index, was introduced

in Mathew et al.46 and has its mathematical origins in measure theory. The mix-

norm, which requires k to be negative50 to converge, focuses specifically on the

amount of small scales in the passive scalar. There are two mechanisms which

drive mixing, advection and diffusion, which are active and passive mechanisms,

respectively. As we are only able to control advection, which ultimately affects

diffusion, the seemingly most efficient way of optimising the diffusion process is

by creating small scale and elongated filaments by exploiting advective processes.

Once these filaments have been created, diffusion will be far more effective and

rapid. Thus, the mix-norm appears to be a natural choice for our optimisation

attempts. However, we wish to stress at this point that the choice of measure

does not affect the optimisation framework, and no conceptual (but quantitative)

changes would occur if, for example, the variance were chosen instead.

2.5.2 Mixing cost

The success of our optimisation routine will be dependent on our ability to max-

imise mixing in our passive scalar, which is equivalent to minimising our chosen
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norm, in this, case the mix-norm. To this end, we introduce a cost functional of

the following form

J =
1

VΩ

∫
Ω

||∇kθ||dΩ

∣∣∣∣
T

+ constraints, (2.82)

where T is the time horizon for our optimisation. We have left the constraints

deliberately general, as these vary from case to case and will be defined more

specifically later on. Similarly to the governing equations we need to spatially

discretise (2.82). Therefore, we replace the ∇ operator by the discrete matrix A

defined in (2.47) as follows

J =
[Aki θ]

HM[Aki θ]

VΩ

∣∣∣∣
T

+ constraints, (2.83)

where M is the weight matrix defined previously. We note that the general con-

straints will not affect the adjoint fields u† and θ† but only the control parameters.

Therefore, we are able to define explicitly the final time conditions from equations

(2.72) for u† and θ† from the first term of the above

u†(x, T ) = 0, θ†(x, T ) =
2

VΩ

(Aki )
HM(Aki θ(x, T )). (2.84)

At this point we will elaborate on the control parameters we will use to optimise

mixing strategies. The framework is sufficiently flexible to deal with a multitude

of different control parameters, however, in the context of this thesis, we have

focused on rotation, speed along a fixed path and shape. Each of the optimisation

variables comes with a unique set of challenges to obtain a physically viable and

realistic mixing strategy. To this end, relevant constraints will be introduced and

discussed in the form of new cost functionals.
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3
Numerical Framework

3.1 FLuSI and modifications

The starting point for the implementation of the penalised governing equations

is the open-source software FLuSI56, a Fourier pseudo-spectral code for fluid-

structure interactions. Written in FORTRAN 90, it solves the three-dimensional,

incompressible Navier-Stokes equations on an equi-spaced grid using a spectral

formulation, adaptive time-stepping and a pressure-projection approach. The

inclusion of solid bodies and complex computational geometries are treated by

the Brinkman-type penalisation method discussed previously; sponge layers are

utilised to handle open and outflow boundaries.

Originally FLuSI was written to study the dynamics of insect flight, focusing on

the velocities and vorticities generated by the beating of the insect wing65. The

strength of these results, the maturity of the code and the ability of FLuSI to

deal with complicated geometries at high resolutions have been the reasons we

chose this particular starting point. However, significant modifications had to be

undertaken to adapt this code to our specifications. Firstly, a class of routines

to more generally treat geometries, both for the computational domain and the

moving stirrers, had to be added. Secondly, the temporal evolution of the passive
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scalar field, tracking the binary fluid, had to be added, validated and tested.

Thirdly, and most importantly, an adjoint framework had to be implemented and

verified.

3.1.1 Mask implementation

Due to the nature of our geometry we have two fundamental types of solids: (i) the

outer wall of the cylinder which may rotate around the centre of the vessel, and (ii)

the embedded stirrers, which may move through the fluid as well as rotate around

their own centres. These two solids have different characteristics and behaviours

as well as implementations.

We begin by parameterising the outer wall as a ring consisting of two circles of

slightly different radii, i.e.,

χwall =

1, r1 < |f(x, y)| < r2,

0, else = 0,
(3.1a)

where f is the parameterisation defined in equation (2.77), and r1, r2 represent the

radii of the smaller and bigger circle, respectively. This generates an impermeable

boundary that confines the binary fluid to a circular domain.

The second type of solids we consider are the embedded stirrers; these will per-

form the mixing of the fluids and, throughout this thesis, their paths, shape and

rotation are the targets of optimisation. Therefore, it is imperative that their nu-

merical implementation remains as flexible as possible with regards to their control

parameters. To this end, a specific solid object class has been created within the

FLuSI framework.

This class is sufficiently flexible as stirrer-unique class variables can be assigned,

e.g., location, speed of rotation and shape, and are easily accessible throughout

the entire program. Furthermore, in future optimisation studies this class can be

simply extended with a multitude of new parameters to generate adaptable and

powerful objects, and thus increase the design space of mixing strategies. The

flexibility of the number of stirrers is a further advantage of this approach.
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Figure 3.1: Velocity field at t = 0, 1, 5, 10, 30, 64. As expected at this Re value we observe the
formation of vortices through the actions of the wall and cylinders.

A first implementation of this system can be seen in figure 3.1 where we have

replicated the initial geometry shown in figure 2.1 with Re = 1000 and 512× 512

grid points. The figure visualises the velocity field, shown in blue, at chosen time

instances under the influence of stirrers and wall. The velocities of all solids, wall

and stirrers, are shown in red. The wall and stirrers initially move clockwise on a

circular path with a given angular velocity us = 2π
8

from t = 0 until t = 8, after

which they reverse and move anticlockwise with velocity −us. Finally at t = 16

the solid movement stops and the system eventually comes to rest.

With this initial benchmark, testing the flexible geometry given by the associated

stirrer class, a first step has been taken within the larger optimisation framework.

Next we turn towards the scalar field implementation and the introduction of a

measurable quantity for our mixing.
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3.1.2 Scalar field implementation

Even though a passive scalar implementation in FLuSI existed, the fact that it had

been implemented using finite difference methods and ghost points did not lend

itself to our uniform formulation using Fourier-based spectral methods. Therefore,

we decided to implement an equivalent solver for the temporal evolution of the

passive scalar equation using the pseudo-spectral approach as taken in the velocity

counterpart. Again, gradient evaluation for a field f(x) is accomplished using the

Fourier transform given by

f ′(x) = F−1{ik · F(f(x)}, (3.2)

where k = (kx, ky, kz) is the spatial wavenumber vector and F denotes the three

dimensional Fourier transform. Thus, for a given time-stepping scheme the spatial

part of the right hand side of (2.8) can be rewritten as follows

[(1− χ)u + χius,i] · F−1 {ikF{θ}}+ F−1

{
ikF

(
[Pe−1(1− χ) +

χ

Cη
]F−1 {ikF{θ}}

)}
.

(3.3)

As before, the boundary conditions are implicit in the solution, and we, therefore,

retain flexibility across any number of solids embedded in the fluid.

To complete the scalar field implementation one last step is required, namely the

application of dealiasing to the transported field. In simulations with extended

time horizons, and/or in simulations above certain values of Re, Pe and resolution

n, aliasing effects were observed in the passive scalar field, an example of which

can be seen in figure 3.2a. As we utilise a pseudo-spectral approach, significant

small scales in the passive scalar field are generated artificially which cause energy

accumulation in the higher wavenumbers. This energy manifests itself as high-

frequency numerical noise. This accumulation of energy can be remedied using

dealiasing methods. FLuSI implements a traditional 2/3 dealiasing rule66, where

the highest third of the Fourier modes are set to zero. This approach causes

the loss of a third of the spatial information and introduces a discrete cut off

in the Fourier space. Nevertheless, it is effective in reducing the majority of the

numerical aliasing error, but some energy remains in the highest wavenumbers and
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(a) Simulation without dealiasing
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(b) Dealiased simulation

Figure 3.2: Passive scalar simulation for Re = 500,Pe = 166 and n = 200. These figures were
both taken at t = 63, and clearly numerical noise can be observed on the left.

continues to contaminate the temporal simulations. As an effective alternative, we

use a high-order smoothing method introduced in Hou et al.67 which involves the

multiplication of the field of interest by a high-order exponential cut-off function.

More specifically, we introduce a Fourier filter function ρ of the form

ρ(k/N) = e−α(k/N)m , (3.4a)

where N is the number of Fourier modes and α,m = 36 have been chosen in

accordance with the original paper. This method has been shown to be numeri-

cally stable while retaining a higher number of Fourier modes; the result of this

methodology can be seen in figure 3.2b. In addition to its effectiveness, the imple-

mentation of the Fourier-filter technique is minimally invasive and thus convenient.

All further simulations in this thesis utilise this dealiasing approach.

A first test of our passive scalar field implementation was performed with Re =

1000, P e = 1000, n = 512 and the same stirring protocol (see figure 3.3). For

the purpose of presentation the figure was additionally up-sampled to n = 1024 by

zero-padding the higher wavenumbers (512 to 1024). A qualitative comparison was

made with the original FLuSI approach, and satisfactory results were achieved.
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Figure 3.3: Test of scalar field implementation for t = 8, 16, 24 and 32.
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3.2 Adjoint implementation

With the completion of the above modifications that allow FLuSI to accurately

and efficiently simulate the mixing processes over a wide variety of geometries and

strategies, we now turn our attention towards implementing the adjoint system.

3.2.1 Problem description

The necessary ingredients for the implementation of the adjoint solver consist of

the following steps and mirror many features of the direct simulation. Among

these features we have the generation of the mask equivalent to the forward run,

the spatial discretisation of the adjoint equations (2.71), an appropriate time step-

per that allows for backwards time stepping and, lastly, an efficient and accurate

communication protocol between the forward state variables and the adjoint solver.

Both forward and adjoint solvers will lastly be part of an optimisation shell which

accomplishes the convergence towards an optimal mixing strategy, and coordinates

the communication between direct and adjoint solutions.

3.2.2 Backward-in-time integration

The choice of time-stepping algorithm does not affect the optimisation routine

and was purely chosen for ease of use and efficiency. As the existing passive scalar

routine in FLuSI was implemented with an Adams-Bashforth multi-step routine68,

we adopted the same routine for the adjoint solver. More specifically, we utilise the

two-step Adams-Bashforth (AB2) with an Euler pre-step. In this case a temporal

update with non-equidistant time steps57 becomes

un+2 = un+1 + β11RHSu,n+1 + β10RHSu,n, (3.5)
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where

β10 =
1

2

∆tn+2

∆tn+1

(∆tn+2 + 2∆tn+1), (3.6)

β11 = −1

2

∆t2n+2

∆tn+1

, (3.7)

∆tn+1 = tn+1 − tn. (3.8)

For a backward-in-time integration using the AB2, the only modification consists

of a change from positive to negative ∆t, i.e.

β10 → −β10, (3.9)

β11 → −β11. (3.10)

A more detailed derivation of the above, and the treatment of the diffusive term

using exponential time stepping, can be found in appendix D.

3.2.3 Technical considerations

It is important to realise that, owing to the non-linearity of the direct problem,

there is an explicit dependence of the adjoint equations on the direct variables.

For this reason we have to store the direct variables during the forward sweep

and inject them, at the appropriate time steps, into the adjoint equations. For

high-resolution cases and large time horizons we typically cannot afford to store

all necessary direct variables, as memory requirements may exceed the available

amount of physical storage. In this case we have to resort to checkpointing where

we store relevant direct information only at specific checkpoints in time. In this

manner we perform a full forward sweep of the governing equations, saving the

appropriate fields at chosen checkpoints. During the backwards sweep the fields

stored at these checkpoints act as initial conditions for additional simulations that

reconstruct the flow fields at higher temporal resolution. Therefore, we trade

memory restrictions for a (minor) increase in run-time. Throughout this thesis

the checkpoints were placed in an equidistant manner, however, for more optimal

placements of the checkpoints the reader is referred to the revolve package69. A

graphical representation of the checkpointing process can be seen in figure 3.4,
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Figure 3.4: Graphical representation of the checkpointing procedure. One sparsely saved full for-
ward sweep of FLuSI is completed before several sub-simulations are executed and all time steps
are saved for use in the adjoint system.

including the initial forward FLuSI sweep, as well as the back-and-forth integration

that recovers the high-fidelity fields.

3.2.4 Overview of non-linear adjoint looping

The steps above lead to the concept of non-linear adjoint looping. We begin

with some initial condition for our mixing strategy. This strategy is implemented

during the first solution of the non-linear governing equations over a time horizon

from t = 0 to t = T . The information gathered from this sweep is then passed,

via checkpointing, to the adjoint solver, which subsequently integrates backwards

from t = T to t = 0. The sensitivity information gained from this backwards

run then enters the optimality conditions, which in turn are used to generate an

improved mixing strategy for the next forward run. This forward and backward

integration constitutes the adjoint direct loop and can be repeated until a user-

defined criterion for the mixing strategy has been reached. At this point the loop

iterations terminate, and the output is the user-defined optimal strategy. A visual

representation of this procedure is displayed in figure 3.5.

3.3 Code structure and algorithm

The system of equations, reformulated as an iterative scheme, coupled with an

optimisation strategy, completes the full algorithm for computing optimal mixing

strategies.
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Figure 3.5: A visual representation of the non-linear adjoint loop.

The step-by-step procedure advances along the following lines, this time presented

in algorithmic units.

1. We begin by running our forward simulation from t = 0 to t = T , solving

our discretised and penalised governing equations (2.48) and (2.51). At this

point, we have specifically chosen checkpoints, at which we save our state

variables to disk. We aim to have sufficient checkpoints such that (i) the

memory required to save all state variables to RAM does not exceed our

resources, and (ii) efficiency of reading and writing to disk is ensured.

2. Once we have reached the endpoint of our simulation at t = T, we run

our simulation forward from our final checkpoint, say tn, to T . During this

forward solution, we now ensure that we save the required state variables in

RAM for each time step.

3. When we reach T, we start the adjoint simulation backwards in time from

T to tn. We have the relevant forward variables in RAM, and thus can feed

them into the adjoint equations (2.71) at the appropriate time step.

4. Once we arrive at tn with the adjoint simulation, we save the last state of

the adjoint to RAM, making sure we have continuity in the adjoint variables

across checkpoints. We then clear the memory and begin with running the

forward simulation from tn−1 to tn, once again saving flow fields for each

time step to RAM.

5. We repeat steps 2-4, moving successively backwards in the checkpoints until

we reach the initial starting time t0 = 0. At this point, we evaluate the final
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time conditions for the quantities we wish to optimise and supply these to our

optimisation routine to generate the new (and improved) mixing strategy.

6. The direct-adjoint looping strategy is continued until a user-specified crite-

rion is reached; at this time the simulations terminate.

3.4 Stopping criteria

A fundamental component of any optimisation attempt revolves around the user-

defined criterion which terminates the optimisation routine. This stopping crite-

rion is commonly associated with converging behaviours of the optimisation vari-

ables from update to update. However, if the design space is of a certain size,

convergence can be difficult to achieve as too many different aspects affect the

optimisation strategy. Therefore the termination of the optimisation is enacted

even before a minimum has been reached, and as such we are performing an en-

hancement (or betterment) rather than an optimisation.

In the majority of our optimisation scenarios we are unable to achieve conver-

gence in our optimisation strategies as our design space does not easily furnish

such behaviour. Therefore, the criterion we set to decide when to terminate the

optimisation are largely based on (i) realistic and feasible mixing strategies and

(ii) the numerical stability of the algorithm. The former consideration comes into

play when considering shape optimisation, as we do not wish for the solid shapes

to intersect with each other. Therefore, when shapes are optimised in a direction

that inevitably leads to collisions we terminate the optimisation routine before

this stage. The second consideration, on the other hand, is more applicable to the

velocity optimisation of the final case. The movement of the stirrers through the

domain presents a significantly more difficult challenge to the adjoint algorithm,

as the sensitivities produced can be quite considerable. Therefore, when the veloc-

ity profile of the stirrers reaches a critical point where the noise overwhelms any

meaningful signal, the optimisation is once again terminated.

However, even though we have not reached a minimum in our mixing regimes,

the enhancements we have achieved lead to a more mixed field that can lead to

cost-saving efforts in the industry. A future endeavour will lie in designing the
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cost-functional so that a ’manual-handbrake’ intervention from the user is not

required and that convergence can be reached naturally.

3.5 Summary

In the sections above we have presented the numerical details of non-linear adjoint

looping. The next step is to perform a verification of the adjoint implementation

followed by the optimisation of user-specified control parameters of the stirrers.
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4
Results 1: Shape and rotation

optimisation

4.1 Optimisation specifics

As we now move into specific test cases, we will set the values for the Reynolds

and Péclet numbers to Re = 1000 and Pe = 1000 for all following simulations.

This parameter regime is particularly interesting as inertial effects can no longer

be ignored, while turbulent fluid motion has not yet developed. The inertial fea-

tures occurring in this parameter regime, described by a Reynolds number above

the Stokes-flow limit, guarantee a rich and varied control space, taking advantage

of advective, unsteady and diffusive processes, while the laminar aspect avoids nu-

merical divergences of the direct-adjoint optimisation scheme due to the existence

of positive Lyapunov exponents. Despite these restrictions, a great many natural

and industrial mixing processes fall into our chosen parameter regime.
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4.1.1 Optimisation parameters

The control parameters that are available to us in the optimisation of our system

allow for an overwhelmingly large design space. While the framework is sufficiently

flexible to accommodate various internal or external control parameters, we will

first concentrate on time-independent variables, such as the shape, χi, of (multiple)

stirrers via their eccentricity, ai, and their rotational speed, ωi. These quantities

can be updated between iterations using the optimality conditions, but remain

constant in time during the forward and backward simulations. This implies that

expression (2.76) for ω†i is modified by integration in time.

4.1.2 Introduction of cost functional

We next have to decide upon a suitable cost functional that also includes the

constraints that still remain undefined in equations (2.83). Given that we will

optimise the rotational velocity and eccentricity of the stirrers, it appears natural

to impose limitations on their kinetic energy, as otherwise unrealistically high

velocities might develop. To this end, we introduce a discretised cost functional of

the following form

J =
θHMθ

VΩ

∣∣∣∣
TF

+ λ

∫ TF

0

∑
i

[(us,i)jχi]
HRi[(us,i)jχi] dt, (4.1)

where we choose Ri as a positive definite weight matrix yielding a valid norm.

We point out that we have chosen the variance as our mixing measure for two

purposes. Firstly, we wish to focus more on the verification of the framework

than the final mixing result. Therefore, an intuitive and simple mixing measure

appears advantageous. Secondly, we wish to demonstrate that the effectiveness of

the optimisation framework is independent of the chosen measures.

We must emphasise that the choice of constraint may not be strictly industrially

applicable either. When considering rotating stirrers, the power of the driving

motor is a quantity that can, and should, be included in the cost-functional. The

extra cost associated with moving a high-drag solid through the fluid should not be

underestimated, and can consequently nullify any gains made in the more homoge-
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neous final mixture. We note, however, that we wish, in this thesis, to consider the

framework as a proof-of-concept and thus neglect constraining the more realistic

power. Furthermore, the time dependency that would enter the cost-functional

with power as a constraint complicates the optimisation problem significantly and

thus, in line with previous studies that optimised similar systems and scenar-

ios4,59, turn to penalising the L2−norm of the solid velocity of the stirrers. While

the aforementioned studies do not include the movement of solid stirrers as mixing

mechanisms, the ease of use and intuitive nature of this norm lends itself naturally

to this problem. Furthermore, this quantity is comparable to the kinetic energy

of the stirrers, and thus, we aim to thus retain physicality and realism. From this

point onward when we constrain this quantity we will refer to this as the energy

penalisation of the stirrers. We stress that future endeavours that wish to apply

this optimisation framework to industrially interesting cases will need to include

the power consumption as a constraint.

4.2 Validation of gradient direction and optimisation results

Results presented in this section have been reported in Eggl et al.70.

4.2.1 A simple gradient check

Before embarking on various test cases for the optimisation of mixing strategies,

we perform a consistency check of our adjoint framework. To this end, we consider

a representative scalar control variable q, together with its adjoint equivalent q†.

The optimality condition

δL
δq

= 0 (4.2)

then establishes a link between the adjoint control variable q† and the cost func-

tional gradient δJ /δq. We have

sgn(q†) = sgn

(
−δJ
δq

)
, (4.3)
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a+ ε a− ε

ω + ε + +

ω − ε − −

εa† −εa†

εω† + +

−εω† − −

Table 4.1: Consistency check based on the sign distribution of the control variable gradient: (left)
based on a finite-difference approximation of the forward problem, (right) based on the adjoint
system.

which we will use to test our direct-adjoint system. More specifically, we evaluate

the right-hand side by a finite-difference approximation according to

δJ
δq
≈ J (q + ε)− J (q)

ε
, (4.4)

for a small value of ε. This expression is based on the forward problem only and

is then contrasted to the value q† which stems from the adjoint system. While we

will not be able to make a quantitative comparison between the two expressions,

we can match the sign-distributions of the various gradients and thus map out the

gradient landscape. In other words, we evaluate the consistency relation

sgn
(
q† · ε

)
= sgn(J (q)− J (q + ε)). (4.5)

The results of this check are listed in table 4.1, where we show that the sign

combinations across all scenarios (using the axis a and the rotational speed ω

as control variables in our case) match accordingly. This test verifies the correct

directionality of the adjoint-based gradient which, in turn, will ensure an improved

mixing strategy from iteration to iteration.

4.2.2 Definition of test configurations

To further validate the direct-adjoint optimisation framework for enhancing mix-

ing, we choose a suite of test problems that progressively challenge the computa-

tional procedure but still comply with our intuition for an optimal solution. The
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purpose of this exercise is less in treating a physically interesting case, but rather

in demonstrating the efficiency and effectiveness of the adjoint-based optimisation

scheme.

In each chosen scenario all involved stirrers begin as circular cylinders with unit ra-

dius and an initial rotational speed of 2π
8

(either in the clockwise or anti-clockwise

direction). The bounding vessel has a radius R = 10. The various configurations,

ranging from a stationary rotating cylinder to five rotating cylinders, to a moving

and rotating cylinder, are sketched in figure 4.1. The time horizon for the opti-

misation is T = 32; and the penalisation term Cη has been set to Cη = 0.001,

– a value chosen in accordance with similar scenarios as present in FLuSI. The

passive scalar θ is initially stratified with θ = 1 in the upper half of the cylindrical

domain Ω and θ = 0 in the lower half. In all cases, we will present the results for a

weakly and highly penalised optimisation setting (choosing the tuning parameter

λ, arising from equation (4.5)).

4.2.3 Case 1: one stationary rotating stirrer

We commence by considering the case of a single, rotating (initially circular) stirrer

located in the centre of a circular vessel. We optimise the rotational speed as

well as the stirrer shape which we assume generally elliptical. By lengthening or

shortening the stirrer’s axes and increasing the speed at which the stirrer spins,

we seek to enhance the mixing efficiency (measured by the variance of the passive

scalar) over a given time interval. We place limitations on the shape of the stirrer

by holding constant its cross-sectional area and on the speed of the rotation by

capping the maximum kinetic energy, by limiting the L2-norm of us, injected into

the mixture. We note that the shape of the stirrer directly affects the energy

transferred into the fluid, as highly eccentric shapes require a larger input effort,

but simultaneously may yield improved mixing.

This case serves as a first benchmark for the direct-adjoint optimisation framework;

in particular, we wish to gauge the convergence behaviour, probe the influence of

the penalisation parameter, and assess the physical fidelity of the obtained solution.
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Figure 4.1: Sketch of the initial configurations for the four test cases. Case 1 (top left) : one
centred cylinder rotating about its centre. Case 2 (top right): two cylinders on the horizontal axis,
rotating in opposite directions. Case 3 (bottom left): five rotating cylinders, placed such that three
cylinders are aligned along the horizontal axis, while the remaining two are vertically offset. Case 4
(bottom right): one rotating cylinder moving from left to right with the velocity of the horizontal
movement dictated by a cos-function.
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Highly penalised system

As a proof of concept, we present the results of our optimisations with a rather

high penalisation parameter of λ1 = 10−3, while retaining the same time horizon

of T = 8. As expected, the optimisation increases the rotational velocity and

the eccentricity of the stirrer. The progression in these control parameters versus

the number of iterations is shown in figure 4.2a where we observe a monotonic

shift towards more eccentric shapes (in red) and a gradual increase in the rotation

speed ω (in blue). After six iterations, convergence is achieved, caused by the

input energy penalisation.

Considering the evolution of the variance over the chosen time interval t ∈ [0, T ],

we observe a clustering of the various iterations; it appears that an over-penalisation

has allowed only marginal improvement in mixing efficiency. This matches the con-

vergence of the shape and rotational speed variables in figure 4.2a.

From a physical point of view, the marginal mixing improvement can be attributed

to the inability of the (penalised) stirrer to produce small-scale structures which

could be dissipated or to induce significant advective mixing processes. Instead,

after nine iterations we remain within the solid-body rotation regime, an example

of which is shown in the left column of figure 4.4. The lack of small-scale structures

renders diffusion ineffective, and explains the disappointing decrease in variance;

the final mixing is solely due to the diffusion of an extended fluid interface created

by the faster spinning (near-)cylinder.

Weakly penalised system

To induce more effective mixing, the system must be able to use advective processes

to create small-scale structures and filaments which then give rise to significant

mixing by diffusion. The highly penalised system of the previous section does not

venture into the proper parameter regime to encourage this behaviour. For this

reason, we drastically lower the penalisation value to λ = 10−4.

When considering the variances that follow from each direct-adjoint iteration in

figure 4.3a, we note a clustering over the first optimisations, similar to the highly

penalised approach. In this range, we still remain in the solid-body regime and
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Figure 4.2: Case 1: mixing optimisation using one stationary rotating stirrer. A highly penalised
optimisation setting (λ = 10−3 from equation (4.1)) has been used. (a) Rotational speed ω and
axis a versus the number of direct-adjoint iterations. (b) Variance of the passive scalar versus time
t ∈ [0, T ].

thus solely rely on diffusion for our mixing. However, we note that the seventh and

eighth iteration brings about a marked change and leads to a significant decrease

in the variance when compared to the preceding steps (see figure 4.3b for a closer

view). The associated stronger mixing is created by the availability of an advective

process caused by the elliptic stirrer that is now sufficiently elongated (and spinning

sufficiently fast) to shed vortices off its tips. These vortices form the sought-after

small-scale structures that intensify the diffusion process by increasing the length

of the interface between the two fluids. These increased small scale dynamics

enhance the adjoint’s ability to create further mixing, and therefore, result in the

drastic decrease in variance, as can be observed in figure 4.3a.

During the optimisation, we notice a substantial increase in the adjoint variables –

to a degree that requires the marked reduction of the step-size in the optimisation

routine. This increase is expected, as a more efficient process that accomplished

mixing is available after the stirrer has been modified to induce vortex shedding. In

other words, after six iterations on the cost functional surface, we have reached the

edge of the diffusion-dominated plateau and progressed towards lower variances by

exploiting advection-diffusion-dominated mixing. The high penalisation parameter

λ in the previous section inhibited the exploration of this regime.

The shape of the variance for the ninth iteration (see figure 4.3a) exhibits a levelling
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off during the later stages of the direct simulation (between t ≈ 25 and t = 32).

This suggests that at this point the mixing process driven by the elliptical stirrer

is nearly complete, and any further mixing is primarily due to diffusion. In fact,

when comparing the gradient of the variance to previous iterations, we observe

a corresponding similarity and thus can conclude that advection no longer plays

an important role. This conclusion is further corroborated by regarding the right-

hand column of figure 4.4, which shows snapshots from the final iteration; the

uniformity of the passive scalar field θ is evident towards the end of the temporal

optimisation horizon. The optimisation is stopped here, as the magnitude of the

rotational speed of the next update step lead to numerical instabilities and the

time-step would have had to be reduced significantly at great computational cost

to achieve any meaningful result.

While this simple example has supplied information about the convergence be-

haviour and the role of the penalisation parameter in including or excluding phys-

ical mixing strategies to accomplish optimal mixing results, we now proceed to

more complex cases and further probe the direct-adjoint optimisation framework.
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Figure 4.3: Case 1: mixing optimisation using one stationary rotating stirrer. (a) Variance, as
defined in equation (2.81), of the scalar field θ versus time t ∈ [0, T ]. (b) Zoomed-in view to
illustrate the decrease in variance for the first eight iterations. (c) Contour of cylinder shapes as
result of successive iterations.
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Figure 4.4: Case 1: mixing optimisation using one stationary rotating stirrer. Left column: unop-
timised configuration, with snapshots at t = 8, 16, 24, 32 (top to bottom). Middle Column: after
four direct-adjoint optimisations, with snapshots at t = 8, 16, 24, 32 (top to bottom). Right col-
umn: after nine direct-adjoint optimisations, with snapshots at t = 8, 16, 24, 32 (top to bottom).
For videos of these scenarios please refer to 1Before.mp4, 1Intermediate.mp4 and 1After.mp4

for the left, middle and right column, respectively.
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4.2.4 Case 2: two stationary rotating stirrers

We complicate the geometry and optimisation scheme by introducing a second
stirrer which we place along the horizontal axis of the mixing vessel; as before,
the initial shape of both stirrers is taken as circular. Again, we also consider
the influence of the penalisation parameter (controlling the maximum amount of

kinetic energy added to the system, i.e., limiting
∫ TF

0

∑
i[(us,i)jχi]

HRi[(us,i)jχi] dt)
on the convergence behaviour and the chosen physical optimisation strategy.

Highly penalised system

We observe, similar to the previous one-cylinder case, that a high energy-penalisation
parameter prevents the optimal mixing strategy to explore options other than solid-
body rotation and diffusion of the spinning boundary layer around the (mostly)
circular stirrers. With the existence of a second stirrer, there is an additional
possibility for the optimisation scheme of exiting this regime: by placing the two
stirrers close to each other, we can have their respective rotating boundary layers
interact and exchange sufficient adjoint (gradient) information to induce advection-
dominated strategies and a corresponding drop in variance. In our case, the two
stirrers appear unaware of each other; no cooperative strategy is pursued by the
optimisation scheme and, as a result, little progress is made in improving mixing
efficiency.

Figure 4.5a shows the evolution of the axis length (while maintaining the cross-
sectional area) and the rotational speed of the first (left) stirrer as we progress
through six iterations of the direct-adjoint looping. We see an increase in the
rotational speed, but only an insignificant change in the stirrer’s eccentricity. The
control variables for the second (right) stirrer are identical to the ones shown in
figure 4.5a. It is not surprising that the temporal evolution of the variance over
these six iterations appears rather clustered (see figure 4.5b).

Weakly penalised system

Applying a lower value of λ to this two-stirrer configuration is expected to yield
similar results as observed before: by allowing a less restrictive value for the kinetic
energy of the stirrers, advective processes will become a feasible option, vortex
shedding from elliptical stirrers will commence and substantially more efficient
mixing will ensue.

While this behaviour is certainly prevalent (as shown in figure 4.6), when consider-
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Figure 4.5: Case 2: mixing optimisation using two stationary rotating stirrers. A highly penalised
optimisation setting (λ = 10−3 from equation (4.1)) has been used. (a) Rotational speed ω and
axis length a versus the number of direct-adjoint iterations for the first (left) cylinder. (b) Variance
of the passive scalar versus time t ∈ [0, T ].

ing snapshots in time after the seventh iteration of the direct-adjoint optimisation
we observe that, while the right stirrer has been optimised into a fast-rotating,
elliptical shape (as anticipated), the left cylinder is still nearly circular in nature
and appears to only mix by diffusing its rotating boundary layer (see the right
column of figure 4.7). In fact, the bulk of the variance drop can be ascribed to the
right stirrer.

This observation highlights an issue and shortcoming of gradient-based optimi-
sation. In order for the left stirrer to ‘engage’ in the mixing process, it has to
pass through a (locally) less optimal configuration. In other words, we have to
first allow an increase in variance contribution from the left stirrer, before we can
substantially lower the global variance by having the left stirrer contribute to the
overall mixing process. Within our optimisation framework, where after every it-
eration we proceed along the local gradient, this required procedure is excluded.
However, this is a well-known and acknowledged issue of gradient-based optimisa-
tion schemes: we are able to find local minima, but have no guarantee (or strategy)
to find a global optimum.

In our case, we can improve the situation by mirroring the control variables of
the second (right) stirrer onto the first (left) stirrer. In this manner, we induce
sufficient gradients in the cost functional for both cylinders to encourage further
progress in the reduction of the global variance. Hence, we achieve lower variance
levels than before (see the dashed line in figure 4.6). The final shape of the stirrers
for the improved strategy consists of two ellipses of marked eccentricity, with their
respective semi-major axes positioned 90◦ to each other (the behaviour of this
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Figure 4.6: Case 2: mixing optimisation using two stationary rotating stirrers. Variance, as de-
fined in equation (2.81), of the scalar field θ versus time t ∈ [0, T ]. The solid lines represent a lo-
cal optimum, where the left stirrer remains rather inactive. The dashed line represents an improved
optimum, by mirroring the control variables onto the left stirrer before continuing the gradient-
based optimisation.

improved minimum can be seen in the video 2ImprovedMin.mp4).

For a more objective manner of reaching a global optimum, sophisticated optimi-
sation strategies have to be employed in addition to the gradient-based framework;
these strategies require the (commonly stochastic) evaluation of various parame-
ter settings and quickly become prohibitively expensive for large-scale, PDE-based
optimisations.
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Figure 4.7: Case 2: mixing optimisation using two stationary rotating stirrers. Left column: un-
optimised configuration, with snapshots at t = 8, 16, 24, 32 (top to bottom). Middle column: after
seven direct-adjoint optimisations, with snapshots at t = 8, 16, 24, 32 (top to bottom). Right col-
umn: Enforced minimum by mirroring the axis length across both cylinders at t = 8, 16, 24, 32. For
videos of these scenarios please refer to 2Before.mp4, 2After.mp4 and 2ImprovedMin.mp4 for
the left, middle and right column, respectively.
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4.2.5 Case 3: five stationary rotating stirrers

Motivated by the previous configuration, we proceed by adding more stirrers and
further explore the behaviour of the optimisation scheme when multiple optima
and strategies compete for the best mixing efficiency.

Highly penalised system

To study the behaviour of the direct-adjoint optimisation scheme on this more
complicated geometry, we first impose a high energy penalisation, as before. The
results are displayed in figure 4.8, for the stirrers labelled 1, 3 and 5 (see 4.1). While
the two stirrers on the horizontal axis show behaviour similar to the previous cases
(i.e., a tendency towards higher rotational speeds and elliptic shapes), eccentricity
remains largely unchanged, while the rotational velocity is significantly dampened
in the off-set stirrer. At first sight, this may run counter to intuition that suggests
that higher speeds result in improved mixing. However, it appears that – under the
constraints of a limited energy budget – it is more advantageous to invest energy
into the aligned stirrers rather than squandering it on the offset stirrers that are
located in a rather homogeneous tracer field and thus cannot contribute to the
global variance drop to any significant degree. For this reason, the optimisation
scheme (more specifically, the adjoint system) directs focus on the three aligned
stirrers that do make a difference.

Regarding the variances of the scalar field in figure 4.9 we conclude, as before,
that we do not fully utilise diffusion and advection, which is required for efficient
mixing. To exhibit a significant decrease in the variance, we have to explore the
weak energy penalisation regime.

Weakly penalised system

Whenmoving from the high penalised to the low penalised scenario, while still
limiting the total amount of kinetic energy distributed among the five stirrers, we
see the emergence of advection-based mixing. The five stirrers take on elliptical
shapes of varying eccentricity and tend to increase in their spin rate. This process
induces a complex system of shed vortices that not only introduces small-scale fea-
tures and thin filaments, but also transports information between the five stirrers.
The ensuing optimisation scheme then finds an optimal collaborative mixing strat-
egy between the five stirrers that optimises the global variance while remaining
within the imposed L2 constraint of us.
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Figure 4.8: Case 3: mixing optimisation using five stationary rotating stirrers. A highly penalised
optimisation setting (λ = 10−3 from equation (4.1)) has been used. (a) Rotational speed ω and
axis a versus the number of direct-adjoint iterations for the first (left-most) cylinder. (b) Rotational
speed ω and axis a versus the number of direct-adjoint iterations for the third (bottom) cylinder.
(c) Rotational speed ω and axis a versus the number of direct-adjoint iterations for the fifth (cen-
tre) cylinder. (d) Variance of the passive scalar versus time t ∈ [0, T ].
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Throughout the initial iterations, no significant information is exchanged between
the cylinders, and therefore the off-set stirrers are neglected due to the homogene-
ity of their surroundings. Even in the low penalisation the optimisation regards
any energy used by these cylinders as wasteful. During subsequent iterations the
transport of information is built up but remains negligible. In particular, consid-
ering the variances in figure 4.9, we note that the initial five iterations do not lead
to significant improvements in mixedness, as we mainly stay within the previously
mentioned solid-body rotation. Once vortex shedding sets in (starting at the sixth
iteration, mainly with the central stirrer), however, we see a significantly larger
decrease in variance. Continuing further in the optimisation, all remaining stirrers
are involved in the mixing process, as a jet forms between the central cylinders
which interacts with the off-set cylinders implying that energy expended on their
rotation will have an effect on the mixing. In particular, the elliptical shape of the
stirrers converges towards its final configuration relative to each other.

Similar to the one-cylinder case, our final optimisation reaches a point where the
predominant mixing process is diffusion and the gradient of the variance is com-
parable to the purely diffusive limit.

Temporal snapshots of the optimised mixing (after seven iterations) can be ob-
served in figure 4.10 in the right column. We remark that this is the final op-
timisation, since any further lengthening of the central stirrer (as suggested by
the next adjoint step) would cause a collision with the other horizontally aligned
stirrers.
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Figure 4.9: Case 3: mixing optimisation using five stationary rotating stirrers. Variance, as de-
fined in equation (2.81), of the scalar field θ versus time t ∈ [0, T ].
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Figure 4.10: Case 3: mixing optimisation using five stationary rotating stirrers. Left column:
unoptimised configuration, with snapshots at t = 8, 16, 24, 32 (top to bottom). Right column: after
seven direct-adjoint optimisations, with snapshots at t = 8, 16, 24, 32 (top to bottom). For videos
of these scenarios please refer to 5Before.mp4 and 5After.mp4 for the left and right column,
respectively.
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4.2.6 Case 4: one horizontally moving, rotating stirrer

All previous configurations relied on rotating but stationary stirrers, and thus
only partially demonstrate the capabilities of the direct-adjoint method and the
associated penalisation framework. In this final case, we present a scenario that
considers the optimisation of the shape of a stirrer while being dragged through the
binary fluid; the velocity of the stirrer is defined by a function of the form cos(t).
We neglect energy penalisation (i.e., λ = 0) in this case, as little effect is expected
from a pure shape optimisation, since the bulk of the energy expenditure is already
contained in the back-and-forth motion of the stirrer. As mentioned previously, a
case may be made for including a power constraint in this system as the change in
the shape will introduce extra cost in terms of the physical operation of the motor.
However, we wish here to solely study the capability of framework in optimising a
moving stirrer. Therefore, we aim to employ the simplest cost-functional for this
particular scenario.

We observe in figure 4.11 a pronounced decrease in the variance as the initially
circular cylinder is lengthened vertically (for the position at t = 0). The reason for
this optimal configuration is certainly linked to the fact that dragging an elliptical
stirrer across the interface starting in this vertical position achieves a great deal
of mixing by producing small-scale structures. An alternative, initially horizontal
design would perform significantly worse. In addition to this obvious observation,
we notice that starting in the vertical position at t = 0 allows the stirrer to take
on the high-drag vertical position nine times during a full simulation cycles, while
an initially horizontal ellipse would exhibit the same high-drag position only eight
times per cycle. From the early stages of the cycle (e.g. t = 8), we create a great
many filamented structures that subsequently get diffused by the flow and help
in ultimately producing a homogeneous mixture. This effect continues further
throughout the simulation and leads to the substantial decrease in variance, as
shown in figure 4.11.

Finally, we note that the direct-adjoint system, as introduced, is ignorant of the
physical restrictions by the geometry; specifically, geometrically overlapping or
otherwise colliding structures are not explicitly accounted for. For this reason, we
have to manually terminate the optimisation scheme in the case of such an event.
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Figure 4.11: Case 4: mixing optimisation using one horizontally moving and rotating stirrer. Vari-
ance, as defined in equation (2.81), of the scalar field θ versus time t ∈ [0, T ].
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Figure 4.12: Case 4: mixing optimisation using one horizontally moving and rotating stirrer. Left
column: unoptimised configuration, with snapshots at t = 8, 16, 24, 32 (top to bottom). Right
column: after five direct-adjoint optimisations, with snapshots at t = 8, 16, 24, 32 (top to bottom).
For videos of these scenarios please refer to CosBefore.mp4 and CosAfter.mp4 for the left and
right column, respectively.
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5
Results 2: Fourier-based shape

optimisation

5.1 Optimisation specifics

5.1.1 Optimisation parameters

In the previous section both stirrer geometry and rotational velocity have been our
control parameters. It has been found that the bulk of the mixing efficiency was
attributed to the additional kinetic energy supplied to the system by the stirrers’
increased rotation, less effect was due to a change in eccentricity. To isolate the
effects of these two control parameters we will concentrate in this section on pure
shape optimisation and study its effects on mixing efficiency.

5.1.2 Shape parameterisation

While the previous parameterisation of the stirrers and their morphing from circles
to ellipses is more than sufficient for the validation of the computational frame-
work, it lacks the high dimensionality of the control space to accommodate more
complicated stirrer shapes. In particular with a view towards industrially appli-
cable cases that cannot be approached by intuition alone, we need to introduce
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a geometric parameterisation with a far higher degree of flexibility while still re-
taining the main features of the previous optimisation. We are motivated by our
numerical approach in the choice of an efficient parameterisation. To this end,
we introduce a Fourier-based shape parameterisation which has been shown71 to
allow for an wide array of shapes of the following form

fx(α) =
a0

2
+

n∑
k=1

ak cos (kα)− bk sin (kα) , (5.1a)

fy(α) =
c0

2
+

n∑
k=1

ck cos (kα)− dk sin (kα) , (5.1b)

where α is a vector representing the discretised interval [0, 2π]. We then generate
a parametric curve in Cartesian coordinates according to

x = fx(α), (5.2a)

y = fy(α), (5.2b)

or, in composite form,

f(ai, bi, ci, di) = [fx, fy], (5.3)

which forms the basis for the generation of the ith stirrer shape. The potential
complexity of the stirrer geometries introduces additional considerations. One
of these is related to the fact that the mask requires a condition which specifies
whether a point falls inside or outside our geometry. For the previous cases of
circular or elliptical cross-sections this condition could be formulated in a trivial
manner, i.e, via a distance function from the centre. As our new parameterisation
allows for shapes of significant concavity, we have to introduce a more complex
measure to determine the interior or exterior of our geometry. Additionally, further
complications are added to this issue by allowing highly distorted geometric shapes
whose barycentre lies outside the solid structure. Therefore, we introduce the
winding number w(x). This number is defined as

w(xk) =
n∑
i=1

φi,i−1, (5.4)

where φi,j denotes the angle of the arc, which is centred at the test point xk, and
runs along the parametric curve from xi to xj. As the points xi,xj and the angle φ
sweep the full perimeter of the parametric curve, the total angle travelling around
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the curve will be 2π if the point xk is inside the curve or zero if it falls outside.

Combining this concept with our previous definition of the mask we obtain

χi(x, t) =

1, wi(x) = 2π,

0, w(x) = 0,
(5.5)

We note that this formulation is discontinuous and thus would generate spuri-
ous numerical waves as our stirrers move across our discrete grid. Therefore, we
introduce a smoothing layer to avoid the formation of this numerical noise, but
emphasise that this has a negligible effect on the analytic framework. The prob-
lem is further complicated, because the the smoothing layer cannot be defined as
a distance from the centre (as in equation (2.52)), instead we must rely on the
minimum distance from our chosen point to our curve, i.e.,

d = min
α

√
(x− fx)2 + (y − fy)2. (5.6)

The angle of α that assumes this minimum value will be defined as α̃ and can be
uniquely determined for each point (x, y) inside the shape. We then augment our
mask function χi with d to obtain the smoothed mask

χi(x, t) =


1, w = 2π and d > h,

1
2

(
1 + cos(π(h−d)

h
)
)
, w = 2π and d < h,

0, w = 0.

(5.7)

We note that the smoothing function connects to the limit points of the discrete
function but via the middle smoothing layer, represents a continuous and differ-
entiable formulation.

A benefit of using the parameterisation above is its flexibility in the derivation
and implementation of the adjoint equation. The last statement requires further
explanation. Without loss of generality we will focus on optimising the Lagrangian
L with respect to one representative coefficient ak, but stress that the other Fourier
coefficients follow the same procedure. Since L does not explicitly depend on ak,
but is linked implicitly through the geometric mask, we have to split the derivative
with respect to ak into its partial components as follows

∂L
∂ak

=

∫ T

0

∂L
∂χi

∂χi
∂d

∂d

∂ak
dt. (5.8)
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The first term is identical to (2.74) while the second is the analogue of the term
reported in Eggl et al.70. The last term is novel and will be discussed below. While
equation (5.6) does include a minimisation, the derivative term in equation (5.8) is
independent of this minimum and does not affect the further derivation. Given the
form of the parameterisation (equation (5.1)) , the derivative is in essence isolating
the wave number within the minimum distance function, i.e.,

∂d

∂ak
=

(fx − x) cos(kα)

d

∣∣∣∣
α̃

. (5.9)

Combining this expression with the terms above, we arrive at the full formulation
of the optimality condition with respect to the chosen ak. The composite nature
of equation (5.8) allows for an efficient implementation as the first two terms
are independent of our choice of ak and can be determined ahead of the bulk of
the computations. Furthermore, the final term only changes minimally, either by
including a (fy − y) term or by replacing sin with a cos term, depending on which
of the coefficients we choose. This means that the calculation of the optimality
condition is efficient and readily scalable as the majority of the required terms can
be calculated a priori.

One key issue that needs attention is area conservation. The optimisation routine
at this point is not constrained by area and therefore can and will modify the
area of the stirrers. This may encourage shapes that achieve better mixing simply
by changing the size of the stirrers. To counter this tendency, we need to define
and conserve the area of our parametric curves. Previously, when we considered
elliptical stirrers, we conserved their area

A = πab, (5.10)

where a and b are the semi-major and semi-minor axis of the ellipse, by enforcing
a constant value of ab. In the Fourier-based parameterisation we have to take a
similar approach, albeit with more algebraic overhead. We begin as follows
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A = −
∫ α=2π

α=0

fydfx (5.11)

= −
∫ 2π

0

fy
∂fx
∂α

dα (5.12)

= −
∫ 2π

0

[
c0

2
+

n∑
k=1

ck cos (kα)− dk sin (kα)

][
n∑
l=1

l(−al sin (lα)− bl cos (lα))

]
dα.

(5.13)

Without loss of generality, we will absorb the factor of 1
2

into c0 to simplify the
notation

=
n∑
k=0

n∑
l=1

l

(∫ 2π

0

[ck cos (kα)− dk sin (kα)] [al sin (lα) + bl cos (lα)] dα

)
(5.14)

=
n∑
k=0

n∑
l=1

l

(∫ 2π

0

ckbl cos (kα) cos (lα) + ckal cos (kα) sin (lα)

− dkal sin (kα) sin (lα)− dkbl sin (kα) cos (lα) dα

)
. (5.15)

We note that the trigonometric sin and cos are mutually orthogonal over the
interval (0, 2π), and that the only non-zero terms are given by k = l of cos× cos
and sin× sin. This implies that the evaluation of the terms in equation (5.15)
result in

n∑
k=0

n∑
l=1

∫ 2π

0

ckbl cos (kα) cos (lα) dα =
n∑
k=0

πckbk, (5.16)

n∑
k=0

n∑
l=1

∫ 2π

0

ckal cos (kα) sin (lα) dα = 0, (5.17)

n∑
k=1

n∑
l=1

∫ 2π

0

dkbl sin (kα) cos (lα) dα = 0, (5.18)

n∑
k=1

n∑
l=1

∫ 2π

0

dkal sin (kα) sin (lα) dα =
n∑
k=1

dkakπ. (5.19)
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Using the above and substituting into equation (5.15) we obtain

A =
n∑
k=1

πk(ckbk − dkak). (5.20)

It is easily shown that we recover the area of circle and ellipse using this more
general formula. Next, we will use this expression to normalise the coefficients to
preserve an initial area. More specifically, for an initial area

Ã =
n∑
k=1

πk(c̃kb̃k − d̃kãk), (5.21)

we multiply all Fourier coefficients for the new geometric shape with new area A

by
√

Ã
A

, i.e.,

n∑
k=1

πk(

√
Ã

A
ck

√
Ã

A
bk −

√
Ã

A
dk

√
Ã

A
ak) =

Ã

A

n∑
k=1

πk(ckbk − dkak) (5.22)

=
Ã

A
A (5.23)

= Ã, (5.24)

to obtain an area-normalised new shape.

We now have in place the key ingredients to successfully optimise any number of
stirrers of arbitrary Fourier-based shapes. This geometric parameterisation has
been found to be particularly simple and elegant to optimise.

5.1.3 Shape constraints

The possibilities of the Fourier-based approach to generate complex shapes requires
additional constraints that go beyond area conservation. The new constraints we
have to impose arise from the desire to generate physically feasible shapes that are
implementable in industrial processes.

The first constraint we impose is related to the twisting of the parametric curve.
When generating geometric shapes with a multitude of Fourier coefficients, it is
highly likely that the parametric curve self-intersects, an example of which can be
seen in the left shape of figure 5.1. In essence, the overall optimisation circumvents
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Figure 5.1: Unconstrained shape optimisation of two rotating stirrers. We can see that the left
shape has generated two pinched off shapes throughout the optimisation.

the imposed choice of a prescribed number of stirrers by generating new pinched-
off geometric components that then enhance mixing in later optimisation steps,
albeit with the same dynamic constraints. While this option may be beneficial
to the mix-norm, the geometric shape is, of course, unrealisable in a real world
setting. It may seem sufficient to solely expand the distance between the points
on the curve and therefore avoid such a pinching off. However, the full path along
the parametric curve needs to be considered as well, as any pure thickening of the
curve will inevitably leave some twisting due to our use the winding number w.
What is instead needed is an untwisting strategy.

We consider two line segments ~AB and ~CD of arbitrary length and evaluate crite-
ria for their mutual intersection. If this criterion is met, without loss of generality,
we exchange B and D and mirror the parameterisation of the part of the param-
eter curve from A to D to generate an untwisted, and simply connected, shape.
An example of such an untwisting can be seen in figure 5.2, which contains the
previously shown shape that had two pinched-off areas.

After this untwisting procedure, new Fourier coefficients can be calculated and
subsequently supplied to the area calculation and further optimisations.

The above untwisting would be sufficient for a continuous setting. However, on
a finite grid we can arrive at pinched-off shapes even after untwisting has been
performed. This is due to small geometric features that fall below the resolution
of the grid despite the fact that the shape is simply connected. To avoid this
complication, we introduce a displacement strategy for any points that fall below
a chosen distance, so that their modified distances remain above minimum grid
distance. This displacement is based on the following steps. Consider two points
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Figure 5.2: Untwisting algorithm applied to the left shape from figure 5.1. The new curve is seen
in red.

which are a distance r apart. If this distance falls below the minimum distance
constraint, i.e., r < rmin, we displace the two points along their respective outward
pointing normals to the parametric curve. The amount of displacement, ζ, is given
by a Buckingham potential72

ζ = rmin

[
e
− r

rmin

]
. (5.25)

A demonstration of this strategy is displayed in figure 5.3.

This strategy, in combination with the untwisting procedure, ensures a simply
connected shape that is well represented on our underlying grid.

5.1.4 Introduction of the cost functional

As the entire optimisation is purely shape-based and no increase in rotational
velocity is applied to the system, there is no need for the L2 penalisation of us of the
previous section, and thus our cost functional takes the form defined by equation
(2.83). The constraints we do impose are not included in the cost functional,
but are rather applied once the update from the optimisation is completed. An
added change to the cost functional is concerned with the measure of mixedness:
we choose the mix-norm with an exponent of −2/3. This particular choice of
exponent was made for the following reason; previous studies using mix-norm
optimisation employed either −1/260 or −147. −2/3 represents a value that falls
between the two values used in literature and thus incorporates characteristics of
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Figure 5.3: Application of thickening routine to untwisted shape.

both. As no previous studies of mix-norm optimisation had been applied to our
chosen configuration, and thus no precedent had been set, we made the above
choice for the exponent. The semi-discretised form of the cost functional J takes
the following form

J =
[A−2/3θ]HM [A−2/3θ]

VΩ

∣∣∣∣
T

. (5.26)

We repeat that this type of norm encourages the formation of filamented structures
in the passive scalar field, which are subsequently diffused once the optimisation
window has passed.

5.2 Geometric configuration

We now turn to introducing the geometry of the test cases that demonstrate the
effectiveness of shape optimisation. Earlier, we observed that the initially circular
condition of the stirrers severely hampered the convergence towards an optimal
design as the initial solid-body rotation did not induce vortex shedding and hence,
did not provide a viable gradient direction for the optimisation. As a consequence,
a substantial amount of computational effort was expended over the first few iter-
ations, simply increasing the rotational velocity of the stirrers before shedding set
in and the optimisation routine could drastically alter the shape of the stirrers.
Therefore, in the absence of rotational speed as a control variable, it will be advan-
tageous to avoid the circular initial shape and instead begin the shape optimisation
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with a geometry that induces vortex shedding. In this manner, the adjoint informa-
tion will more quickly converge towards more optimal mixing shapes. To this end,
we initialise the stirrers as four-pointed hypocycloids (astroids), examples of which
can be seen in figure 5.4. This choice was primarily made, as explained above, to
encourage vortex shedding from the cusps, but also, because the generated vortices
do not interact with each other, but are rather confined to the respective cavity
between the cusps. Therefore, we do not precondition the optimisation towards
collaborative mixing strategies with interacting vortices. Instead, any change of
shape in the stirrers that leads to this type of collaboration, as was observed in
case three of section §4, has to be found by the optimisation algorithm of its own
accord.

The arrangements and rotational speed (ω = 2π
8

) of the star-shaped stirrers are
identical to those of the previous study and allow us to make qualitative compar-
isons. We have also kept the values of Re = 1000 and Pe = 1000 the same. To
avoid overly complicated shapes with highly corrugated boundaries, we restrict
our control space to the five largest wave numbers, i.e.,

ai, bi, ci, di for i = 1, 5, (5.27)

where these quantities are defined in equation (5.1). Finally, we limit the optimi-
sation time to one single rotation, i.e., T = 8. This choice focuses the optimisation
effort on short-term features rather than any residual diffusive phenomena. In
effect we are forcing the optimisation to achieve efficient mixing with severe limi-
tations in time.

5.3 Presentation of optimisation results

5.3.1 Case 1: Shape optimisation of one stirrer

We begin by studying the first case, namely a single, centrally placed stirrer. The
effect on the scalar field by the action of the unoptimised stirrer and the fully
optimised stirrer can be seen in figure 5.6. We observe that the shape generated
by the optimisation is noticeably more asymmetrical than the initial configuration,
which in turn induces the creation of more vortices and their mutual interaction.
In the absence of a second stirrer, a fully collaborative mixing strategy is not
possible; rather the single stirrer must achieve a self-collaborative strategy among
its shed vortices. One strategy is to elongate the shape, as has been found in the
previous of the same configuration: the longer the shape, the higher the velocity
at the trailing edge and the more vigorous of shedding of the vortices. However,
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Figure 5.4: Sketch of the initial configurations for the three shape optimisation cases. Case 1
(top left): one centred stirrer rotating about its centre. Case 2 (top right): two stirrers on the hor-
izontal axis, rotating in the clockwise directions. Case 3 (bottom centre): five rotating stirrers,
placed such that three cylinders are aligned along the horizontal axis, while the remaining two are
vertically offset.
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Figure 5.5: Case 1: mixing optimisation using one stationary rotating stirrer. No untwisting or
thickening was applied. (a) Evolution of the shape throughout the optimisation steps. The red line
is the initial configuration and green the final one. Arrows have been added in black to illustrate
the changes in the shape. (b) Mix-norm of the passive scalar versus time t ∈ [0, T ]. (c) Variance
of the passive scalar versus time t ∈ [0, T ].
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vortex shedding was not only accomplished by a simple elongation of one cusp,
but also by an alignment of the three other cusps along the axis of the principal
cusp. The graphical revolution of the shape evolution is shown in figure 5.5a with
black arrows guiding the eye. The reader is reminded that we conserve the initial
cross-sectional area of the stirrer which results not only in a lengthening, but also
a thinning of the structure.

The final converged shape after our final iteration induces the formation of a
trailing line vortex street which can be seen at t = 6 in the right column of
figure 5.6. Furthermore, one of the protruding cusps near the centre of the stirrer
generates an area of high circulation which draws in unmixed passive scalar and,
later in the rotation, flings vorticity towards to the trailing line vortex street (t = 6
to t = 8). We urge the reader to consult the animations in the supplemental
material to fully appreciate this dynamic process.

One item of particular interest in this optimisation is the capability of the direct-
adjoint looping, coupled with shape optimisation, to explore competing minima
beyond its current local solution. This manifests itself in figure 5.5b where the
final values of the mix-norm after the fifth and seventh iteration are significantly
higher, and therefore worse, than the previous iterations. Further analysis of
this observation reveals that the shapes (shown in figure 5.5a) go through drastic
changes in the configuration, i.e., there is a shift from an initially thought optimal
configuration to a newer, more efficient, one. Throughout the initial stages of the
optimisation, the first attempted modifications reinforce a particular configuration.
During this reinforcement, and owing to the global nature of the Fourier-based
shape representation, the optimisation scheme becomes aware of a more optimal
shape at a different point in design space. In the pursuit of this new configuration
the optimisation must pass through a regime of sub-optimality. Once this traversal
is completed, we obtain a stirrer geometry with significantly enhanced mixing
efficiency. This same convergence behaviour was not realised in case two of the
previous study since the control variables for each stirrer did not communicate
effectively and only an isolated control strategy could be pursued. In contrast,
the Fourier-based parameterisation of the stirrer geometry furnishes a strong link
between all points of the curve, and thus changes at one point are communicated
effectively to the rest of the shape. In the latter case, this allows the optimisation
to probe multiple local minima. However, due to the non-convexity of the problem,
a convergence to a global minimum cannot be guaranteed.

After eight optimisations we terminate the direct-adjoint loop, even though better
mixing efficiency could be achieved in subsequent iterations, as the resulting shapes
increasingly become physically unfeasible. Up to eight optimisations, no post-
processing such as thickening or untwisting was necessary and thus this optimal
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shape can conceivably be implemented in an industrial setting.

As a final observation, we note the rise of the mix-norm towards the end of the
simulation. This may seem counter-intuitive and raise the question why the opti-
misation did not terminate when the mix-norm is lowest. We remind the reader
that our cost-functional focuses on the end-time evaluation of the mix-norm and,
therefore, any influence prior to the final time horizon does not directly enter the
optimisation. The variance continues to decrease, which implies that the fluid
continues to mix.

We have now demonstrated that it is possible to achieve mixing enhancement for
a single stirrer, solely through the use of shape optimisation within a limited time
window and without the need for increased rotational velocity. We next turn our
attention to the optimisation of multiple stirrers.
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Figure 5.6: Case 1: mixing optimisation using one rotating stirrer. Left column: unoptimised
configuration, with snapshots at t = 2, 4, 6, 8 (top to bottom). Right column: after eight direct-
adjoint optimisations, with snapshots at t = 2, 4, 6, 8 (top to bottom). For videos of these scenarios
please refer to Shape1NoOpt.mp4 and Shape1Opt.mp4 for the left and right column, respectively.
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5.3.2 Case 2: Shape optimisation of two stirrers

We complicate the geometry and optimisation scheme by introducing a second
stirrer which we also place at the interface of the fluid (see figure 5.4). Both stirrers
are initially taken as a four-pointed hypocycloids and are placed sufficiently far
from each other such that communication between them is weak. The interest
in this configuration is two-fold: on one hand we intend to assess the proximity-
effects of the outer wall, and on the other we investigate the possible rise of a
collaborative mixing between the two stirrers.

As can be seen from the left column of figure 5.8, showing the unoptimised state,
there is no visible interaction between the stirrers and the outer wall; the shed vor-
tices appear unaware of any other solid in their vicinity. In contrast, the optimised
results illustrate an influence of the outer wall, in particular for the left stirrer,
while the right stirrer tends to concentrate its mixing efforts on the local vortex
dynamics. This break in symmetry can be attributed to the identical rotational
direction of the stirrers. Firstly, we observe there is an elongation in the horizontal
axis for both stirrers. This echoes the behaviour of the single cylinder optimisation,
where elongation has been used to generate a vortex street. However, we observe
one fundamental difference: the only elongation for the single-stirrer optimisation
was tilted at an angle to the interface to take advantage of a maximum plunging
action, while the elongation for the left stirrer in the present case is in the horizon-
tal direction. The principal reason for this observation is the presence of the wall,
which encourages effective vortex wall collisions. The right stirrer, sensing far less
influence of the wall, engages more in a plunging action and therefore develops a
secondary elongation at angle to the interface similar to the one stirrer case.

In general, we observe geometric features similar to the one stirrer case, i.e., elon-
gation in a principal direction, combined with the formation of concavities and
protuberances, to generate and induce interacting vortices. While the left stirrer
focuses on an exchange with the outer wall, the right stirrer follows the previous
strategy of more local vortex inter-plays.

Overall we observe only a weak effort for the collaboration between the two stirrers.
Minor and final changes in the right stirrer can, nevertheless, be attributed to an
exchange of information occurring through the velocity field, and an example of
this can be seen in form of the centre vortex at t = 8, which forms the beginning
of a joint and collaborative mixing strategy.

We make one final remark: the constraints on the geometry (untwisting and thick-
ening) had to be brought to bear to the left stirrer, thus ensuring a singly connected
stirrer cross-section. The enforcement of these constraints compromised the opti-
mality suggested by the adjoint system. In other words, we traded a slight loss in
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optimality for physical feasibility. Despite this loss, we have been successful once
again (figure 5.7c).
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Figure 5.7: Case 2: mixing optimisation using two stationary rotating stirrers. (a) Evolution of
the shape of the left stirrer throughout the optimisation steps. The red line is the initial configu-
ration, green the final one and the blue dashed line refers to the thickening routine applied to the
final optimised shape. Arrows have been added in black to illustrate the changes in the shape. (b)
Evolution of the shape of the right stirrer throughout the optimisation steps. (c) Mix-norm of the
passive scalar versus time t ∈ [0, T ]. (d) Variance of the passive scalar versus time t ∈ [0, T ].
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Figure 5.8: Case 2: mixing optimisation using two rotating stirrers. Left column: unoptimised
configuration, with snapshots at t = 2, 4, 6, 8 (top to bottom). Right column: after 9 direct-adjoint
optimisations, with snapshots at t = 2, 4, 6, 8 (top to bottom). For videos of these scenarios please
refer to Shape2NoOpt.mp4 and Shape2Opt.mp4 for the left and right column, respectively.
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5.3.3 Case 3: Shape optimisation of five stirrers

Encouraged by the slight rise of a collaborative mixing strategy for multiple stir-
rers, we further facilitate this process by embedding additional stirrers into the
fluid. Three stirrers will be placed in the interface, with two additional stirrers
at an off-set to the interface, as can be seen in figure 5.4. The closeness of the
three stirrers is expected to result in a coordinated strategy between the three
central stirrers, and possibly, interaction with the off-set cylinders. We recall,
however, that the previously studied five cylinder configuration identified the off-
set cylinders as non-critical to the overall mixing process. With no imposed energy
constraints, the same optimisation strategy may not carry over to this case.

Considering the unoptimised case (see the left column of figure 5.11), we note
that, despite the close proximity of the central stirrers, little to no interaction is
observed between the generated vortices. After only four iterations (right column),
a completely different picture arises. Stirrers one and two have been modified with
changes in angles of the cusps and the introduction of areas of high concavity (see
figures 5.10a,b; the black arrows illustrate the evolution of the stirrer shapes).
These modifications, when combined with the changes that middle stirrer (five)
has undergone, produce an interlocking gear structure. Within the narrow gaps
between the central stirrers, a great many filaments in the passive scalar are pro-
duced and thoroughly mixed. Less emphasis is placed on the interaction with
the outer wall, and more focus is directed towards the collaboration between the
stirrers resulting in a highly distorted interface and the generation of small scale
structures. Vortices generated by one stirrer collide with a neighbouring stirrer.
The middle stirrer acts as a mediator between the two outer and more pointed
stirrers, enabling a full and effective communication between the three central
cylinders. We note that the interlocking geometry resulting in the gear-like mo-
tion of the rotating stirrers was produced by the adjoint optimisation without
explicitly enforcing it.

As before, the outer off-set cylinders undergo less change, but nevertheless con-
tribute in a minor fashion to the overall mixing process. In contrast to the previous
case, where the energy considerations (L2-norm of us) played an important role
to shut down the outer cylinders, in the present case (with no energy constraints)
they eventually participate in decreasing the mix-norm. Specifically the upper
off-set stirrer has been altered, so that two of its cusps have been extended to
reach the mixed fluid. This can be observed at t = 8 in figure 5.11, where minute
filaments of fluid are transported into the upper half of the disk.

One of the more remarkable aspects of this result consists of the fact that it was
achieved in only four iterations. The proximity of the stirrers, and the information
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Figure 5.9: Case 3: mixing optimisation using five stationary rotating stirrers. (a) Mix-norm of the
passive scalar versus time t ∈ [0, T ]. (b) Variance of the passive scalar versus time t ∈ [0, T ].

they communicate to each other, is a powerful incentive for the optimisation al-
gorithm and ensures rapid convergence to a collaborative strategy. We emphasise
once again that the initial rotational velocity has not been increased, and solely
shape optimisation has been performed. In view of these restrictions, and despite
a rather limited time horizon, a significant decrease in the mix-norm has been
achieved.
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Figure 5.10: Case 3: mixing optimisation using five stationary rotating stirrers. (a) Evolution of
the shape of stirrer 1 throughout the optimisation steps. The red line is the initial configuration,
green the final one and the blue dashed line refers to the thickening routine applied to the final
optimised shape. Arrows have been added in black to illustrate the changes in the shape. (b) Evo-
lution of the shape of stirrer 2 throughout the optimisation steps. (c) Evolution of the shape of
stirrer 5 throughout the optimisation steps.
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Figure 5.11: Case 3: mixing optimisation using five rotating stirrers. Left column: unoptimised
configuration, with snapshots at t = 2, 4, 6, 8 (top to bottom). Right column: after four direct-
adjoint optimisations, with snapshots at t = 2, 4, 6, 8 (top to bottom). For videos of these scenarios
please refer to Shape5NoOpt.mp4 and Shape5Opt.mp4 for the left and right column, respectively.
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6
Results 3: Optimisation of

stirrer velocity along a path

6.1 Set-up of the problem

After two optimisation configurations where only time independent control param-
eters were considered, we now turn our attention to the more complicated case of
time dependent control variables. This additional complexity represents the third,
and final, case that demonstrates the effectiveness and efficiency of the optimisa-
tion framework in light of this considerable challenge. To this end, we will attempt
to optimise the velocity of two stirrers along prescribed circular paths.

6.1.1 Path parameterisation and optimality condition

We follow the set-up shown in figure 2.1 with two circular cylinders of radius
‖a1,2‖ = 1, moving on two concentric circular paths of radius r1 = 3.5 and r2 = 1.5
and embedded in a circular (stationary) vessel of radius R = 10. The Reynolds
number and Péclet number are chosen as Re = Pe = 1000.

We note that the earlier definition of the stirrer velocities (2.9) does not include
the circular path parameterisation. We, therefore, need to extend this definition
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by including extra terms that encode the directionality along the path. We define

l1(φ) = sin(φ), (6.1a)

l2(φ) = cos(φ), (6.1b)

where φ is the angle swept along the path of the circle. Using the above, the new
parameterisation of the solid velocity of ith stirrer becomes

(us,i)1 = ri(x)ωCi
(t)l1(ϕi(t)) + ωih1(φ), (6.2a)

(us,i)2 = ri(x)ωCi
(t)l2(ϕi(t)) + ωih2(φ), (6.2b)

where h is defined in equation (2.10) and ϕ is the integral of the rotational speed
along the path, i.e.,

ϕi(t) =

∫ t

0

ωCi
(s)ds. (6.3)

As we have altered the nature of the velocity optimisation, we need to modify
optimality condition (2.75) accordingly. The derivation of this new condition does
not differ greatly from analogous derivations presented in appendix C, and hence
we will only present the result here. We have acquired an extra term which projects
the previous vector quantity onto a directional vector, resulting in an overall scalar
expression. We obtain

ω†Ci
= ri

[
lj(ϕ(t)) +

ωCi

ω̇Ci

∂lj
∂ϕ

]
χHi

(
Π†j
Cη
− (θ† ◦ [Ajθ])

)
+

(
∂J
∂ωCi

)H
. (6.4)

Due to the time dependent nature of our optimisation, the time horizons over
which (i) the control strategy is applied, and (ii) over which gradient information
is gathered, become important factors. The former time interval determines the
window given to the stirrers to be active mixers; after this window has passed, the
motion of the stirrers will stop, and only the remaining inertia of the fluid and
diffusion will contribute to further mixing. The latter time interval determines the
amount of information extracted from the evolution process that is used to compute
an enhanced stirring protocol (applied over the former time window). The control
horizon may be chosen shorter than the information (predictive) horizon: in this
case, a time-compressed strategy will be employed that accounts for, and optimises
over, a more expansive time window. In our case, we will juxtapose a short-term
strategy with Tcontrol = 1 and a longer-time strategy with Tcontrol = 8 and assess
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Figure 6.1: Sketch of time horizons for the optimisation problem. A control strategy (red) is
applied over two control horizons, T = 1 (for short-time control) and T = 8 (for long-time control).
The gradient information about the flow development (green), encoded in the adjoint variables, is
gathered over a predictive horizon of T = 8. The final simulation, based on the optimised strategy,
is performed over T = 32 non-dimensional time units (blue).

the optimised strategies in either case. Both protocols, however, have access to
information over a temporal interval of Tinfo = 8. Finally, the simulations have
been continued over Tsim = 32 to track the further development of the instigated
mixing processes; rest inertia and diffusion will remain the only mechanisms during
this stage. The summary of this choice of parameters is sketched in figure 6.1.

6.1.2 Cost functional and constraints

Taking the success of the previous results into account, we elect to use the mix-
norm as our mixing measure again. We can then state the optimisation problem
as finding a time-dependent velocity protocol, ωCi

(t), for each of the two stirrers
such that the mix-norm of the passive scalar is minimised over a prescribed time
horizon. This minimum has to be achieved while satisfying the governing equations
and respecting constraints and bounds on the stirrer velocities. Previously, we
considered either simple time independent or energy independent optimisation
parameters. Therefore, no additional considerations on the constraints needed to
be made. However, the test cases we consider in this section are of an arrangement
that can, and will, lead to numerically as well as industrially unfeasible results.
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Therefore, the optimisation, mathematically, becomes

min

{∫ T

0

‖θ‖mix dt

}
(6.5a)

subject to equations (2.7) (6.5b)

and

∫ T

0

∑
k

‖us,k‖2 dt ≤ E0 (Energy penalisation) (6.5c)

and us,lower ≤ us,k ≤ us,upper k = 1, 2. (6.5d)

and as,lower ≤ as,k ≤ as,upper k = 1, 2. (6.5e)

The constraints on the stirrer strategy are threefold: the first constraint limits the
L2−norm of us, i.e., the kinetic energy of the velocity along the stirrers’ paths,
expended over the time horizon T to a maximum value E0, the second and third
impose upper and lower bounds directly on the stirrer velocities and accelerations,
respectively. All restrictions could conceivably stem from mechanical limitations
of the mixing apparatus. We will be considering the constraints on a case by case
basis to study the effects they have on the optimisation result.

Additional constraints that need to be enforced are incorporated into the gradient-
based optimisation routine. This is accomplished by projections and thresholding.
In this case, the gradient – computed from the adjoint equations and the optimality
condition, without imposed constraints – is projected and properly curtailed to
comply with energy constraints and velocity bounds.

6.2 Presentation of optimisation results

Before proceeding to the various optimisation studies, it is instructive to reflect
upon possible mixing mechanisms, given the setup in figure 2.1. The most obvi-
ous strategy for mixing a binary fluid consists of a plunging motion, where the
cylinders push through the initial interface, distort it and drag fluid one into re-
gions occupied by fluid two, and vice versa (6.2a–c). This type of strategy is
nearly exclusively implemented in industrial mixers. Despite its omnipresence in
applications, alternative strategies are often equally or more effective, foremost
among them vortex shedding due to unsteady and abrupt motion of the stirrers,
informally denoted as the vortex cannon strategy (6.2d-f). In this case, the stir-
rer generates a sequence of start-up and stopping vortices by rapid oscillations or
abrupt directional changes along the circular paths. The shed vortices then act as
effective autonomous mixers that, once they reach the initial or distorted interface,
further deform the passive scalar field and locally (and globally) reduce the mix-
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norm. In this manner, a single stirrer can clone ‘fluid stirrers’ (shed vortices) and
thus multiply its mixing effectiveness. In a further possible strategy, vortices can
be generated in the fluid that collide with each other and thus generate filaments,
which are then subject to more rapid diffusion and homogenisation (6.2g-i). Of
course, this vortex collision strategy is strongly dependent on the initial condition
of the passive scalar – and for this reason, less transferable to a general, realistic
mixing strategy –, nonetheless, within our computational framework, it is a viable
and pervasive strategy utilised by our direct-adjoint algorithm. A far more trans-
ferable mixing strategy is the collision of vortical structures with the outer wall
(6.2j-l) whereby a large fluid element is broken up into smaller elements which
further interact with other vortices and are subject to increased diffusion due to
the breakdown in scales. Finally, the embedded physical stirrers can themselves
interplay with the vortical structures they generate, acting as obstructions in the
path of vortices (6.2m-o). A collision between a stirrer and a vortex will split the
vortex and yield smaller scales, hence contributing to a decrease in the mix-norm.
This final strategy will continue to cause a moderate breakdown in scales, even
after the control window has closed and no more stirring motion is allowed.

Given these five fundamental strategies, illustrated in figure 6.2 with samples from
our simulations, the direct-adjoint looping algorithm will select from and combine
these options into a coherent strategy, given the chosen parameters and user-
specified constraints.

6.2.1 Overview of test cases

We will consider six cases, grouped into three examples. Each example consists
of a short-time strategy with a rather limited control horizon of Tcontrol = 1 and a
long-time strategy with a more generous horizon of Tcontrol = 8. These two Tcontrol-
settings will impose noticeable constraints on the choice of strategies, the interplay
of dynamic processes and the feasibility of the final protocol.

The three examples further distinguish themselves by the number of external con-
straints: starting with pure energy constraints, via energy and velocity constraints,
to energy, velocity and acceleration constraints. Along this course of action, algo-
rithmic requisites and physical requirements will be encountered and discussed.

We emphasise here the lack of a stopping criterion based on convergence to an
optimal strategy. This is due to the nature of the optimisation; as the velocity can
be changed at every time-step, we find ourselves in an exceedingly large design
space on the order of at least 106 design variables. This abundance of dimensions
does not easily furnish finding a local minimum, and therefore our stopping criteria
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Figure 6.2: Various mixing strategies, from snapshots of the simulations. (a,b,c) Plunging of
the stirrer through the interface, (d,e,f) casting of start-stop vortices towards the interface (vortex
cannon), (g,h,i) collision of vortices, (j,k,l) collision with the vessel wall, and (m,n,o) breakup of
vortical structures by stationary stirrers (obstruction).
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is based on the industrial viability of the resulting strategy. Furthermore, the
movement of the stirrers produces a large set of small scale structures, which in
turn are strongly detected by the adjoint algorithm. This added sensitivity can
result in non-negligible noise in the update step, in particular in the longer time
horizon cases. Therefore, in some of the cases where Tcontrol = 8, the optimisation
is stopped prematurely as we are no longer able to ascertain the optimal update
step any longer. However, in all cases we nonetheless enhance mixing efficiency.

Since mixing enhancement based on complex stirring strategies is a highly dynamic
process – based on a rapid sequence of abundant vortical features – a set of static
snapshots cannot do justice to the intricacies of an optimised mixing protocol.
For this reason, we once again urge the reader to turn to the animations in the
supplemental material.

6.2.2 Cases 1 and 2: optimisation under energy constraints

The first two cases follow a common procedure whereby the cost functional (mix-
norm of the passive scalar) of the constrained optimisation is minimised, subject
to a penalisation of the control energy that accomplishes this minimum. Since the
stirrers’ kinetic energy is a measure of effort that goes into the mixing process, we
add a corresponding term to the pure mix-norm cost functional. As a consequence,
the kinetic energy expended by the stirrers is bounded to a user-specified value.

Figure 6.3 displays the results of our optimisation, visualised by iso-contours of the
passive scalar θ at selected time instances. The control horizon is Tcontrol = 1. We
observed that the optimisation does not utilise the ‘plunging’ option, as the stirrers
remain nearly at their initial position. Instead, the entire energy available to the
stirrers is used up in a rapid start-and-stop motion which initially causes multiple
small-scale shed vortices that distort the plane interface, collide into each other
and the stirrers, and merge into larger-scale vortex structures which eventually
achieve good mixing. It is important to stress that for the calculation of this
short-time mixing strategy, information about the full dynamics up to T = 8
has been incorporated into the optimisation. In other words, the consequences
of the limited stirring protocol up to T = 8 are known to the optimisation, and
adjustments to the control strategy can be made that affect the vortex dynamics
beyond its active control window. The evolution of the passive scalar between
T = 8 and T = 32, however, is neither designed nor recognised by the optimisation
algorithm; it simply plays out according to the action taken during the control and
optimisation windows. We show this further evolution here to illustrate the nature
of the mix-norm, our chosen mixing measure. The optimisation with regards to
this measure produces the small scales that the diffusion can subsequently take
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(a) t = 0.55 (b) t = 0.67

(c)
t = 1.48

(d) t = 2.54 (e) t = 8

(f)
t = 32

Figure 6.3: Mixing optimisation based on only energy constraints for the stirrers. The time hori-
zon for applying control is Tcontrol = 1. Shown are iso-contours of the passive scalar at selected
instances. The optimisation algorithm includes information over a time window of T = 8. For the
video of this scenario please refer to EnergyPen1.mp4.
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Figure 6.4: Case 1: Energy penalised mixing optimisation under lesser control horizon Tcontrol =
1. The black lines signify the control and information time horizons. (a) Mix-norm of the passive
scalar versus extended time horizon t ∈ [0, T = 32]. (b)Variance of the passive scalar versus
extended time horizon t ∈ [0, T = 32].

advantage of in this ‘cool-off’ window.

We conclude that the absence of any plunging option implies the suboptimality
of this strategy in achieving an enhanced mixing process. It is thus not pursued
as a viable option by the direct-adjoint optimisation technique. A reason for
this lies in the gradient-based approach. Once a velocity spike has formed in the
mixing strategy, any decrease of this spike would lead to less optimal results and
is thus discarded. The further increase in the spike reinforces the vortex cannon
strategy. Once this strategy has been identified, the optimisation concentrates on
coordinating the path of the vortices such that they interact with each other and
the stirrers. The latter part of the stirring strategy includes vortex collisions (see
figure 6.3b), obstruction by the stirrers (see figure 6.3c,d) and collision with the
outer wall (see figure 6.3e) to yield a well-mixed state at the end of the simulation
horizon (figure 6.3f). We note from figure 6.4 that a similar clustering of initial
mix-norms and variances can be observed as those in section 4. However, once a
spike in the velocity has formed, a rapid decrease can be seen in both the variance
and the mix-norm. A point of interest lies in the variance graph of figure (6.4.
Here we see that the variance of the penultimate optimisation is lower than that
of the final one. As we optimised with regard to the mix-norm, the variance value
is not of interest at therefore is higher. However, we note that a lower mix-norm
value at T = 8, nonetheless leads to a lower variance at T = 32, and demonstrates
the more optimal capabilities of the mix-norm as an optimisation measure.

Increasing the control horizon from Tcontrol = 1 to Tcontrol = 8 leads to similar
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(a) t = 2
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t = 4.6
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t = 7.48

(d)
t = 12.17

(e)
t = 23

(f)
t = 32

Figure 6.5: Same as figure 6.3, but with an extended control window of Tcontrol = 8. For the
video of this scenario please refer to EnergyPen8.mp4.
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Figure 6.6: Case 2: Same as figure 6.4, but with an extended control window of Tcontrol = 8.
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conclusions, even though the stirring action by the cylinders is less abrupt and
jarring, as multiple velocity spikes of less magnitude are observed. Still, the bulk
of the mixing action is achieved by shedding start-and-stop vortices which collide
with themselves, secondary vortices and the wall to produce a mixed state in the
end. Again, the absence of plunging is noteworthy. This is even more remarkable,
as the increased control time horizon would certainly allow the stirrers to approach
and reach the interface; yet, they remain close to their initial position. In the
interpretation of these results, it may be tempting to conclude that a different
initial placement of the cylinders – closer to the initial interface – would have
resulted in strategies that included plunging. However, a simulation of the same
case (not shown), with the two cylinders starting immersed in the initial interface,
came to the same conclusion: while, by design, there is a small amount of plunging
in this case, the vast majority of the mix-norm reduction has been accomplished by
the shedding of start-and-stop vortices by a vigorous oscillatory motion of either
cylinder and a subsequent collision of the generated vortices. The utilisation of
the stirrers’ energy to shed small ‘vortical stirrers’ is a better strategy than the
distortion of the interface by simply moving through it with the stirrers. From
figure 6.6 we stress that only one optimisation was required to achieve this level
of mixing efficiency. However, any further optimisations were not possible due to
the noise that permeated the high-velocity spikes of the updated strategy.

In both cases, the strategy found by the direct-adjoint optimisation technique will
yield increasingly larger velocities, as long as the integrated energy is constant.
Eventually, the energy expenditure becomes more and more localised in time,
with the stirrers barely moving. This optimisation route is a logical consequence
of our current setup. It is closely connected to the semi-norm problem73: the
mix-norm only contains the passive scalar θ, but does not account for the other
dynamic variable, the velocities, in the optimisation. The energy of the stirrers is
not sufficient to arrive at realistic stirring protocols that could be implemented in
an experimental or industrial setting. To ensure the applicability of our stirrers to
real-life settings, more constraints are required.

6.2.3 Cases 3 and 4: optimisation under energy and velocity con-

straints

Following the findings of the previous section, in the next example we limit the
velocity of the stirrers to avoid excessive values of us,i. This capping of the velocity
is implemented by a projection of the raw cost-functional gradient onto control
strategies that satisfy the given constraints (see Foures et al.60). The resulting limit
on the stirrer velocities provides a longer time window (up to the control horizon
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Tcontrol) over which the specified energy can be expended. As a consequence, an
extended and smoother movement of the stirrers is expected.

For the shorter control horizon Tcontrol = 1, figure 6.7 shows the outcome of our
optimisation. To keep the results comparable with the longer time interval opti-
misation, we ensure that integration of the stirrer velocities over the time window
is the same. The top stirrer starts by an oscillatory motion, creating start-and-
stop vortices. The capping of its velocity, however, keeps the shed vortices within
bounds; nonetheless, the optimality of the ‘vortex cannon’ strategy can still be
exploited. Both stirrers then move closer to the (already distorted) interface. But
rather than plunging through it, they abruptly stop short of it and let the over-
taking stop-vortices carry out the distortion of the interface and the subsequent
mixing. Again, the optimisation algorithm selects the mixing by shed vortices over
the plunging of the stirrers through the interface. The remaining mixing process
is characterised by vortex collisions (see figure 6.7a,d), collisions with the wall (see
figure 6.7c) and stirrer obstruction (see figure 6.7c,d).

Extending the horizon Tcontrol over which the control is applied results in a change
of strategy (see figure 6.9). The top stirrer now plunges through the interface –
but not before stopping and starting on its circular path towards it. This uneven
motion creates more vortical structures in the stirrer’s wake that add to the sole
plunging action of the stirrer itself. The result is a far more distorted interface (and
consequently a lower mix-norm) than would be generated by a simple traversal. At
the end of the motion, a back-and-forth motion is performed to generate, within
the given chosen energy and velocity constraints, additional shed vortices that
further interact with the interface and other vortical elements. The second stirrer
does not follow the strategy of the first. It engages in an oscillatory motion along
its circular path and generates, as before, the resulting start-and-stop vortices
that distort the interface and interact with the other vortices inside the container.
Again, obstruction by the cylinders (see figure 6.9b,d) and vortex and wall collisions
(see figure 6.9c,d) contribute to the continued mixing.

In both cases, a gentler stirring strategy is observed. However, the problem of con-
verging towards a realistic mixing protocol has not been solved completely. While
we explicitly avoid highly localised action of the stirrers with excessive velocities,
we now tend towards favouring strategies with excessive acceleration. In other
words, within our efforts to limit the total expended energy of the stirrers while
capping their velocities, the optimisation algorithm tends towards strategies that
are characterised by large accelerations (high velocity gradients). This should not
come as a surprise as the strength of shed vortices from the stirrers’ unsteady mo-
tion is proportional to their acceleration. Our imposed constraints do account for
energy and velocities, but not velocity gradients, of the stirrers. As a consequence,
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(a)
t = 1.58

(b)
t = 3.64

(c)
t = 5.18

(d)
t = 8.51

(e)
t = 18.78

(f)
t = 32

Figure 6.7: Mixing optimisation based on energy and velocity constraints for the stirrers. The
time horizon for applying control is Tcontrol = 1. Shown are iso-contours of the passive scalar at
selected instances. The optimisation algorithm includes information over a time window of T = 8.
For the video of this scenario please refer to VelocityPen1.mp4.
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Figure 6.8: Case 3: Energy and velocity penalised mixing optimisation under lesser control horizon
Tcontrol = 1. The black lines signify the control and information time horizons. (a) Mix-norm of
the passive scalar versus extended time horizon t ∈ [0, T = 32]. (b)Variance of the passive scalar
versus extended time horizon t ∈ [0, T = 32].

119



(a)
t = 3.38

(b)
t = 6.85

(c)
t = 16.58

(d)
t = 23.25

(e)
t = 27.83

(f)
t = 32

Figure 6.9: Same as figure 6.7, but with an extended control window of Tcontrol = 8. For the
video of this scenario please refer to VelocityPen8.mp4.
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Figure 6.10: Case 4: Same as figure 6.8, but with an extended control window of Tcontrol = 8.
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we can seed our binary mixture with vortical elements of nearly unlimited strength.
Again, this divergence is related to the above-mentioned semi-norm problem: the
velocity field of the binary mixture is not accounted for in the mix-norm, and thus
the optimisation scheme can achieve high-energy fluid states by highly accelerat-
ing stirrers (even though the stirrers’ energy and velocities are capped). To limit
the velocity of the fluid, we have to limit the acceleration of the stirrers. Again,
additional constraints are necessary.

6.2.4 Cases 5 and 6: optimisation under energy, velocity and ac-

celeration constraints

For accomplishing enhanced mixing in binary fluids, the direct-adjoint optimisa-
tion technique makes heavy use of an acceleration-based strategy: shed vortices
generated by the abrupt motion of the stirring cylinders are injected into both
fluids, and their interactions with the interface, themselves and the container wall
yield a low mix-norm. A limit on this acceleration will result in a limit on the
velocities in either fluid component and thus provide the necessary restriction for
a successful semi-norm optimisation. To this end, we augment our optimisation
scheme by additional terms accounting for the stirrers’ acceleration. This type
of penalisation is common in deblurring of images where strong gradients are de-
tected and encouraged74. In our case, additional projections are used to enforce
the acceleration constraints.

For the short-term control with Tcontrol = 1 (see figure 6.11), the optimal strategy
now includes a plunging of the first cylinder through the interface, while the second
cylinder continues in a straight manner towards the interface but stops short of
it. The wake vortices of the first cylinder, as well as the (weaker) start-and-stop
vortices of both cylinders, are responsible for the bulk of the mixing. It can be
observed that the positioning of the second cylinder places it in a highly sensitive
location, i.e., where it can ‘nudge’ one of the start-up vortices of stirrer one onto a
path where it collides with a secondary start-up vortex and subsequently generates
a significant amount of small structures (6.2 g-j). Therefore we note, as before,
complex vortex collisions (see figure 6.11c), stirrer obstruction (see figure 6.11c,d)
and wall interactions (see figure 6.11d) contribute greatly to the breakdown of
scales, the generation of filaments (see figure 6.11e) and the eventual mixing of the
binary fluid (see figure 6.11f).

A longer control horizon of Tcontrol = 8 yields a more varied stirring protocol.
The first cylinder makes a farther excursion, plunging through the interface (not
without stopping to generate additional shed vortices close to the interface) before
stopping close to the interface and shedding two stop vortices. The second cylinder
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(a)
t = 0.68

(b)
t = 1.58

(c)
t = 2.74

(d)
t = 5.43

(e)
t = 12.36

(f)
t = 32

Figure 6.11: Mixing optimisation based on energy, velocity and acceleration constraints for the
stirrers. The time horizon for applying control is Tcontrol = 1. Shown are iso-contours of the passive
scalar at selected instances. The optimisation algorithm includes information over a time window of
T = 8. For the video of this scenario please refer to AccelerationPen1.mp4.

first approaches the interface, ejects a stop vortex before reversing and stopping
short of the interface with another stop vortex. The generated structures interact
with themselves and the wall to break down the binary fluid into a homogeneous
mixture, although of less homogeneity (larger mix-norm) than for the short-term
strategy. This lower homogeneity can be attributed to the more restrictive velocity
range (which is due to the constraint of equivalent energy budget , i.e., L2-norm
of the velocity of the centre of the stirrers, across both time horizons) than the
larger time-horizon strategy. This lower velocity maximum, combined with the
limitation on acceleration, inhibits the same amount of vorticity shedding than
the lower time-horizon case. Therefore, mixing is not as efficient.

At no point during either optimisation has the energy, velocity or acceleration of
the stirrers exceeded the specified limits. As a consequence, these latter strategies
are amenable to implementation in an experimental or industrial setting.
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Figure 6.12: Case 5: Energy, velocity and acceleration penalised mixing optimisation under lesser
control horizon Tcontrol = 1. The black lines signify the control and information time horizons. (a)
Mix-norm of the passive scalar versus extended time horizon t ∈ [0, T = 32]. (b)Variance of the
passive scalar versus extended time horizon t ∈ [0, T = 32].
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Figure 6.13: Same as figure 6.11, but with an extended control window of Tcontrol = 8. For the
video of this scenario please refer to AccelerationPen8.mp4.
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Figure 6.14: Case 6: Same as figure 6.12, but with an extended control window of Tcontrol = 8.
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7
Conclusion

In this thesis, we have presented a theoretical and computational framework that
allows for the design of complicated stirrer geometries, as well as stirring strate-
gies, to optimise the mixing of binary Newtonian fluids. This framework has
subsequently been demonstrated on three test cases of increasing complexity.

The theoretical section presented a detailed study and derivation of a dual system
for the governing Navier-Stokes equations, augmented to accommodate bound-
ary conditions for our complex mixing geometry. Initially, we took the continuous
approach and discussed the implementation into a computational framework. Con-
sidering this direct-dual system without the underlying fluid-structure algorithm
allows for different discretisation approaches to be applied. As a representative
example, we combined this framework with a Brinkman-penalisation style tech-
nique to illustrate how boundary condition terms would enter this specific system.
The final result, however, has been found unsuitable for our needs. Therefore, we
turned our attention to a different approach, namely deriving the adjoint system
for the Brinkman-penalised semi-discretised Navier-Stokes equations. The result-
ing adjoint equations, which naturally inherit the boundary conditions of the direct
system, allowed for a flexible and convenient computational implementation that
is able to deal with a wide variety of mixing configuration. This full derivation
has been performed without specifying a unique cost-functional, thus retaining a
high degree of generality and demonstrating the independence of our direct-dual
system from user-specified constraints and/or mixing measures.
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Following on from the analytic, we then presented the computational framework,
which employs Brinkman-penalisation to embed the stirrer elements into the sur-
rounding fluid and to track their interaction with it. The resulting PDE-constrained
optimisation problem is then recast into a direct-adjoint (or direct-dual) formula-
tion, which is subsequently solved iteratively, employing a checkpointing technique
due the linkage of the direct and adjoint problem. Particular attention has been
paid to the explicit formulation of path and shape gradients based on the penalised
formulation. These gradients are then used in an optimisation scheme to enhance
the mixing efficiency (in our case, initially variance and later, a mix-norm), while
observing user-specified control-energy bounds.

In terms of the numerical implementation, the framework was constructed in such
a way that it allows for the efficient optimisation of mixing strategies of binary
fluids by any number of moving stirrers within a circular container. Additionally
flexibility has been realised by including a solid stirrer class (defined as a struc-
ture in FORTRAN 90) which is easily extendable beyond the cases considered in this
thesis. This class aids future endeavours in optimising across a wide variety of con-
trol parameters in design space. We showcased this flexibility by considering four
separate control parameters of increasing complexity across three test cases; the
computational framework succeeded in enhancing mixing efficiency for all cases.

The three test cases covered different aspects of the control space: §4 validated the
effectiveness of the presented approach in the form of a feasibility study with simple
shape and rotation optimisation, §5 demonstrated successful mixing enhancement
by stirrers of more exotic shapes, and §6 ventured into time dependent control by
optimising the velocity along given stirrer paths. In all cases across the three sce-
narios a significant improvement in mixing efficiency could be accomplished, and
the optimisation algorithm showed pleasing robustness in finding more optimal
solutions. Particularly in the latter two sections (§5 and §6), several interesting
conclusions pertaining to optimal mixing strategies could be made. In both cases
vortices and their mutual interactions dominated the mixing mechanism. In con-
trast to the restricted paths of the stirrers, these fluid elements are able to move
freely in the field and therefore can affect areas of the fluid that are inaccessible to
the stirrers but that are highly beneficial to mixing enhancement. In the case of
shape optimisation, this effect could be observed by the convergence of the geome-
tries towards protuberances and the associated concavities for each of the stirrers.
These two geometric components generated areas of high fluid recirculation while
the stirrers were rotating and lead to the generation and shedding of vortices. The
vortices then interacted and collided with previously and subsequently generated
vortices, further distorting the interface and creating small scales for their subse-
quent diffusion. A similar process has been found for the velocity optimisation,
§6, where the ‘vortex cannon’ and vortex collisions exemplified this vortex-based
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mixing strategy. A further similarity between the two scenarios lies in the collab-
orative mixing strategies when multiple stirrers are optimised. The placement of
stirrers in locations of high sensitivity to act as obstacles for impinging vortices can
be juxtaposed to the interlocking gear design of the optimised shapes of §5. In this
latter case the cusp of a rotating stirrer is placed directly in the path of a vortex
being shed by another solid. This co-operative strategy requires little extra kinetic
energy in the form of additional velocity, but can yield a substantial increase in
mixing efficiency. Further mixing studies may take advantage of a multi-stirrer
configuration and exploit this collaboration of stirrers to further enhance mixing.

A final observation relates directly to the energy, velocity and acceleration con-
straints that were required to arrive at realistic mixing strategies. Each sequential
constraint resulted in a different mixing strategy (of different degrees of optimal-
ity). This observation implies that a trade-off needs to be made between the most
optimal strategy and industrial realisability. Yet, within the limitations of indus-
trial constraints significant mixing enhancement has been found in all cases, and
the flexibility of the computational framework allows for further improvements
as cost functionals can be designed and implemented that focus on other mixing
characteristics.

Despite these promising results, many challenges remain. The most important
one is linked to the application of gradient-based optimisation to a non-convex
problem. As a result, only a local minimum can be guaranteed by our algorithm.
In isolated and more obvious cases, user input (see case two of §4) is able to nudge
the convergence towards a more optimal strategy. However, in configurations or
design spaces which defy intuition, this nudging is exceedingly difficult as a clear
path towards a better optimum is not transparent. In these cases, ‘nudging’ could
be accomplished more objectively by coupling our algorithm to an annealing-type
stochastic algorithm75. The excessive computational cost associated with these
methods excludes their usability in our case. Nonetheless, local optima should
not be discarded as even small efficiency increases equate to substantial gains in
efficiency and profits.

A further challenge arises from the application of the Fourier shape parameter-
isation. The thickening and untwisting procedures we imposed were embedded
via a projection approach after the optimisation step has taken place. While this
approach achieved a significant increase in mixing efficiency, the resulting shapes,
observing the imposed constraints, were not strictly optimal. Mathematically
these constraints should be incorporated into the cost functional; the details of
this operation, however, remain an open challenge.

While keeping these challenges in mind, the investigations presented in this the-
sis point towards several areas where this optimisation framework can excel and
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achieve enhanced mixing efficiency.

In this study, we considered the optimisation of stirrer topology and path veloc-
ity as separate optimisation goals. A natural extension consists in a cooperative
combination of these two parameters, i.e., the simultaneous optimisation of stirrer
geometry and their path velocity along a given trajectory. Exploring this com-
bined design space will also give insight into the underlying mechanisms that drive
mixing, e.g., flapping, plunging, heaving or rotation, without much additional
computational cost.

Extending the Fourier representation of the shape, the equivalent mathematical
representation based on parametric curves can also be applied to optimise the
trajectory of the stirrers. Throughout this thesis, we prescribed the stirrers’ paths
as circular curves. The Fourier-based parameterisation for the stirrers’ paths opens
new areas of the design. For example the option of have Lissajous curves76 or
figure eight curves for each stirrer could yield pertinent and interesting results, with
potentially novel and non-intuitive mixing strategies. This approach has the added
benefit that for path optimisation, the constraints of untwisting and thickening of
the geometry encountered earlier can be safely ignored since any continuous, and
even self-intersecting, trajectory is a viable mixing strategy. However, care must
be taken to avoid collision among stirrers and/or the wall. Currently, there is a
lack of these types of studies in the pertinent literature.

Another possible future area of study could focus on the the effects of the wall. In
§6, we noted that the wall played a significant role in vortex collisions, and con-
sequently, the strategic placement of corrugations at locations where vortices im-
pacted may lead to an additional increase in mixing effectiveness. The Fourier pa-
rameterisation lends itself naturally to this approach, and considering non-circular
and corrugated bounding walls could be a worthwhile effort to explore. Moreover,
the shape of the wall is not the only characteristic of interest. As can be seen
from figure 3.3, the numerical implementation is capable of simulating a moving
wall. Therefore, the time dependent rotation of the wall, akin to a shaking of the
container, is a further control quantity that could enhance mixing efficiency.

Aside from the geometry, we can gain further insight into mixing optimisation by
considering parameter regimes that differ from the one studied in this thesis. This
includes two fundamental directions of exploration, both related to the material
properties of the fluid. The first direction still considers the fluids as Newtonian,
but changes both Reynolds and Péclet numbers to simulate different industrial
fluids. The second direction studies the two fluids as non-Newtonian with an
algebraic expression linking the state variable to the strain tensor. This covers a
majority of fluids in industrial mixing processes.

128



All the above extensions follow the two-dimensional nature of the test cases studied
in this thesis and ignore three-dimensional effects. The computational framework is
highly parallelised and scales well to many cores on parallel computer architectures;
scalable performance for large-scale optimisations of binary mixing problems is
thus expected. The implementation of the governing equations already allows for
three-dimensional flow fields. However, non-negligible modifications are required
to describe three-dimensional stirrer geometries and container walls.

In view of this exceedingly wide scope of possibilities, this thesis has laid the
foundation for their exploration. Continued research in this direction holds great
promise for significant and robust improvement in mixing strategies.
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shape parameters, Applied Mathematics Letters 22 (2) (2009) 226–231.
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A
Arithmetic of Hadamard

product

For the sake of clarity and completeness, we will give a brief summary of rules and

relations involving the Hadamard product62 which has been used in the formula-

tion of the governing equations and the derivation of the adjoint equations, and

has produced a compact formalism and notation. In particular, we will consider

the steps involved in the transfer of operators acting on the direct flow variables

(such as velocities, pressure or passive scalar) onto corresponding operators act-

ing on their adjoint equivalents. While this transfer is rather straightforward

in the matrix-product case, care has to be exercised when the operator involves

Hadamard products.

The Hadamard product, denoted by ◦, of two vectors a and b of identical size is

defined as

c = a ◦ b = b ◦ a with ci = aibi, (A.1)

where we stress that we do not use the Einstein summation convention here. It is

defined as the element-wise product of two vectors and results in a vector c equal

in size to a or b.
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It will be convenient to re-express the Hadamard product of two vectors in terms

of a standard matrix product. To this end, we introduce the notation a(D) to

indicate a diagonal matrix with the elements of a along its main diagonal. With

this notation we can restate the Hadamard product as

c = a ◦ b = a(D)b = ab(D). (A.2)

In the derivation of the adjoint equations, we are faced with terms of the form

I = aH (b ◦ [Mc]) . (A.3)

Expressions of this type constitute an inner product I and arise from the non-

linear terms of the governing equations related to convective transport, but terms

linked to the mask function can also yield the above example. They appear in

the augmented Lagrangian formulation of the optimisation problem. Due to our

spatial discretisation, a,b and c are column vectors of size n×1 with n as the total

number of degrees of freedom, and M is an n × n matrix. During the derivation

of the adjoint equations, the vector c may represent a first variation of a flow

variable, while the vector a stands for the adjoint variable (see the main text for

details). We seek to isolate this first variation (the vector c) by transferring all

operators acting on it onto the adjoint variable represented by a while preserving

the inner product. Using the alternative formulation of the Hadamard product

based on diagonal matrices, we obtain

aH (b ◦ [Mc]) = aH
(
b(D)Mc

)
(A.4a)

= aH
((

MHb(D)
)H

c
)

(A.4b)

=
(
MHb(D)a

)H
c (A.4c)

=
(
MH [b ◦ a]

)H
c. (A.4d)

Using this simple rule, we are able to efficiently manipulate most expressions in

our adjoint derivations. We note that in the case of M being an identity matrix,
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our relation simply reduces to

aH (b ◦ c) = (b ◦ a)H c =
(
aH ◦ bH

)
c. (A.5)
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B
Full adjoint derivation of

non-penalised governing

equations

In this appendix we present the detailed method behind the θ† derivation of the

continuous adjoint of section 2.3.3, which arises from taking the first variation of

the augmented Lagrangian L with respect to θ. This derivation begins as follows〈
∂L
∂θ
, δθ

〉
=

〈
∂J
∂θ

, δθ

〉
− 〈θ†, ∂tδθ + u · ∇δθ − Pe−1∇2δθ〉. (B.1)

In line with the previous derivation of u†, we switch from vector to component

notation and using the Einstein summation convention

=

〈
∂J
∂θ

, δθ

〉
− 〈θ†, ∂tδθ + ui∂iδθ − Pe−1∂i∂iδθ〉 (B.2)

= α((−1)β(∂i∂i)
−βθ, δθ)t=T −

∫ T

0

∫
Ω

θ†(∂tδθ + ui∂iδθ − Pe−1∂i∂iδθ)dΩ dt.

(B.3)
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Next we apply integration by parts over the spatial and temporal integrals to

isolate the δθ terms

= α((−1)β(∂i∂i)
−βθ, δθ)t=T − (θ†, δθ)t=Tt=0 + 〈∂tθ†, δθ〉 − [θ†uin

R
i , δθ]δR − [θ†uin

r1
i , δθ]δr1

− [θ†uin
r2
i , δθ]δr2 + 〈∂i(θ†ui), δθ〉+ [Pe−1θ†nRi , ∂iδθ]δR + [Pe−1θ†nr1i , ∂iδθ]δr1

+ [Pe−1θ†nr2i , ∂iδθ]δr2 − [Pe−1∂iθ
†nRi , δθ]δR − [Pe−1∂iθ

†nr1i , δθ]δr1

− [Pe−1∂iθ
†nr2i , δθ]δr2 + 〈Pe−1∂i∂iθ

†, δθ〉. (B.4)

Collecting all the like terms so that they fall under the same inner product, we are

left with

= −(θ† − α(−1)β(∂i∂i)
−βθ, δθ)t=T − (θ†, δθ)t=0 + 〈∂tθ† + ui∂iθ

† + Pe−1∂i∂iθ
†, δθ〉

− [θ†uin
R
i + Pe−1∂iθ

†nRi , δθ]δR − [θ†uin
r1
i + Pe−1∂iθ

†nr1i , δθ]δr1

− [θ†uin
r2
i + Pe−1∂iθ

†nr2i , δθ]δr2 + [Pe−1θ†nRi , ∂iδθ]δR + [Pe−1θ†nr1i , ∂iδθ]δr1

+ [Pe−1θ†nr2i , ∂iδθ]δr2 . (B.5)

The second term of equation (B.5) gives us the expressions which defines the

temporal evolution of the adjoint scalar field

∂tθ
† + ui∂iθ

† + Pe−1∂i∂iθ
† = 0, (B.6)

with boundary conditions at R, r1 and r2 as follows

∇θ† · n = θ† = 0. (B.7)

We note that these boundary conditions mirror the no-outflow condition of the

forward variables. The temporal conditions for θ† are seen to be

θ†(x, T ) = −∂J
∂θ

∣∣∣∣
T

, (B.8)

θ†(x, 0) = 0. (B.9)

This result above, combined with the results obtained in section (2.3.3) lead to

the full continuous analytic adjoint system.
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C
Full adjoint derivation of

penalised governing equations

This appendix aims to demonstrate the method for deriving the continuous adjoint

in full. The mathematical background and general overview of this approach, as

well as the derivation of one of the terms, are discussed in §2.3.4. To begin, we

will explicitly derive the (??) and (? ? ?) terms from equation (2.54), followed by

the summation of these terms into one expression. Once the derivation for u† is

completed, we turn to obtaining the governing equations of the other adjoint terms

to close the adjoint system.

Starting with u†, we begin with (??), and in line with the derivation in main text,

we aim to isolate δu. As a reminder to the reader, the expression we consider is∫ T

0

(
∂(??)

∂ui

)
δui dt =

∫ T

0

∂

∂ui

{
p†,H

[
[AjAj]p+ Ak(uj ◦ [Ajuk])

+ Ak

[
χ

Cn
◦ uk +

χi
Cn
◦ (us,i)k

]
−Re−1Ak[Ai[Fij(u) ◦ (Ajuk)]]

]}
δui dt, (C.1)
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i.e., the first variation of the pressure equation with respect to u†. Applying the

derivative to the terms in the integral we arrive at

=

∫ T

0

p†,HAk(δui ◦ [Aiuk]) + p†,HAi(uj ◦ [Ajδui]) + p†,HAi

[
χ

Cη
◦ (δui)

]
− p†,HRe−1Ai[Ak[Fkj(u) ◦ (Ajδui)]]

− p†,HRe−1Ak

[
Al

[(
∂Flj(u)

∂ui
δui

)
◦ (Ajuk)

]]
dt. (C.2)

Using the properties of the Hadamard product from appendix A and collecting

like terms we obtain

=

∫ T

0

(
AHk p

† ◦ [Aiuk]
)H

δui + (AHj [uj ◦ AHi p†])Hδui +

[
χ

Cη
◦ AHi p†

]H
δui

−Re−1
(
AHj (Fkj(u) ◦ AHk AHi p†)

)H
δui

−Re−1

((
∂Flj(u)

∂ui

)H
ATl A

H
k p
† ◦ (Ajuk)

)H

δui dt (C.3)

=

∫ T

0

[
AHk p

† ◦ [Aiuk] + AHj [uj ◦ AHi p†] +
χ

Cη
◦ AHi p† −Re−1AHj (Fkj(u) ◦ AHk AHi p†)

−Re−1

(
∂Flj(u)

∂ui

)H
ATl A

H
k p
† ◦ (Ajuk)

]H
δui dt, (C.4)

leaving us with the full expression for (??). Turning to (? ? ?) and applying the

same methodology, we obtain the following∫ T

0

(
∂(? ? ?)

∂ui

)
δui dt =

∫ T

0

∂

∂ui

{
θ†,H

[
∂tθ + (1− χ) ◦ uj ◦ [Ajθ] + χi ◦ (us,i)j ◦ [Ajθ]

− Ai([Pe
−1(1− χ) + κχ] ◦ Aiθ)

]}
δui dt (C.5)

=

∫ T

0

θ†,H
[
(1− χ) ◦ δui ◦ [Aiθ]

]
dt (C.6)

=

∫ T

0

θ†,H
[
(1− χ) ◦ [Aiθ] ◦ δui

]
dt (C.7)

=

∫ T

0

[
(1− χ) ◦ θ† ◦ [Aiθ]

]H
δui dt. (C.8)
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This term, as well as (?) (from equation (2.60) and (??) are then substituted into

(2.56), and we arrive at the following full expression∫ T

0

(
∂L
∂ui

)
δui dt =

∫ T

0

(
∂J
∂ui

)
δui dt− [u†iδu]H0 −

∫ T

0

[
−(∂tu

†
i ) + (u†k ◦ [Aiuk])

+ AHj [uj ◦ u†i ] +
χ

Cn
◦ (u†i )−Re−1AHj [Fkj(u) ◦ AHk u

†
i ]

−Re−1

(
∂Flj(u)

∂ui

)H
(ATl u

†
k ◦ (Ajuk))

]H
δui dt

−
∫ T

0

[
AHk p

† ◦ [Aiuk] + AHj [uj ◦ AHi p†] +
χ

Cη
◦ AHi p†

−Re−1AHj (Fkj(u) ◦ AHk AHi p†)

−Re−1

(
∂Flj(u)

∂ui

)H
ATl A

H
k p
† ◦ (Ajuk)

]H
δui dt

−
∫ T

0

[
(1− χ) ◦ θ† ◦ [Aiθ]

]H
δui dt. (C.9)

We proceed by collecting all quantities so that they fall under their respective time

domains. With further simplification, we obtain

= −[u†iδu]H0 −
∫ T

0

[
−
(
∂J
∂ui

)H
− (∂tu

†
i ) + (u†k ◦ [Aiuk]) + AHj [uj ◦ u†]

+
χ

Cn
◦ (u†i )−Re−1AHj [Fkj(u) ◦ AHk u

†
i ]−Re−1

(
∂Flj(u)

∂ui

)H
(ATl u

†
k ◦ (Ajuk))

+ AHk p
† ◦ [Aiuk] + [uj ◦ Aj]HAHi p† +

χ

Cη
◦ AHi p† −Re−1AHj (Fkj(u) ◦ AHk AHi p†)

−Re−1

(
∂Flj(u)

∂ui

)H
ATl A

H
k p
† ◦ (Ajuk) + (1− χ) ◦ θ† ◦ [Aiθ]

]H
δui dt.

(C.10)

As we enforce ∂L = 0, we require the above terms to be zero and thus, we arrive

at the expression for u† presented in section §2.3.4.

Next, we turn to the derivation of the adjoint pressure equation, beginning with

the first variation of the augmented Lagrangian with respect to p. We define the
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same replacement terms (?), (??) and (? ? ?) as before to retain a simple analytic

expression, i.e.,∫ T

0

(
∂L
∂p

)
δp dt =

∫ T

0

(
∂J
∂p

)
δp dt−

∫ T

0

(
∂(?)

∂p

)
δp dt

−
∫ T

0

(
∂(??)

∂p

)
δp dt−

∫ T

0

(
∂(? ? ?)

∂p

)
δp dt. (C.11)

Beginning with (?), we note that the only term that depends on p is the pressure

derivative ∫ T

0

(
∂(?)

∂p

)
δp dt =

∫ T

0

(u†k)
∂fk(u)

∂p
δp dt (C.12)

=

∫ T

0

(u†k)
HAkδp dt (C.13)

=

∫ T

0

[
AHk u

†
k

]H
δp dt. (C.14)

Turning to (??), we observe a similar pattern∫ T

0

(
∂(??)

∂p

)
δp dt =

∫ T

0

∂

∂p

{
p†,H

[
[AjAj]p+ Ak(uj ◦ [Ajuk])

+ Ak

[
χ

Cn
◦ u +

χi
Cn
◦ us,i

]]}
δp dt (C.15)

=

∫ T

0

p†,H [AjAj]δp dt (C.16)

=

∫ T

0

[
AHj A

H
j p
†]H δp dt. (C.17)

The passive scalar has no pressure dependency and so (???) makes no contribution

to the derivation. Inserting these findings into equation (C.11), we are finally left

with
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∫ T

0

(
∂L
∂p

)
δp dt =

∫ T

0

(
∂J
∂p

)
δp dt−

∫ T

0

[
AHk u

†
k

]H
δp dt

−
∫ T

0

[
AHj A

H
j p
†]H δp dt (C.18)

=

∫ T

0

[(
∂J
∂p

)H
− AHk u

†
k − AHj A

H
j p
†

]H
δp dt. (C.19)

Enforcing ∂L = 0, we obtain the evolution equation for p†

AHj A
H
j p
† + AHk u

†
k −

(
∂J
∂p

)H
= 0. (C.20)

To conclude the adjoint derivation we now turn to the first variation with respect

to θ, which allows us to derive the governing equation for θ†. We begin with∫ T

0

(
∂L
∂θ

)
δθ dt =

∫ T

0

(
∂J
∂θ

)
δθ dt−

∫ T

0

(
∂(?)

∂θ

)
δθ dt

−
∫ T

0

(
∂(??)

∂θ

)
δθ dt−

∫ T

0

(
∂(? ? ?)

∂θ

)
δθ dt. (C.21)

Only (? ? ?) depends on θ and, thus, all other terms do not contribute to the final

expression. Therefore we only need to consider∫ T

0

∂(? ? ?)

∂θ
δθ dt =

∫ T

0

∂

∂θ

{
θ†,H

[
∂tθ + (1− χ) ◦ uj ◦ [Ajθ] + χi ◦ (us,i)j ◦ [Ajθ]

− Ai([Pe
−1(1− χ) + κχ] ◦ Aiθ)

]}
δθ dt. (C.22)

Employing the rules of the Hadamard product, we isolate the ∂θ terms and then

simplify to obtain.
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= [θ†,Hδθ]H0 +

∫ T

0

[
−∂tθ† + AHj [(1− χ) ◦ uj ◦ θ†]

+ AHj [χi(us,i)j ◦ θ†]− AHi ([Pe−1(1− χ) + κχ] ◦ AHi θ†)
]H
δθ dt. (C.23)

Substituting this expression into (C.21), and then gathering all like terms into

their respective time domains, we arrive at∫ T

0

(
∂L
∂θ

)
δθ dt =

∫ T

0

(
∂J
∂θ

)
δθ dt−

∫ T

0

(
∂(? ? ?)

∂θ

)
δθ dt (C.24)

=

∫ T

0

(
∂J
∂θ

)
δθ dt− [θ†δθ]H0 −

∫ T

0

[
−∂tθ† + AHj [(1− χ) ◦ uj ◦ θ†]

+ AHj [χi ◦ (us,i)j ◦ θ†]− AHi ([Pe−1(1− χ) + κχ] ◦ AHi θ†)
]H
δθ dt

(C.25)

= −[θ†,Hδθ]H0 +

∫ T

0

[(
∂J
∂θ

)H
+ ∂tθ

† − AHj [(1− χ) ◦ uj ◦ θ†]

− AHj [χi ◦ (us,i)j ◦ θ†]

+ AHi ([Pe−1(1− χ) + κχ] ◦ AHi θ†)
]H
δθ dt. (C.26)

Exploiting the extremality of L, which implies these terms are equal to zero, we

make the following conclusions: the final time condition for θ† becomes

θ†|T =
∂J
∂θ

∣∣∣∣
T

, (C.27)

and the evolution equation is

∂tθ
† − AHj [(1− χ) ◦ uj ◦ θ†]− AHj [χi ◦ (us,i)j ◦ θ†] + AHi ([Pe−1(1− χ)

+κχ] ◦ AHi θ†)+
(
∂J
∂θ

)H
= 0.

(C.28)

147



The final pieces of the adjoint system are the optimality conditions with respect

to the optimisation variables, i.e., the first variations of L with respect to χi, uCi

and ωi. We begin with the optimisation condition of the mask, χ†i . We note that

the starred terms remain, but in this instance we also include the condition for the

mask. This implies the following starting point∫ T

0

(
∂L
∂χi

)
δχi dt =

∫ T

0

(
∂J
∂χi

)
δχi dt−

∫ T

0

(
∂(?)

∂χi

)
δχi dt

−
∫ T

0

(
∂(??)

∂χi

)
δχi dt−

∫ T

0

(
∂(? ? ?)

∂χi

)
δχi dt

−
∫ T

0

χ†,Ti δχi dt. (C.29)

Applying the derivative to each individual term, and then simplifying according

to the properties of the Hadamard product we obtain

=

∫ T

0

(
∂J
∂χi

)
δχi dt−

∫ T

0

u†,Tj
δχi
Cn
◦ uj − u†,Tj

δχi
Cn
◦ (us,i)j dt

−
∫ T

0

p†,HAj

[
δχi
Cn
◦ uj −

δχi
Cn
◦ (us,i)j

]
dt

−
∫ T

0

θ†,H
[
−δχi ◦ uj ◦ [Ajθ] + δχi ◦ (us,i)j ◦ [Ajθ]

− Aj([Pe
−1(−δχi) + κδχi] ◦ Ajθ)

]
dt−

∫ T

0

χ†,Ti δχi dt (C.30)

=

∫ T

0

(
∂J
∂χi

)
δχ dt−

∫ T

0

(u†j ◦ uj − u†j ◦ (us,i)j)
H

Cn
δχ dt

−
∫ T

0

[(
[AHj p

†] ◦ uj − [AHj p
†] ◦ (us,i)j

)H
Cη

]
δχ dt

−
∫ T

0

[
−
(
θ† ◦ (uj ◦ [Ajθ])

)H
δχ+

(
θ† ◦ (us,i)j ◦ [Ajθ]

)H
δχi

− (κ− Pe−1)[AHi θ
† ◦ Aiθ]Hδχi

]
dt−

∫ T

0

χ†,Ti δχi dt. (C.31)
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Once again we collect all terms that fall under the same time interval to form

=

∫ T

0

[(
∂J
∂χi

)H
−

u†j ◦ (uj − (us,i)j) + [AHj p
†] ◦ (uj − (us,i)j)

Cη

+ (θ† ◦ [Ajθ]) ◦ (uj − (us,i)j)

+ (κ− Pe−1)[AHj θ
† ◦ Ajθ]− χ†

]
δχi dt. (C.32)

Setting this to zero we obtain the following optimality condition for χ†

χ†i =

(
∂J
∂χi

)H
−

u†j ◦ (uj − (us,i)j) + [AHj p
†] ◦ (uj − (us,i)j)

Cη

+ (θ† ◦ [Ajθ]) ◦ (uj − (us,i)j) + (κ− Pe−1)AHj θ
† ◦ Ajθ. (C.33)

We can rearrange this equation, and introduce the quantity Π†i = u† + AHi p
†, to

simplify this further

=

(
∂J
∂χi

)H
+

[
θ† ◦ [Ajθ]−

Π†j
Cη

]
◦ (uj − (us,i)j) + (κ− Pe−1)AHj θ

† ◦ Ajθ.

(C.34)

The uCi
and ωi derivations do not differ significantly from the above approach, as

the dependencies of the augmented Lagrangian, L, on these control parameters are

almost identical. The method in obtaining the optimality conditions also follows

in the same fashion. Thus, the full explicit derivation is omitted here and only the

full results presented in §2.3.4.

This concludes the full derivation of the penalisation-first, adjoint-second ap-

proach.
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D
Backward time derivation

The last step in the numerical implementation of the adjoint is deriving the back-

ward time stepping approach. This derivation is relatively straightforward and

primarily done to gain understanding for the implementation. It is presented here

for completeness sake.

Following a similar method as in Schneider et al.57, we begin by deriving a time-

stepping scheme with constant step size, i.e., ti− ti−1 = ∆t for all i. We commence

by rewriting the evolution equation for u† (2.73) as follows

∂tu
†
i = Π†k ◦ [Aiuk] + AHj [uj ◦ Π†i ] +

χ

Cn
◦ Π†i −Re−1AHj (Fkj(u) ◦ AHk u

†
i )

−Re−1

(
∂Flj(u)

∂ui

)H
(AHl u

†
k ◦ (Ajuk)) + (1− χ) ◦ θ† ◦ [Aiθ]−

(
∂J
∂ui

)H
,

(D.1)

where we define the right hand side as RHS(t). Performing an integration over

time we obtain

u†tn − u†tn+1
=

∫ tn

tn+1

RHS(s) ds. (D.2)

Using Lagrange polynomials we can then interpolate RHS at the points tn+1 and
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tn+2

p(s) =
s− tn+1

∆t
RHS(tn+2)− s− tn+2

∆t
RHS(tn+1), (D.3)

where ∆t = tn+2 − tn+1. Therefore, we now rewrite the above as

u†tn − u†tn+1
≈
∫ tn

tn+1

p(s) ds (D.4)

=

∫ tn

tn+1

s− tn+1

∆t
RHS(tn+2)− s− tn+2

∆t
RHS(tn+1) ds. (D.5)

Evaluating the above integral and then rearranging the resulting expression, we

arrive at an update condition for u†tn

u†tn = u†tn+1
+

∆t

2
RHS(tn+2)− 3∆t

2
RHS(tn+1). (D.6)

We stress that the above only holds true for a constant step-size. However, in

our simulations we use variable step-sizes for time. Therefore, it is necessary to

derive a suitable time-stepping scheme for this scenario. We begin by defining our

variable time interval as ∆ti = ti − ti−1. Then, starting with the same integration

over time and applying Lagrange polynomials as done previously we obtain

u†tn − u†tn+1
≈
∫ tn

tn+1

p(s) ds (D.7)

=

∫ tn

tn+1

s− tn+1

∆tn+2

RHS(tn+2)− s− tn+2

∆tn+2

RHS(tn+1) ds. (D.8)

Integrating the above explicitly and inserting the values at the limits we obtain

=

[
(tn − tn+1)2

2∆tn+2

RHS(tn+2)

]
−
[

(tn − tn+2)2 − (tn+1 − tn+2)2

2∆tn+2

RHS(tn+1)

]
. (D.9)

To make the numerical implementation more palatable, and in line with relevant

literature, we simplify the above to obtain the final form of the update step, which
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mirrors the form of the forward AB2 scheme

u†tn = u†tn+1
+

∆t2n+1

2∆tn+2

RHS(tn+2)− ∆tn+1

2∆tn+2

[(∆tn+1 + 2∆tn+2]RHS(tn+1). (D.10)

Equation (D.10) requires the previous values of u† and the RHS to be known to

perform the update. Therefore, to initialise this scheme, the ‘start up’ is performed

using a backwards Euler pre-step of the form

u†tn = u†tn+1
−∆tn+1RHS(tn+1). (D.11)

This completes the derivation of the backward AB2 scheme. However, we make

one caveat; the above derivation requires the computation of the terms of RHS,

e.g.,

−Re−1AHj (Fkj(u) ◦ AHk u
†
i )−Re−1

(
∂Flj(u)

∂ui

)H
(AHl u

†
k ◦ (Ajuk)), (D.12)

which is computationally expensive. These terms, and particularly the non-Newtonian

diffusion term of θ†, cannot be avoided and thus non-negligible computational re-

sources will need to be expended here.

However, we note that if F (u) is a constant, i.e., we consider Newtonian fluids, this

expensive computation can be avoided in the following fashion: consider equation

(2.73) with F (u) chosen to be 1 and thus written as

∂tu
†
i +Re−1AHj A

H
j u
†
i = Π†k ◦ [Aiuk] + AHj [uj ◦ Π†i ] +

χ

Cn
◦ Π†i + (1− χ) ◦ θ† ◦ [Aiθ]

−
(
∂J
∂ui

)H
. (D.13)

We define RHS(u†) as the right hand side of equation (D.13). Considering the

homogeneous solution, (i.e., RHS(u†) = 0) we obtain the exact solution given by

u†(t) = u†T exp(Re−1(T − t)AiAi), (D.14)

where AiAi are the matrices that represent the spatial differentiation. By simple
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manipulation it can be seen that

u†tk = u†tk+1
exp(Re−1∆tk+1AiAi), (D.15)

where ∆tk+1 = tk+1− tk. Next, we transform this into Fourier space and note that

the AiAi operator converts to the Fourier wavenumbers, i.e., −|k|2. Therefore, we

are left with an expression of the form

û†tk = û†tk+1
exp(Re−1∆tk+1|k|2). (D.16)

We now extend this to the inhomogeneous case

∂tu
† +Re−1AiAiu

† = RHS(u†). (D.17)

We observe that this can be manipulated to yield

exp(−Re−1tAiAi)∂t
[
exp(Re−1tAiAi)u

†] = RHS(u†). (D.18)

Rearranging and then integrating over time we obtain

exp(Re−1tAiAi)u
†
t = exp(Re−1TAiAi)u

†
T −

∫ T

t

exp(Re−1sAiAi)RHS(u†(s)) ds.

(D.19)

After dividing both sides by the exponential on the left-hand side we arrive at

u(t)† = exp(Re−1(T − t)AiAi)u†T −
∫ T

t

exp(Re−1(s− t)AiAi)RHS(u†(s)) ds.

(D.20)

As the limits of the integration are, in essence, dummy variables we can rewrite

equation (D.20) as the following

u†tk = exp(Re−1∆tk+1AiAi)u
†
tk+1

+

∫ tk

tk+1

exp(Re−1(s− tk)AiAi)RHS(u†(s))︸ ︷︷ ︸
g(s)

ds.

(D.21)
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Using the Lagrangian polynomial approach of the constant time-step derivation,

we can evaluate g(s) in the following manner∫ tk

tk+1

g(s) ds ≈
∆t2k+1

2∆tk+2

g(tk+2)− ∆tk+1

2∆tk+2

[(∆tk+1 + 2∆tk+2]g(tk+1) (D.22)

=

[
∆t2k+1

2∆tk+2

exp(Re−1(∆tk+2)AiAi)RHS(u†(tk+2))

− ∆tk+1

2∆tk+2

[(∆tk+1 + 2∆tk+2]RHS(u†(tk+1))

]
exp(Re−1(∆tk+1)AiAi).

(D.23)

Inserting this value into equation (D.21) we arrive at

u†tk = exp(Re−1∆tk+1AiAi)u
†
tk+1

+

[
∆t2k+1

2∆tk+2

exp(Re−1∆tk+2AiAi)RHS(u†(tk+2))

− ∆tk+1

2∆tk+2

[(∆tk+1 + 2∆tk+2]RHS(u†(tk+1))

]
exp(Re−1(∆tk+1)AiAi).

(D.24)

Numerically, we will be solving the majority of direct and adjoint variables in

Fourier space. This avoids multiple Fourier transformations, and keeps compu-

tational costs manageable. Therefore, the concluding step, then, is to transform

equation (D.24) into Fourier space, where the AiAi operator simply transforms into

a multiplication by the wave-number k. We finally arrive at a simple implementa-

tion of the form

û†tk = exp(−Re−1∆tk+1|k|2)û†tk+1
+ [

∆t2k+1

2∆tk+2

exp(−Re−1∆tk+2|k|2)RHS(û†(tk+2))

− ∆tk+1

2∆tk+2

[(∆tk+1 + 2∆tk+2]RHS(û†(tk+1))] exp(−Re−1∆tk+1|k|2).

(D.25)

This backwards-in-time exponential time stepping then becomes the backbone of

our adjoint implementation and allows us - in cases of Newtonian fluids - to avoid

costly evaluations of the diffusion terms.
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