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Abstract

Deep learning is experiencing a revolution with tremendous progress because of the availability of

large datasets and computing resources. The development of deeper and larger neural network models

has made significant progress recently in boosting the accuracy of many applications, such as image

classification, image captioning, object detection, and language translation. However, despite the

opportunities they offer, existing deep learning approaches are impractical for many applications due to

the following challenges. Many applications exist with only limited amounts of annotated training data,

or the collected labelled training data is too expensive. Such scenarios impose significant drawbacks

for deep learning methods, which are not designed for limited data and suffer from performance decay.

Especially for generative tasks, because the data for many generative tasks is difficult to obtain from

the real world and the results they generate are difficult to control. As deep learning algorithms

become more complicated increasing the workload for researchers to train neural network models and

manage the life-cycle deep learning workflows, including the model, dataset, and training pipeline, the

demand for efficient deep learning development is rising.

Practical deep learning should achieve adequate performance from the limited training data as well

as be based on efficient deep learning development processes. In this thesis, we propose several novel

methods to improve the practicability of deep generative models and development processes, leading

to four contributions. First, we improve the visual quality of synthesising images conditioned on

text descriptions without requiring more manual labelled data, which provides controllable generated

results using object attribute information from text descriptions. Second, we achieve unsupervised

image-to-image translation that synthesises images conditioned on input images without requiring

paired images to supervise the training, which provides controllable generated results using semantic

visual information from input images. Third, we deliver semantic image synthesis that synthesises

images conditioned on both image and text descriptions without requiring ground truth images to

supervise the training, which provides controllable generated results using both semantic visual and

object attribute information. Fourth, we develop a research-oriented deep learning library called

TensorLayer to reduce the workload of researchers for defining models, implementing new layers, and

managing the deep learning workflow comprised of the dataset, model, and training pipeline. In 2017,

this library has won the best open source software award issued by ACM Multimedia (MM).
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Chapter 1

Introduction

1.1 Motivation

Deep learning is a subset of artificial intelligence that uses multi-layered neural networks to create

autonomous learning from big data and perform tasks, such as image and text recognition [2]. Over

the previous few years, deep learning has unlocked treasure troves of big data to drive advancements

in healthcare, creating efficiencies in the power grid, improving agricultural yields, and discovering

solutions to climate change. A deep neural network is a large trainable machine with multiple layers

containing potentially millions of parameters to learn hierarchical representations and predict in-

stance labels. This framework requires significant amounts of annotated data to train the parameters.

Through progressive learning, the deep neural networks grind away and find nonlinear relationships

in the data without requiring users to perform feature engineering [2].

Deep learning gained more attention when models outperformed previous methods [3] by more than

10% during the ImageNet visual recognition challenge in 2012 [4]. Deep learning next achieved suc-

cess by demonstrating better performance compared to many traditional learning methods supporting

applications in language translation [5], image segmentation [6], object detection [7], action recogni-

tion [8], and image captioning [1]. The success of deep learning is due to two primary reasons. First,

the world-wide digitisation of information enables the creation of many large public labelled datasets,

such as ImageNet [4] and MSCOCO [9], that enables researches to improve models collaboratively.

Second, graphics processing units (GPUs) and tensor processing units (TPUs) provide superior pro-

cessing speeds in deep learning computation that are orders of magnitude faster than conventional

1
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central processing units (CPUs). To date, advanced deep learning algorithms have outperformed non-

deep learning methods in many applications [2] as well as demonstrated comparable performance with

humans in specific tasks such as image classification [10], clinical diagnosis [11], game playing (e.g.,

AlphaGo) [12], and image captioning [1] 1.

The success of deep learning is partially attributed to rich datasets with abundant annotations [2].

Unfortunately, collecting and annotating such large-scale training data in practice is prohibitively

expensive and time-consuming. This problem is more severe in generative tasks as the training data

for many generative tasks can be difficult to obtain from the real world [13]. In some cases, it is even

impossible to collect such data. For example, to modify the gender in the image of a given face, it

is impossible to collect face images of different genders from the same person to supervise training

a model. Another example is synthesising images conditioned on both images and text descriptions

as with a dataset of just 1,000 images and 1,000 text descriptions, one million combinations (i.e.,

1, 000 × 1, 000) exist, and it is impractical to create one million ground truth images manually for

supervised training. This problem also exists in synthesising images conditioned on text descriptions

where an image could have infinite matching text descriptions. Having more training data is desirable

to increase the robustness and generalisation of a deep model. However, it can be too costly to label

more text descriptions or define a specific rule to augment the text descriptions manually [14, 15].

Therefore, for practical deep learning, exploring efficient deep learning algorithms for applications

with limited training data is crucial.

Along with the problem of limited training data, deep generative models provide results that are dif-

ficult to control [16, 17], which limits their applicability to real-world scenarios. Since first proposed

in 2014, the generative adversarial network (GANs) frameworks have achieved superior performance

compared with other methods [2, 18]. For example, DCGAN [19] is the first to utilise the power of

the deep neural networks to synthesise 64 × 64 face and bedroom images. The recent work on Pro-

gressiveGAN [20], successfully synthesised 1024 × 1024 face images. However, randomly synthesising

data in an open space makes it difficult for the deep generative models to be leveraged for many

real-world applications because controlling the generated results to meet a specified requirement is

challenging [17]. For example, instead of generating a random face of a lady, a real-world application

may require the model to generate a lady with sunglasses. Therefore, the GAN research community

began to study how to control the synthesis results by inputting auxiliary information into a vanilla

1http://cocodataset.org

http://cocodataset.org
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GAN framework [16, 17]. ACGAN [16] synthesises images conditioned on discrete class labels such

as car, bird or flower. A class label is input into the GAN network that outputs corresponding im-

ages containing cars, birds or flowers. Compared to discrete class labels as the input condition, text

descriptions and images can be utilised to control the generated results by providing more auxiliary

information. A text description can provide the information of a class label and the object attributes,

such as the colour, location, action and background. Images can provide semantic visual information

that the text description cannot provide. For example, images can include the pixel-level precise shape,

colour, and location of an object. Therefore, developing the use of text descriptions and images for

auxiliary information can achieve more controllable image synthesis compared to vanilla GAN-based

frameworks and discrete label conditioned frameworks (e.g., ACGAN).

To improve the practicability of deep generative models, we proposed several methods to address

the challenges of limited training data and uncontrolled generated results. We first improve the

visual quality of synthesised images for the text-to-image synthesis problem from limited training data

problem by generating more text descriptions based on an image captioning model [1] to generate more

training data and provide object attribute information for controlling the generated results. Second,

we achieve unsupervised image-to-image translation for synthesising one type of image conditioned

on another without requiring paired images to supervise training, which enables tasks, such as face

gender translation, that cannot be performed through a supervised model [13]. This approach provides

controllable generated results by using the semantic visual information from the conditioned input

images. Third, we study the semantic image synthesis which synthesises images conditioned on images

and text descriptions without requiring ground truth images to serve as the supervision, providing

controllable generated results based on semantic visual information from the input images as well as

object attribute information from the input text descriptions.

In addition to the development of algorithms for efficiently using data for generative tasks, this the-

sis designs a deep learning library, called TensorLayer, to facilitate the deep learning development.

TensorLayer provides tools to rapidly build neural network models and routines to manage datasets,

models and training pipelines. Deep learning development tends to revolve around experiments where

researchers frequently experiment with different datasets, model architectures, and training meth-

ods [2]. The deep learning workflow represents a pipeline for developing a deep learning model,

including creating and acquiring the dataset, training the model based on the training pipeline, evalu-

ating its performance, and saving the model for future use [21]. Apart from model training, researchers
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often need to archive the model and dataset for versioning, sharing, further retrieval, provenance [21],

experiment reproduction, and training multiple models concurrently to speed up the hyper-parameter

selection [2, 22].

Tools supporting model building and life-cycle management for a deep learning workflow increases its

practicability. However, for model building, existing libraries such as Keras 2 and Pytorch [23] require

researchers to spend extra effort when defining models and implementing new layers to deal with the

layer output. Also, these libraries cannot exactly restore a certain part of the deep models based on

different use cases, which can result in initialising unused layers and unnecessary computer memory

consumption. For life-cycle management, existing tools, such as AzureML 3 and SeaHorse 4, offer a

GUI-based interfaces with predefined templates that require researchers to complete each component

of the template before execution. While such functionality is desirable for production purposes, it

restricts the flexibility of deep learning researches because most algorithms are developed on-the-fly

instead of being predefined.

To facilitate deep learning development, our research-oriented library, TensorLayer, delivers an ab-

straction to build deep models without the need to deal with the output shape of the layers manually.

Moreover, TensorLayer provides the pre-trained model abstraction that can exactly restore a certain

part of the deep models based on variety of use cases to avoid initialising unused layers and unnec-

essary computer memory consumption. For life-cycle management, TensorLayer abstracts the deep

learning workflow into the model, dataset and task components, where a task contains the training

details and results of an experiment. TensorLayer also supports running multiple tasks concurrently

to speed model training. We evaluate TensorLayer by comparing it with other representative libraries.

TensorLayer won the best open source software award issued by ACM Multimedia (MM) in 2017.

1.2 Contributions and Thesis Organisation

This thesis improves the practicability of deep learning by exploring efficient deep learning algorithms

for applications with limited training data and designing a library for improving deep learning devel-

opment. The specific contributions include the following: 1) Improve the visual quality of synthesised

images for text-to-image synthesis without requiring additional domain knowledge. The generated

2https://github.com/keras-team/keras
3https://studio.azureml.net
4https://seahorse.deepsense.ai

https://github.com/keras-team/keras
https://studio.azureml.net
https://seahorse.deepsense.ai
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results are controlled by using object attribute information implied from the input text descriptions.

2) Achieve unsupervised image-to-image translation without requiring paired images to supervise the

training. The generated results are controlled with the semantic visual information of the input im-

ages. 3) Propose a method for semantic image synthesis without requiring ground truth images to

supervise the training. The generated results are controlled by the object attribute information of

the input text descriptions and the semantic visual information of the input images. 4) Develop

a research-oriented deep learning development library, called TensorLayer, to support researchers in

building models, implementing new layers, managing the deep learning workflow, and running multiple

trainings concurrently. I will introduce the above contributions with more details in the following:

Efficient text-to-image synthesis

In Chapter 3, we propose a method to improve the image’s visual quality for text-to-image synthesis

for which the input text description contains object attribute information to describe the images. The

challenge is that labelled text descriptions are limited in the training set. For example, the well-known

image captioning dataset, MSCOCO, only has five text descriptions for each image [9]. However, in

an ideal scenario, an image would have an infinite number of text descriptions that could be matched,

i.e., the text and image are highly multi-modal [24].

To alleviate the problem of limited labelled text descriptions, we use a state-of-the-art image captioning

model with comparable performance to human [1] to synthesise more text descriptions for each image

in the dataset. When we create more text descriptions to train the text-to-image generator, the

training data includes more information and covers more variance of the data, which increases the

robustness and generalisation of the model. Therefore, the visual quality of the synthesised images is

improved. Moreover, we pre-trained an image captioning model on an image dataset that included

labelled text descriptions and used the image captioning model to generate text descriptions on another

dataset that did not have labelled text descriptions. Then, we leveraged the generated text to learn

the text-to-image synthesis. To the best of our knowledge, this approach is the first that can provide

a text-to-image synthesis from an image dataset that does not include labelled text descriptions.
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Efficient image-to-image translation

In Chapter 4, we propose an unsupervised image-to-image translation method to synthesise images

conditioned on input images, in which the input image can provide semantic visual information for

the synthesis. The challenge of image-to-image translation is that paired images are expensive or even

impossible to be collected in practice. For example, it is impossible to collect face images representing

different genders of the same person. In this case, no supervised information can be collected to train

the portrait gender transformation model, precluding the supervised methods for the portrait gender

transformation task.

To achieve image-to-image translation without supervision, we develop a two-step (unsupervised)

learning method to translate images between different domains by using unlabelled images without

specifying any relationship to avoid the cost of acquiring labelled data. We verify the proposed method

using applications of portrait gender transformation, face swapping and image inpainting. We also

analysis the limitation of our approach and how the subsequent studies, such as CycleGAN [25],

address this limitation. As our proposed method can translate images between two domains by using

one generator, in contrast, the CycleGAN requires two generators to perform the translations, i.e.,

one generator for domain A to B and another for domain B to A.

Efficient semantic image synthesis

In Chapter 5, we propose a novel method for semantic image synthesis where the synthesised images

are conditioned on both the input images and text descriptions. This task is an extension of image-to-

image translation by using text descriptions to control the image translation. Specifically, we utilise

the object attribute information from the text description and the semantic visual information from

the image to provide controllable image synthesis. For example, given an input image of a white flower

with a text description, “this is a yellow flower”, the input image is translated into a yellow flower

while maintaining other semantic visual information, such as the flower’s shape and background.

The challenge of semantic image synthesis is that the ground truth for the images after translations

remains unknown, and it is impractical to create such labelled ground truth images manually. For

example, given n images and m text descriptions, we can have n×m pairs of combination, meaning

n × m ground truth images must be created manually if we use supervised learning. To solve this

problem of unknown ground truth images, we propose a novel neural network model along with an
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adversarial loss, which only requires the paired input image and text description for training. Our

results demonstrate that the method can synthesise images to match the input text descriptions and

maintain the semantic visual information of the input image.

Efficient deep learning development

In Chapter 6, our research-oriented library, TensorLayer, reduces the workload of researchers in build-

ing neural network models and managing the life-cycle of the deep learning workflow including the

model, dataset and training pipeline. Specifically, we design a model abstraction method that frees

researchers from dealing with the output shape of the layers that reduces the the workload when

defining models and implementing new layers. For life-cycle management, we abstract the deep learn-

ing workflow into the three components of the model, dataset, and task, where the task contains the

training details and results of an experiment. Our life-cycle management supports the deep learning

workflow and facilitates the experiments by enabling multiple tasks to be run concurrently on multiple

nodes (e.g., different machines or GPUs) to speed up the deep learning development. We evaluate

TensorLayer by comparing it with other libraries and demonstrate its efficacy using two case studies of

training multiple models concurrently for speeding up hyper-parameter selection and running multiple

data generators for speeding up the training of deep reinforcement learning.

1.3 Publications

My PhD study has led to a number of publications as follows:

• Chapter 3: Learning Text to Image Synthesis with Textual Data Augmentation.

International Conference on Image Processing (ICIP). (Oral). 2017. H. Dong, J. Zhang, D.

Mcllwraith, Y. Guo.

• Chapter 4: Unsupervised Image-to-Image Translation with Generative Adversarial

Networks. arXiv 2017. H. Dong, P. Neekhara, C. Wu, Y. Guo.



8 Chapter 1. Introduction

• Chapter 5: Semantic Image Synthesis via Adversarial Learning. International Confer-

ence on Computer Vision (ICCV). 2017. H. Dong*, S. Yu*, C. Wu, Y. Guo.

• Chapter 6: TensorLayer: A Versatile Library for Efficient Deep Learning Develop-

ment. ACM Multimedia (MM). 2017. H. Dong, A. Supratak, L. Mai, F. Liu et al.

In addition, the following publications over the course of this thesis and have been impacted but not

directly contributed to this thesis.

• Mixed Neural Network Approach for Temporal Sleep Stage Classification. IEEE

Transaction on Neural Systems and Rehabilitation Engineering (TNSRE). 2017. H. Dong, A.

Supratak, W. Pan, C. Wu, P. M. Matthews, Y. Guo.

• DeepSleepNet: a Model for Automatic Sleep Stage Scoring based on Raw Single-

Channel EEG. IEEE Transaction on Neural Systems and Rehabilitation Engineering (TNSRE).

2017. A. Supratak, H. Dong, C. Wu, Y. Guo.

• Automatic Brain Tumor Detection and Segmentation Using U-Net Based Fully Con-

volutional Networks. Medical Image Understanding and Analysis (MIUA). (Oral). 2017.

H. Dong*, G. Yang*, F. Liu*, Y. Mo, Y. Guo.

• Deep Learning using TensorLayer. Publishing House of Electronic Industry (PHEI). 2018.

ISBN: 9787121326226. H. Dong, Y. Guo, G. Yang et al

• Dropping Activation Outputs with Localized First-layer Deep Network for Enhanc-

ing User Privacy and Data Security. IEEE Transaction on Information Forensics and

Security (TIFS). 2017. H. Dong, Z. Wei, C. Wu, Y. Guo.
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• Generative Creativity: Adversarial Learning for Bionic Design. arXiv. 2018. S. Yu.

H. Dong, W. Chao, Y. Guo.

• DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed

Sensing MRI Reconstruction IEEE Transaction on Medical Imaging (TMI). 2017. G.

Yang*, S. Yu*, H. Dong et al.

• Deep De-Aliasing for Fast Compressive Sensing MRI. arXiv. 2017. S. Yu*, H. Dong*,

G. Yang, G. Slabaugh et al.

• TensorDB: Database Infrastructure for Continuous Machine Learning. International

Conference on Artificial Intelligence (ICAI). 2017. F. Liu, A.Oehmichen, J. Zhang et al.

• Survey on Feature Extraction and Applications of Biosignals. Machine Learning for

Health Informatics. Springer. 2016. A. Supratak, C. Wu, H. Dong et al.

• DropNeuron: Simplifying the Structure of Deep Neural Networks. arXiv. 2016. W.

Pan, H. Dong, Y. Guo.

• A New Soft Material based In-the-ear EEG Recording Technique. Engineering in

Medicine and Biology Society (EMBC). (Oral). 2016. H. Dong, P. M. Matthews, Y. Guo.

* Indicates co-first author.
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Chapter 2

Background

In this chapter, we describe the fully connected layer, activation and loss functions, and convolutional

and recurrent neural networks that are widely used throughout this thesis. The training details of

neural networks are also explained, including gradient descent, error back-propagation, regularisation,

and transfer learning. Finally, we introduce the generative adversarial network (GAN) [26] to review

the vanilla GAN, deep convolutional GAN [19], and conditional GAN [17].

2.1 Deep Neural Networks

Deep learning is a class of machine learning methods based on deep neural networks [2]. In 2012 during

the image classification challenge event, ImageNet [4], a new neural network design called Alexnet [3]

outperformed previous non-deep learning methods by 10.8%. Since then many deep learning methods

achieve state-of-the-art performance on machine learning tasks such as vision [1, 27, 28], image pro-

cessing [29,30], and natural language processing [5]. The most common neural networks applied today

are fully connected networks, convolutional neural networks (CNN), and recurrent neural network

(RNN) [2]. The architectures of those neural networks are described in the following along with the

concepts of encoding, decoding, and latent space.

2.1.1 Fully connected network

A neural network neuron is the fundamental element of the neural networks [2] as shown in Figure 2.1

with three inputs and one output. This neuron is represented by Equation (2.1), where x are the

11
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• Fully-connected network
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output layerinput layer

Figure 2.1: An example of a single neural network neuron.

input values, w are the weights, and y is the network output. Each arrow in Figure 2.1 represents

one weight value. As the output directly connects to the inputs, this neuron can be considered as a

network with a single layer.

y = x0 ∗ w0 + x1 ∗ w1 + x2 ∗ w2 (2.1)

Given varied weights, the output will be sensitive to different inputs. For example, y may be a score

determining if we are to play football. If y is large, then we play. To determinate this score, x0

represents the weather, x1 is the expense of the football field rental, and x2 is the distance to the

field. These inputs are considered the features with respect to the output. If the whether is the most

critical factor, then we can set w0 to a large positive value and set w1 and w2 to smaller values. If w

is set to zero, then the corresponding input feature is discarded.

Expanding from this single neural network neuron, a network can have multiple outputs. Figure 2.2

shows an example of three outputs each of which can be computed by Equation (2.1) to which a bias

value may be added. A bias value allows the output value to be shifted higher or lower to better fit

the input data. Equation (2.2) illustrates how to compute each output yi, where i is the index of

outputs. Because every input of the layer is linked to all its outputs, this layer is referred to as a fully

connected layer [2]. In practice, a fully connected layer is implemented with a matrix multiplication

as in Equation (2.3) shows.
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Figure 2.2: An example of three neural network neurons.

yi = x0 ∗ w0,i + x1 ∗ w1,i + x2 ∗ w2,i + bi (2.2)

y = x ∗W + b (2.3)

where x are the input values, W is the weight matrix representing the connections, b are the bias

values, and y includes the output values. Considering 2.2 as an example, since the input has three

values, x can be represented by a 1 × 3 vector, i.e., a row vector with one row and three columns.

For the output with three values, y can also be represented by a 1× 3 vector. The weight matrix W

and bias b are a 3 × 3 matrix and a 1 × 3 vector, respectively, and are called the network or model

parameters. Then, by using multiple neurons, we can obtain multiple outputs. For example, the

outputs can represent if we should play football, basketball or tennis. Here, the network outputs three

scores for three classes of sports.

A multi-layer perceptron (MLP) [31, 32] extends from a single, fully connected layer, and consists of

at least two fully connected layers. Figure 2.3 presents a MLP consisting of two more fully connected
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• Fully-connected network
hidden layers output layerinput layer

Figure 2.3: A multi-layer perceptron with two hidden layers.

layers compared with a single fully connected layer. The biases are not drawn to simplify the figure.

The layers between the inputs and outputs are called “hidden” because they cannot be directly accessed

from outside the network.

By stacking a new layer on top of an existing layer, the new layer is considered to use the output of the

previously existing layer as its input features [2]. Therefore, compared with a single fully connected

layer, MLP can fit more complex input data. In other words, MLP can have more representational

capability than a single layer.

2.1.2 Activation functions

Continuing with our example, for a given neural network, the output y can represent specific scores,

such as the probability of playing football. To represent the probability from 0% to 100%, it is of

common practice to apply a function to scale the output to a value between 0 to 1. Therefore, the

network output is non-linear such that it is not a linear combination of the inputs. Also, in order

to represent a more complex function by using a neural network, the network hidden outputs can be

non-linear [2]. Activation functions provide the non-linearity on the layers outputs, and their design

remains an active researched area. The following four activation functions are applied most frequently.
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Sigmoid function

The logistic sigmoid is a traditional activation function that provides non-linearity to a neural network.

With an output range between 0 to 1, the sigmoid is used for the output of binary classifiers that

result in one probability value of either 0 or 1. For example, applying the sigmoid function to the

signal neuron in Figure 2.1 provides a simple binary classifier that receives three input features. Given

a probability value between 0 to 1, a threshold value (e.g., 0.5) is to set so that if the value is greater

than the threshold, then it classifies the input features as a positive sample. The sigmoid function is

defined as follows where z denotes the output of a layer.

f(z) =
1

1 + e−(z)
(2.4)

Hyperbolic tangent function

Similar to the sigmoid, the hyperbolic tangent (tanh) also scales the output layer to a limited range of

values. With an output range between -1 to 1, this function is often used for regression, such as for an

output image with pixel values between -1 to 1. As well as being applied to the network outputs, the

sigmoid and hyperbolic tangent functions are used in the hidden layers [33] to provide non-linearity

to the network. The hyperbolic tangent function is defined as follows.

f(z) =
ez − e−z

ez + e−z
(2.5)

Softmax function

Again, with Figure 2.2 as an example network with three outputs and three inputs, with these multiple

outputs, multi-class classification can be performed, i.e., classify the input into one of three or more

classes. The softmax function is designed for the output layer of a multi-class classifier to not only

limit all outputs to 0 to 1, as with the sigmoid, but also ensure the sum of each output equals 1, i.e.,

the sum of all probabilities must be 100%. The softmax function is defined as follow.

f(z)i =
ezi∑K
k=1 e

zk
(2.6)
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where K is the number of classes or outputs. Softmax first applies an exponential function ez to each

output and then normalises each by dividing it by the sum of all outputs. The fully connected layer is

often used as the output layer for neural network classifiers. In practice, using the softmax activation,

a network can output a vector to represent the probabilities of each class whereas with the logistic

sigmoid, a network can output a single value to represent one probability for binary classification.

Rectified linear unit

The rectified linear unit (ReLU), also known as a rectifier [33], is a function that sets the negative

values to zero for the purpose of feature selection. For example, in MLP, the output values of a layer

are a combination of the input values. If an outputs is unnecessary for the final task, such as in

classification, then ReLU allows the network to set this output to zeros. The ReLU function is defined

as the following.

f(z) =

0 , when z <= 0

z , when z > 0
(2.7)

A recent study [33] showed that ReLU has a better performance on the hidden layers compared to

that of the sigmoid and hyperbolic tangent. So, this activation function is becoming a default choice

for deep neural networks [10,34,35].

However, merely setting negative values to zero will lead to information loss. A solution was proposed

with the leaky ReLU [36], defined in Equation (2.8), where α is a small positive value to control the

slope (e.g., 0.1 and 0.2) so that the information from the negative values can pass through to the next

layer.

f(z) =

α ∗ z , when z <= 0

z , when z > 0
(2.8)

In addition, the parametric ReLU (PReLU) [37] was also proposed to consider α as a trainable pa-

rameter.
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2.1.3 Loss functions

In deep learning, loss functions are defined to quantify an error, known as the loss value, between the

predicted and targeted (i.e., ground truth) outputs. The loss value is used as the goal for optimis-

ing the neural network parameters, such as the weights and biases. Specifically, optimising a given

neural network minimises the defined loss value L by updating the network parameters θ. Gradient

descent [38] is commonly used to update the parameter by computing the partial derivatives of the loss

with respect to the network parameters, which can be written as ∂L
∂θ . Details about gradient descent

and neural network training is included in Section 2.2.

For the classification task discussed above, logistic regression and cross-entropy losses are commonly

used. For regression problems where the target outputs are continuous values, such as the predicted

temperatures or image pixels, the mean squared error (MSE) and mean absolute error (MAE) are

mostly used. These regularly utilised loss functions are described below.

Logistic regression loss

Logistic regression loss is commonly used for binary classification. For a network with one output value,

such as in Figure 2.1 with a sigmoid function, minimising the logistic regression loss is equivalent to

guiding the network toward an output of 0 or 1 based on its input. The loss function is defined as

follows.

L = − 1

m

m∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (2.9)

where y is the binary target label of 0 or 1, ŷ is the predicted probability value from the sigmoid

output, and m is the number of classes. A smaller loss represents a smaller gap between the target y

and prediction ŷ. If y and ŷ are equal, then the loss is zero.

Cross-entropy loss

Cross-entropy loss is used for training multi-class classifiers, which requires the neural network to

output multiple values that represent the probabilities of each class instead of a single value as in
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binary classification. The cross-entropy loss is defined as follows.

L = − 1

m

m∑
i=1

log(ŷiyi) (2.10)

where m denotes the number of output values, y and ŷ are the target and prediction, and ŷiyi represents

the predicted probability of the target label.

Lp norm

Given a vector x, p−norm [2] can measure its scale such that a vector with larger values represents a

large scale, and is defined as the following, where p is an integer greater or equal to 1.

||x||p = (
n∑
i=1

|xi|p)1/p

i.e., ||x||pp =
n∑
i=1

|xi|p
(2.11)

In deep learning, the p−norm measures the difference between two vectors written as Lp, as in Equa-

tion (2.12), where y and ŷ are the target and prediction, respectively.

Lp = ||y − ŷ||pp =
n∑
i=1

|yi − ŷi|p (2.12)

Mean squared error

The mean squared error (MSE) is the averaged L2 norm and is used for regression problems in which

the output of the neural networks contains continuous values, such as the pixels of an image or a scalar

value. The MSE is defined as follows.
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L =
1

m

i=1∑
m

(yi − ŷi)2 =
1

m
||y − ŷ||22 (2.13)

where m is the number of examples, and y and ŷ are the target and prediction, respectively.

Mean absolute error

Similar to MSE, the mean absolute error (MAE) is the averaged L1 norm, known as the least square

error, The MAE is also used for regression problems and is expressed as follows.

L =
1

m

i=1∑
m

|yi − ŷi| = 1

m
||y − ŷ|| (2.14)

where m is the number of examples, and y and ŷ are the target and prediction, respectively. Both

MSE and MAE minimise the difference between y and ŷ. MSE offer a better mathematical property

making it easier to compute the partial derivative as required for gradient descent. In contrast, due

to the absolute value term, MAE requires more complicated computation of the partial derivative.

In addition, when the difference between y and ŷ is greater than 1, MSE can result in a larger error

compare to MAE (i.e., |y − ŷ| vs |y − ŷ|2) making the network more sensitive to this prediction [2].

2.1.4 Encoder and decoder

Latent representation

This thesis focuses on visible data, such as images and text descriptions, and latent representations,

such as the hidden output of a neural network. Latent representations are the structures and features of

corresponding values of visible data. The intrinsic meaning of latent representations cannot be directly

understood as they are the unobserved abstraction of the visible data, and each value represents specific

features of the visible data. For example, facial expressions in an images can be modified by changing

the values in the corresponding latent representation (e.g., the latent variables), which means the

content of the visual data can be controlled by changing these variables. In deep learning, visible
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data and latent representations can be converted into each other via different neural networks. The

latent space (or distribution) represents the set of all latent variables for a set of visible data. For

example, all possible text descriptions and images can be converted into text and image latent spaces,

respectively.

Encoder

Introduction and Background

X Z

Cat
Horse
Boat
Dog
…

Figure 2.4: Illustration of encoding and decoding where x and z denote visible data and its latent
representation, respectively.

Deep learning has been outperforming traditional methods for many image tasks [2, 39], such as

object detection [40], image classification [3, 10], and image segmentation [41, 42]. These types of

tasks train an encoding network to extract features from a given visual input for subsequent tasks.

The simple example in Figure 2.4 shows an image classification tasks with an image x as input that

outputs the probability of different classes (e.g., cat, horse or boat). These discriminative tasks are

successfully with this approach when the approximate capacity of the neural network finds a good

latent representation z for the visible input data. In deep learning, the process of transforming visible

input data, such as an image, text or video, into a latent representation, alternatively known as

embedding or hidden representation, is referred to as “encoding”.

Decoder

In deep learning, the decoder imposes a decoding network that generates the corresponding visual

data from its latent representation. This routine is the inverted process of the encoding network
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as exemplified as the inverted image encoding shown in Figure 2.4 to generate the image. Another

example is image captioning (i.e., generating a text description for an input image) with an inverted

process of text-to-image generation to synthesis images conditioned on the given text descriptions. In

a later chapter, we introduce the convolutional neural network (CNN) and recurrent neural network

(RNN) for encoding and decoding images and text descriptions, respectively, as well as how to combine

a CNN and generative adversarial network (GAN) for image generation.

2.1.5 Convolutional neural networks

Convolution

Figure 2.5: An example of 2D convolution where the blue squares denote the input values, dotted
lines represent the padding values, and green squares denote the output values [43].

The convolutional neural networks (CNNs) is widely used to solve computer vision problems [34, 40,

42, 44]. Mathematically, the convolutional operation measures how two signals overlap as one passes

over. For example, the edge detection in digital image processing is a specific type of convolutional

operation with a pre-defined filter that passes over an image to identify the edges that match the filter

pattern. Specifically, when a pre-defined filter passes over the image, the values of the filter and the

values of a local patch are multiplied element-wisely and summed into a single output value. If the

pattern of a local patch is similar to the filter, then the output value is large.

Similar to edge detection, CNNs apply many filters to an image and obtain many feature maps. Just

as with the weights and biases of fully connected networks, the filters are the network parameters

optimised according to a loss function. Figure 2.5 shows an example of a 2D convolution on a 5 ×

5 matrix with a filter size of 3 × 3, a stride of 1 and padding of 1 [43]. The stride represents the

number of values to skip when the filter passes over the input, while a larger stride leads to a smaller
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output feature map. The padding represents the number of values appended to the edge of input

before convolution. The dotted lines in the figure illustrate how to pad zero on the edge of the input

so the output and input are the same size.

Unlike the fully connected layer, a CNN filter can be applied to different locations of the input. This

allows the CNN to largely reduces the number of parameters while providing space invariance. Similar

to MLP, multiple CNN layers can be stacked together to build a deep CNN offering the advantage

of encoding features layer-by-layer. The first layer learns the features of input data followed by the

second layer that learns higher-level features based on the features extracted from the first layer.

Deeper CNNs have a layer output can represent higher-level features with a larger receptive field [43].

Therefore, a value from the feature map can represent a larger region of the input data, which is also

why a larger image requires deeper CNN encoding.

In recent years, many studies focused on designing effective deep CNN architectures, such as VGG [45],

MobileNet [46], SqueezeNet [47], Residual network (ResNet) [10], and Inception network [48]. ResNet [10]

was the first to outperform humans at the ImageNet [4] classification challenge and to successfully

train a network with one thousand convolutional layers. In this thesis, VGG, Inception network, and

the concept of ResNet are featured for specific purposes.

To understand the features learned by a deep CNN, Figure 2.6 visualise the features learned by a

VGG network by maximising the activation values of different CNN layers. The shallow layers are

only capable of learning the edge features. Going to deeper layers, the receptive field becomes larger,

and it begins to learn texture features and object parts. For example, the “conv5” in the bottom right

of Figure 2.6 begin to show the profiles of a dog and cat. This visualisation demonstrates that objects

can be conceptualised by deep CNN similar to the human visual system.

Pooling

Figure 2.7 shows the architecture of a VGG16 network with 13 CNN layers. The blue rectangles

denote the CNN layers, and the white rectangles denote the max pooling layers that reduce the size

of the feature map by calculating the averaged or maximum location values. At the end of the model,

fully connected layers are applied to output 1,000 probabilities corresponding to different classes of the

ImageNet dataset. Specifically, pooling is a down-sampling operation that applies aggregate statistics

for local features. The output of a CNN layer typically includes many feature maps, which leads to
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Figure 2.6: Activation maximisation of the first filters of each convolutional layer in a VGG. The
notations of “conv1” through “conv5” distinct hidden layers, where a larger number represents a
deeper hidden layer. Image replicated from [49].
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Figure 2.7: The VGG16 architecture with blue rectangles representing the convolutional layers,
white rectangles denote the max pooling layers and green rectangles represent fully connected layers.
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Figure 2.8: An example of 2D max pooling. Image is replicated from http://cs231n.github.io

high computational costs for the next layer. The pooling operation reduces the size of the feature

maps by using the maximum or averaged values from the local patches that correspond to the max

and mean poolings. Figure 2.8 provides an example of max pooling with a filter size of 2 × 2, stride

2, and no padding.

Figure 2.9: An example of 2D convolution with a stride of 2. The blue squares denote the input
values, dotted lines represent the padding values, and green squares denote the output values. Image
is taken from [43].

Another way to down-sample the feature maps is to set the stride value of the convolution layers

higher than 1. Figure 2.5 includes an example where the stride is equal to 1. If the stride is set to

2, as in Figure 2.9 shows, then the filter will skip two values resulting in an output of 3 × 3. Even

though skipping values during convolution leads to information lost, this approach is still used in

generative adversarial networks (GAN), as described in Section 2.3. This method works well because

by using the stride for down-sampling, the CNN can learn its spatial down-sampling function [19],

which stabilises the GAN training. In this thesis, a convolution with a stride of 2 is used for the

down-sampling operation in the GAN.
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Deconvolution

Figure 2.10: An example of 2D transposed convolution. Image is taken from [43].

Convolution and pooling are down-sampling operations that encode the image into high-level features.

To decode the encoded features, up-sampling operations are required. Deconvolution, also known

as transposed convolution [43], is typically applied for up-sampling. Figure 2.10 demonstrates the

operation of 2D deconvolution, which is normal convolution with the exception that zeros are inserted

between the input values by a given stride number. As in the figure, the size of the input feature

map is 3 × 3, and with a 3×3 filter and a stride of 2 (i.e., insert one zero between the input values),

then the output size is 5 × 5. Apart from deconvolution, there are different types of up-sampling

operations, such as the sub-pixel convolution [29] for super-resolution tasks and the resize convolution

for reducing the checker-board artefact [50].

2.1.6 Word embedding

In this thesis, “text” represents text descriptions, i.e., sentences with multiple words, a “word” rep-

resents a single word. To represent text in a computer, a string format is used. However, to perform

computation with text, each word of the text must be converted into a numerical representation.

Figure 2.11: An example of a one-hot vector for words.



26 Chapter 2. Background

One-hot encoding is a simple way to represent words as shown in Figure 2.11, in which each word

is assigned a unique bit “1” in a vector. To encode the entire sentence into the text representation

(i.e., text embedding), the list of text embeddings are feed into a recurrent neural network (RNN),

as will be introduced in the next subsection. The drawback of one-hot encoding is its vector length is

equal to the number of words in the vocabulary of the context of the application, which could contain

thousands of words [9]. So, one-hot vector can lead to challenges of dimensionality [2].

Another common method to represent text is called bag-of-words [51]. Instead of converting words

into a numerical format, the bag-of-words approach directly uses the word frequencies to represent the

text. For example, given the text “we like deep learning, do we?”, we can assign based on occurrences

of each word, “we” = 2, “like”=1, “deep”=1, “learning’=1 and “do”=1. The drawback of bag-of-words

is that it does not contain any temporal information, i.e, the semantic meaning from the order of the

words is ignored.

One-hot vector for a word Word embedding matrix Embedded vector

Figure 2.12: An example of word embedding.

Neural network-based word representation methods have been widely used more recently [1, 5]. For

enhancing the one-hot-vector, a word embedding vector with floating-point numbers to represent a

word can contain more information and largely reduce the length of the one-hot vector. Figure 2.12

shows an example of word embedding that multiplies the one-hot vector with the word embedding

matrix to encoded the word into a vector of 3 values, which can be fed into the remainder of the

network, such as a softmax layer for classifying the sentiment of a word. The row and column numbers

of the word embedding matrix equal to the number of words in the vocabulary and the embedding

size, respectively. The embedding size is often much smaller than the vocabulary size, which depends

on the application and data. For example, one study [1] used a embedding size of 512 to represent the

words in a vocabulary containing thousands of words.
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Figure 2.13: A visualisation of word embedding space using t-SNE.

In practice, we would not use a one-hot vector to represent a word and multiply it with the word

embedding matrix. Instead, we assign an unique ID to each word in the vocabulary, where the ID

index ranges from 0 to the vocabulary size minus 1. Then, for a given word, we can directly obtain

the corresponding row vector from the word embedding matrix according to the word ID. Considering

Figure 2.12 for an example, instead of using one-hot vector, if we assign an ID of 3 to represent the

word, then we can use this indexing to directly obtain the blue vector from the word embedding matrix

without the need for matrix multiplication.

To generate the text representation (i.e., text embedding) from the word embeddings, the word embed-



28 Chapter 2. Background

dings in the sentence must be further encoded into one vector. In practice, the word embedding matrix

is updated together with the rest of the network (e.g., recurrent neural network, RNN) [1, 5, 52]. In

this thesis, we use a method [52] designed for text-and-image applications to pretrain the text encoder

by including both the word embedding matrix and RNN, and details are provided in Chapter 3.

There also exist methods for pretraining the word embedding matrix, such as Word2vec [53] and

Glove [54], which map similar words into adjacent latent representations. Figure 2.13 visualises a

trained word embedding matrix via Word2vec with TensorLayer 1. By projecting the word embedding

vectors into a two-dimensional space using t-SNE [55], the words in the same category (e.g., France,

China, and Canada for countries) are seen to have smaller separating distances compare to unrelated

words.

2.1.7 Recurrent neural networks

Vanilla recurrent neural network

Figure 2.14: Diagrams representing models of feed-forward and recurrent neural networks for dif-
ferent purposes. The green diamonds represent the inputs, the orange circles denote the hidden
informations, and blue rectangles represent the outputs.

Both the convolutional neural network (CNN) and fully connected layers are categorised as feed-

forward neural networks (FNNs) as they only pass data layer-by-layer and obtain one output for one

input (e.g., an image in input with an output of a class label). There are many time-series data sets,

such as language, video, and biosignals that could not fit into this framework. The recurrent neural

network (RNN) is an expanded deep learning architecture [2] designed for processing time-series data,

such as sequentially feeding the words from a sentence into a RNN. Figure 2.14 illustrates the data

flow of FNN and RNN for a variety of models, and are described from left to right in the following:

1https://github.com/tensorlayer/tensorlayer/tree/master/examples/text_word_embedding

https://github.com/tensorlayer/tensorlayer/tree/master/examples/text_word_embedding
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• One-to-one. An FNN without using an RNN where one input data results in one output data,

e.g., image classification that inputs an image and outputs a class label.

• One-to-many. An RNN decoder decodes one data to sequential outputs, e.g., image captioning [1]

that inputs an image and outputs a text description.

• Many-to-one. An RNN encoder encodes a sequential data to one output data, e.g., text sentiment

classification that inputs a complete sentence and outputs a classification result. Note that word

embedding algorithms, such as Word2vec [53], are not for many-to-one, as they input one single

word and output the corresponding word embedding.

• Asynchronous many-to-many. Also known as Seq2Seq [56], this model consists of one RNN

encoder and one RNN decoder where the former encodes sequential data into its latent rep-

resentation, and the latter decodes the latent representation to sequential data, e.g., language

translation that encodes a complete sentence into latent space before beginning the translation

process [57].

• Synchronous many-to-many. An RNN receives one data and outputs one data for each step, e.g.,

real-time video anomaly detection that uses the sequential information to predict subsequent

frames.

Figure 2.15: Diagram of vanilla recurrent neural network.

Figure 2.15 presents the architectural of a vanilla RNN. Here, only one RNN exists and it is reused for

every time step with an output of a hidden state h, which contains the information from the previous
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time step. The initial hidden state h0 is usually set to zeros. Then at each subsequent time step, a

new hidden state ht is computed according to the previously hidden state ht−1 and the new input

data xt. The hyperbolic tangent function scales the hidden state to values between -1 and 1. The

definition of the hidden state vector h is as follows:

ht = tanh(xtWxh + ht−1Whh + bh) (2.15)

where Wxh and Whh are two separated matrices and bh is the bias vector. By feeding the hidden state

h into the other network, it can be used for a variety of purposes as shown in Figure 2.14. For example,

text sentiment classification is a “many-to-one” scenario where the input to the RNN encoder is the

word embeddings of every word in a given text, and the final hidden state is fed into a softmax output

layer that outputs the probabilities of different sentiments.

Long short-term memory

Figure 2.16: Diagram of long short term memory.

The vanilla RNN suffers from a long-term dependency problem where information cannot be main-

tained for a long time [58]. For example, given the sentences, “I am English. I lived in France for 10

years. I can speak two languages, French and ?”, we can guess the last word is “English”. However, it

is difficult for a vanilla RNN to predict same because the information contained in the first sentence,

“I am English”, is located at the beginning of the input, far from the last word. So, long short-
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term memory (LSTM) [58] is an advanced version of the RNN developed to alleviate this long-term

dependency problem of the vanilla RNN.

Figure 2.16 diagrams the LSTM where symbols “+” and “x” represent element-wise summation and

multiplication, respectively, and σ represents the sigmoid function. While the vanilla RNN only uses

a hidden state vector h to store historical information and the network output, LSTM introduces a

cell state vector C designed to store long-term information. The size of the vector C is defined based

on the application and data [59]. The inference of LSTM is separated into three steps.

Figure 2.17: The forget gate of long short-term memory.

First, to remove information from the previous time step, as shown in Figure 2.17, LSTM applies

a forget gate to remove the information from the previous cell state Ct−1. The forget vector ft is

calculated in Equation (2.16), where “[a, b]” denotes the concatenation of the two vectors a and b, and

Wf and bf are the matrix and bias, respectively, for the forget gate. Given that the values in ft are

between 0 to 1, multiplying ft with Ct−1 element-wisely (i.e., ft�Ct−1) reduces the specific values in

Ct−1 allowing the network to learn how to remove values from the previous cell state.

ft = σ([ht−1, xt]Wf + bf ) (2.16)

After removing information from the previous time step, the useful information of the current time

step must be added to the cell state. As seen in Figure 2.18, LSTM uses an input gate to “inject”

new information into the cell state by first extracting the useful information Ĉt from the previous

hidden state ht−1 and input data xt. Next, the input gate rescales the values into -1 ∼ 1 using a
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Figure 2.18: The input gate of long short-term memory.

hyperbolic tangent function, similar to the vanilla RNN. Finally, just as in the forget gate, it uses

the input vector it with values between 0 and 1 to control the the percentage of each values in cell

state to add to the next cell state. The input vector it and useful information vector Ĉt are calculated

in Equation (2.17). Given ft, it and Ĉt from the forget and input gates, as Figure 2.19 shows, the

updated cell state vector Ct is obtained by Equation (2.18) where the symbol � denotes element-wise

multiplication. The updated cell state Ct then passes into the next time step, resulting in a design

that better deals with the long-term dependency problem compared to vanilla RNN [58].

it = σ([ht−1, xt]Wi + bi)

Ĉt = tanh([ht−1, xt]WC + bC)

(2.17)

Figure 2.19: Update the cell state of long short-term memory.
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Ct = ft � Ct−1 + it � Ĉt (2.18)

Figure 2.20: The output gate of long short-term memory.

As with vanilla RNN, a hidden state ht is required for the output of each time step. Given the updated

cell state vector Ct, the previous hidden state vector ht−1, and the input data xt, the LSTM uses an

output gate function to computed the current hidden state ht as in Equation 2.19.

ot = σ([ht−1, xt]Wo + bo)

ht = ot � tanh(Ct)

(2.19)

Several variants of LSTM exist, including the Gate Recurrent Unit (GRU) [57]. However, Greff et

al. [59] analysed eight LSTM variants on three representative tasks, including speech recognition,

handwriting recognition, and polyphonic music modelling, and summarised the results of 5,400 ex-

perimental runs (representing 15 years of CPU time). This review suggests that none of the LSTM

variants provides significant improvements to the standard LSTM, so we selected to use the standard

LSTM [58] in our experiments.
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2.2 Training Deep Neural Networks

In this section, we describe the details of training deep neural networks, including gradient descent,

back-propagation, hyper-parameter selection, overfitting problem, and regularisation.

2.2.1 Gradient descent and error back-propagation

!

loss

Global minimum

Local minimums

Figure 2.21: An example of gradient descent.

In deep learning, given a network and a loss function, training the network is the process to minimise

the loss value L by updating the network parameters θ, such as the weights, biases, and filters.

Gradient descent is one method to update the network parameters [2] for training. Even though there

are some other optimisation methods exist, such as limited memory BFGS (L-BFGS) and conjugate

gradient (CG), due to the drawbacks related to larger computation requirements, they are not often

applied [2]. Therefore, we use gradient descent to optimise our networks, and include here only

a review of this approach and how to update the network parameters layer-by-layer through error

back-propagation [38].

Figure 2.21 illustrates a simple example of gradient descent. To train a neural network, it is initialised

with random network parameters. As denoted by the red arrows, we next iteratively compute the

gradient and update the parameters θ to minimise the loss. Specifically, the gradient is the first order
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partial derivative of the loss L with respect to the parameters θ, which is written as ∂L
∂θ . Given this

gradient, the parameters are updated by θ := θ − α∂L∂θ .

The process of error back-propagation [60] computes the gradients ∂L
∂θ for every parameters in the

network. When computing the gradient, an intermediate result δ = ∂L
∂z is introduced, which is the

partial derivative of the loss L with respect to the layer’s output z. Based on this intermediate result,

the process next computes the partial derivative of the loss L with respect to every parameters ∂L
∂θ

which is then used to update the parameter values.

The layers are indexed as l = 1, 2, ...L, where L is the index of the output layer, each layer has

an output zl, an intermediate result δl = ∂L
∂zl

, and an activation output al = f(zl) (where f is the

activation function). We use a MLP network with MSE loss and a sigmoid activation function to

illustrate the process of error back-propagation. Given zl = al−1W l + bl, al = f(zl) = 1

1+e−zl
and

L = 1
2(y− aL)2, we represent the partial derivative of the activation output with respect to its output

as ∂al

∂zl
= f ′(zl) = f(zl)(1 − f(zl)) = al(1 − al) and the partial derivative of the loss with respect to

the activation output as δL
δaL

= (aL − y). To compute the partial derivative of the loss with respect to

the output layer, we apply the chain rule as follows:

• δL = ∂L
∂zL

= ∂L
∂aL

∂aL

∂zL
= (aL − y)(aL(1− aL))

Then, the partial derivative of the loss with respect to all other layers’ outputs are computed as the

following, where l = 1, 2, ..., L− 1.

• Given zl+1 = alW l+1 + bl+1, we have ∂zl+1

∂zl
= W l+1f ′(zl)

• Then δl = ∂L
∂zl

= ∂L
∂zl+1

∂zl+1

∂zl
= δl+1 ∂zl+1

∂zl
= δl+1(W l+1)T ∂a

l

∂zl
= δl+1(W l+1)T � (al(1− al))

The second step of the error back-propagation is to computes the partial derivative of the loss with

respect to the parameters ∂L
∂W l and ∂L

∂bl
of each layer based on the intermediate result δl.

• Given zl = al−1W l + bl, we can have ∂zl

∂W l = al−1 and ∂zl

∂bl
= 1

• Then ∂L
∂W l = ∂L

∂zl
∂zl

∂W l = (al−1)T δl , ∂L
∂bl

= ∂L
∂zl

∂zl

∂bl
= δl1 = δl

Finally, we use the ∂L
∂W l and ∂L

∂bl
to update the parameters W l and bl as follows:
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• W l := W l − α ∂L
∂W l

• bl := bl − α ∂L
∂bl

where α, also known as the learning rate, is a value to control the step size of each update. Additional

information about this learning rate is provided in the next subsection.

Gradient descent updates the parameter iteratively and converges to a minimum point of the loss

function as in Figure 2.21. In practice, the converged point is typically a local minimum rather than

the global one. However, as deep neural networks offer a good representation capacity, the local

minimums tend to be close to the global minimum [2].

2.2.2 Stochastic gradient descent and adaptive learning rate

As the training data is usually large in practice, the loss value is not computed by using all training

data for each update. Otherwise, one update would require significant computational time. Instead,

for each update, the modified process of stochastic gradient descent (SGD) [38] randomly selects a

small number of the data from the training set. These data are called a “mini-batch”, and the quantity

of data in the mini-batch is called the “batch size”. By updating the parameter multiple times, the

mini-batches will cover the entire training set. The process of SGD is outlined in Algorithm 1:

Algorithm 1 The training process of stochastic gradient descent (SGD).

Input: parameters θ, learning rate α, number of training steps/iterations n
1: for t = 0 to n do
2: ∂L

∂θ ; compute the gradient using a random mini-batch

3: Oθ := −α ∗ ∂L∂θ ; compute the parameters update
4: θ := θ + Oθ; update the parameters
5: end for
6: return θ; return the trained parameters

The learning rate controls the step size of the update and is the most important parameter in SGD. If

the learning rate is too large, then the update may fail to find the minimum point. If the learning rate

is too small, then the update will be slow. It is difficult to determinate the value of the learning rate, so

recent studies proposed adaptive learning rates, such as Adam [61], RMSProp [62] and Adagrad [63],

which speed up the training by automatically adjusting the learning rate. The principle of the adaptive

learning rate is to shift to a larger step when the parameters receive small gradients and take a smaller

step when receiving large gradients. Adam is the most frequently used method. Instead of using the
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gradient to update the parameters directly, Adam computes the running average of the gradients and

the second moments of the gradients to update the parameters as shown in Algorithm 2. The β1 and

β2 terms are the forgetting factors, also known as momentum, for the gradients and second moments

of the gradients, respectively. By default, β1 is 0.9 and β2 is 0.999 [61].

Algorithm 2 The training process of Adam optimisation.

Input: parameters θ, learning rate α, number of training steps/iterations n, β1 = 0.9, β2 = 0.999,
ε = 10−8

1: m0 ← 0; initialise the first order moment vector
2: v0 ← 0; initialise the second order moment vector
3: for t = 0 to n do
4: ∂L

∂θ ; compute the gradient using a random mini-batch

5: mt ← β1 ∗mt−1 + (1− β1) ∗ ∂L∂θ ; update the first order moment vector

6: vt ← β2 ∗ vt−1 + (1− β2) ∗ (∂L∂θ )2; update the second order moment vector
7: m̂t = mt

1−βt
1
; compute the running average of the second moments of the gradient

8: v̂t = vt
1−βt

2
; compute the running average of the second moments of the gradient

9: Oθ := −α ∗ m̂t√
vt+ε

; compute the parameters update

10: θ := θ + Oθ; update parameters
11: end for
12: return θ; return the trained parameters

Many methods exist to determinate when to stop the SGD training, such as setting a fixed number of

updates and a threshold for the loss [2]. However, in practice, SGD is usually terminated after being

trained for a specified number of epochs or steps [37, 44], where one epoch represents the mini-batch

has looped over the entire training set.

2.2.3 Hyper-parameter selection

Validation set

In deep learning, hyper-parameters consist of the settings of the model, such as the number of layers

and filters, and the settings of the training, such as the number of epochs, batch size and learning

rate. These settings affect the performance of the model, and to obtain a better model, selecting these

hyper-parameters appropriately is essential.

To evaluate the performance of different hyper-parameters settings, the data is usually split into

training, testing, and validation sets. Then, multiple settings configurations are applied to the training

set and evaluated on the validation set. Finally, the settings with the best performance are selected

for evaluation on the testing set to obtain the final performance metrics.
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Cross-validation
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Figure 2.22: An example of cross-validation. The dark blue and light blue circles represent the
training and testing data, respectively.

For small datasets, splitting the data into training, validating, and testing sets may be challenging.

If the size of the training data is too small, then the performance of the model will be impacted.

On the other hand, if the test data is too small, then the evaluation may not adequately reflect the

performance. To evaluate small datasets, cross-validation is required in which the data is only required

to be split into training and testing sets.

In cross-validation, the dataset is separated into K folds of data all with the same size. One of these

folds of data is selected for validation and the remainder for training. The final evaluation result is

the average over all folds. Figure 2.22 illustrates 4-fold cross-validation for 12 examples that are split

into four folds with three examples providing four results by training the network four times. The

mean and standard deviation of these four results represent the performance of the network and its

hyper-parameters.
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Figure 2.23: An example of overfitting. The blue dots represent the training data points, and the
orange dots are the testing data points.

2.2.4 Overfitting and regularisation

Overfitting

An overfitted model from a machine learning algorithm contains excess parameters to fit the training

data and results in a low loss on the training set but a high loss on the testing set. In Figure 2.23,

for example, the dotted curve is a simple overfitted model that clearly fits all training data points

exactly. However, it will fail to fit additional testing data points reliably. In contrast, the straight line

modelled by y = a+ bx includes fewer parameters than the dotted curve while offering a better fit for

the testing data points.

Underfitting is the opposite scenario where the model cannot fit the training data resulting in high

losses for both training and testing sets. However, in practice, underfitting can be solved by using a

deeper network, but solving overfitting is more challenging. The simplest way to alleviate overfitting

is to use more data while training the model. In practice, it can be difficult to collect and label more

training data due to data acquisition costs and labelling effort.
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Weight decay

Weight decay is a simple and effective regularisation method to solve the overfitting problem, it directly

introduces a regularisation term into the loss function for obtaining smaller network parameters θ. For

example, as Figure 2.23 shows, if the parameters from c to h of the dotted curve have smaller values,

then it will have a lower swing range that can better fit the testing data points. The loss function

with the parameter norm penalty is defined as follows.

Ltotal = L(y, ŷ) + λΩ(θ) (2.20)

where L(y, ŷ) is the loss function computed from a given target y and predicted results ŷ, Ω is the

parameter norm penalty function and λ is a small value that controls the strength of the regularisation.

Two of the most common parameter norm penalty functions are L2 = ||W ||22 and L1 = ||W || norms.

The network parameter values are often smaller than 1, so by using L2, a smaller value can result in a

much smaller penalty than L1 (e.g., |w| > w2) [2]. In contrast, L1 can have a larger plenty than L2 for

small values, so L1 has the sparse property of producing very small, even zeros, network parameters

enabling the networks to perform feature selection, i.e., discarding some input features by setting the

corresponding parameter to zero or a very small value [2].

Dropout

Large neural networks include many parameters making it difficult to deal with the overfitting by

combining the predictions from so many parameters. Dropout [64, 65] is a popular technique for

addressing this problem, by preventing the large number of parameters from over co-adapting. To

prevent the co-adaptation of parameters, during training, the hidden outputs are randomly set to zero,

which resembles a random disconnection of the neural units from one layer to the next, as illustrated

in Figure 2.24. According to error back-propagation, with a zero-valued output a, the corresponding

partial derivative of the loss with respect to the layer output δ will be zero. In other words, only the

remaining connected weights will be updated. Therefore, the dropout method can train may different

sub-networks while allowing all of them to share the same network parameters [64]. During testing,

dropout is disabled, and no output elements are set to zero. In other words, all sub-networks are
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Figure 2.24: Applying dropout to a fully connected network.

used to predict the result represented as using the average from many networks as the final result

(i.e., ensemble learning [66]). The theoretical proof for dropout was not presented in the original

publication [64], but recent studies proved its effectiveness in ensemble learning [66] and Bayesian

approximation [67].

Batch normalisation

Batch normalisation [68] is the introduction of a layer that normalises the inputs to have a mean of

0 and variance of 1 and can improve the performance of a neural network and its training stability.

Specifically, during training, the batch normalisation layer estimates the mean and variance of the

batch input using a moving average, which updates the moving mean and variance for every iteration

to be used for normalising the batch input. During testing, the moving mean and variance are fixed

and applied to normalise the input.

Apart from improving performance and stability, batch normalisation provides regularisation. Similar

to the dropout process that adds a random factor to the hidden values, the moving mean and variance

of batch normalisation introduce randomness as they are updated in each iteration according to the

random mini-batch. Therefore, the network must learn to be robust enough to deal with the variation.
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Figure 2.25: An example of image data augmentation. The top-left image is the original and the
others are obtained by a randomly flip, shift and zoom the original.

Other methods for avoiding overfitting

Other methods exist for preventing overfitting, such as early stopping and data augmentation. Early

stopping is a simple approach to avoid overfitting that allows for the discontinuing of the training

once it matches an empirical criterion, such as a threshold value of accuracy on the validating set.

Data augmentation increases the number of training data by augmenting the existing training data.

For example, image data can be augmented by simply flipping, rotating, shifting, and zooming. A

data augmentation method that generates arbitrary but reasonable data can reduce overfitting and

improve the performance [10,45,46]. Similar to an image, the audio can be augmented by adding noise

or perturbation. For example, dropout can be applied into the network during the training phase while

improving the performance of speech recognition [64]. Also, a recent study [69] showed that adding

speech perturbations into a raw speech audio signal can improve the performance of speech recognition

algorithms.

Comparing to image, it is not reasonable to directly apply augmenting transformations of raw textual

data because the order of words provides specific meaning. For example, shuffling a text description

“a man like dog” does not equal to “a dog like man” in terms of its meaning. Because of this challenge,

there remains no common practice for text augmentation [14]. An ideal text data augmentation process

would be to rephrase the sentences manually. However, due to the large workload, a common text

data augmentation approach is to replace words with pre-defined synonyms, which requires domain

knowledge from human [14,15]. Instead of augmenting the text explicitly in the raw data, some studies

alleviate the overfitting problem by changing the text embedding [24, 64]. For example, interpolating
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the text embeddings of two random texts can help to fill the gaps in the text latent space [24].

2.2.5 Transfer learning

Introduction and Background
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Figure 2.26: An example of transfer learning in deep learning.

Transfer learning, also known as inductive transfer [70, 71], utilises the knowledge of one task and

applies it to related tasks. In deep learning, pre-trained models are widely used for improving the

performance of many tasks without labelling more data [1, 34]. The idea is to train a network on a

large dataset with a general task and reuse the network for another network with the target task. This

transfer tends to work if the datasets include common features [70].

For example, as in Figure 2.26, Vinyals et al. [1] pre-trained an Inception-V3 network [48] on Ima-

geNet [4] by performing a classification task. Then, the trained Inception-V3 network is used again

as the image encoder for an image captioning task to achieve a successful result. In transfer learn-

ing, the datasets for pre-training and the target tasks can be different. For example, the objects in

ImageNet usually occupy the entire image and are located in the centre. In the image captioning

dataset, MSCOCO [9], the objects are relatively small and located across the image. Similarly, Zhe et

al. [34] used a pre-trained VGG19 network [45] on ImageNet for a human pose estimation task. In

pose datasets, such as MSCOCO [9] and MPII [72], the images include people a variety of scales and

backgrounds. These examples demonstrate that even though the images used to pre-trained the image

encoder are different from the images of the final tasks, the pre-trained encoder can still improve the
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performance of target tasks [1, 34]. This success is because by training the encoder with a very large

dataset, it can learn the perceptual concept and general features of different objects in the images.

Pre-trained models are also widely used in natural language processing. To encode a sentence, we

can pre-train a word embedding vector on a large text dataset using Word2vec [53,73] or GloVe [54].

The purpose of pre-training is to map words into a latent space. Then, meaningful vectors represent

discrete words to improve the performance of the target task. Transfer learning is similar to how

humans learn. For example, when we learn to classify text as spam, we do not need to re-learn word

meanings from scratch but utilise our existing knowledge of the language. Similarly, when learning a

new visual task, humans do not re-learn the concepts of edge, shape, colour, and texture from scratch.

Introduction and Background
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Figure 2.27: An example of multi-task learning in deep learning.

While, transfer learning is powerful and easy to apply, the definition of the knowledge that can be

transferred for a learning context is not straightforward, so experimentation is typically required [70].

The transfer learning will fail if the data distribution for the pre-training and target tasks are unrelated,

and only work if the pre-trained dataset is “suitable” or “appropriate” to the target context [2].

Multi-task learning is another form of transfer learning [2, 44]. Instead of pre-training a network and

then reusing it for another task, the multi-task learning approach jointly trains a network with several

relative tasks by sharing some part of the network, as Figure 2.27 illustrates. For example, a recent

study of Mask R-CNN [44] combined object segmentation and detection together, so the features used

by both tasks were shared and improved jointly to improve the score of the object detection.
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2.3 Generative Adversarial Networks

By using deep neural networks, many models have been developed recently for generating data such

as image and signal [19, 74]. Architectures of these models include deterministic networks [75–77],

Variational Autoencoders (VAE) [18,78,79], autoregressive models [80,81] and Generative Adversarial

Network (GAN) [26,82]. Among these, GAN-based methods [13,19,20,24,26] have demonstrated great

success in generating high-visual quality and high-resolution images since 2015 and can be applied to

solve computer vision problems [7, 83]. All of these studies are based on the vanilla GAN framework

introduced in Goodfellow et al. [26]. In this section, we describe the vanilla GAN followed by the

multi-modal problem and how to apply auxiliary information into the GAN framework.

2.3.1 Vanilla GAN

Introduction and Background
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Figure 2.28: The vanilla GAN.

The vanilla GAN consists of a generator network G and a discriminator network D. The generator

learns to map the latent variables (a noise vector) z to the visual data x to synthesise fake samples

x̂ = G(z). The discriminator incorporates real samples x and fake samples x̂ = G(z) as inputs

to outputs the probability (D(x) or D(G(z))) for distinguishing real and fake images. Figure 2.28

illustrates the training process of the vanilla GAN. Specifically, the generator and discriminator are

trained in a competing way, such that the generator attempts to fool the discriminator, while the

discriminator attempts to distinguish real and fake samples. Through this competition, the two

networks enhance one another. A minimax function models this training process over the value

function V (D,G) as follow:
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min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] +

Ez∼pz [log(1−D(G(z)))] (2.21)

where the latent variable z is sampled from a prior distribution pz, and the real samples x are sampled

from the real data distribution pdata. The pz is usually a uniform distribution or standard normal

distribution with a mean of zero and variance of one [19]. The corresponding loss functions is written

as follow:

LD = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))]

LG = Ez∼pz [logD(G(z))] (2.22)

From the theoretical perspective, GAN training learns a function that can map a distribution to

another (e.g., from pz to pdata). The syntheses process is like a sampling process where given a latent

vector z, it finds the corresponding data from pdata [26]. The evaluation of generative models remains

an open problem, especially for those tasks that do not have specific outputs [29, 84, 85]. For this

reason, most of GAN studies incorporate a human evaluation method [25,86,87].

2.3.2 Deep convolutional generative adversarial networks

Based on the vanilla GAN, Radford et al. [19] proposed a learning method to synthesise 64 × 64 images

from latent variables by utilising the power of a Deep Convolutional GAN (DCGAN). The experiment

demonstrated that the latent variables reflect certain features in the images. By interpolating the

input noise vector, the features of the images can be linearly changed, e.g., by controlling the window

size of a bathroom or the smiles on faces. The loss functions of the discriminator D and generator G

are the same as the vanilla GAN [26].

Training a GAN is difficult and can lead to a failed training. Some methods [19,88,89] were developed

for improving the stability of the adversarial training process, and DCGAN proposes a set of empirical

tricks on the network architecture and training method to enable the GANs to be trained stably
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Figure 2.29: Example results of randomly generated bedroom images using DCGAN. Image is
from [19].

for synthesising images in most settings. The generator is a deconvolutional decoder [43] and the

discriminator is a convolutional encoder. The following tricks help stabilise adversarial training:

• For the generator, use deconvolutions with a stride of 2 for the up-sampling operation.

• For the discriminator, use convolutions with a stride of 2 for the down-sampling operation.

• Use batch normalisation [68] in both generator and discriminator (as detailed in Section 2.2.4).

• Use rectifier (ReLU) [33] in the generator and leaky ReLU [36] with a slope of 0.2 in the dis-

criminator.

• Use an initial learning rate of 0.0002 and Adam optimisation [61] with a momentum β1 of 0.5

for changing the learning rate adaptively.

Figure 2.29 shows example results from randomly generating bedroom images using DCGAN. The

image visual quality and resolution have significant improvement compared with the vanilla GAN [26].

To stabilise GAN training, the above tricks are incorporated for all GANs in this thesis.
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2.3.3 Conditional GAN

Figure 2.30: Example results of generating digit images using a vanilla conditional GAN where each
row is conditioned on one label. Image is taken from [17].

A vanilla GAN can only synthesise data randomly, which limits its practical applications. There

exist many studies built upon the vanilla GAN with additional enhancing conditions that allow for

synthesised images to be not only plausible but also match the constraints imposed by the conditions.

For example, a GAN can be conditioned on discrete class labels [16, 17, 90–92]. Also, many other

works synthesised images by conditioning a GAN on images for tasks such as domain transfer [13,93–

95], image editing under constraints imposed by users [96, 97], image super-resolution [28, 29], image

synthesis from surface normal maps [98], image inpainting [30], and style transfer [28, 99]. These

conditions can also be of a text format in which images are generated to match given text descriptions.

Reed et al. [24] proposed an end-to-end deep neural architecture based on the conditional GAN

framework, which successfully generated realistic images (64 × 64) from natural language descriptions.

Apart from image synthesis, some recent studies use GAN to synthesise different types of data for

a variety of applications, such as synthesising signals for speech enhancement [100] and high-level

features for domain adaptation [83].

These types of studies can be categorised as conditional GAN [17] and are considered as mapping a

mixture distribution to another. A vanilla conditional GAN [17] is extended from the vanilla GAN by

feeding auxiliary information y into both the discriminator and generator as additional input. Then,

for the generator, the latent variables z and y are combined into a joint latent representation, and the

data samples x and y are input to the discriminator. The vanilla conditional GAN can be formulated



2.3. Generative Adversarial Networks 49

into the following two-players minmax game.

min
G

max
D

V (D,G) = Ex,y∼pdata [logD(x, y)] +

Ez∼pz [log(1−D(G(z, y), y))] (2.23)

In this thesis, all GAN models are conditional GAN that conditioned on different auxiliary information,

such as image, text description or both. However, our conditional GANs are more complex than the

vanilla conditional GAN described above.
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Chapter 3

Efficient Text-to-Image Synthesis

Efficient use of data is essential for deep learning, especially for the generative tasks because training

data are difficult to obtain and label. Synthesising an image conditioned on the text description (i.e.,

text-to-image synthesis) is a typical generative task that suffers from limited training data. Ideally,

each image should have an infinite number of annotated text descriptions. In this chapter, we explore

how to improve the visual quality of the image in text-to-image synthesis without manually labelling

more training data, providing controlled generated results using object attribute information.

3.0.1 Introduction

Since 2015, throught the improvement of the vanilla generative adversarial network (GAN) [26], GAN-

based methods [19,20,101] have demonstrated great success in generating high-quality visual images.

For example, DCGAN [19] successfully synthesises 64 × 64 RGB images by extending the vanilla GAN

with a deep convolutional network. Following this, the Progressive GAN [20] successfully synthesise

1024 × 1024 face images. However, the vanilla GAN framework [19, 26] only randomly synthesise

images making it difficult to apply to many real-world applications because these usually require

specific outputs. To control the synthesis, the auxiliary classifier GAN (ACGAN) [16] synthesises

images for specific classes, such as generating numerical characters conditioned on a given digit or

a different object in the ImageNet dataset conditioning on class labels to achieve class-based image

synthesis. However, the class label only provides the information for the object categories, such as

bird, flower or car, and it cannot provide other object attribute information, such as the colour of the

object.

51
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Compared with the class label, a text description can contain more information, including both the

object category and the object attribute information, such as the background scene and human action.

Therefore, learning image synthesis conditioned on a text description is more controllable and practical

compared to a random or class-based image synthesis approach like DCGAN or ACGAN, respectively.

To achieve this, Reed et al. [24] introduced a GAN-based text-to-image synthesis method called GAN-

CLS [24] that successfully synthesised 64 × 64 images conditioned on a provided text description. The

experiment demonstrated promising results on the Caltech-200 birds [102] and Oxford-102 flowers [103]

datasets, which only contain one kind of object, either a bird or flower are centrally aligned in the

images. However, GAN-CLS has difficulty in synthesising a visually clear image on more complex

datasets, such as the MSCOCO [9]. Unlike the bird and flower datasets, MSCOCO contains multiple

object categories, such as a person and a car or aeroplane. Also, the size, location, and background

of the objects are random in MSCOCO making it more challenging compared to the bird and flower

datasets. A dataset containing a single category is called a single-category dataset (i.e., the Caltech-

200 birds and Oxford-102 flowers) and one that contains multiple categories is a multi-category dataset,

MSCOCO is a typically multi-category dataset.

An essential challenge of text-to-image synthesis is that labelled text descriptions are limited in the

training set. For example, MSCOCO [9] includes only five labelled text descriptions for each image,

which makes it more likely that training will not cover sufficient variances to synthesise an image. A

problem with several solutions instead of one unique solution is known as a multi-modal problem [26].

Image synthesis conditioned on text descriptions is highly multi-modal as many possible text descrip-

tions that can correctly match an existing image. Specifically, given an image, we can consider infinite

ways to describe it. For example, given an image with some fruits on a table, we might describe it as

“some fruits on a table”, “this is a table with some fruits”, “a table”, “bananas and apples on a table”

or “here are some fruits”. Each of these phrases can describe the given image correctly. Similarly,

provided a text description, we could consider infinite ways to create an image. For example, for

the text, “people are playing tennis”, we can draw people on an image with different backgrounds,

lighting, clothes, poses, and sizes. Therefore, this generative task is different from typical machine

learning applications, such as image classification and object detection, that has only one input and

one ground truth output. The conversion between text and image should could have infinite results.

An ideal dataset should include infinite labelled text descriptions per image to ensure the model

is sufficiently general to produce the best results. When using more text descriptions to train the
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text-to-image model, the training data can include more information and cover more possible cases

of the data, which will increase the robustness and generalisation of the model [14]. Therefore, the

visual quality of synthesised images can be improved when inputting unseen text descriptions to the

model [24]. However, it is expensive to label many text descriptions manually for each image in the

dataset. Fortunately, in recent years, image captioning algorithms that synthesise text descriptions

conditioned on images have achieved success using deep learning [1,104,105]. The state-of-the-art deep

learning-based image captioning methods [1,104,105] outperform the previous methods [106,107] with

comparable performance to humans on the MSCOCO dataset [1] 1.

To generate more text descriptions, we propose the use of a pre-trained image captioning module

to synthesise a large number of text descriptions for each image in the dataset and use these text

descriptions to train the text-to-image synthesis. This approach includes more information and covers

more variance of the data, which increase the robustness and generalisation of the model. This

method does not require additional domain knowledge from human, such as manually labelled more

training data. Moreover, by using the pre-trained image captioning module, we successfully train the

text-to-image generator on image datasets that do not have labelled text descriptions. Specifically,

we pre-train the image captioning module on MSCOCO, then use the image captioning module to

synthesise text descriptions for the images in MPII [72]. We use these synthesised text descriptions

to train the text-to-image generator. This training process utilises the knowledge of MSCOCO and

applies it to MPII, which is a process of transfer learning [71]. To the best of our knowledge, the

proposed method is the first work that can perform transfer learning on text-to-image synthesis for

unlabelled dataset. Because the synthesised texts are generated from images, we named the proposed

method as image-to-text-to-image (I2T2I).

3.1 Related Works

3.1.1 Text-to-image synthesis

In 2015, the study in DRAW [108] proposed a model based on the recurrent neural network (RNN) for

image synthesis. This method uses multiple steps to synthesise images and approaches the synthesis

as a sequential problem that allows the iterative construction of the images. It successfully synthesises

1http://cocodataset.org

http://cocodataset.org
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A bowl of bananas is on the table

A surfer, a woman and a child walk
on the beach

Align-DRAW GAN-CLS

Figure 3.1: Example results of align-DRAW and GAN-CLS on the MSCOCO dataset. The image
are from [24].

images for simple numeric character datasets, such as MNIST, which contains back-and-white hand-

written numeric characters and the Street View House Numbers dataset [109] that contains coloured

street view house numbers. Extending from DRAW, Mansimov et al. [110] proposed an RNN model

called align-DRAW for text-to-image synthesis. Even though, align-DRAW successfully synthesises

images conditioned on text description, it tends to output blurry images [110]. Adding an additional

sharpening post-processing step can generate clearer edges, but it is not an ideal method to improve

the image visual quality [110].

To utilise the power of GAN to synthesise an image, to solve the multi-modal problem between the text

and an image, and to synthesise images conditioned on a given text description. Reed et al. proposed

a GAN-based text-to-image synthesis method called GAN-CLS [24]. This method outperforms the

previous RNN-based text-to-image synthesis methods [108,110]. The authors demonstrated the result

on two single-category datasets: Caltech-200 birds [102] and Oxford-102 flowers [103], and on a multi-

category dataset, MSCOCO [9]. The example results of align-DRAW and GAN-CLS can be found in

Figure 3.1. The results show that the GAN-CLS method can synthesise more object details. Therefore,

we used GAN-CLS as the baseline in our research. The details on the GAN-CLS method are as follows.
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Figure 3.2: Network architecture for text-to-image synthesis using GAN. The image is from [24].

GAN-CLS

!X real
fake

" RNN 
Encoder

" RNN 
Encoder

t
$%

$% : mismatching text

t : matching text
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X

Figure 3.3: Diagram of GAN-based text-to-image synthesis training. Blue lines: Feed the real
image with its matching text description to the discriminator. The discriminator is updated by
considering it a positive sample. Red lines: Feed the real image with a mismatched text description
to the discriminator. The discriminator is updated by considering it a negative sample. Green lines:
Feed a text description to the generator and then feed the corresponding synthesised image to the
discriminator. The discriminator is updated by considering it a negative sample, while the generator
is updated by impelling the discriminator to consider the synthesised image a positive sample.

3.1.2 GAN-based text-to-image synthesis

Figure 3.2 shows the network architecture of GAN-CLS. It consists of one generator G, one discrimi-

nator D, and one text encoder ϕ. First of all, the authors pre-trained the RNN text encoder ϕ that
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can map the text description into an embedding vector. Then, the generator outputs images based on

two inputs: 1) the text embedding ϕ(t) and 2) the normal distribution z. The discriminator outputs

the probability of its input image to be real based on two inputs: 1) the input image and 2) the text

embedding ϕ(t).

Based on this architecture, Figure 3.3 shows the training process of GAN-CLS. As the green lines

indicate, the generator learns to synthesise fake image x̂ conditioned on a given text description t,

and then feed the fake image into the discriminator to fool the discriminator to consider the fake

image a positive sample. On the other hand, as the red and blue lines indicate, the discriminator

not only needs to classify the real image x with the matching text description t as a positive sample

and to synthesise image x̂ with a matching text description t as the negative sample, but also needs

to classify the real image with a mismatched text description t̂ as a negative sample. By learning to

classify mismatched text, the discriminator can give a stronger signal to the generator about the text

information, which helps the generator synthesise a better visual quality image that can match the

text description [24]. In summary, the loss functions of the generator and discriminator are as follow:

LD = E(x,t)∼pdata [logD(x, ϕ(t))]

+ E(x,t̂)∼pdata [log(1−D(x, ϕ(t̂)))]

+ E(z,t)∼pdata,pz [log(1−D(G(z, ϕ(t)), ϕ(t)))]

LG = E(z,t)∼pdata,pz [log(D(G(z, ϕ(t)), ϕ(t)))]

(3.1)

where the first term of LD is to optimise discriminator D for classifying the real images and matching

text descriptions (i.e., x and t) as the positive samples. The other two terms are for classifying

the real images with mismatched text descriptions (i.e., x and t̂) and the synthesised images with

matching text descriptions (i.e., x̂ = G(z, ϕ(t)) and t) as the negative samples, respectively. The LG

is to optimise generator G for competing with the final term of LD. The LG lets generator G attempt

to fool the discriminator to classify the synthesised images as positive samples.

3.1.3 Filling the gaps in the text space for text-to-image synthesis

Extended from GAN-CLS, to alleviate the problem of the limited number of labelled text descriptions

for single-category datasets (e.g., the bird and flower datasets), Reed et al. [24] proposed a method
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Figure 3.4: Generating bird images by interpolating two texts on text space. Image is taken from [24].

called GAN-INT-CLS to generate text embeddings by interpolating two random text embeddings

from the output of the RNN text encoder ϕ, and used these interpolated text embeddings to train the

generator. More specifically, the authors trained the generator using the interpolated text embeddings,

which were obtained by averaging two randomly selected text descriptions from the training set. In

other words, they use the text embedding from Equation (3.2) to replace the the text embedding ϕ(t)

of G in Equation (3.1).

ϕ(t) =
ϕ(t1) + ϕ(t2)

2
(3.2)

where t1 and t2 are two text descriptions randomly selected from the training set.

Given N number of text descriptions, we can have N data points in the text space, where the text

space is the universal set of text descriptions that contains all possible text embeddings. Using the

random averaged text embeddings, we can have N2 number of data points in the text space. This

method allows the generator to learns to fill in the gaps in the text space in between data points [24].

For example, Figure 3.4 shows the results of generating images by interpolating two text descriptions,

where each interpolated image represents one data point on the text space. On the top of Figure 3.4,

we can see that given two text descriptions “blue bird with black beak” and “red bird with black beak”,

the averaged embeddings between them could represented “blue and red bird with black beak”. The

experimental results show that using averaged text embeddings can generate more diverse results on
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bird and flower datasets compared with GAN-CLS. The contribution of GAN-INT-CLS is to propose

an implicit way to fill in the gaps on the text space, increasing the density of the text space without

requiring someone to explicitly label more text descriptions for the images.

However, GAN-INT-CLS assumes that two randomly selected text descriptions can be interpolated.

This may work well for the bird and flower datasets where all the text descriptions describe the same

kind of object. The text descriptions of the bird and flower datasets mainly describe the colours and

textures of different parts of the objects [24]. For example, the interpolation of the text embeddings for

“a white bird” and “a red bird” could be “a light red bird”. In practice, for multi-category datasets,

different text descriptions may describe totally different objects, so the complicated information, such

as different object categories, quantities, actions and backgrounds cannot be interpolated. For exam-

ple, it is unreasonable to interpolate the text embeddings of “two peoples are walking on the grass” and

“a table with many plates of food and drinks” because we cannot find a reasonable meaning between

them. Thus, it is unsuitable to train a multi-category dataset using the averaged text embeddings [24].

In addition, as the averaged text embeddings do not have ground true images, the averaged text

embeddings can only be used for training the generator but not the discriminator. Thus, the dis-

criminator cannot directly learn to distinguish the averaged text embeddings [24]. To address these

problems, instead of using the averaged text embeddings of two randomly selected text descriptions,

our proposed method synthesises the actual text descriptions for all training images and uses them

to train both the generator and discriminator simultaneously. By doing this, all text embeddings

are explainable, and our human evaluation shows that the visual quality of the synthesised images is

improved.

3.1.4 Image captioning

Image captioning generates a text description for a given image. It can be considered the inverse

process of text-to-image synthesis. Many methods [106,107] have considered the image captioning task

to be several sub-problems and have solved each of them separately. For example, one researcher [106]

first detected the objects in an image and classified the attributes of each object, and then used the

object and attribute information to generate a sentence to describe the image.

In recent years, image captioning has had great success using deep learning [1, 104, 105]. Instead of

splitting the image captioning into several sub-problems, these techniques are built on a single model,
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which consists of a CNN encoder and an RNN decoder. The model encodes the image into an image

embedding using CNN and decodes the image embedding into a text description using RNN.

By optimising the CNN and RNN jointly, the deep learning methods outperform the previous meth-

ods [106,107] and even have comparable performance with humans on the MSCOCO dataset [1]. More

information about the ranking of image captioning methods can be found in the MSCOCO captioning

leaderboard 2.

3.2 Methods

The proposed method consists of one image captioning module, one RNN text encoder, one generator,

and one discriminator. The image captioning module is used to generate text descriptions for the

image in the training set. These text descriptions are used in the training of the other modules. The

RNN text encoder is used to encode the text description into a text embedding vector, which is fed

into both the generator and discriminator. The generator is used to the synthesise image conditioned

on the input text embedding vector. The discriminator is used to classify whether the input image

appear plausible and whether it matches with the input text description. In this section, we describe

how to train each of these modules and why we use an image captioning module to generate text

descriptions to train the generator.

3.2.1 Image captioning module

To have high-quality synthesised text descriptions, we use the state-of-the-art deep learning-based

image captioning model [1] as our image captioning module. To encode images into image embeddings,

following the verified model architecture described in [1], the state-of-the-art Inception V3 network

[48] is adopted as the image encoder E, as the left-hand side of Figure 3.5 shows. The convolutional

output is further encoded into a fixed-length vector of 512 values using a fully connected layer. The

image embedding is also known as image feature representation, which contains the visual information

of the input image [111]. The image encoder is pre-trained on the ImageNet [4] classification task.

Given the image embedding, to generate the text description, in the first step, the image feature

representation is fed into an long short-term memory (LSTM) decoder, which has two layers with 512

2http://cocodataset.org

http://cocodataset.org
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Figure 3.5: Architecture of image captioning module. The Image is from [1].

hidden units [1]. Next, the hidden and cell states will be passed into the next step as the left blue

arrow shows in Figure 3.5. In the second step, given the initialised hidden and cell states for the

LSTM decoder, a start token (i.e., a unique ID to represent the start of a sentence) is fed into a word

embedding layer with an embedding size of 512, and the embedding output will be further fed into the

LSTM decoder to obtain the hidden state. Finally a softmax output layer outputs the probabilities

of each word in the vocabulary.

To train the image captioning module, we follow the verified training process in [1], which achieved

the state-of-the-art performance. In the first step, as the image encoder is pre-trained on ImageNet,

we fix the parameters of the image encoder and optimise the LSTM decoder only. For regularisation,

dropout in keeping with a probability of 70% is adopted between the two LSTM layers. Following

Vinyals et al. [1], we use a batch size of 64 and train the model for 1,000,000 million iterations. The

initial learning rate is 2 and decays by 0.5 at 500,000 iterations. The standard stochastic gradient

descent (SGD) is used as the optimiser. In the second step, the entire model, including both the

image encoder and LSTM decoder, are optimised together, which can slightly further improve the

image captioning module [1]. Following [1], a learning rate of 0.0005 is used, and update the model
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is updated with another 1,000,000 million iterations with same batch size and optimisation method.

In addition, during training, following [1], images are first resized to 346 × 346, and then randomly

cropped into 299 × 299. Note that, in MSCOCO, the object and the pertinent information would not

be located at the edge of the images, so random cropping would not loss the text-related information

in the image [1, 9]. In addition, we randomly change the brightness, contrast, saturation, and hue of

images for data augmentation [1]. To stabilise the training, images pixel values are rescaled to -1 ∼

1 [1, 19].

For feed-forward propagation (i.e., inferencing), similar to the training phase, to obtain the initialised

hidden h0 and cell states c0 of the LSTM decoder, the image encoder E encodes the image onto a

vector with the length of 512 and then feeds the vector into the LSTM decoder, as Equation (3.3)

shows. After that, to obtain the first word, s1, of the sentence, a special start token s0 is feed into

the model, as Equation (3.4) shows. Moreover, the probabilities p1 of all words in the vocabulary are

computed, as Equation (3.5) shows. Given the probabilities p1 of all words, to obtain the first word

s1, we can select the word with the highest probability as the predicted word. For later steps, we feed

the output word to the next step and obtain the next output word in the same way. Note that, we

stop to feed the word to the next step when the output word is the end token of the sentence.

However, using the word with the highest probability will lead to only one text description that can

be generated from one image. In contrast, we can use top k sampling (k > 1), in which, we first select

the k words with the highest probabilities, and then sample one word from these words according to

their probabilities. The word with higher probability would more easily to be chosen. Selecting the

word with the highest probability can be considered to be setting k to 1 in top k sampling. Overall,

the text description, t = (s1, ..., si) for i starts from 1, can be generated by iterating the recurrence

relation defined from Equations (3.3) to (3.6):

h0, c0 = LSTM(θ,E(x)) (3.3)

hi, ci = LSTM(hi−1, ci−1,We(si−1)) (3.4)

pi = softmax(hiWho + bo) (3.5)

si = sample(pi, k) (3.6)
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where θ is the initial hidden and cell states of LSTM, which should be all zero values. In addition, E

is the image encoder, We is the word embedding matrix, and Who and bo are the weight matrix and

bias vector for the output fully connected layer. Given that MSCOCO has 11,519 words (including

the start and end tokens), the probability vector pi has 11,519 values.

3.2.2 Textual data augmentation via image captioning

COCO_train2014_000000001523

COCO_train2014_000000001906.jpg

a large red and blue truck on street next to buildings 
a large truck is parked on the street .
a red truck driving down a road next to tall buildings .
a large truck driving down a city street .
a red and blue truck on a street
a red trunk driving down a street with a large building .
a red truck is in the city
a red truck is parked in the middle of a road .

a living room has a small window
a living room with couches and a table
a room with a couch and chairs and a table
a living room with a couch , chairs and table in it .
a large living room has a couch and chairs
an elegant living room with a couch and a coffee table .
a large living room filled with furniture
a living room with two couches and a coffee table

COCO_val2014_000000005107

a group of people are standing outside a bus .
a bus parked next to a bus stop on a street .
people are standing outside of a parked bus .
a group of people standing on a sidewalk next to a bus .
a group of people standing next to a bus .
a bus is stopped at a bus stop .
a group of people waiting to get on the bus .
a large bus is parked on the side of the road .

COCO_train2014_000000581715.jpg

a close up of a pizza on a pan
a pizza on a pan on a table
a large pizza that has a slice cut out of it .
a large pizza with cheese , tomatoes , and green peppers
a pizza sitting on top of a wooden table .
a pizza with a few toppings on it
the pizza has been cooked and is ready to be eaten .
a large pizza that has some cheese on it

COCO_train2014_000000001072.jpg

a white and blue jet is flying over some trees
a large passenger jet flying over a lush green field .
the plane is flying low over a field .
a plane that is flying in the air .
a plane flying over a runway with trees in the background
an airplane with a large tail on the back of it
the airplane is taking off from the runway .
a plane is flying in the sky with a mountain behind it .

Figure 3.6: Examples of synthesised text descriptions from the image captioning module on the
MSCOCO dataset.

A multi-modal problem exists between the image and text description, while in practice, a limited
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number of labelled text descriptions exist for each image in the training set [9]. Due to the multi-

modal problem between the image and text, it is important to fill in the gaps in the text space as

described in Section 3.1.3. One text description could have many synonymous text descriptions. For

example, “a man riding a surf board on a wave” is similar to “a person on a surf board riding a wave”

and “a surfer riding a large wave in the ocean”. In addition, “five bananas and a bottle of wine”

is similar to “a brunch of bananas and a bottle of wine” and “wine and bananas”. However, it is

expensive to label more text descriptions manually. Fortunately, the softmax output of RNN-based

image captioning can exploit the uncertainty to generate synonymous texts. By setting k to be greater

than 1 in Equation (3.6), a large number of text descriptions can be generated from a single image.

In this study, we set k = 3. The probability of a text description t given an image x can be defined as

shown in Equation (3.7):

p(t|x) =
n∏
i=1

p(si|x, s0, ..., si−1) (3.7)

In practice, as we use the same images that the image captioning is pre-trained on, to synthesise

text descriptions for these images. The synthesised text descriptions will contain the original text

annotations of the images.

Training a model with a large number of text descriptions can have more data points in the text

space. In order to visualise it, t-SNE [55] is a technique to visualise high-dimensional data (e.g.,

text embedding) by giving data points a location in a two or three-dimensional space, where the

similar data points will have shorter distances. Figure 3.7 visualises the text embeddings of the text

descriptions from both the dataset and image captioning module. Each marker represents one data

point (i.e., one text description). Markers with different colours are associated with different images

on the left-hand side. The circle markers indicate the data points of 20 synthesised text descriptions

from the image captioning module. The cross markers indicate the data points of 5 text annotations

of each images. We can see that the synthesised text descriptions are located near the labelled text

descriptions. With more synthesised text descriptions being used, an image can have more data points

in the text space and increase its coverage density.

By using more text descriptions to train the model will include more information and cover more

variance of the data, increasing the robustness and generalisation of the model [2, 14]. In addition,
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20 synthesized text description

Figure 3.7: Visualisation of text space using t-SNE. Cross markers: the text descriptions from
dataset; Circle markers: the synthesised text descriptions.
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by using the state-of-the-art image captioning method [1], our method does not require extra domain

knowledge from humans, no extra information, such as the pre-defined synonyms, grammar, or manu-

ally labelled data, need to be provided. This process can be considered the textual data augmentation

to explicitly fill in the gaps in the text space.

Text encoder

Encoding for Data Augmentation

• Training Text Encoder

! RNN 
Encoder

Cosine	
Similarity	+

X

Xk

tk

Cosine	
Similarity	-

X RNN 
Decoder t

shuffle

Pre-trained image captioning module

shuffle

Figure 3.8: Training process of the text encoder. Given a batch of images x, the image captioning
module synthesises a batch of text descriptions t associated with the images x. Then, we shuffle the
batch of texts t to obtain a batch of mismatched texts tk, so that each text cannot be associated with
its matching image. Similarly, shuffle the images x to obtain a batch of mismatched images xk, so
that each image cannot be associated with its matching text. The RNN encoder ϕ and the image
encoder φ are used to encode the text descriptions and images into two vectors with the same length.
To train the RNN encoder ϕ, we follow the verified process of [52]. Green lines: Maximise the cosine
similarity between the image x and its matching text description t. Orange lines: Minimise the cosine
similarity between the image x and its mismatched text description tk. Red lines: Minimise the cosine
similarity between the mismatched image xk and text description t.

To learn the text-to-image synthesis, the first step is to learn an RNN text encoder that can encode the

text description into an embedding. Considerable work has been done to pre-train the word embedding

and RNN encoder [51,53,54]. As an application for images and texts, we adopt the approach of Kiros et

al. [52], which was specifically designed for text-and-image applications, where images and texts can be

mapped into the same latent space by using a CNN image encoder and RNN text encoder [52]. Given

a batch of images x (the number of images equals to the batch size), the image captioning module

can generate a batch of text descriptions t that match with the input images one-to-one. After that,
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we can obtain a batch of mismatched text descriptions tk by shuffling the order of the batch of text

descriptions t, so that each image cannot be associated with its matching text description t. Note

that, like with the other methods for training the text encoder [24,52], we are not modifying any text

descriptions. The mismatched texts are obtained by shuffling the order of the given text descriptions.

We can also shuffle the order of a batch of images x to obtain a batch of mismatched images xk
3, so

that each text description cannot be associated with its matching image.

As Figure 3.8 shows, to train the RNN encoder and obtain the embeddings of image and text, we first

use an Inception V3 network φ and an LSTM network ϕ as the image and text encoders, respectively.

Following Kiros et al. [52], we use the pair-wise ranking loss [52] between image and text embeddings,

specifically designed for text-and-image applications, to train our RNN encoder. The loss function is

defined in Equation 3.8. The training is to find a joint latent space for images and text embeddings,

in which the embeddings between the matching image-and-text pairs have higher cosine similarity

compared with the mismatched pairs.

Lϕ =
∑
x

∑
k

max{0, α− s(φ(x), ϕ(t)) + s(φ(x), ϕ(tk))}

+
∑
t

∑
k

max{0, α− s(φ(x), ϕ(t)) + s(φ(xk), ϕ(t))}
(3.8)

where s denotes the cosine similarity function of two embedded vectors (e.g., φ(x) and ϕ(t)), and

xk and tk are the mismatched images and texts. The α is a small margin value, which is set to

0.2 [52]. More specifically, the cosine similarity is a way to measure the similarity between two

vectors, varying from -1 to 1 (e.g., two identical vectors have a similarity of 1, while two completely

independent vectors have a similarity of 0, and two diametrically opposed vectors have a similarity of

-1). Minimising the term of −s(φ(x), ϕ(t)) can increase the cosine similarity of the matching image-

and-text pairs. Moreover, minimising s(φ(x), ϕ(tk)) and s(φ(xk), ϕ(t)) can reduce the cosine similarity

of the mismatched image-and-text pairs [52]. The max operation in the equation means that, if the

value on the right-hand side of max is less than zero, we stop to update the parameters of the image

and text encoders. The positive margin value α is the threshold value that controls when to stop the

updating (e.g., a small α means it is easier to stop the update, and vice verse). In our experiment, we

3This is because x̂ represents the synthesised images in this thesis. We use xk instead of x̂ here. For consistency, we
use tk instead of t̂ to represent the mismatched texts here.
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follow the verified setting in [52] to set this value to 0.2.

In terms of network architecture, the LSTM encoder ϕ has a hidden size of 256 and an output vector

with a length of 256. To compute the similarity, the image encoder φ needs to encode the image

to a vector with the same length as the LSTM encoder. Therefore, after encoding the image using

Inception V3, we apply a fully connected layer to make the convolutional output a dimension of 256.

In addition, similar to the image captioning module, we use pre-trained parameters to initialise the

Inception V3 network.

3.2.3 Text-to-image module

For image generation, we combine image captioning, the text encoder, and the state-of-the-art GAN-

CLS, as Figure 3.9 shows. The embedding output of the RNN encoder ϕ is concatenated into the input

noise of the generator and the hidden layer of the discriminator [24]. Most importantly, during training,

both matching and mismatched texts are synthesised at the beginning of every iteration. Then, the

generator and discriminator use these new texts to learn image synthesis (shown in Figure 3.9). As the

texts are generated in every iteration, the RNN encoder is trained synchronously with the generator

and discriminator. In addition, following the verified training process of image captioning [1] and

GAN-CLS [24], our image data augmentation includes random left and right (i.e., horizontal) flipping

with a probability of 50% and random cropping to 299 × 299 from 346 × 346 before resizing them to

64 × 64.

To have a qualitative comparison with the original GAN-CLS described in Reed et al. [24], we use

the same network architecture, except the RNN encoder. More specifically, the architectures of the

generator and discriminator follow the DCGAN design principle to stabilise the GAN training [19].

The text embedding ϕ(t) is first encoded to a vector with 128 values using a fully connected layer

followed by the leaky ReLU with a slope of 0.2. Then, to generate the images, before feeding the text

embedding into the generator, the text embedding is first concatenated with a noise vector z with 100

values, making it a vector of 228 values As the 2D convolutional operation can only be applied to 3D

volumes, to use the 2D CNN for image generation, the concatenated vector is first mapped to a higher

dimensional vector of 25,088 values using a fully connected layer, and then the vector is reshaped into

a volume (3D tensor) with a size of 4 × 4 × 1568 followed by a batch normalisation layer [19,24].

Three convolutional layers are used to further encode the volume in order to mix the information of
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Figure 3.9: Training process of the text-to-image generator. Black lines: Given the pre-trained
image captioning module, generating a batch of matching texts t associated with the input images x
one-by-one, and obtain a batch of mismatched texts t̂ so that they cannot be associated with the input
images one-by-one. Blue lines: The discriminator learns to classify real images x and matching texts t
as the positive samples. Red lines: The discriminator learns to classify real images x and mismatched
texts t̂ as the negative samples. Green lines: The generator learns to synthesise plausible images x̂
by learning to fool the discriminator to consider the synthesised images and input texts to be positive
samples.

the latent noise vector and text embedding. The first convolutional layer uses a filter size of 1 × 1,

and the others use a filter size of 3 × 3. All layers use a stride of 1 × 1. Batch normalisation with

ReLU activation is applied to every layers. After that, four deconvolutional layers decode the volume

to the image with a size of 64 × 64 × 3. All layers use a filter size of 4 × 4 and a stride of 2 × 2

(i.e., all deconvolutional layers can double the height and width of the volume by a factor of 2). In

addition, the batch normalisation with ReLU activation is applied to the first three deconvolutional

layers. Meanwhile, as the final deconvolutional layer outputs the images, the hyperbolic tangent

(tanh) is applied without using batch normalisation. To further improve the performance, three extra
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convolutional layers that have the same architecture as the previous convolutional layers, are added

between the first and second deconvolutional layers [24].

For the discriminator, following the DCGAN design principle [19], the input image is first encoded

to a volume of 4 × 4 × 1,568 by using four convolutional layers. All layers have a filter size of 4 ×

4 and a stride of 2 × 2 (i.e., all convolutional layers can halve the height and width of the volume

by a factor of 2). Batch normalisation and leaky ReLU activation with slope of 0.2 are applied to

every convolutional layer. After that, to further encode the information, a residual block with three

convolutional layers is applied. The first convolutional layer uses a filter size of 1 × 1, and the others

use a filter size of 3 × 3. All layers use a stride of 1 × 1. In addition, the batch normalisation and

leaky ReLU activation with a slope of 0.2 are applied to every layer in the residual block. To put the

text information into the discriminator, similar to the generator, the text embedding is first encoded

into a vector of 128 using a fully connected layer followed by the leaky ReLU with a slope of 0.2.

After that, to concatenate the text embedding with the convolutional output of the residual block,

the vector of 128 values is duplicated into a volume of 4 × 4 × 128 by expanding it to the height and

width directions (i.e., by copying it 16 times). The concatenated volume of the text embedding and

the convolutional output contain the information on both the text and image. Finally, a convolutional

layer with a filter size of 3, stride of 1 × 1 and sigmoid activation, encodes the concatenated volume

into a single value that can represent the probability that an image is real.

For training the RNN text encoder, a learning rate of 0.0001 and the Adam optimisation [61] with

a momentum of 0.5 are adapted [52]. For training the text-to-image generator, following DCGAN

and GAN-CLS [19,24] to stabilise the GAN training, we use an initial learning rate of 0.0002 and the

Adam optimisation with a momentum of 0.5. Both learning rates of the RNN encoder and generator

are halved every 100 epochs. We use a batch size of 64 and train the model for 600 epochs. The first

training step of image captioning takes two weeks on an a Nvidia GTX 980 GPU. The second training

step takes an extra three weeks. The training of text-to-image synthesis takes 16 days on the same

GPU. Our code is implemented using TensorLayer 1.3.11 [112] and TensorFlow 1.0.0 [113]. Code can

be found in the Appendix.

Algorithm 3 illustrates the training process step by step. Given a pre-trained image captioning module

im2txt and a batch of images x, we can first obtain the matching and mismatched text descriptions

for the image x, and then encode the text descriptions into the text embedding. We denote h as

the embeddings of matching texts and ĥ as the embeddings of mismatched texts. Then, the text
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Algorithm 3 Training algorithm for the proposed Text-to-Image-to-Text (I2T2I) method.

Input: Pre-trained image captioning module im2txt, training images x, normal distribution z, num-
ber of iterations n

1: for i = 1 to n do
2: t, t̂← im2txt(x) obtain a batch of matching and mismatched texts
3: h← ϕ(t) encode matching text
4: ĥ← ϕ(t̂) encode mismatched text
5: Lϕ/δϕ compute the gradient of the text encoder according to Equation (3.8)
6: ϕ← ϕ− αδLϕ/δϕ update the text encoder
7: x̂← G(z, h) synthesise the image
8: sr ← D(x, h) real image, matching text
9: sw ← D(x, ĥ) real image, mismatched text

10: sf ← D(x̂, h) synthesised image, matching text
11: LD ← log(sr) + (log(1− sw) + log(1− sf ))/2
12: D ← D − αδLD/δD update the discriminator
13: LG ← log(sf )
14: G← G− αδLG/δG update the generator
15: end for
16: return G,ϕ

encoder ϕ can be updated by following Equation (3.8). For text-to-image synthesis, the generator

G synthesises image x̂ conditioned on a random normal distribution z and the text embedding h.

Given the synthesised image x̂, we can obtain the outputs of discriminator D, where sr is the output

when inputting a real image x with a matching text description t. In addition, sw is the output

when inputting a real image x with a mismatched text description t̂. Moreover, sf is the output

when inputting the synthesised image x̂ with the text description t. The discriminator D learns to

discriminate the real/fake image and text matching by learning to output sw and sf to be 0 and sr to

be 1. Therefore, the generator G can learn to synthesise image x̂ that matches the text description t

by making discriminator D outputs sf as 1. At the end of one iteration, generator G and distributor

D update according to their gradients.

3.3 Evaluation

3.3.1 Datasets

Two datasets were used in our experiments. We evaluate our proposed method, I2T2I, by comparing

it with GAN-CLS [24]. We first train the image captioning module on MSCOCO [9], and then train

two text-to-image generators on MSCOCO and MPII [72], respectively:
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• MSCOCO [9] is a multi-purpose dataset that has labels for object detection, image segmentation,

image captioning, and human pose estimation. For image captioning, it contains 82,783 training

and 40,504 validation images, each of which is annotated with five text descriptions from different

annotators.

• The MPII Human Pose dataset [72] is a state-of-the-art benchmark dataset for human pose

estimation. It has 25,925 images covering 410 different human activities, but no labelled text

descriptions are provided.

3.3.2 Results on MSCOCO

To evaluate our method, we compared I2T2I and GAN-CLS on the MSCOCO dataset. To have a fair

comparison, in both methods, the generator and discriminator used the same architectures, I2T2I can

be considered to extend GAN-CLS by using more text descriptions from the image captioning module.

The results on the validation set can be compared in Figures 3.10 and 3.11. The results of GAN-CLS

are taken from the supplementary material and paper by Reed et al. [24].

The quantitative evaluation for machine learning tasks that do not have ground truth results is still

an open question in machine learning [2,101]. To address this, human evaluation is commonly used in

GAN research [24, 29, 101]. We used a human ranking method to quantitatively compare GAN-CLS

and I2T2I. To directly compare the MSCOCO results, we selected 10 texts from the supplementary

material and paper by Reed et al. [24]. As 54% of the images in MSCOCO contain a “person”, we

randomly selected five texts with person and another five texts related to other categories.

We spread volunteer recruiting advertisements in Imperial College London. To prevent bias, we select

25 volunteers who do not know our work. Moreover, the images of different methods were shuffled by

Fisher-Yates method [114], so that the participants would not know which image belonged to which

method. Every method synthesised six images for every text. Then we asked the volunteers to rank

the images, as 0 for the best and 1 for the worst, based on the following three criteria.

• Which method appears like real image?

• Which method more matches the text description better?

• Which method has more diverse results?
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Figure 3.10: Comparing text-to-image synthesis with and without textual data augmentation. The
GAN-CLS results are from [24].
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In the first criterion, we only consider the image quality without taking the text description into

account. The second criterion considers the text description, not only the object to be described but

also the action and background if available. Similar with the first criterion, the third criterion also

considers the image only, but assesses the diversity of the six images. Greater diversity indicates more

difference in details of the objects, shapes, scenes, and backgrounds.

Criteria GAN-CLS I2T2I

Reality 0.644 0.356

Text Matching 0.572 0.428

Diversity 0.476 0.524

Table 3.1: Human evaluation of I2T2I and GAN-CLS on MSCOCO. Volunteers rank the methods
as 0 for the best and 1 for the worst. A smaller score represents better performance.

Table 3.1 shows the scores of the three criteria, where smaller scores represent better performance.

The results show that the proposed method can synthesise a more realistic image compared to GAN-

CLS. In addition, our method can slightly improve the text matching. This is partly due to the

improvement in the image quality, as more details on the image could make it more closer to the text

description (e.g., in the third row of Figure 3.11, our method has a clear “wave”, which makes it more

closer to the description of “riding a surfboard on a wave”). However, our method slightly sacrifices

image diversity, as GAN-CLS has a better score (e.g., in the second row of Figure 3.10, our method

cannot generate various backgrounds and poses compared to GAN-CLS). The reason may be that we

are using the same network architecture as GAN-CLS, but using more text descriptions to train the

model requires a generator with more capacity to disentangle the text embedding.

3.3.3 Results on MPII for transfer learning

Criteria GAN-CLS I2T2I I2T2I-Transfer

Reality 1.284 0.912 0.804

Text Matching 1.076 0.976 0.948

Diversity 1.024 1.136 0.840

Table 3.2: Human evaluation of I2T2I and GAN-CLS on MSCOCO, and I2T2I pre-trains image
captioning on MSCOCO and trains the rest on MPII.

As 54% of the images in MSCOCO and 100% of the images in the MPII dataset are related to human

activities, it is possible to pre-train the image captioning module on MSCOCO and then train the

text-to-image generator on MPII. In other words, we utilise the knowledge of the image captioning

task on MSCOCO and apply it to text-to-image synthesis on MPII. This process can be considered
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Figure 3.11: Comparison between synthesised images using GAN-CLS and our I2T2I on the
MSCOCO validation set. The GAN-CLS results are from [24].

transfer learning, as described in Section 2.2.5.

For this transfer learning task, we compared the results of three methods: 1) GAN-CLS trained on

MSCOCO, 2) I2T2I trained on MSCOCO, and 3) I2T2I trained on MSCOCO and MPII for transfer

learning, namely “I2T2I-Transfer”. As MPII only contains images of humans, we only compared

the results of human activities. We used the same quantitative evaluation method as the MSCOCO

experiment. Because we need to compared three methods, the ranking starts from 0 to 2 (i.e., 0 for

the best, 1 for fair, 2 for the worst).

Table 3.2 shows the comparison of these three methods. It is clear that both I2T2I and I2T2I-Transfer

have a better score than GAN-CLS in terms of image reality and text matching. For image reality
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Figure 3.12: Examples of synthesised images on MPII using transfer learning.

and text matching, I2T2I-Transfer has slightly better scores than I2T2I. This may be because I2T2I-

Transfer only needs to synthesise human activities, which reduces the requirement of network capacity.

Therefore, under the same model architecture, I2T2I-Transfer can better synthesise human activities.

For diversity, I2T2I-Transfer has a better score than both GAN-CLS and I2T2I. This may because

MPII is a dataset built for human pose estimation [72], which contains many more human activities

and human poses compared to MSCOCO. Thus, learning to synthesise human activities using MPII

is better than using MSCOCO.

However, as described in Section 2.2.5, transfer learning tends to work if the datasets have common

and general features. In other words, if two datasets are irrelevant, the transfer learning will fail, or if
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two datasets are not fully relevant, the performance of transfer learning will be reduced. For example,

in Figure 3.12, the results of “a person lying on a bed in a bedroom” do not correctly match with

the text description. The person appears to be doing yoga instead of lying on a bed. The reason is

that, MPII does not contain images with people sleeping. An extremely case is that, if the categories

in the dataset for training the text-to-image generator are unseen by the image captioning module in

its training phase, the image captioning module will fail to synthesise text descriptions. For example,

it is impossible to use a carton image dataset to train the text-to-image generator. Another extreme

case is that, if the dataset for training the text-to-image generator does not contain the categories we

want to synthesise in the testing phase, the text-to-image generator will fail to synthesise the images.

For example, as MPII only contains human activities, the text-to-image generator cannot synthesise

images of different categories such as a car, bus, or animal which exists in MSCOCO. Nevertheless,

without using a pre-trained image captioning module, GAN-CLS is not able to learn the text-to-

image synthesis on the MPII dataset. Therefore, transfer learning is an advantage of our method over

GAN-CLS, which has the potential to improve the image synthesis for a desired category.

3.4 Conclusions and Discussions

This chapter investigated a novel approach to improve the image’s visual quality for text-to-image

synthesis. To the best of our knowledge, this is the first work that can performs transfer learning for the

text-to-image synthesis task. An image captioning module is adapted to synthesise text descriptions

for each image in the training set to fill gaps in the text space. To compare with the work by

Reed et al. [24], we use the same generator and discriminator architectures. Human evaluation is

incorporated to compare our method with Reed et al. [24] based on image reality, text matching, and

image diversity. The result from the MSCOCO dataset shows that our method has better scores than

the Reed et al. [24] method in terms of image reality and text matching. However, Reed et al. [24]

provided a better score on image diversity. The transfer learning result on the MPII human pose

dataset shows that, by learning to synthesise human activities only, our method result in better scores

on all three criteria than Reed et al. [24] method. However, a limitation of transfer learning is that

we need to ensure that the image captioning module can synthesise text descriptions for the image

dataset that does not have labelled text descriptions.

Learning from synthesised data is gaining more attention in the computer vision field. For example,
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some studies use computer graphic techniques to synthesise plausible images for learning pose esti-

mations [115] and object segmentations [116]. Other recent studies [117, 118] improve on liver lesion

classification by using synthesised data from a GAN. In the future, it will be interesting to investi-

gate how to use synthesised data to improve natural language processing applications. To improve

the image visual reality for text-to-image synthesis, many subsequent studies exists that focuses on

increasing the image resolution [20,86,119]. This approach is different from our method in that we fill

the gaps in the text space. A subsequent study [86] successfully increases the image resolution from

64 × 64 to 256 × 256, and synthesises more detailed objects. In the future, it will be interesting to

increase the image resolution of our approach.
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Chapter 4

Efficient Image-to-Image Translation

The previous chapter presents a novel method for text-to-image synthesis, which can improve the

image visual quality without requiring label more data manually. In this chapter, image synthesis is

conditioned on images instead of text, also known as image-to-image translation. Compared to text

descriptions, images can provide accurate semantic visual information, such as the precise location

and shape of an object. More importantly, image-to-image translation is additionally challenging

compared to text-to-image synthesise because the data is difficult and even impossible to obtained

from the real world.

The unsupervised image-to-image translation is reviewed in the following that syntheses images condi-

tioned on input images without using paired images to supervise the training. This proposed method

is verified on the task of face swapping, portrait gender transformation, and image inpainting. The

limitations of the proposed method are also analysed followed by describing how the subsequent study

addresses these limitations, which is essential for the next chapter.

4.1 Introduction

Images can provide semantic visual information that is difficult to provide with text, such as in

the visual details of a human face or the precise shape, colour, texture, and location of a bird. Many

advanced deep learning tasks are considered as translating images from one domain to another domain

by creating synthesised images for various purposes. The “edges to photo” example in Figure 4.1

can assist designers with fast prototyping. Another example is the manipulation of features in a

79
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Figure 4.1: Examples of supervised image-to-image translation. Image is from Pix2Pix [13].

photo, such as the weather or background. The machine learning community has focused heavily on

image-to-image translation tasks (e.g., face swapping [120], changing the time of day in an outdoor

image [121], changing the weather in an image [122], and composing a photo from sketch [123]), but

each is approached via task-specific algorithms. Therefore, it would be preferred to have a “universal”

algorithm to achieve all these tasks.

Recently, the work by Pix2Pix [13] proposed a method for learning image-to-image translation with

supervision that was successful in solving various tasks by only changing the training datasets. The

concern with this approach is the challenge of collecting large amounts of paired images for supervised

training. For example, collecting landscape images of different seasons requires photographs of the

same location with the same camera settings across extensive periods. While this instance is a difficult

but doable task, many other scenarios exist that are impossible. For example, changing the gender

represented in face images is not realistic as it is not possible to capture a single person’s face with

different genders.

Therefore, learning image-to-image translation from unpaired datasets offers more practicability. In

the following, we study unsupervised image-to-image translation in which no paired images are re-

quired for training. Specifically, a generator is trained to synthesise images conditioned on the joint

distribution of a class or domain label (e.g., female and male faces) and a noise vector (i.e., latent

representation). As the generator synthesises images conditioned on the joint distribution of the class

label and noise vector, by eliminating the noise vector and changing the class label only, the process

will synthesise the images with the common features except the information related to the class label

that changed. Next, an encoder is trained to map images back to the latent representation. Therefore,
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when given an image, we can first map the image into the latent representation, then feed this and

the changed class label into the generator to synthesised the images for another domain.

To evaluate the proposed method, the method is first demonstrated through face swapping for two

people and two backgrounds without using paired images. Next, portrait gender transformation

is demonstrated that changes the gender of arbitrary face images. This task is more challenging

compared to face swapping because the model must create a new human face and be trained on

many different faces with various backgrounds (i.e., 202,599 face images contained in CelebA [124])

instead of only two faces with two backgrounds. The model also must understand diverse backgrounds,

clothing and facial details, such as a facial expression, and hairstyle and colour all in an unsupervised

way. Finally, an image inpainting task is demonstrated as an image-to-image translation problem,

that translates incomplete images to completed images. In this task, the method not only learn the

latent representations of the input images but also learn to synthesise the missing information. The

experimental results show that the proposed method successfully achieves the unsupervised image-to-

image translation. We next analyse the limitations of our approach and how the subsequent study

addresses these limitations. The analysis of these limitations is essential for our study in the next

chapter in which we learn to control the generated results using both the semantic visual information

of images and the object attribute information of text description.

4.2 Related Works

4.2.1 Auxiliary classifier generative adversarial networks

Introduction and Background

• Conditional GAN – Auxiliary Classifier GANs

!"

X

real
fakeZ

C
c=1
c=2

Figure 4.2: Auxiliary classifier generative adversarial network.
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Auxiliary classifier GAN (ACGAN) [16] is a conditional GAN extended from DCGAN for synthesising

images conditioned on a discrete class label c. In this chapter, we will use ACGAN for the generation

part. The class label c and the noise vector z are concatenated as the input of the generator G, as

Figure 4.2 shows. Following the verified model architecture of DCGAN [19], ACGAN uses deconvolu-

tional layers to decode the joint latent space of z and c to perform image generations. More specifically,

image synthesis conditioned on a class label is highly multi-modal because there are numerous possible

images that can correctly match a class label. To address the multi-modality problem between image

and class, ACGAN utilised the latent distribution z to synthesise various images for each class label

c by finding the conditional probability P (x|z, c) rather than P (x|c). For the discriminator D, it is

a convolutional encoder network that outputs the class probability Dc of the input image, and the

probability Dx of the input image to be a real image.

To generate plausible and correct images, the generator is not only trained to fool the discriminator in

terms of realistic images but is also trained to maximise the probability of the synthesised image to fit

the correct class label. Extended from the vanilla GAN described in Equation 2.22, the loss function

of the generator is defined as follows:

LG = Ex∼pdata [logDx(G(z, c))] + Ez∼pz [logDc(G(z, c))] (4.1)

The discriminator learns to classify the real image x to the correct class and maximise the probability

of the real image to be the positive sample. At the same time, it learns to classify the synthesised

images from the generator as a negative sample and to minimise the probability of the synthesised

images to fit the correct class. The loss function of the discriminator is defined as follows:

LD = Ex∼pdata [logDx(x)] + Ez∼pz [log(1−Dx(G(z, c)))]

Ex∼pdata [logDc(x)] + Ez∼pz [log(1−Dc(G(z, c)))]

(4.2)

By competing with each other, the generator and discriminator can enhance each other. At the end,

the generator is able to synthesise images that can match the given class label.
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4.2.2 Supervised image-to-image translation

Figure 4.3: Pix2Pix: image-to-image translation network.

Pix2Pix [13] proposed a supervised image-to-image translation to achieve different image processing

tasks, as shown in Figure 4.1. Figure 4.3 illustrates the training pipeline of Pix2Pix. Given paired

images XA and XB, the authors use a convolutional network as the generator, in which the input and

output have the same size. First, as the red lines indicated, Pix2Pix computes the L1 loss between the

target and output images and updates the generator in a supervised way. In addition, as the orange

and green lines indicate, to improve the visual quality of the output image, the discriminator classifies

real paired images (i.e., XA and XB) as positive samples and inputs images with synthesised images

(i.e., XA and X̂B) as negative samples. By learning to fool the discriminator, the generator learns

to synthesise plausible images conditioned on the input image. The loss functions for Pix2Pix can be

summarised as follows:

LD = Ex∼pdata [logD(xA, xB)] + Ex∼pdata [log(1−D(xA, G(xA)))]

LG = Ex∼pdata [logD(xA, G(xA))] + Ex∼pdataλ||xB −G(xA)|| (4.3)

where xA and xB are images from domains A and B, respectively, x̂B = G(xA) is the synthesised

image for domain B, and the λ is the scale factor of the L1 loss that can help to control the weight

between the L1 loss and the adversarial loss.

Following this study, there are many studies that focus on improving the visual quality of images,
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such as Pix2PixHD [125] and Cascaded Refinement Networks [126]. However, all these studies need

paired images for training, which limits the practicality of image-to-image translation and can only

translate images from one domain to another domain within one generator. In contrast, our study

is to investigate an unsupervised method to achieve the image-to-image translation and the way to

translate images from one domain to another domain or vice verse using the same generator. At the

end of this section, we will discuss the limitations of our proposed method, and then discuss how the

subsequent studies, such as the study on CycleGAN [25] can address the limitations.

There are also many computer vision and image processing studies that can be considered image

synthesis conditioned on an image [25]. For example, image super resolution [29] that inputs a low-

resolution image, then outputs a high-resolution image. Moreover, image inpainting [127] inputs an

incomplete image, then outputs a complete image by filling in the missing parts. Depth estima-

tion [128], which inputs an RGB image, then outputs the estimated depth map to represent the

distances between every pixel and the camera. Another study is style transfer [28], which inputs a

photograph, then outputs the modified image in Monet style. All these studies can achieve state-of-

the-art results using deep learning in a supervised way. However, compared with these studies, our

study focuses on achieving image-to-image translation in unsupervised way rather than improving the

performance of a specific task, such as the image resolution and visual quality of the image.

4.3 Methods

Our image translation model constitutes a convolutional generator G and encoder E. The translation

process takes inputs of images from the source domain and outputs images of the target domain, which

is controlled by a given discrete class/domain label. Before being able to use the model, a two-step

training process is necessary. The first step trains the image generator G for all classes, and the second

step trains the image encoder E to map the given images to the latent space. During the translation

process, the given image x is first mapped to the latent variables via the encoder E. The encoder then

inputs both the estimated latent variables ẑ and the desired class label c to the generator G. The

details of the method are further discussed in the following.
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Figure 4.4: Network architectures of two-step learning for unsupervised image-to-image translation.

4.3.1 Learning shared features

To utilise both the GAN’s capability of unsupervised feature learning and the convolutional encoder’s

representation capabilities, we split the learning process into two steps. In the first step, we use an

ACGAN [16] to learn the global shared latent representation of images from different classes, training

the generator G to synthesise images for each class c, and use the normal distribution as the latent

variable z (i.e., the noise vector). As the generator synthesises images from class labels and latent

variables, by keeping the latent variables fixed and changing the class label only, the synthesised

images are able to share a global structure and change the features corresponding to the class label.

For example, the synthesised images will share the same global features in the form of synthesising

the same person’s face while changing facial expressions or generating the same bird but with different

colours [16].

This idea is based on the fact that class-independent information contains a global structure regarding

the synthesised images [16]. More specifically, ACGAN [16] finds the conditional probability P (x|z, c),

which means the image is synthesised conditioned on latent variable z and class label c. The class

label c can be considered as a specific feature of the joint latent variable z+ c, and the latent variable

z is shared to the images of different class labels c. By learning to synthesise images conditioned on

the join latent variable z+ c, the shared latent variable z represents all features except the class label

c. Therefore, we can expect the common features across the domains to be captured by the shared



86 Chapter 4. Efficient Image-to-Image Translation

latent variable z [16,19]. We leverage this feature for translating the global structure from one domain

to another.

Algorithm 4 Training the generator for our unsupervised image-to-image translation.

Input: image x, normal distribution z, number of iterations n
1: for i = 1 to n do
2: x̂← G(z, c) synthesise the image conditioned on the normal distribution and label
3: sr, cr ← D(x) real image
4: sf , cf ← D(x) synthesised image
5: LD ← log(sr) + log(cr) + log(1− sf ) + log(1− cf )
6: D ← D − αδLD/δD update the discriminator
7: LG ← log(sf ) + log(cf )
8: G← G− αδLG/δG update the generator
9: end for

10: return G

Algorithm 4 illustrates the training process of the image generator step by step. At every iteration,

a batch of images x̂ are randomly synthesised using the generator G conditioned on the normal

distribution and random labels. Then, given the synthesised images x̂ from the generator G, the

discriminator D outputs sf , the probability of the synthesised image to be real, and, cf , the probability

of the synthesised image to be the correct label. On the other hand, given the real images x with

the corresponding labels c from the dataset, the discriminator D can output sr, the probability of the

real image to be real, and cr, the probability of the real image to be the correct label. At the end

of one iteration, following Equations (4.1) and (4.2), the generator G learns to fool the discriminator

D by making it D output sf and cf as 1. Meanwhile, the discriminator D learns to discriminate

the real/fake image and correct label by learning to output sf and cf as 0, and sr and cr as 1. The

return of this algorithm is the trained generator G, which will be used in the next step, while the

discriminator D will no longer be used in the next step.

4.3.2 Learning image encoder

In the second step, as the middle of Figure 4.4 illustrates, we learn the mapping from the image to the

shared latent representation z by introducing a new network. We add an encoder E and put it on top

of the previously trained generator G. Then, we fix the pre-trained generator G and expect the encoder

E to reconstruct the input latent noise vector z. The mean square error (MSE) between the input

latent variables and output variables is used as the loss. The training of encoder is supervised, which

is different from the previous GAN training that requires the generator and discriminator compete

with each other. The loss function is as follows:
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LE = Ec∼pdata,z∼pz
∥∥z − E(G(z, c))

∥∥2
2

(4.4)

There are two key points about this training. First, instead of feeding just one class of images to the

encoder E, we feed the images of all classes to it. This not only enables the encoder E to work with

the images of different classes but also forces the encoder E to learn the shared features of different

classes. Second, as we use the normal distribution as the noise vector, the outputs of the encoder are

linear (i.e., no activation function).

Algorithm 5 Training the encoder for our unsupervised image-to-image translation.

Input: generator G, normal distribution z, label c, number of iterations n
1: for i = 1 to n do
2: x̂← G(z, c) synthesise the image conditioned on the normal distribution and random label
3: ẑ ← E(x̂) reconstruct the input normal distribution
4: LE ←‖z − ẑ‖22
5: E ← E − αδLE/δE update the encoder
6: end for
7: return E

Algorithm 5 illustrates the training process step by step. Given the pre-trained generator G from

Algorithm 4, at every iteration, a batch of normal distribution vectors z and class labels c are randomly

input into the pre-trained generator G. We then have a batch of synthesised images x̂. Given these

synthesised images x̂, the encoder E encodes them into latent representation ẑ. At the end of one

iteration, the encoder E learns to reconstruct the latent representation by minimising the MSE between

the input normal distribution vector z and the reconstructed output ẑ. The return of this algorithm

is the trained encoder E.

4.3.3 Translation

After training the image generator G and image encoder E, as the right-hand side of Figure 4.4

illustrates, our encoder can now map images to the shared latent representation z and then synthesise

images of the target domain with the generator. More specifically, given an image xc=1 from the

domain c = 1, we first use the image encoder E to synthesise its shared latent variable ẑ = E(xc=1),

and then use the synthesised latent variable as the input to the generator G to synthesise the translated

image x̂c=2 = G(ẑ, c = 2) for the domain c = 2.
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As the generator G can synthesise images for both classes and the image encoder E is trained using

images of both classes as the input, our method can achieve the translation from the domain c = 1

to c = 2 or vice verse without an extra generator. In contrast, the Pix2Pix and subsequent study

— CycleGAN both require training another generator to perform the inverse translation [13, 25]. In

other words, our method can achieve bidirectional translation using the same model, the translation

processes of our method can be summarised as follows:

x̂c=2 = G(E(xc=1), c = 2) (4.5)

x̂c=1 = G(E(xc=2), c = 1) (4.6)

4.3.4 Network architecture

To stabilise the GAN training, the architectures of both the generator G and discriminator D are

extended from DCGAN [19]. More specifically, for the generator G, we set the number of latent

variables z to 100 and embedded the class label to a vector of five values, then concatenate them to a

vector of 105. As a 2D convolutional operation can only be applied into a 3D volume, to utilise the 2D

CNN for image generation, we then apply a fully connected layer to decode the vector of 105 values

to a vector of 8,192 values and reshape it into a volume with the size of 4 × 4 × 512. Following the

verified architecture of DCGAN, four deconvolutional layers with a filter size of 5 and a stride of 2 are

used to decode the volume to a 64 × 64 RBG image. Batch normalisation is applied to the output of

the fully connected layer and every convolutional layer except the output layer. The ReLU is applied

to the output of every batch normalisation layer. To stabilise the training, images pixel values are

rescaled to -1 ∼ 1 [1, 19]; thus, we use the hyperbolic tangent function on the output layer.

For the discriminator D, like the DCGAN, four convolutional layers with a filter size of 5 and a stride

of 2, are used to encode the 64 × 64 image into a volume of size 4 × 4 × 512. Batch normalisation is

applied to all convolutional layers except for the first one. Moreover, to stabilise the GAN training,

leaky-ReLU with a slope of 0.2 is applied to the end of all batch normalisation layers [19]. Following

this, to output the class probabilities and the probability of the image to be real, we then flatten the

volume into a vector of 8,192 values. After that, we apply two separate fully connected layers to output

the class probabilities and the probability of the image to be real, respectively. The architecture of
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the encoder E follows the discriminator D except that the final layer outputs a vector with 100 values

to reconstruct the latent variables z.

4.4 Evaluation

4.4.1 Datasets and training details

Datasets Tasks

Presidential debate videos face swapping

CelebA portrait gender transformation

Street View House Number image inpainting

Table 4.1: Datasets and tasks for unsupervised image-to-image translation.

Table 4.1 summarises the datasets and tasks. We first present our results on the presidential debate

video for face swapping. We detected and extracted face images of Obama and Clinton from two short

presidential debate videos. This resulted in 8,452 images for Obama and 5,065 images for Clinton, with

a variety of facial expressions. We also split the images into 80% for training and 20% for testing. For

the second task, we use the CelebA face dataset [124] for portrait gender transformation. The CelebA

face dataset contains 84,434 male images and 118,165 female images. The dataset has a variety of

backgrounds and faces. We also split this dataset into 80% for training and 20% for testing. Lastly, we

present our results of image inpainting by using the Street View House Number (SVHN) dataset [109],

which contains 73,257 digits for training and 26,032 digits for testing.

In all three cases, we used the same network architecture and training method. To stabilise the

training, we used the learning rate of 0.0002, and Adam optimiser [61] with a momentum of 0.5 [19].

These settings have been empirically found to be able to stabilise the GAN training in both DCGAN

and ACGAN studies [16,19]. During training, we used a batch size of 64, trained 100 epochs for Step

1, and 20,000 iterations for Step 2. The number of epochs of Step 1 is based on the visual quality

of the synthesised image, and the number of iterations of Step 2 is based on whether the loss would

not be reduced. For the data augmentation in Step 1, we randomly flip the image horizontally with

a probability of 50%, zoom in on the image with a range from 0 to 5%, and rotate the image with a

degree of ±10%. We experiment with different data augmentation settings and find that this setting

generates the best visual quality of the synthesised images. The code was implemented by using
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TensorLayer 1.3.11 [112] and TensorFlow 1.0.0 [113], and can be found in the Appendix. By using an

Nvidia Titan XP GPU, training a generator takes about two days and an encoder takes 20 minutes.

4.4.2 Face swapping

Input    Output Input    Output Input    Output Input    Output

Figure 4.5: Example results of our method on face swapping. The left columns are input images,
and the right columns are the corresponding synthesised output images.

The random results of our first task, face swapping, are shown in Figure 4.5. Our method not only

learned to change the face and background but also learned to keep the face orientation to some

degree. It means the latent variable z contains the shared features of Obama and Clintons faces, such

as the face orientation. Taking the top-right image as an example, the synthesised Clinton image is

facing right like the input Obama image. Another example can be seen in the bottom-right image,
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where both the input Clinton image and the synthesised Obama image are facing forwards. As the

image synthesis is conditioned on the class c and the latent variable z, the results can show that the

latent variable z contains information about the face orientation.

Moreover, this experiment is based on two short videos with two different backgrounds. Therefore,

the background is also translated rather than maintained (e.g., Obama’s images always have a blue

background, while Clinton’s images always have a black background). In addition, there is still a

problem that the face key-point locations do not precisely match. This was noted in the bottom-right

image, where the synthesised image of Obama’s face is larger than the input image, and his mouth

and eyes were not in the correct locations.

4.4.3 Portrait gender transformation

Face swapping is an image-to-image transformation task that focuses on two persons with two back-

grounds, and transforms the face of one person into the face of another one, without creating new

human face; while portrait gender transformation deals with faces of multiple people and various

backgrounds, and must create new human faces to transform the gender of faces, which is more chal-

lenging than the face swapping. In this experiment, the portrait gender transformation is trained on

202,599 different faces with various backgrounds from the CelebA dataset. Figure 4.6 shows some

random results of portrait gender transformation. The method not only learned the characteristics

and expressions of human faces but also learned to reconstruct the background to some degree. Thus,

the latent variable z contains the shared features, such as the facial characteristics and expressions and

the background. Taking the top-left image for example, the synthesised male image not only kept the

face orientation of the input image but also maintained the white background. Another example can

be seen in the top-right image where the synthesised female image not only kept the smiling expression

but also reconstructed the black clothes.

There are some failure cases in Figure 4.6. For example, in the bottom-left image, the background

details cannot be reconstructed and all background pixels become the same colour. Another example

is the bottom-right image where the characters in the background disappear in the output image.

Nevertheless, the supervised learning methods [13,125] cannot achieve portrait gender transformation

because it is impossible to collect images of a person in different genders. However, the proposed

unsupervised image-to-image translation method successfully achieve this task.
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Female to male Male to female

Input   Output Input   Output Input   Output Input   Output

Figure 4.6: Example results of our method on portrait gender transformation. The left columns are
input images, and the right columns are the corresponding synthesised output images.
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4.4.4 Image inpainting

We can also consider the completed and uncompleted images to be two different classes and then

translate the incomplete image to a completed image to achieve image inpainting. This task is more

challenging than the previous two tasks, as the method needs to learn the latent representations of

input images and to synthesise the missing information.

Figure 4.7 shows the results of transferring incomplete SVHN images to completed SVHN images. In

every block, the first column contains the original ground truth images for comparison. The second

column contains the ground truth images after removing the centre part using a square mask. Finally,

the third column contains the translated images that recover the missing pixels. We can see that our

model can synthesise the missing parts of the images that match the content and background of the

ground truth images. For example, the top-left image shows that the model synthesises the missing

part of the digit “2”. To match the ground truth image, our model uses white colour to fill the digit

and blue to fill the background. Thus, the latent variable z contains the shared features of both the

completed and incomplete images, such as the digit and background colours.

To evaluate our method quantitatively, we compare our method with three representative methods.

PatchMatch (PM) [129] is an unsupervised method that searches for similar patches in the image to

inpaint the image. It has quickly become one of the most successful inpainting methods. The content-

encoder (CE) [30] is a state-of-the-art GAN-based method specifically designed for image inpainting.

However, CE is a supervised method that uses the L2 norm between the missing part and the target

ground truth as a part of the loss function.

Figure 4.8 directly compares the results of our method and those of PM and CE. The results show

that all methods can fill the missing part of the images to inpaint the digits. However, for PM and

our method, a large artefact can be found on the edge of the inpainted area, which makes the images

unrealistic. In contrast, CE has relatively fewer artefacts on the edge of the inpainted area.

To quantitatively compare the methods, we use structural similarity (SSIM) and the peak signal-to-

noise ratio (PSNR) as the metrics [130]. These two metrics is to evaluate the similarity of two images

and commonly used in evaluating image inpainting and super resolution methods [29,30] by comparing

the output image with the ground truth image. The value of SSIM varies from 0 to 1, with a higher

value indicating a better quality of inpainting. Specifically, the SSIM of two images x and y is defined

in Equation (4.7).
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GT         Input   Output GT         Input   Output GT         Input   Output GT         Input   Output

Figure 4.7: Example results of our method on image inpainting on the Street View House Number
(SVHN) dataset. In each subplot, the first column contains the original images. The second column
contains the images to be inpainted, and the third column contains the inpainted images.
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CE https://people.eecs.berkeley.edu/~pathak/context_encoder/

http://openaccess.thecvf.com/content_cvpr_2017/papers/Yeh_Semantic_Image_Inpainting_CVPR_2017_paper.pdf

GT    Input   Ours    PM     CE GT    Input   Ours       PM     CE

Figure 4.8: Comparison between our method and others. Note, GT: ground truth; PM: Patch-
Match [129]; CE: content-encoder [30].
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(4.7)

where µx and µy are the averages of x and y, respectively; σx and σy are the variances of x and

y, respectively; σxy is the covariance of x and y; c1 = (k1L)2 and c2 = (k2L)2 are two values to

stabilise the division with the small denominator, L is the dynamic range of image pixel values (e.g.,

an image pixel value varying from 0 to 1 has a L of 1), and k1 and k2 are 0.01 and 0.03, respectively

by default [130].

On the other hand, PSNR measures the ratio between the maximum possible power of data (i.e., the

maximum possible pixel value of an image) and the power of noise (i.e., the MSE between the ground

truth and prediction). A higher PSNR has a better quality of image inpainting. Specifically, PSNR

in decibels (db) is defined in Equation (4.8).

PSNR(x, y) = 10log10(
R2

MSE(x,y)) (4.8)

where R is the maximum possible pixel value in the image (e.g., an image pixel value varying from 0

to 1 means R equals to 1).
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Ours PM CE

SSIM 0.9199 0.9034 0.9902

PSNR 24.58 22.81 35.69

Table 4.2: Quantitative comparison between our method and others. Notes, PM: PatchMatch [129];
CE: content-encoder [30].

Table 4.2 shows the quantitative results of our method and those of PM and CE on the test set of

SVHN using SSIM and PSNR. Our method has better performance compared with PM, which is also

an unsupervised method that does not use a ground truth image to learn a model in a supervised

way. However, our method does not outperform CE because CE is a supervised learning method that

uses the L2 norm between the missing part of the image and the ground truth image as a part of its

loss function. However, our method learns the inpainting in an unsupervised way. On the other hand,

compared with the methods specifically designed for image inpainting, a limitation of our method is

that we cannot inpaint an image with random masks. For example, Figure 4.9 shows some inpainting

results for recovering incomplete images with a random mask by removing 80% of the pixels..

Semantic Image Inpainting with Perceptual and Contextual Losses

GT input output GT input output

Figure 4.9: Example results of the content-encoder (CE) with random masks. The Image is
from [127].
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4.4.5 Failure cases

Input    Output Input    Output Input    Output Input    Output

Figure 4.10: Failure cases of our method on portrait gender transformation. In each subplot, the left
column contains input images, and the right column contains the corresponding synthesised output
images.

Figure 4.10 shows the typical failure cases of unsupervised image-to-image translation on the por-

trait gender transformation task. We found the following three situations will easily lead to failed

translations.

• Uncommon facial orientation: In the CelebA face dataset [124], most of the faces are facing

forwards instead of towards the side. We observe that, when encountering some faces facing the

side, the translation performance is reduced.

• Uncommon wearing and obstruction: For example, the top-left of Figure 4.10 shows that

the network fails to understand a pink hat facing the side because it is uncommon in the training

dataset. Moreover, for the same reason, the bottom-right images show that putting a hand over

the face will result in a failed translation.

• Skin colour background: When the background colour is similar to the facial skin colour, we

observe that the neural network will be confused. An example is the bottom images of the third

subplot from the left.
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Fail example (did not split train/test)

GT         Input     Output   GT         Input     Output   GT         Input     Output   GT         Input     Output   

Figure 4.11: Failure cases of our method on image inpainting on the Street View House Number
(SVHN) dataset. In each subplot, the first column contains the original images, the second column
contains the images to be inpainted, and the third column contains the inpainted images.

Figure 4.11 shows the failure cases of unsupervised image-to-image translation on image inpainting.

We found the following two situations will easily lead to failed translations.

• Large missing area: If the digit is largely missing, we observe that the neural network may

fail to synthesise the missing part.

• Uncommon colour: If the digit or background colours are uncommon, we observe that the

neural network may fail to synthesise the correct colour to fill the missing pixels.

4.5 Limitations and Solutions

4.5.1 Limitations

Though our experiment shows promising results, there are still many limitations. For example, Fig-

ure 4.7 shows that the synthesised images have large artefacts where the shadow of the square mask

appears on the results. In addition, our method was unable to recover incomplete images with ran-

dom masks. More importantly, the proposed method failed to learn the complex translations shown

in Figure 4.1. We failed to translate higher resolution images (e.g., 256 × 256), which have defects in

image quality and generality.

The limitations of our method are due to the hypothesis that the distribution of synthesised images

x̂ is the same as the distribution of the real images x. In other words, it assumes the generator G is

able to synthesise not only images x̂ that have the same quality as the real images x but must also all

the images in the dataset. However, in practice, the synthesised distribution was not able to match

the real distribution exactly, leading to two problems:
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First, the training of the encoder E is based on the synthesised images x̂ from the generator G; thus,

the encoder E never observes the real images x, whereas, in the translation step, we input real images

x to the encoder E. As the synthesised images x̂ do not precisely match the real images x (i.e., the

synthesised image do not have the same quality as the real images), the training of the encoder E

contains biases. Therefore, in the translation step, the encoder E will reconstruct inaccurate latent

variables ẑ for the real images x, resulting in poor translation. In theory, improving the quality of the

synthesised images will result in less bias, and many studies focus on improving the visual quality and

resolution for synthesising images [20,86]. However, in practice, the quality of the synthesised images

cannot be improved infinitely, so the bias caused using the synthesised images x̂ to train the encoder

E cannot be eliminated.

Figure 4.12: Example results of the GAN collapse. Each block contains the images from different
collapsed generators trained on MNIST. All images are synthesised from different noise vectors. Image
is from [131].

Second, in the vanilla GAN framework, the generator G is only required to synthesise images to fool

the discriminator D. There are no constraints for the generator G to have the ability to synthesise

all images in the training set [131]. Therefore, the generator is able to fool the discriminator, even if

it is only able to synthesise a small portion of the images in the training set [131]. This phenomenon

is called GAN collapse [131]. Figure 4.12 shows some results from collapsed generators, where the

generators always output similar images given different noise vectors. In extreme cases, the generator

G could fool the discriminator by ignoring the noise vector z and always outputting a unique plausible

image [131].

Therefore, training the encoder with the synthesised images from the generator has the potential to

miss the information of the training set. Then, in the translation step, when the input images contain
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features that the encoder has never seen in its training phase, the synthesised latent vector ẑ will have

biases, resulting in poor or failed translation.

4.5.2 Solutions
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Figure 4.13: Methods that train the encoders using real images.

Without solving these problems, even with an ideal encoder (e.g., a super deep encoder), the proposed

two-step method cannot extend to more advanced tasks. Fortunately, there are some subsequent

studies [25, 95] that were published after our experiments that have addressed these problems. All

these methods train the encoder by inputting real images. In other words, the encoder is able to

observe real images and encode them to latent representations.



4.5. Limitations and Solutions 101

Liu et al. [95] achieved unsupervised image-to-image translation by training two image encoders with

real images as the inputs. As the top of Figure 4.13 shows, the images of domains “A” and “B”

are encoded into the same latent space using two separate encoders, and then the method uses two

generators and two discriminators to synthesise and discriminate the images, respectively. More

specifically, the two generators not only need to reconstruct the images in an autoencoder way, as

the green and yellow lines show but also need to synthesise plausible images for translations, as the

red and purple lines show. The two discriminators are used to discriminate the synthesised images

from the two generators, respectively. By competing with the discriminators, the two generators can

synthesise images for domains “A” and “B”, respectively. However, one limitation of this method is

that the training is unstable due to the saddle point searching problem [95].

After that, three similar methods, CycleGAN [25], DualGAN [132] and DiscoGAN [133], are proposed

to consider the encoders to be part of the generators, without encoding images into a normal distri-

bution. As the bottom of Figure 4.13 shows, the methods consist of two generators for translating

the images from domain “A” to “B” or from “B” to “A”, respectively. Similar to the work by Liu et

al. [95], two discriminators are adopted to discriminate the images from different domains. Mean-

while, the key of these methods is the reconstruction loss indicated by the green and yellow lines in

the bottom of Figure 4.13. It recovers the synthesised images back to its original domain. By doing

this, it makes the synthesised images contain more information of the original input images, rather

than only satisfying the discriminators. The reason is that, if the synthesised images do not have

sufficient information of the original input images, we cannot recover the synthesised images back to

the original images [25, 132, 133]. Their experiment shows that a larger weight of the reconstruction

loss can help the synthesised images contain more features of the original domain, but setting the

weight as too large will result in failed translation (i.e., the synthesised images will look the same as

the input images). The weight of this loss is selected based on the experiment. This loss is called

“cycle consistency loss” in CycleGAN [25] and is also known as cycle loss.

Compared to the work by Liu et al. [95], which requires the encoder to output a prior normal dis-

tribution, CycleGAN considers the encoder to be a part of the generator, it implicitly learns the

latent distribution without requiring an encoder to output a prior normal distribution. The training

of CycleGAN is more stable and successfully applies to more applications [25], this implicit way to

learn the latent distribution has two advantages over using the prior distribution. First, simple image

datasets may match the simple prior distribution, while diverse and complicated datasets, such as
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multi-category natural scene images, require a more complex distribution, which is more appropri-

ate [134]. Otherwise, this requires the generator to disentangle the latent factors from simple noise to

complicated image distribution, which require a very deep network and a large amount of data [134].

Second, the implementation is simple, many existing fully convolutional network architectures can be

used for reference.

4.6 Conclusions and Discussions

Unsupervised image-to-image translation to generate images conditioned on the input images was

proposed with a method that does not require paired images to supervise the training. First, the

approach learned to synthesise images conditioned on both latent variables and class labels and then

trained an image encoder to map images to the latent variables. By doing so, given an image from one

domain, it is first mapped to the latent variables, and then synthesised the translated image by using

its latent variables and the changed class label. As the latent variables capture the common features

across different domains [16], the synthesised images will contain the common features of the input

images to achieve unsupervised image-to-image translation. We evaluate our method on the tasks of

face swapping, portrait gender transformation, and image inpainting.

The limitations of the proposed method were analysed and introduced how subsequent studies [25,

132, 133] can address these limitations. This analysis is important for the next study that provides

controllable generated results using both semantic visual information and object attribute information

from the image and text description, respectively. Moreover, the proposed method can translate images

from two domains to each other using the same generator, while the subsequent studies require an

extra generator.



Chapter 5

Efficient Semantic Image Synthesis

The previous two chapters study image synthesis conditioned on either text description or image. This

chapter proposes a method to synthesise images leveraging the advantages from both text description

and image to achieve more controllable generation compared to the previous methods. Specifically, the

synthesised images contain the the semantic visual information of the input images, such as the shape

and location of a bird or flower, while also matching the object attribute information from the text

description, such as the colour and texture of the bird or flower. Comparing with Chapter 4 where the

model only changes the input images with a single condition (e.g., change the gender), this method

uses a text description to control changing the input image. In addition, compared with Chapter 3

where the model synthesises images conditioned on text descriptions only, this method uses an image

to provide conditions for controlling the corresponding features of the object.

5.1 Introduction

Text descriptions provide object attribute information, such as the colour of an object (e.g., bird or

flower) and images provide semantic visual information, such as the location and shape of an object.

The previous two chapters study controllable and data efficient image generation methods that use

either text description or image as the controlling condition. Further improvements to the generative

method should be attainable through the use of more than one type of information to control the

results. Recently, extending the from text-to-image synthesis, Reed et al. [135] proposed a GAN-based

method that synthesises the object to match both the text description and bounding box coordinates.

103



104 Chapter 5. Efficient Semantic Image Synthesis

For example, given a bounding box on the left-hand side of an image and the text description of

“this bird is completely black.”, the output image is expected to be a blackbird on the left-hand side

of the image. This method offers more controllable results compared to the text-to-image synthesis

because it can use the location information as the additional information to control the synthesis.

However, this method cannot control the synthesis using other semantic visual information, such as

the background and object shape information. In this chapter, to offer more controllable results,

we combine the advantages of the text description and image to synthesise images containing both

the semantic visual information from the input images and the attribute information from the text

description, which we call semantic image synthesis.

The challenge of this task is that after combining the input text description and image, the ground truth

images are unknown. It is impractical to create such labelled images manually to supervise the training

because, for example, 1,000 images and 1,000 text descriptions would provide one million combinations.

In other words, if we want to supervise the training, we need to create one million ground truth images

manually. Instead of doing this arduous process, an adversarial method is proposed along with a novel

model that only requires images and their matching text descriptions (i.e., matching image-text pairs)

for the training.

Specifically, the proposed method has a discriminator, a generator, and a text encoder. First, the text

encoder encodes the text descriptions into the embedded vectors and feeds them into the generator

and discriminator. To address the unknown ground truth problem, the discriminator learns to classify

by matching image-text pairs as real samples and learns to classify the mismatched image-text pairs

as fake samples. In doing so, the discriminator offers a strong signal to the generator about which

matching image and text pairs should appear, impelling the generator to synthesise images that match

the text description. Meanwhile, the generator synthesises images using the input images and text

descriptions, and the discriminator learns to classify the synthesised image and text description pairs

as fake samples. The generator and discriminator can enhance each other by competing. At the end

of the training, the generator achieves semantic image synthesis without requiring the ground truth

output images.

To evaluate the proposed method, the results are demonstrated using Caltech-200 bird [102] and

Oxford-102 flower datasets [103]. The results show that the synthesised images can maintain the

background and shape information of the input image while matching the text descriptions. The

interpolating results of the image and text spaces are visualised, respectively. By interpolating two
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input images on the output of the encoder portion of the generator and fix the text description, the

synthesised images can have a smooth change in the object shape while keeping the same colour and

texture information to match the text description. On the other hand, by interpolating two text

descriptions on the output of the text encoder and fix the input image, the synthesised images can

have a smooth change in colour and texture while keeping the shape and background to match the

input image. In this chapter, the information from the images and text descriptions are combined to

synthesise new images, and this method can be extended to different data types in the future.

5.2 Related Works

5.2.1 Text-to-image synthesis

To solve the multi-modal problem of image and text, Reed et al. [24] proposed a deep neural ar-

chitecture based on the conditional GAN framework, which successfully generated plausible 64 × 64

images from text descriptions. To increase the image resolution, Zhang et al. [86] proposed StackGAN,

which successfully generated 256 × 256 images. Compared with the previous text-to-image synthesis

methods built upon the GAN framework, our proposed method is a variant of the conditional GAN

framework. The synthesised image is conditioned not only the input text description but also the

input image. Utilising the semantic visual information of the input image and the object attribute

information of the input text description, our method manipulates the input image and requires the

output image to match with the input text description.

5.2.2 Other text-based image synthesis

Synthesising images conditioned on the class label or text description can have more applications than

the vanilla GAN, but it does not provide control over object location or pose [135]. It is difficult

and even impossible to contain all the precise information such as the background, location, colour,

and texture into a text description. To make the image synthesis more controllable, Reed et al. [135]

proposed a GAN-based network that can synthesise the object that matches with both the text

description and bounding box (or key-points) coordinates. The example results are shown in Figure 5.1.

Compared with text-to-image synthesis, this method can control the location of the object. However,

as the key-point and bounding box only contain the location information, the background and object
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Figure 5.1: Example results of image synthesis conditioned on both the text description and key-
points (or bounding box); image from [135].

shape information are not provided. Moreover, this method requires manually labelled object location

information (key-point or bounding box) for supervised learning. Compared with this study, the

purpose of our proposed method is to manipulate the input images conditioned on the input text

descriptions, where the output image is able to maintain the location, shape, pose and background

of the object of the input images. In addition, our method does not require labelled object location

information for training.

5.2.3 Baseline method

Reed et al. [24] proposed a method for semantic image synthesis, denoted as “style transfer” in their

paper. This is the only generative model able to tackle the same image synthesis task described in

this chapter. However, the main purpose of their work is text-to-image synthesis, rather than using

the text description to manipulate the image semantically, as we do in this chapter.

We use the method proposed by Reed et al. [24] as a baseline approach for comparison. This method

can be considered a special case of the two-step method that we introduced in this thesis. More

specifically, the first step is to pre-train a generator network G that can generate plausible samples of

image x̂ from latent variables z, and the second step was to further train an encoder network E that

inverts the synthesised image x̂ back to the latent variable ẑ. An MSE LE loss between the input and

output latent variables was employed for training encoder E:
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LE = Et∼pdata,z∼pz
∥∥z − E(G(z, ϕ(t)))

∥∥2
2

(5.1)

where G and E represent the generator and encoder, respectively, z is the normal distribution, ϕ is

the RNN text encoder, and t is the text description from the training set. Therefore, G(z, ϕ(t)) is

the synthesised image conditioned on the text. Optimising encoder E with the MSE loss can learn to

reconstruct the latent variable z from the input image x. During inferencing, the trained encoder

E first encoders the image x into latent variables ẑ, then the trained generator G synthesises a new

image based on ẑ and the embeddings of the target text description ϕ(t).

However, as discussed in Section 4.5, the main drawback to these kinds of approaches is that the

encoder E has been trained only on the synthesised/fake image x̂ from the generator, rather than on

the real image x. As it is almost impossible for the generator to generate a distribution of complex

real data, the distribution of the synthesised image cannot fully match the real image distribution.

Therefore, this training method creates biases in the encoder when encoding real images. Our method,

in contrast, uses the implicit encoding approach discussed in Section 4.5. We consider the encoder to

be a part of the generator, allowing the encoder to directly observe real images, while not mapping

images into a normal distribution.

5.3 Methods

Our proposed method consists of a generator network G, a discriminator network D and a text encoder

network ϕ. The inputs to the generator are an image and a text embedded from the text encoder.

We consider the image encoder to be a part of the generator, and encode the input image into the

feature space, then concatenate the output of encoder with the text embedding. The rest of the

generator then decodes the combined features to a synthesised image. Compared with the baseline

method from [24], we employ the proposed architecture along with a specific adversarial loss function

to optimise the learning for image synthesis. The proposed architecture enables us to utilise real images

for training the image encoder, avoiding the bias caused by using the synthesised image to train the

encoder, as discussed in Section 4.5. In addition, the latent representation of images is directly from

the convolutional layer, which contains more spatial information (i.e., the latent representation is a
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three-dimensional volume (tensor) rather than a vector). These are the critical differences in network

architecture that allowed our model to synthesise much better images than the baseline method.

For adversarial learning, the inputs of the discriminator are an image and a text embedding. The

discriminator learns to classify the matching image and text pairs as positive samples and to classify

the mismatched pairs and synthesised images as negative samples. In doing so, the discriminator can

pass a signal to the generator including how the real image should appear and how the matching image

and text pair should appear. To fool the discriminator, the generator not only needs to synthesise a

plausible image but also needs to ensure the synthesised image can match the given text description.

More details are described as follows.

5.3.1 Network architecture

Encoder Decoder Discriminator

Generator

Residual	Transformation	Unit

A	bird with	red	head	and	breast.

𝑥" = 𝐺(𝑥, φ 𝑡̅ )

φ 𝑡̅

𝐷(𝑥",φ 𝑡̅ )

A	bird with	red	head	and	breast.
φ 𝑡̅

𝑥
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Figure 5.2: Network architecture of the semantic image synthesis model, consisting of a generator
G, discriminator D, and text encoder ϕ. The text encoder encodes the text description into a vector
and feeds the vector into both the generator and discriminator. The generator consists of an encoder,
residual transformation unit, and decoder. The discriminator is an image encoder that outputs the
probability of whether the input image and text pair are real.

The proposed method is built upon a conditional GAN framework, conditioned on both images and

text descriptions. Our generator adopts an encoder-decoder architecture. The encoder part of the

generator is employed to encode input images and text descriptions. The decoder then synthesises

images based on latent representations of the image and text. The discriminator D performs the

distinguishing task conditioned on image and text semantic features. More specifically, Figure 5.2

illustrates the details of our network architecture. Inspired by [28], the generator is designed to

include an image encoder, a decoder, and a residual transformation unit.

The image encoder is a convolutional neural network (CNN) that encodes input source images of size

64 × 64 × 3 into spatial latent representations with the dimensions of 16 × 16 × 512. The encoder
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consists of three convolutional layers. The first layer uses a filter size of 3 × 3 and stride of 1 × 1.

The other two convolutional layers use a filter size of 4 × 4 and stride of 2. The 3D spatial latent

representations are critical to the performance of our model, as they retain the convolutional features

of the source images. To stabilise the training, following DCGAN [19], we use ReLU activation in

all convolutional layers. Moreover, batch normalisation [68] is performed in all layers except the first

convolutional layers.

To encode the text descriptions, we pre-train the text encoder ϕ using the same method described in

Section 3.2. The only differences are that the texts are not from the image captioning module but

the training set and that we use LSTM with a hidden size of 128. We further apply a text embedding

augmentation method proposed by Zhang et al. [86] on ϕ(t), making it to a dimension of 128. Similar

to GAN-INT [24] and our proposed method in Section 3.2.2, this augmentation method can generate

a mass of additional text embeddings during training. In addition, it can introduce noise distribution

to the generator, which allows the model to synthesise many images when given a text description.

More importantly, this method is easily implemented and added to any architecture. After encoding

the text description to a new vector of 128, we duplicate the text embeddings spatially to be 16 × 16

× 128 and, finally, concatenate it with the encoded image latent representations.

In contrast, for image input, we did not add noise because it would be difficult for the model to

maintain image features irrelevant to the text input (e.g., backgrounds), thus violating the purpose of

our task. However, the synthesised images can still be sampled differently due to the added noise of

text input, which we thought would be a better way to maintain diversity.

After concatenating the image and text-latent representations, the joint latent representation needs to

pass through a residual transformation unit, which is made up of four residual blocks [10]. Following

the verified design in [86], each residual block consists of two convolutional layers with a filter size

of 3 × 3 and stride of 1 × 1, the batch normalisation and ReLU activation are applied into every

layer. This residual transformation unit can further encode the concatenated image and text latent

representations jointly. There are two main reasons to include this unit. First, the residual architecture

makes the generator network easy to learn the identity function, so that the similar structure of the

input source image can be retained to the output image [28]. This is an important property for our

task, as we expect our model to keep the features of input images. Second, the deeper network can

have a “deeper” encoding process, which can help to better encode the joint image and text-latent

representations [10,86].
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The output of the residual transformation unit is fed into a decoder, which consists of several layers

that decode the latent feature representations into synthesised 64 × 64 RGB images. To stabilise

the training, following DCGAN architecture [19], both ReLU activation and batch normalisation

are adopted in all layers except the last layer. More specifically, the decoder consists of two up-

sampling layers, where each layer is double the size of its input feature map using bilinear interpolation.

Moreover, convolutional layers with a filter size of 3 × 3 and stride of 1 × 1 are applied on each up-

sampling layer. In the end, a convolutional layer with a filter size of 3× 3 and a stride of 1 × 1 makes

the output 64 × 64 × 3 (i.e., RGB three-channel image). To scale the pixel values of synthesised

images from -1 to 1, hyperbolic tangent activation is applied to the output of the generator.

For the discriminator network, as the right-hand side of Figure 5.2 shows, we first apply the convo-

lutional layers to down-sample the images into latent representations of 4 × 4 × 512. Following the

verified design in [86], this down-sampling process consists of four convolutional layers with a filter

size of 4 × 4 and a stride of 2, and the batch normalisation and leaky-ReLU with a slope of 0.2 are

applied to each convolutional layer. After that, one residual block is applied to further encode the

image representation. It consists of three convolutional layers with a stride of 1 × 1. Moreover, the

first convolutional layer uses a filter size of 1× 1 and the others use 3× 3. Given the encoded image

representation, similar to the generator network, we concatenate the image latent representation with

the text embeddings. Finally, we employ two convolutional layers to produce the final probability.

The first convolutional layer uses a filter size of 1×1 and a stride of 1 × 1, and the final convolutional

layer uses a filter size of 4× 4 and a stride of 1 × 1, which make the output a single value.

5.3.2 Adversarial loss

In this task, the ground truth images are unknown, and we do not know what the outputs of the

generator should be. It is impossible to draw all possible images for each image and text description

manually; otherwise, given n images and m texts, we need to manually draw n × m images, which

is impractical. In other words, it is impractical to create a dataset with ground truth images to

supervise the training. By utilising adversarial learning, we can provide an automatic method to learn

the implicit loss function, rather than creating outputs to be specific known targets.

Figure 5.3 shows the training process of the proposed method. We denote the matching text description

as t, the mismatched text description as t̂, and the semantically relevant text description as t. More
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Figure 5.3: Adversarial learning for semantic image synthesis.

specifically, the semantically relevant text description t includes the matching text description t and

other related but not precisely matched texts (e.g., given an image of a specific kind of bird, t can be

text describing other kinds of birds but cannot be text for other objects, such as flowers and buildings).

We denote the probability of a text description match for an image x as s, and the synthesised/fake

image from generator G(x, ϕ(t)) as x̂. We indicate different types of input pairs of the discriminator

D in different colours in Figure 5.3. The discriminator D learns to classify the following three types

of data, where the symbols + and − denote positive and negative examples for the discriminator.

• s+r ← D(x, ϕ(t)) classifies the real image with the matching text description as a positive exam-

ple, indicated by blue lines.

• s−w ← D(x, ϕ(t̂)) classifies the real image with the mismatched text description as a negative

example, indicated by red lines.

• s−s ← D(x̂, ϕ(t)) classifies the synthesised image with a semantically relevant text description as

a negative example, indicated by green lines.
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The first term, s+r , is the basic loss that teaches the discriminator to learn the relation of the image

and the correct/matching text description. The second term s−w is proposed by Reed et al.[24] to

jointly train with the first term (s+r ) to enable the discriminator to learn stronger image and text

matching signals. In other words, the discriminator knows what the matching image and text pairs

should be. Therefore, this term can make the generator synthesise a plausible image to match the

text description better [24]. The loss of these two terms for updating the discriminator D is defined

as follows:

LD = E(x,t)∼pdata logD(x, ϕ(t))

+ E(x,t̂)∼pdata log(1−D(x, ϕ(t̂)))

(5.2)

The definition and distinction between the semantically relevant text description t, mismatched text

description t̂, and the matching text description t are extremely important for the proposed method.

Therefore, before we describe the details of the final term s−s , we would like to explain the text

definition first.Encoding for Learning Multi-Modality
This striking bird has a mostly black body

This is a black bird with a yellow breast and head.

This bird has a bright yellow head and breast
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Figure 5.4: Definition of different text description types for single- and multi-category datasets.

Figure 5.4 illustrates the difference between the mismatched text description t̂ and the semantically

relevant text description t. For a single category dataset (e.g., bird only), as the yellow-headed bird

picture on the top of Figure 5.4 shows, the mismatched text descriptions t̂ are the texts apart from
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the matching text description t of the specified image, and the semantically relevant texts t are all

text descriptions in the dataset (i.e., t = t+ t̂).

The reason we denote t as “semantically relevant text” rather than “all text” is that, for multi-category

datasets, the t should not include the texts of other categories. Figure 5.4 illustrated the situation for

combing the bird and flower datasets. The mismatched text t̂ is still the texts apart from the matching

text, while the semantically relevant text t is all the text belonging to the category of the specified

image. In other words, extending the dataset from a single- to multi-category would not affect the

matching texts t and semantic relevant texts t. Only the mismatched texts t̂ would be changed, as

the red symbol in Figure 5.4 indicates.

The final term (s−s ) is one of the key contributions of the proposed method and makes the proposed

method work. The first two terms (s+r and s−w) already teach the discriminator D to distinguish

matching and mismatched pairs. Then for the final term s−s , as the generator synthesises images

via x̂ ← G(x, ϕ(t)) and the discriminator classifies the synthesised images as negative examples, the

generator is trained to fool the discriminator that outputs a positive result for D(x̂, ϕ(t)). By doing

this, the generator learns to manipulate the input images to synthesise images that can match the

text description.

The definition of t makes the image synthesis task more reasonable. It does not make sense to

synthesise images if the given image and target text description are irrelevant. For example, it is

not reasonable to modify a “bird” to a “building”. Following the discussion above, extending from

Equation (5.2), the final loss functions of the proposed method are defined in Equation (5.3).

LD = E(x,t)∼pdata logD(x, ϕ(t))

+ E(x,t̂)∼pdata log(1−D(x, ϕ(t̂)))

+ E(x,t)∼pdata log(1−D(G(x, ϕ(t)), ϕ(t)))

LG = E(x,t)∼pdata log(D(G(x, ϕ(t)), ϕ(t)))

(5.3)

where t denotes the matching text, t̂ denotes the mismatched text, and t denotes the semantically

relevant text. We update the generator with LG and the discriminator with LD. The first two terms of

LD are the losses for s+r and s−w from Equation (5.2), corresponding to matching text and mismatched



114 Chapter 5. Efficient Semantic Image Synthesis

text. The LG and the final term of LD are the losses for s−s corresponding to the semantically relevant

text t. By optimising these loss functions along with our network architecture, the encoder part of the

generator can utilise real images to learn the mapping from the images to the latent representations.

In the following, we describe the training details about the semantically relevant text description.

At the early stage of training, as the generator cannot synthesise plausible images, the discriminator

can learn to distinguish between real and synthesised images while ignoring the text description via

the first two terms (s+r and s−w). As training continues, the generator gradually learns to synthesise

plausible images that may or may not match the text description. Then, the generator starts to learn

to modify the images via the text description. At this time, the choice of text descriptions starts

making a difference.

If we use the matching text t in s−s , the generator can only observe the matching pairs (x and t). Then,

the generator can fool the discriminator by learning to over-fit to the input images and ignore the text

description. In other words, the synthesised images of the generator will be the same as the input

images. In this case, the update signal from the discriminator is always from positive s+r . The text

information signal from the term s−w has never been used. No adversarial process for text description

is preserved.

If we use the mismatched text t̂ in s−s , the input pair to the discriminator is the synthesised images

and mismatched texts. The second term, s−w , will let the discriminator D pass a strong signal to

the generator. Finally, the update will allow the generator only to synthesis images that match t̂.

It will become a problem when using multi-category datasets. If the generator is forced to transfer

two irrelevant objects, the generator will over-fits the text descriptions. Apart from that, t̂ does not

contain t, and the generator cannot implicitly learn to keep the image unchanged when inputting the

matching text description.

In addition, the proposed method can be viewed as a variant of conditional GAN conditioned on

the image and text. The loss function allows the generator G(x, ϕ(t)) to capture the conditional

generative distribution pG(x̂|x, t) to fit the distribution of the real data pdata(x, t). Combined with the

proposed network architecture, the loss function adversarially makes x̂ plausible and matches what

t describes. Algorithm 6 illustrates the training process step by step. At every iteration, a batch of

images x are first randomly selected, and then randomly select the corresponding mismatched text

t̂, mismatching text t̂ and semantically relevant text t. All texts are encoded into text embeddings
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Algorithm 6 Training algorithm for semantic image synthesis via adversarial learning.

Input: image x, matching text t, mismatched text t̂, semantically relevant text t, number of iterations
n

1: for i = 1 to n do
2: h← ϕ(t) encode matching text
3: ĥ← ϕ(t̂) encode mismatched text
4: h← ϕ(t) encode semantically relevant text
5: x̂← G(x, h) forward generator with real image and arbitrary text
6: sr ← D(x, h) real image, matching text
7: sw ← D(x, ĥ) real image, mismatched text
8: sa ← D(x̂, h) synthesised image, semantically relevant text
9: LD ← log(sr) + (log(1− sw) + log(1− ss))/2

10: D ← D − αδLD/δD update discriminator
11: LG ← log(ss)
12: G← G− αδLG/δG update generator
13: end for

using the pre-trained text encoder. Thus, we denote the text embedding of the matching text as h; ĥ

for the mismatched text and h for the semantically relevant text. Next, semantically relevant text is

fed into the generator to obtain the synthesised image x̂. Given x, x̂, h, ĥ and h, we can obtain the

outputs of discriminator sr for inputting the real image x with its matching text t, sw for inputting

the real image x with its mismatched text t̂, and sa for inputting the synthesised image x̂ with the

semantically relevant text t. At the end of one iteration, the generator and discriminator are updated

using these three outputs (i.e., sr, sw, sa) according to the loss functions defined in Equation (5.3).

5.3.3 Feature enhancement

The feature representations of the input images are from the encoder part of the generator which is

trained along with the entire model. Because of the limited size of the datasets we used, the encoder

may not be capable of producing good representations, which limits the quality of the synthesised

images. A pre-trained image encoder could help enhance the feature details of the synthesised images.

Therefore, we further propose an alternative model that employs a much deeper pre-trained CNN to

perform the encoding function.

Instead of feeding 64 × 64 images into the generator, we use 244 × 244 images, which contain more

semantic visual information, as the input of the generator. As described previously the encoder part

of the generator consists of three convolutional layers that can encode the 64 × 64 images into spatial

latent representations with a dimension of 16 × 16 × 512. To enhance the feature details of the

synthesised images, we replace the encoder part of the generator with a VGG [45] network that is
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pre-trained on ImageNet [4]. More specially, to use the same architecture of the decoder part of the

generator, the VGG encoder should have the same output dimensions (i.e., 16 × 16 × 512) with the

original encoder. To achieve feeding 244 × 244 images to the VGG, as shown in Figure 2.7, we use

the output of the fourth convolutional block as the encoded spatial latent representation. The other

parts of the generator are maintained to be the same.

5.3.4 Beyond 64 x 64

All of our methods were only able to synthesise 64 × 64 images. While it would be interesting and

more useful to synthesis higher resolution images with the size of 256 × 256. However, our methods

failed to synthesise 256 × 256 images. The images were totally distorted (some failed examples are

shown in Figure 5.16). We also tried the state-of-the-art generator architectures borrowed from the

studies in [13,25], but our GAN training still failed. In addition, different from the 64× 64 image, we

found that using the pre-trained VGG model as the encoder part of the generator did not work for

the image size of 256 × 256, and even collapsed faster when using text embedding augmentation for

the text [86].

Encoding for Learning Multi-Modality

!" : mismatching text
t : matching text

"̅ : semantically relevant text

%XX

& RNN 
Encoder

& RNN 
Encoder

Residual

t"̅

Residual %X '('

L1

• Cycle Loss

Figure 5.5: The proposed method with cycle loss. Left: The generator first manipulates the input
image using the semantically relevant text; Right: The generator translates the synthesised image
back to the input image using the matching text.

Since the ground truth images are unknown, the synthesised images from the generator cannot explic-

itly contain the same background as the input. As discussed in Section 4.5, training the GAN in an

autoencoder fashion can help maintain input image background information and avoid GAN collapse

because it forces the generator to synthesise the data in the training set. Therefore, to synthesise
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256 × 256 images, inspired by CycleGAN [25], we introduce the cycle loss to improve the background

and detail reconstruction. As Figure 5.5 shows, the cycle loss considers manipulating the image using

relevant text t to be “encoding”, and manipulating the synthesised image back to the input image

using the matching text t to be “decoding”. The cycle loss “forces” the synthesised images to maintain

information from the input images; otherwise, the “decoding” process cannot reconstruct the input

images well.

In terms of the model architecture, to synthesis images with a size of 256 × 256, we redesigned the

architecture of the generator and discriminator. For the generator, to contain more spatial information

from the input, the encoder part of the generator encodes the images into latent representations of 64

× 64 × 128, which is 4 times larger than the original 16 × 16 × 512. As a larger receptive field is

required for larger images, after concatenating the convolutional output with the text embedding, we

feed the output of the encoder into 16 residual blocks instead of four blocks for the 64 × 64 image.

The decoder part is the same as the original one. For the discriminator, as the image size is increased

from 64× 64 to 256× 256, extending from the discriminator, we apply four extra convolutional layers

with a filter size of 4 × 4 and stride of 2 before connecting with the text embedding.

In terms of training, as the input images are unique, we disable the text embedding augmentation of

the generator when converting the synthesised image back to the input image (i.e., the generator on

the right-hand side of Figure 5.5). More specifically, LS-GAN [89] uses the squared error to replace

the sigmoid cross entropy of DCGAN [89], has been successfully applied to CycleGAN [25]. Following

CycleGAN, the loss functions become the following:

LD = E(x,t)∼pdata(1−D(x, ϕ(t)))2

+ E(x,t̂)∼pdataD(x, ϕ(t̂))2

+ E(x,t)∼pdataD(G(x, ϕ(t)), ϕ(t))2

LG = E(x,t)∼pdata(1−D(G(x, ϕ(t)), ϕ(t)))2

+ E(x,t,t)∼pdataλ× ||x−G(G(x, ϕ(t)), ϕ(t))||

(5.4)

where λ is the scale factor of the cycle loss. A larger λ results in maintaining more information of

the input image in the synthesised image [25]. In extreme cases, if the λ is too large, the synthesised

image will look the same as the input image (i.e., failed translation). Compare with Equation (5.3),
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we replace the log function by the squared error and an extra term for cycle loss is added to the

generator loss LG.

5.4 Evaluation

In this section, we demonstrate that our method was capable of synthesising plausible images that

maintained most of the features of the input images and matched the input text descriptions. To show

our generator successfully learnt the features of both the image and text description, we interpolate

the latent space of two images with a fixed text description and then interpolate two text descriptions

with a fixed image.

5.4.1 Datasets and training details

Two single-category datasets, Caltech-200 bird [102] and Oxford-102 flower datasets [103], were used

to evaluate the proposed method. Ten text descriptions for every image in both datasets were labelled

by [136], mainly describing the colours and textures of different parts of the objects [24] (e.g., bird

head and belly). The bird dataset has 11,788 images with 200 classes of birds. We split 200 classes

into 150 for training and 50 for testing. The flower dataset has 8,189 images with 102 classes of flowers,

split into 82 for training and 20 for testing.

Both datasets only describe the same object (i.e., either bird or flower). They are single-category

datasets. Therefore, as Figure 5.4 shows, we combine the matching text t and mismatched text

t̂ as the semantically relevant text t. To stabilise the GAN training, following DCGAN [19], to

train the generator and discriminator, we adopted an initial learning rate of 0.0002, with the Adam

optimisation [61] and momentum of 0.5. We used a batch size of 64 and trained the network for 600

epochs for both datasets. The learning rate was decayed by 0.5 every 100 epochs. For the image size

of 256 × 256, the learning rate is decreased by 0.5 every 50 epochs. Due to the limits of hardware (i.e.,

NVIDIA Titan XP GPU), we reduce the batch size to 16. For the generator with the pre-trained VGG

encoder, the parameters of the VGG part and text encoder were fixed after pre-training. For data

augmentation, we randomly horizontally flip (50%) and rotate (±15◦) the images in both datasets.

For synthesising 256 × 256 images, we tried different λ for the cycle loss, varying from 0.01 to

10. According to the experiment in CycleGAN, a large λ can help synthesise images to be more
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similar to the input images but reduces the effect of the translation. The choice of λ is dependent

on the datasets [25]. Similar to CycleGAN, we found the same phenomenon: a large λ will make the

synthesised images ignore the text descriptions (e.g., the text cannot modify the image well). In our

experiment, the flower dataset works well for large λ (e.g., 10) but the bird dataset does not. Finally,

we chose a λ of 0.1, which works well for both datasets.

In this experiment, we will compare the baseline method, our 64 × 64 method with and without

pre-trained VGG, and our 256 × 256 method with cycle loss. To speed up the development, GPU

acceleration was used to train the network. Training the networks for 64× 64 with VGG takes about

two days using an NVIDIA Titan XP GPU. The training for 64 × 64 without VGG and 256 × 256

image size requires about one and three days, respectively. The code was implemented by TensorLayer

1.7.2rc [112] and TensorFlow 1.0.0 [113], and can be found in the Appendix.

5.4.2 Qualitative comparison

First, we compared the result of the proposed methods with and without using the pre-trained VGG,

and the baseline method described in Section 5.2.3. We put the bird results from Reed et al. [24]

in the left columns in Figure 5.6 to directly compare them with our results. (as the evaluation by

Reed et al. [24] only demonstrated the results from the training set, we used their training set results

to make a fair and direct comparison). Compared with the baseline method, the proposed method

kept most of the original background, bird poses, and other information in the original images. For

example, the fourth image on the left in Figure 5.6 shows that the baseline method failed to keep the

tree branch on the synthesised image, while our method synthesised the tree branch. The quantitative

comparison for the background and bird pose can be found in the next subsection. Moreover, our

method successfully synthesised unseen birds from the training set. For example, it synthesised the

flying birds in different colours that might not exist in the real world.

However, all the input images in Figure 5.6 are from the training set, which can give better results but

cannot demonstrate the zero-shot learning ability of the proposed method. Then, we further evaluated

the methods on the test set for both the bird and flower datasets and the effect of using pre-trained

VGG to enhance the feature representation.

Figure 5.7 compared the baseline method and our method with and without VGG using the test

set of birds with more complicated backgrounds. Compared with the baseline method, our birds are
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Figure 5.6: Example results of the baseline method and the proposed method without pre-trained
VGG on Caltech-200 bird dataset. The baseline results from [24].
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Figure 5.7: Zero-shot results of the baseline method and our method with and without pre-trained
VGG encoder on Caltech-200 bird dataset.



122 Chapter 5. Efficient Semantic Image Synthesis

not mixed up with the backgrounds. For example, in the right column, we can see that the cable

overlapped with the bird can be clearly identified. The results also show that our method can keep

more information from the input images. For example, the timber pile in the second column can be

reconstructed. For the pre-trained VGG, compared with our method without VGG, the results have

clearer backgrounds, such as the cable, timber pile, and branch. This is due to the pre-trained VGG

encoder that already learnt the features of various objects from ImageNet, while, in this bird dataset,

the number of different background objects is not large enough.

For the flower dataset, Figure 5.8 shows the results of the baseline method and our method without

the pre-trained VGG. The baseline method failed to synthesise the details of the petals and outputs

distorted images. For example, the third image from the left is a blue flower with five petals, but

the synthesised images all failed to keep the shape of the petals. A possible reason for this might be

because the flowers have many diverse shapes relatively, which are too difficult for the baseline method

to encode such spatial information into a vector. In contrast, the proposed method used implicitly

way to learn the encoder which outputting features of 3-dimension volume. Figure 5.9 illustrated

our results with and without pre-trained VGG on the test set. The results show that our method

successfully synthesised plausible images by modifying the input images based on text descriptions.

Our experiment showed that the generator without residual transformation unit was more likely to

synthesise images that lost the features of the input images, e.g., backgrounds, and lacked the details

specified by the text descriptions. In addition, to generalise the proposed method, we further conducted

an additional experiment on the combined dataset of birds and flowers as a multi-category dataset,

employing the same model, training scheme and hyper-parameters. We found that our model can

still be able to synthesise reasonable images, as shown in Figure 5.10. The method would be able to

produce good results in more complicated and varied datasets with deeper network architecture.

5.4.3 Quantitative comparison

In this chapter, we used a human ranking method to quantitatively compare the different methods: 1)

the baseline method, 2) our method without VGG, and 3) our method with VGG. We spread volunteer

recruiting advertisements among undergraduate and graduate students in Imperial College London.

To prevent bias, we select 10 volunteers who do not know our work to rank the quality of images

synthesised by different criteria. We used all the images from test set for the evaluation. Each image
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Figure 5.8: Zero-shot results of the baseline method and our method without pre-trained VGG on
Oxford-102 flower dataset.
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Figure 5.9: Zero-shot results of our method with and without pre-trained VGG encoder on Oxford-
102 flower dataset.
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Figure 5.10: Zero-shot results of our method without VGG on the combined dataset of Caltech-200
bird and Oxford-102 flower.
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is translated by a text description, which is randomly sampled from the test set by assuming a uniform

distribution over all the text descriptions in the test set. Then all results are divided into ten portions

evenly. As we compared three methods, for every test data, three synthesised image, as well as the

original image, were presented to volunteers. To prevent bias, images of different methods are shuffled

by Fisher-Yates method [114], so that the participants do not know which image is corresponding to

which method. The volunteers were required to rank the images, 1 for the best, 3 for the worst, based

on the following three criteria, whether the synthesised image:

• maintains the original pose of the bird and shape of the flower;

• maintains the original background such as the tree branch and leaf;

• matches the text description and appears like real image;

baseline ours ours+VGG

bird
pose 2.87 1.61 1.52
background 2.68 1.93 1.39
text 2.11 1.94 1.95

flower
shape 2.97 1.55 1.49
background 2.62 1.74 1.64
text 2.52 1.75 1.72

Table 5.1: Human evaluation of our approach, showing averaged rank scores of Caltech-200 bird
dataset and Oxford-102 flower dataset for different aspects.

After that, we averaged the ranks of images from all volunteers to calculate the quality scores (1

for best, and 3 for worst) for all 3 methods. The reason of choosing these criteria to compare on

is because the text description of both datasets only related to the colour and texture of the object

without describing the background and the pose of the object [24]. Therefore, the original background

and object pose should not be changed. In addition, our task requires the synthesised images to not

only be able to look plausible but also able to match the text description. Table 5.1 shows the

scores, it is clear that the proposed methods outperformed the baseline method on the following three

aspects:

• Maintaining the object pose and shape: Compare with the baseline method, our methods

with and without VGG can synthesise images maintain better bird poses and flower shapes.

Because the baseline method failed to synthesise the details of flower petals as Figure 5.8 shows,
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our methods have a significant improvement on maintaining the flower shape compare with the

baseline method.

• Maintaining the original background: Our proposed methods can maintain the background

better than the baseline method. For example, as Figure 5.7 shows background objects (e.g.,

the tree branches and electric wire) of the baseline method are distorted and mixed up with the

birds, our methods especially the method with VGG are able to reconstruct better background

objects relatively.

• Matching the text description and appearing like real image: The ranking results

indicate that our methods with and without VGG can synthesise plausible images matching

text description better than the baseline method on both bird and flower datasets. As the first

column images from left in Figure 5.8 shows, the baseline method tends to synthesise distorted

images, so our methods can have a significant improvement on synthesising plausible flowers

compare with the baseline method.

For our method with pre-trained VGG, the ranking indicates that it cannot make the text matching

better than our method without using VGG. The reason is that it does not show significant improve-

ment on the flower dataset (i.e., from 1.75 to 1.72) and its performance for bird dataset is slightly

reduced (i.e., from 1.94 to 1.95). Nevertheless, the pre-trained VGG can help to generate better pose

and background details compare with our method without using VGG. Especially, the background

details of bird dataset have a better improvement than the flower dataset (i.e., “1.93 to 1.39” vs “1.74

to 1.64”), this may because the bird dataset contains more background objects (e.g., tree branches

and other staffs that bird can stand on) than the flower dataset.

5.4.4 Interpolating latent space

To show the image and text encoders learnt the features meaningfully, we visualised the interpolating

results for image and text-latent space individually. A meaningful latent space can be interpolated

and can be used to produce smooth and linear latent representation [19]. For this reason, here we

demonstrated whether the generator supports such interpolation.

• Interpolating image latent space: Figure 5.11 are the synthesised images from linearly

interpolation between two different input images and a fixed text description. The images are
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2241,	1860,	This	bird	has	yellow	breast	and	black(or	grey)	on	its	wings.

This	is	a	red	bird.

An	orange	bird	with	black	head.

This	bird	has	yellow	breast	and	grey	on	its	wings.

Figure 5.11: Zero-shot results of interpolation between two source images with the fixed text de-
scription. The images pointed by arrows are the input images.

2054,	2250,	2858

A	black	bird.

A	bird	with	red	body	has	yellow	wings	and	a	blue	head.

A	yellow	bird	with	black	on	wings.

A	bird	with	red	head	and	breast.

A	bird	with	yellow	body	and	grey	stripes	on	wings.

This	dark	blue	bird	has	a	black	beak.

Figure 5.12: Zero-shot results of interpolation between two text descriptions for the same input
image. The images on the left-hand side of sentences are the input images.
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from the test set, and we applied the interpolation on the outputs of the image encoder. The

results reflect the smooth changes in object shape while keeping the same colour and texture to

match the text description. Take the second row for example, we can see that the bird poses

changes from “facing left” to “facing right” smoothly. In addition, the background object also

changes smoothly, the first row shows that the background changed from “snow” to “branch”.

• Interpolating text space: Figure 5.12 are the synthesised images from two interpolated text

embeddings on the output of text encoder. It demonstrated gradual changes in semantic mean-

ing. Take the top row for example, the bird body changes from “black” to “dark blue” and

finally, “colourful”, while keeping plausible shapes and other details of the bird. Moreover, the

background object remains unchanged.

These results demonstrated that we could interpolate both text and image latent space to manipulate

the synthesised images smoothly. The encoders successfully learn the features of image and text

description for this multi-modal task.

5.4.5 Diversity

Given an image and a text description, the proposed method can generate diverse results. As shown in

Figure 5.13, the top row are the input images and text descriptions, the bottom row is the synthesised

image. The result shows that given an input image with a single text description, the generator can

synthesise different images that can match the text description and input image.

Bird	809	this	bird	is	blue	and	red	in	color	with	a	black	beak

The	bird	 is	blue	and	red	in	
color	 with	a	black	beak.

A	green	bird	with	 a	
brown	 head.

Figure 5.13: Zero-shot results from same input image and target text description for showing diver-
sity.
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Figure 5.14: Zero-shot results of our 64 × 64 method with VGG and 256 × 256 method on Caltech-
200 bird dataset.
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Figure 5.15: Zero-shot results of our 64 × 64 method with VGG and 256 × 256 method on Oxford-
102 flower dataset.
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Figure 5.16: The 256× 256 flower results without using cycle loss.

5.4.6 Beyond 64 x 64

To compare the result of 256× 256, we used the same input images and text description from Figure 5.7

and 5.9 and compare with the 64 × 64 method with VGG. Figure 5.16 illustrates the failed 256× 256

flower examples when training the model without using cycle loss. Even though, the outline of flower

can be determined, the shapes are totally distorted.

A black bird with a 
red head.

This small yellow 
bird has grey wings, 

and a black bill.

64x64 with VGG 256x256 Difference

The petals are purple
with no visible stamens.

The petals are white
and the stamens are 

yellow.

64x64 with VGG 256x256 Difference

Figure 5.17: Bird and flower results. 64× 64 vs 256× 256.

• High resolution image: Figure 5.14, 5.15 and 5.17 illustrated the visual details of 64 × 64

(with VGG) and 256 × 256 images, we can see that by increasing the image resolution, the

256× 256 images can have more visual details compare with 64× 64 images. For example, the
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first column on the left of Figure 5.15 shows that the long petals can have clear edges on the

256× 256 images compare with the 64× 64 images.

• Better background reconstruction: As discussed in Section 5.3.4, the cycle loss is able to

“force” the synthesised images contain more information of the input images; otherwise, if the

synthesised images do not contain sufficient information of the input images, we cannot translate

the synthesised images back to the input images. As Figure 5.14 and 5.15 show, our 256× 256

images have more background details information. For example, the second column from the

left of Figure 5.14 shows that the timber pile can be better maintained compare with the 64×64

images. Another example is the fourth column from the left of Figure 5.15, the large leaves

on the background cannot be maintained on the 64 × 64 images, but our 256 × 256 images

successfully maintained the leaves.

As the synthesised images are able to keep the unrelated part of the image unchanged and manipulate

the parts that the text required, subtracting the hue of input and synthesised images can help to

understand the semantic connection between the image and text. In Figure 5.17, the images with

black background are the subtraction between the hue of 256 × 256 input images on the left-hand

side, and hue of the 256 × 256 synthesised images in the middle column. We can see that the colour

information can link to the corresponding part of the image. Take the red-head bird on top-left for

example, as the input image already is a black bird, then only the keyword “red head” in the text can

affect to the synthesis.

5.5 Conclusions and Discussion

The semantic image synthesis in this chapter combines the advantages of the text descriptions and

images in which the synthesised images contain the semantic visual information of the input images and

the object attribute information of the input text descriptions. To solve the problem of the unknown

ground truth images, a novel adversarial loss along with a novel model architecture is proposed. Instead

of using supervised learning that requires the synthesised image to be a specific ground truth image,

the proposed method learns to change the input image to match the text description by learning to

fool the discriminator. By doing so, the propose method successfully achieves the semantic image

synthesis using matching image-text pairs only.
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The evaluations on Caltech-200 bird [102] and Oxford-102 flower datasets [103] show that the syn-

thesised images can maintain the background and object shape information of the input images while

matching the colour and texture information of the input text descriptions. The interpolation results

show that the model successfully learns the features of images and text descriptions to produce smooth

change linearly.



Chapter 6

Efficient Deep Learning Development

Apart from the algorithm, the issue of efficient deep learning development also need to be considered.

In this chapter, we present the details of a deep learning library, called TensorLayer, for facilitating

deep learning development. TensorLayer provides model abstraction to speed the building of neural

network models as well as a life-cycle management tool to manage the dataset, model, and training

pipeline. We evaluate TensorLayer by comparing it with other representative libraries.

6.1 Introduction

To facilitate deep learning development, existing computational engines, such as Theano [137] and

TensorFlow [113], support automatic error back-propagation and GPU acceleration. These options

provide basic mathematical operators, such as addition, subtraction, matrix multiplication, and con-

volution that allow for the construction and training of neural network models. However, deep learning

models are becoming more sophisticated. First, neural network layers are becoming more complex

from conventional layers, such as fully-connected and convolutional layers, to advanced architectures,

such as a spatial transformer [138] for producing transformations of input data and DoReFa-net [139]

for providing quantised feedforward propagation. Second, neural network models are becoming deeper

as is examplified in image classification where Alexnet include only eight convolutional layers to ResNet

that include a thousand convolutional layers [10]. This increasing complexity leads to the high work-

load of the library users when defining a model using basic mathematical operators.

To reduce users’ workloads, since the neural network models are considered as the composition of

135
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neural network layers, instead of using basic mathematical operations, wrapper libraries are built on

top of the computational engines to provide model abstraction to helps build models using layers.

Nonetheless, existing model abstractions, such as Keras and Pytorch, have limitations that require

library users or library developers to deal with the output shape of layers, which increases the workload

of using or developing the library. Also, to reduce users’ workloads for using the pre-trained models,

pre-trained model abstractions exist that help users easily reuse the state-of-the-art CNN models, such

as VGG, MobileNet, and SqueezeNet. However, these existing pre-trained model abstractions cannot

flexibly restore a certain part of the deep model based on different use cases of the pre-trained model,

resulting in initialising unused layers that lead to unnecessary computer memory consumption.

Moreover, distinct from conventional software development that features a predefined development

pipeline, deep learning development tends to revolve around experimentation. Researchers must ex-

periment with different datasets, model architectures, and training methods repeatedly [2]. Therefore,

apart from the workload from defining models, in practice, there are additional issues to be handled,

including model and dataset storage for versioning, sharing, further retrieval and provenance [21],

archiving the entire deep learning projects (e.g., the model, dataset and training pipeline of one or

multiple experiments) for further reproductions of the experiment, and training multiple models con-

currently to speed hyper-parameter selection [2,22]. Researchers also need to manage the entire deep

learning workflow, including creating or acquiring the dataset, training the model based on the training

pipeline, evaluating the model performance, and saving the model for further use. For these reasons,

researches must spend extra effort in managing the model, dataset, and training pipeline. Life-cycle

management tools such as AzureML and SeaHorse exist but require users to predefine each component

of the training pipeline within a predefined template. This effort restricts algorithm development for

models with architecture or connectivity that changes dynamically during training, such as GANs and

neural module networks [140].

In this chapter, we present TensorLayer, a novel Python library, to facilitate deep learning research.

Specifically, in terms of model abstraction, TensorLayer reduces the workload of users when defining

models and the workload of library developers when implementing new layers. Also, TensorLayer’s pre-

trained model abstraction does not initialise unused layers and avoids unnecessary computer memory

consumption. Moreover, TensorLayer provides a life-cycle management tool for managing the model,

dataset, and training pipeline without restricting researchers’ flexibility in defining training pipelines.

We evaluate the model and pre-trained model abstractions of TensorLayer by comparing them with
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other libraries released before and after TensorLayer. For life-cycle management, we demonstrate the

efficacy of TensorLayer using two case studies of hyper-parameter selection and deep reinforcement

learning followed by the comparison between TensorLayer and the existing tools. This library won

the Best Open Source Software Award of ACM Multimedia (MM) 2017 1.

6.2 Related Works

We begin with introducing tools for general machine learning development and why specific libraries

for deep learning are required. Next, we describe the computational engines, model abstraction,

pre-trained model abstraction, and life-cycle management for deep learning development.

6.2.1 Machine learning development libraries

Many open source libraries exist for general machine learning development. For example, scikit-

learn [141] is a well-known library that provides simple and efficient tools for many state-of-the-

art classifications, regression and clustering methods, such as support vector machine (SVM) [142],

nearest neighbour [143], random forest (RF) [144], k-means clustering [145] as well as data analysis

and processing methods like principal component analysis (PCA) [146] and normalisation. Two well-

known libraries for natural language processing are Gensim [147] and NLTK [148], which are designed

to extract semantic topics from documents, process unstructured digital texts, and perform word

embedding [53]. Other general machine learning libraries, such as Mlpack [149] and Shogun [150], can

reduce developers’ workloads.

While these tools support the implementation of the machine learning algorithms, with increasing sizes

of datasets, additional tools may be required to address challenges involving storage and computation.

Hadoop [151] is a widely used storage engine that stores and replicates data on thousands of servers

and provides simple APIs to read and write data. For processing data on Hadoop, developers leverage

Spark [152] to execute complex and high-scale computation jobs. Spark parallelises computation

through a dataflow approach and uses resilient distributed datasets (RDD) to cache intermediate

results, leading to high performance.

However, Spark often assumes data is processed singularly, so it is difficult to support deep learn-

1http://www.acmmm.org/2017/mm-2017-awardees/

http://www.acmmm.org/2017/mm-2017-awardees/
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ing and other machine learning algorithms, such as logistic regression and k-means, which require

iteratively training a dataset. This limitation motivated the development of Spark MLlib [153] and

SystemML [154], which realise iterative machine learning computations based on the Spark engine.

While these do support many machine learning algorithms, such as k-means and nearest neighbour,

they cannot support deep learning because it is usually based on tensor operations, such as matrix

multiplication and convolution [2].

6.2.2 Deep learning computational enginesDeep learning and development

Theano TensorFlow

Torch Pytorch

Caffe Caffe2

Time

CNTK
2016

2010 2015

2017

2014 2017

2002

2018

transfer

transfer

transfer
merge

Figure 6.1: Deep learning computational engines by release time and history listed on Github.

Compared with conventional machine learning tasks that can be efficiently executed on a CPU, deep

learning heavily relies a GPU to perform the high-dimension tensor computation. This technical

requirement motivated deep learning computational engines, such as Theano [137], TensorFlow [113],

CNTK [155], Caffe [156], Torch [157], Mxnet [158], and Pytorch [23], to automatically compute the

gradient for error back-propagation, which is a crucial processing component in deep learning training.

The “Convolutional Architecture for Fast Feature Embedding” (Caffe) developed by UC Berkeley [156]

provides a computer vision model framework with convolutional networks playing an essential role in

its deep learning methods. For training a model with Caffe, developers simply write a model file

that defines its architecture along with a solver file that defines the training details, including the

input data, loss, learning rate, and other configurations necessary for training. Customisation of this

frameworks operations requires developers to program in C++.
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However, more flexible ways are need for developing general deep learning models. For complicated

training processes (e.g., GAN), defining a loss function in a solver file is not sufficient. To support

more flexible deep learning development, the Montreal Institute for Learning Algorithms developed

Theano [137] as a numerical computation engines based on Python. This library provides basic math-

ematical operators, such as addition, subtraction, and matrix multiplication to allow users to define

a static graph that can be compiled to run. In 2015, by collaborating with the Theano team, Google

developed TensorFlow [113] as the successor of Theano to support additional hardware, operational

systems, and programming languages.

Facebook developed a general deep learning engine, called Torch, based on the Lua programming

language followed by Pytorch as its successor in 2017 to attract more Python users [23]. Evolved

from the static graph of Theano, Pytorch supports dynamic graphs run without compiling, which is

an advantage useful for developing complex models (e.g., models that are dynamically composed by

several sub-models [140]). Later, Facebook merged Caffe2 into the backend of Pytorch in 2018.

Table 6.1 compares available deep learning computational engines with the number of Pypi downloads

reported by Pepy Tech 2. This comparison shows that TensorFlow has a much larger number of

downloads and Github stars than the other engines, the success of which is due to the following three

reasons:

• Google developed Tensor Processing Unit (TPU) to run TensorFlow, which is more economical

than GPUs. In contrast, other engines cannot leverage customised hardware.

• TensorFlow supports many programming languages, such as Python, C++, Go, Java, and

JavaScript, to provide friendly interfaces for different target users.

• TensorFlow can run on more operating systems, including Linux, macOS, Windows, Android,

and iOS as well as a web page, which enables models to be run on more devices.

TensorFlow and Pytorch rank as the top two active deep learning engines. However, many other

computational engines exist that have a smaller user base, such as Mxnet, CNTK, Chainer, BigDL,

Darknet, DyNet, and OpenNN, which all support automatic error back-propagation. These engines

help make deep learning development more efficient and facilitate deep learning into practical use.

2https://pepy.tech

https://pepy.tech
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6.2.3 Deep learning model abstraction

Even though TensorFlow has the most extensive user base and provides basic mathematical operators

and management components, such as graphs, sessions, queue runners, and devices, proper use of

these components requires users to have multi-fold expertise in deep learning and computer systems.

However, users often interpret deep learning approaches as a collection of neural networks, layers and

tensors, and they often focus more on the designs of their algorithms instead of the low-level system

details. To build a model from scratch using TensorFlow, a developer must write non-trivial details for

deep learning models, such as initialising tensors and applying different basic computational operators.

Leveraging a model abstraction can help users easily develop deep models layer-by-layer. Abstraction

can also assist in better management of the model, such as storing and restoring parameters of the

entire model instead of individually. Taking this model abstraction approach exposes only abstracted

components of the model while masking the details of the implementation from the users.

Since the boom of deep learning, many wrapper libraries have been built on top of deep learning

computational engines for providing model abstraction to help users define models layer-by-layer.

By far, Keras has the largest user base 3 as it supports three different computational engines as

its backend, including Theano, CNTK, and TensorFlow. On the other hand, while Pytorch is a

computational engine, it also provides a model abstraction. Other libraries exist that have smaller

user bases 3, such as Prettytensor that focuses on basic layers only, and Sonnet for building complex

models.

Keras and Pytorch are two of the most representative libraries. The former was released and main-

tained by Google for providing a model abstraction for TensorFlow, and the latter was released and

maintained by Facebook for providing basic mathematical operators and model abstraction. Even

though Pytorch was released after our TensorLayer, we compare TensorLayer to Keras and Pytorch

along with a description of how Keras and Pytorch provide model abstraction and existing issues.

When build a model layer-by-layer, a challenge is that the parameter shape of a new layer is related to

the output shape of its previous layer (i.e., the input shape of the new layer). Considering the fully-

connected layer represented by Equation 6.1 as an example, given the number of output values of the

new layer n units (i.e., the number of neural units) and the number of output values of the previous

layer n unitspre, the shape of the bias vector b is 1× n units. This shape only relates to the number

3 http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture8.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture8.pdf
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of output values of the new layer, but the shape of the weight matrix W is n unitspre×n units, which

relates to the number of output values of the new and previous layers.

a = f(x ∗W + b) (6.1)

where x is the input, W is the weight matrix, b is the bias vector, f is the activation function, and a

is the activation output.

Algorithm 7 The initialisation process of a layer in Pytorch.

Input: the layer setting setting, the forward function forward, the input shape input shape
1: params← setting, input shape; initialise the parameters
2: new layer ← forward, params; get the new layer
3: return new layer

Algorithm 8 The initialisation process of a layer in Keras.

Input: the previous layer layer, the layer setting setting, the forward function forward
1: input shape← layer; get the input shape from the previous layer
2: params← setting, input shape; initialise the parameters
3: output shape← setting, input shape; compute the output shape
4: new layer ← layer, forward, params; get the new layer
5: new layer ← output shape; put the output shape into the layer object
6: return new layer

Therefore, to initialise a new fully connected layer, we must pass the output shape of the previous

layer into the new layer. In addition to the fully connected layer, many other layers exist, such as

convolutional and deconvolutional layers that require the output shape of the previous layer. For

example, in a convolution layer, the filter shape of the new layer is related to the number of the

channel of the previous layer [43].

Algorithm 7 shows the layer initialisation process for implementing a layer in Pytorch. The inputs

include: (1) the layer settings, such as the number of units of the fully connected layer and the

strides, filter size, and padding of the convolutional layer as provided by the users, (2) the forward

function, such as the convolution and matrix multiplication, which is defined inside the layers, and

(3) the input shape, which is the output shape of the previous layer as provided by the users. The

initialisation process first sets the parameter using the input shape and layer settings provided by the

user (line 1), and then the process uses the new parameter and forward function to form the new

layer (line 2). The drawback of this approach is that users must manually feed the input shape into a

layer when initialising. Specifically, considering the fully connected layer as an example in Figure 6.2,

Pytorch requires the user to input the number of units of the previous layer to a new layer (denoted by



6.2. Related Works 143

TensorLayer

Keras

Pytorch

Figure 6.2: Implementing the fully connected layer with Keras and Pytorch.

in units of line 5 in Pytorch), and then the new layer internally applies this number to initialise the

weight matrix (line 9 of Pytorch). Next, the initialised weight matrix can be used in the feedforward

propagation (lines 14-18 in Pytorch) where “matmul“ represents the matrix multiplication, and act

is the activation function. To use this fully connected layer, as shown in lines 9 to 11 in Pytorch of

Figure 6.3, the Pytorch model first initialises all fully connected layers using the number of units of

the previous and layer settings provided by the users. The first argument of all fully connected layers

is the number of outputs of the previous layers. The Pytorch model next uses these initialised layers

in the feedforward propagation as shown in lines 12 through 19 and 21. The fully connected layer is

one example that needs the output shape of the previous layer as many other layers also require this,

such as the convolutional and deconvolutional, sub-pixel, pooling, batch normalisation, and RNNs [2].

Therefore, Pytorchs model abstraction increases the users workload for defining a model using existing
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TensorLayer

Keras

Pytorch

Figure 6.3: Defining an MLP model using Keras and Pytorch. The MLP has two hidden layers with
800 units and ReLU activation, the input has 784 values, and the output has 10 values. Three dropout
layers are inserted between each layer. “Dense” and “Linear” denote the fully connected layer, and
“Dropout” denotes the dropout layer.

layers.

Algorithm 8 shows the layer initialisation process for Keras. To avoid requiring users to manually feed

the output shape of the previous layer into the new layer, distinct from the Pytorch approach, the

input shape is provided by the previous layer (line 1), and then the new layer uses the input shape and

layer settings to initialise the parameters (line 2). This approach requires Keras to compute the output

shape inside the layer (line 3) to be used as the input shape of the next layer (lines 5-6). Considering

again the fully connected layer as an example, lines 25 to 28 of Keras in Figure 6.2 obtain the output

shape of the current layer for initialising the parameters of the next layer (lines 10-15). Next, the

initialised parameters are used in the feedforward propagation (lines 17-23 of Keras) where the “dot“

represents matrix multiplication, and the act is the activation function. The top of Figure 6.3 shows

how to use the fully connected layer in Keras, as all layers are stacked one-by-one directly without

requiring the users to feed in the output shape of the previous layer manually.



6.2. Related Works 145

Even though Keras eliminates the need for users to provide the input shape when initialising new

layers, library developers must implement the functions to compute the output shape of every layer

(i.e., “compute output shape” in Figure 6.2). The fully connected layer is a simple example where

the output shape of the current layer is equal to the number of units. However, the implementation of

many other layers is more complex. For example, the output shapes of convolution and deconvolution

are associated with many factors including the input shape, filter size, stride, padding, and the number

of channels [43]. Therefore, Kerass model abstraction increases the workload for library developers

when implementing new layers to extend the library.

Comparing with Pytorch and Keras, TensorLayers model abstraction requires neither users to manually

calculate and feed the input shape into new layers when initialising nor library developers to implement

the function to compute the output shape of the layers, thereby reducing the workload for both library

users and developers.

6.2.4 Deep learning pre-trained model abstraction

In deep learning, computer vision and generative tasks typically leverage the standard CNN models

such as VGG [45], MobileNet [46], and SqueezeNet [47] for encoding images into latent representations.

Moreover, pre-training the image encoder on a large dataset, such as ImageNet [4], improves the deep

learning performance without labelling more data [1, 34].

In recent years, the development of state-of-the-art CNN models became more complex ranging from

Alexnet [3] with eight layers and VGG16 [45] with 19 layers (i.e., 16 convolutional layers and three

fully connected layers) to the recent ResNet with a thousand convolutional layers [10]. To implement

these models, library users must define the model layer-by-layer and set each correctly. For example,

to define the entire VGG16 model shown as “A” of Figure 6.5, users define the model layer-by-layer

as shown in Figure 6.4.

Provide the pre-trained model abstraction for the standard pre-trained CNN models assists in fa-

cilitating the development and simplification of the implementation. Instead of defining the model

layer-by-layer, the pre-trained model abstraction can allow users to define the entire model as well as

download and restore the parameters easily.

The pre-trained CNN models can be abstracted into two sub-models of a feature extractor and a

classifier [10,43,45,46]. The feature extractor identifies the image feature, and the classifier uses these
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Keras

TensorLayer

Figure 6.4: Defining the complete VGG16 layer-by-layer using TensorLayer and Keras’ model ab-
straction.

Algorithm 9 The initialisation process of a pre-trained model in Pytorch.

Input: the setting of feature extractor settingf , , the setting of classifier settingc
1: cnn← settingf ; initialise the feature extractor
2: classifier ← settingc; initialise the classifier
3: model← classifier(cnn); stack the classifier on top of the feature extractor as the return model
4: return model, cnn, classifier; return the model
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Figure 6.5: Applying the pre-trained VGG16 model in different ways. (A) The entire VGG16
model. (B) Using the entire CNN portion as the feature extractor. (C) Using the output of the fourth
convolutional block as the extracted features. (D) Replacing the last fully connected layer of VGG16
for 100 classes classification. For the layer name, “pool” denotes the max pooling layer, “fc” denotes
the fully connected layer, and “conv” denotes convolutional layer.



148 Chapter 6. Efficient Deep Learning Development

Algorithm 10 The initialisation process of a pre-trained model in Keras.

Input: endpoint marker include top, the setting of feature extractor settingf , , the setting of classifier
settingc

1: cnn← settingf ; initialise the feature extractor
2: if include top == True then
3: classifier ← settingc; initialise the classifier
4: model← classifier(cnn); stack the classifier on top of feature extractor as the return model
5: else
6: model← cnn; use the feature extractor as the return model
7: end if
8: return model

for predicting the probabilities of different classes (e.g., 1,000 classes for ImageNet). Considering

VGG16 on the top of Figure 6.5 as an example, all convolutional layers belong to the feature extractor,

and all fully connected layers belong to the MLP classifier [45]. The output of the feature extractor is

denoted by “pool5”, which is the fifth convolutional block after pooling. In practice, the pre-trained

CNN models are used for classification as well as the output extracted features from the feature

extractor or the change in the number of outputs for classifying different datasets.

Figure 6.5 shows four representative use cases for using a pre-trained CNN model. The “A” model

is the case that uses the entire model. The “B” model removes the classifier and uses the output

of feature extractor as the extracted image features. Similarly, the “C” model uses the output of

the hidden layers of the feature extractor as the extracted image features. These extracted image

features can be further fed into other neural network models to achieve specialised tasks. For example,

supervised image super-resolution [29] uses the pre-trained VGG to extract the image features of the

output images and ground truth images to learn to minimise the MSE between their image features

for reconstructing the visual details better. Furthermore, state-of-the-art human pose estimation [34]

and object detection [44] use the pre-trained VGG to extract the features of the input image to be

fed into the subsequent networks for outputting the pose key-point coordinates or bounding boxes,

respectively.

Moreover, the pre-trained CNN could be used for classifying 1,000 classes for ImageNet as well as

changing the number of outputs for classifying different datasets with a different number of classes.

For example, the “D” model in Figure 6.5 shows an example of replacing the last fully connected layer

of the original VGG model by a new fully connected layer with 100 outputs. By updating the last

layer only, we can use the new model for learning to classify 100 classes. Therefore, as a pre-trained

CNN model can be used in these four ways as shown in Figure 6.5, the pre-trained model abstraction
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should help users define the entire model easily as well as to allow users to obtain the output of a

specific layer of the model easily.

To achieve this in Keras and Pytorch, the pre-trained model abstraction is considered for all pre-trained

CNN models to have two sub-models, a feature extractor and a classifier. Algorithm 9 illustrates the

initialisation process of a pre-trained CNN model using Pytorch, which initialises both the feature

extractor (line 1) and classifier (line 2) as two Pytorch models containing a list of layers in order.

Next, it stacks the classifier on top of the feature extractor to form the entire model (line 3). At

the end of this initialisation process, it returns the entire model, feature extractor, and classifier to

the users (line 4). Algorithm 10 illustrates the initialisation process of a pre-trained CNN model for

Keras, which also initialises the feature extractor at the beginning (line 1). Different than Pytorch, it

allows users to control the initialisation of the classifier by inputting a Boolean endpoint marker (line

2). If the endpoint marker is “True” (line 2-4), then Keras initialises the classifier and stacks it on

top of the feature extractor. Otherwise, it uses the feature extractor as the returned model (line 6).

When obtaining the output of a layer of the feature extractor (e.g., case “B” and “C” in Figure 6.5),

even though the classifier is unused, Pytorch’s model abstraction requires the initialisation of the entire

model including the feature extractor and the classifier. To obtain the output of the hidden layers

inside the classifier (e.g., case “D” in Figure 6.5), Pytorch also initialises the entire model before users

to obtain a specific layer output from the classifier. Therefore, a challenge with this abstraction is that

the unused layers will always be initialised leading to unnecessary computer memory consumption and

model size increases. For example, if we use the output of “conv2 2” shown in Figure 6.5, Pytorch

will initialise all unused layers on its right-hand side. To alleviate this problem while obtaining the

output on a layer in the feature extractor, Keras only requires the initialisation of the feature extractor

potions without initialising the classifier. Then, a layer name (e.g., “conv1 2” or “pool5”) can be used

to obtain the output of a specific layer. To obtain the output of the hidden layers inside the classifier,

Keras initialises the entire model, and a layer name (e.g., “fc1” or “fc2”) is used to obtain the output.

However, Keras’ abstraction also initialises unused layers, with the only difference between Pytorch

and Keras is that the latter would not initialise the classifier when obtaining the output of a layer of

the feature extractor (e.g., case “B” and “C” in Figure 6.5).

Comparing with Keras and Pytorch, TensorLayer does not abstract the pre-trained CNN models as

a feature extractor and a classifier. Instead, we provide fine-grained control to the layer initialisation

so that no unused layers are initialised, which reduces unnecessary computer memory consumption.
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Also, TensorLayer uses a layer name to determinate which layer is the output layer, enabling users to

work with the four representative pre-trained model use cases by merely changing the layer name.

6.2.5 Deep learning life-cycle management

Deep learning and development

Model Architecture

Data Processing
Dataset

Model
Training

Loss Function

Evaluation Result

Model

Figure 6.6: A deep learning training pipeline.

Unlike conventional software development with its well-defined development pipeline, deep learning

research tends to revolve around experimentation with researchers continually trying different datasets,

model architectures, and training methods [2], to improve some evaluation metric, such as MSE and

accuracy. A deep learning project consists of one or multiple experiments (i.e., tasks) where each

experiment obtains a trained model with a given dataset [21], as in Figure 6.6. To train the model, the

training pipeline includes five components of 1) defining the model(s), 2) defining the loss function(s),

3) the data processing and data augmentation for each iteration, 4) training processes, such as how

and when to feed data into the model(s), the number of training epochs, the learning rate decay

strategy, and 5) evaluation of the trained model(s) with selected metrics, such as MSE [21], and

saving the result for further analysis. The deep learning workflow is a pipeline to develop the model

that incorporates creating or acquiring a dataset, training the model based on the training pipeline,

evaluating the performance, and saving the model for further use [21].

The training pipeline generates a set of data that includes the model parameters, results, and training

logs. In practice, researchers perform additional work beyond the core training processes to deal

with such data, such as storing the model and dataset for versioning, sharing, further retrieval and

provenance as well as archiving the model and dataset along with the training pipeline to enable the

reproduction of the experiment. Moreover, to speed the experiment, researchers could train multiple

models concurrently for faster hyper-parameter selection [2, 22].
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Managing the model, dataset, and training pipeline is mostly left for the users responsibility. Certainly,

researches would prefer to focus on the algorithm design instead of spending additional effort on life-

cycle management. Therefore, the demand for an efficient deep learning development including both

model training and life-cycle management is rising. However, current deep learning libraries, such as

Theano, Keras, TensorFlow, and Caffe, only focus on model building and training, so providing a life-

cycle management tool for the deep learning workflows is important for helping researchers manage

the model, dataset, and training pipeline [21,159–161].

To manage workflow life-cycles, tech giants Facebook, Google, and Uber built internal machine learning

platforms, such as FBLearner Flow, TFX, and Michelangelo for preparing data, training, and deploying

models. These platforms have limited adoption in the open source community due to strong bindings

with the corresponding companys internal software stacks. These tools are also primarily designed

for product development instead of research. For example, Google TFX provides a Graphical User

Interface (GUI) that standardises the workflow components into a data generator for preparing data, a

data validator for analysing data, a transformer for data augmentation, a trainer for training models,

an evaluator for evaluating models, and a pusher for pushing trained models to production model

servers. Google engineers must predefine each component following the template in the GUI before

execution. For production, at the end of the training, if the evaluator finds that the performance of

the model reaches a threshold (e.g., the accuracy is high enough), then the pusher will automatically

deploy the trained model onto the server to immediately being providing the service to customers.

In open source, during their early development stage, Caffe built a Github repository 4 to share

trained models, and other developers collaboratively added download links to the markdown page

enable anyone to download the models. Following this approach, users were offered tools, such as

ModelDB [159], Longview [160], and Bismarck [161] for storing and querying models via a database.

For example, ModelDB [159] provides a GUI for life-cycle model management that allows users to find

the models from a database using keywords, such as the model name or author name. In addition,

recent projects exist for managing model versions or summarising training logs using a database, such

as ModelHub [21] and Sherlock [162]. For example, ModelHub [21] provides a Git-like interface 5

in which users enter git commands to query Caffe models using a model name, dataset name, loss,

accuracy, and hyper-parameters.

4https://github.com/BVLC/caffe/wiki/Model-Zoo
5https://git-scm.com

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://git-scm.com
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To manage the life-cycle of a deep learning workflow, the management of the model, dataset and

training pipeline must be considered. Commercial tools such as AzureML 6 and SeaHorse 7 that

provide graphical construction of deep learning workflows. For example, similar to TFX, AzureML

users work through a GUI to predefine each component of the workflow, including the dataset, neural

network model, and evaluator. Then, AzureML automatically executes the training according to these

settings.

However, the existing life-cycle management tools including the commercial tools, require a GUI or

Git-like interface to predefine each component of the deep learning workflow before execution. Through

interviews with 30 deep learning researchers from Imperial College London, Peking University, and

Carnegie Mellon University (10 at each institute), the majority reported that GUI or command line

life-cycle management tools are suitable for production. However, in terms of deep learning research,

these interfaces can restrict algorithm development because most are created on-the-fly instead of

being predefined.

For example, even though many straightforward training pipelines exist, such as image classification,

object detection, and segmentation that only require the definition of a fixed model with a fixed

loss function [3, 37, 42], we observed most model training involves multiple models, loss functions,

and a relatively sophisticated training algorithm, such as the GANs [16, 17, 19, 24, 26]. Determining

the number of models and loss functions at the onset of work is difficult for advanced deep learning

researches. In some cases, multiple sub-models might be connected dynamically to form a model

during training. In neural module networks [140], the training data and model architecture are not

independent, and the model architecture changes according to each data sample. These processes

preclude the usage of a GUI template because the model and training pipeline cannot be predefined.

Also, it is challenging to refactor existing research codes to fit into GUI templates.

Our findings resulted from first asking the researchers to implement one of their deep learning algo-

rithms with an existing life-cycle management tool (e.g., AzureML or SeaHorse), and following up

with the survey for the interview. To prevent bias, the TensorLayer authors did not interview the

researchers and the researchers were not provided with information about the goals of the survey.

Specifically, as Table 6.2 includes, we collected the answers from 30 researchers within the following

results. Question 1 of the user survey shows that most deep learning researchers use Python and

6https://azure.microsoft.com
7https://seahorse.deepsense.io

https://azure.microsoft.com
https://seahorse.deepsense.io
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Question Answer

1. What is your current programming language for deep
learning research? (multiple answers if you use different languages)

Python 29
Matlab 1
Others 1

2. What is your current development process for research?

Save the code, dataset,
and model on a local
device.

25

Store the code on
Github, and save the
dataset and model
on a local device.

5

GUI-based or common
line-based life-cycle
management tools.

0

3. Do you change your training pipeline frequently during the
deep learning research?

Yes 29
No 1

4. Do you find the GUI or command line life-cycle
management tools convenient for changing the components of the
workflow, including model architecture, data processing and
augmentation, training process, and evaluation?

Very convenient 0
Somewhat convenient 0
Moderate 1
Inconvenient 20
Very inconvenient 9

5. In your research, are the training data and each component in the
training pipeline, including model architecture, loss function, data
processing and augmentation, and training process, independent
with each other?

Yes
17

No
13

6. Do you find the GUI or command line life-cycle
management tools convenient for implementing the models with
architectures or connectivity that change dynamically, such as
GANs and neural module networks?

Very convenient 0
Somewhat convenient 0
Moderate 0
Inconvenient 2
Very inconvenient 28

7. How difficult would it be to refactor your existing code to fit GUI
life-cycle management tools?

Very easy 0
Easy 0
Moderate 0
Difficult 19
Very difficult 11

Table 6.2: Our user survey inquiring about the use of life-cycle management tools.

Question 2 lists typical development processes followed for deep learning research. Questions 3 and

4 suggest that training pipelines typically change frequently by users during deep learning research.

Moreover, most users find the GUI or command line life-cycle management tools are inconvenient for

changing workflow components. Question 5 highlights that the training data and each component

in the pipeline are related in many models, while Question 6 suggests many users find the GUI and

command line life-cycle management tools are inconvenient for implementing models with architecture

or connectivity that change dynamically. Finally, Question 7 makes it clear that most users would
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find it difficult to refactor existing code to fit GUI life-cycle management tools.

Alleviating the problems presented by GUI life-cycle management tools using a template, TensorLayer

provides a lightweight and efficient for researchers that allows for the easy incorporation of life-cycle

management into verified training pipelines. Specifically, TensorLayer supports life-cycle management

via a set of Python APIs without requiring users to study how to use a GUI or command line. The

Python APIs are developed because most training pipelines are implemented in Python, and this

allows for seamless connections. To manage a deep learning project of one or multiple experiments,

TensorLayer provides a Python object, called the TensorHub, that contains a set of methods to store

and obtain the model and dataset via the database. For example, we can obtain the model with

the highest accuracy or the dataset with a specific name while TensorHub masks the implementation

details so that users do not need to know the details about the database.

Unlike how GUI tools manage the training pipeline, TensorLayer does not require users to split the

pipeline into several predefined components, such as the data generator, transformer, trainer, and

evaluator to fit into templates. TensorLayer directly stores the Python code that contains all training

information into the database. TensorLayer directly stores the Python code containing all training

information in the database, and the TensorHub instance contains a set of methods to store, find, and

execute tasks (i.e., experiments) via the database to manage the tasks and speed hyper-parameter

selection. In addition to life-cycle management, TensorLayer provides a collection of data processing

tools for the training pipeline to assist in the processing of image and text data.

6.3 Efficient Model Development

TensorLayers model and pre-trained model abstractions are presented in this section as well as how

TensorLayer reduces the workload for library users and developers.

6.3.1 Model abstraction

Section 6.2.3 described existing issues with Keras and Pytorch for model abstraction. To initialise

a new layer, Pytorch requires library users to feed the output shape of the previous layer into the

new layer manually, which increases the workload for defining models. Keras does not require library
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Algorithm 11 The initialisation process of a layer in TensorLayer.

Input: the previous layer layer, the layer setting setting, the forward function forward
1: input← layer; get the input tensor from the previous layer
2: input shape← input; get the input shape from the input tensor
3: params← setting, input shape; initialise the parameters or reuse the parameters if they exists
4: outputs← input, forward, params; get the output tensor of the current layer
5: outputspre, paramspre ← layer; get the previous parameters and outputs from the previous layer
6: new layer ← outputs, params, outputspre, paramspre; put all parameters and outputs into the

new layer
7: return new layer; return the final layer as the model

users to perform this same process, but it does require library developers to implement a function to

compute the output shape of the layer, which increases the workload for implementing new layers.

An ideal model abstraction neither requires users to input the output shape of the previous layer when

initialising a new layer nor requires developers to implement the function to compute the output shape

of the current layer when implementing a new layer. A deep learning model is built by stacking one

layer on top of another such that all hidden layers in a model eventually become connected to the

final layer [2]. Therefore, separate from Keras and Pytorch that initialise all layers before forming a

model and treat the layer and model as two separate classes, TensorLayer uses the final layer of the

model to represent the entire model of which are contained in the same Python class. In other words,

we use the final layer as the abstraction of the entire model that contains all properties of the model,

including parameters and layer outputs, if the layers cumulatively collect them.

Algorithm 11 shows the layer initialisation process of TensorLayer that achieves this cumulative col-

lection. First, the input shape of a layer is directly obtained from the input tensor as shown in lines 1

and 2 where the input tensor is the output of the previous layer. Next, in line 3, the parameters of the

new layer are initialised using the input shape and the given layer setting (e.g., the number of units of

the fully connected layer). Then, as in line 4, the output tensor of the new layer is obtained using the

input tensor, parameters, and the forward function (e.g., the convolution and matrix multiplication

for the convolutional and full-connected layers, respectively). To form a model, the new layer first

obtains the properties of the previous layer (line 5) and then stores these previous properties and the

properties of the new layer into the Python lists for the new layer (line 6). The process in line 6

that enables our model abstraction because when building models layer-by-layer, the new layer cu-

mulatively collects all properties of the model, including its own and those properties of the previous

layers.
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TensorLayer

Keras

Pytorch

Figure 6.7: Implementing the fully connected layer using TensorLayer.

In the following, we use the fully connected layer as an example to show the layer initialisation process.

As Figure 6.7 presents, a fully connected layer is represented as the subclass of the layer class (line 4).

The layer class provides class methods to cumulatively collect properties from the previous layer, save

model parameters in a file, and restore model parameters from a file. Specifically, given the previous

layer, the number of units, activation function, and layer name in line 5, initially, we feed the previous

layer, activation function, and layer name into the initialisation method provided by the layer class

(line 6). This process internally creates two Python lists for storing the parameters and output tensors

of the previous layer. To initialise a new parameter, we obtain the number of input values n in from

the previous layer (line 8) and use this number as the shape to initialise a new weight matrix (line

11). The biases vector only relates to the number of units of the current layer (line 12). Next, to

obtain the output tensor of the current layer, as in line 14, the input tensor is multiplied by the weight

matrix and summed with the biases vector. If an activation function exists, then it is applied from

the layer class to the activation function of the output tensor. Finally, as lines 16 and 17 show, the

added layer and parameters are two methods provided by the layer class (line 2) that receive the new

output tensor and new parameters of the current layer and append these new properties to the two

Python lists of the current layer.

To define a model, as Figure 6.8 demonstrates, at the beginning (line 4), the input tensor x (line 3) is

fed into an input layer that does not contain any parameters. By feeding the layer into the next layer

sequentially (lines 5 through 10), the final layer net, in line 10 contains the properties of all layers in

the model, including all parameters and outputs. Therefore, the final layer of a model can be used to

represent the model abstractly.

We use TensorFlow as the computational engine, but the model abstraction is not limited to this
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framework as it also works with Theano and CNTK. This abstraction can also work for the layers

with multiple inputs, and the add layer and add params methods shown in line 16 and 17 of Figure 6.7

will internally remove repeated properties in the Python lists.

TensorLayer

Keras

Pytorch

Figure 6.8: Defining an MLP model using TensorLayer. The input of the MLP has 784 values, and
the output has ten values. “DenseLayer” denotes the fully connected layer, “DropoutLayer” denotes
the dropout layer.

6.3.2 Pre-trained model abstraction

Algorithm 12 The initialisation process of a pre-trained model in TensorLayer.

Input: endpoint marker end with, the list of layer settings in order settings
1: layer ← input layer; initialise the model by an input layer
2: for setting in settings do
3: new layer ← setting; get a new layer according to the layer settings
4: layer ← new layer(layer); stack the new layer on top of the previous layer as the model
5: layer name← layer; get the layer name of the new layer
6: if layer name == end with then
7: break; stop to initialise the new layer and return the model
8: end if
9: end for

10: return layer; return the final layer as the model

Section 6.2.4 described the existing problems of the pre-trained model abstraction for Keras and

Pytorch. These frameworks consider the pre-trained CNN models as two sub-models of a feature ex-

tractor and a classifier, Pytorch initialises both feature extractor and classifier resulting in unnecessary

computer memory consumption when using the output of the hidden layer of the model. To alleviate

this problem, Keras allows users to control initialising the classifier manually but it still includes un-

necessary computer memory consumption when using the hidden output of the feature extractor or

the classifier.
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TensorLayer’s model abstraction is distinct from Keras and Pytorch as it uses the final layer to

represent the model. A model is built by cumulatively collecting all properties from the previous

layers including all parameters and output tensors. Therefore, instead of considering the pre-trained

CNN models as two sub-models, we return the last layer as the model by using the layer names (e.g.,

“conv2 1”, “pool2”, and “fc1” as shown in Figure 6.5) to determinate which layer is the output, which

avoids initialising unused layers. Specifically, Algorithm 12 illustrates this initialisation process of the

pre-trained CNN model in TensorLayer. At the start, TensorLayer initialises the model as an input

layer (line 1) that does not contain any parameters. Then, this process initialises the new layers

sequentially in order by using the pre-defined layer settings (lines 2 to 3) and stacks the new layer

on top of the previous layer (line 4). When the name of the new layer is the same as the given layer

name (i.e., the endpoint marker provided by the users) (lines 6 to 7), then we return this layer as the

model.

Compared with Keras and Pytorch, the model initialisation process of TensorLayer provides fine-

grained control of the layer initialisation without initialising any unused layers and avoids unnecessary

computer memory consumption and model size increases. Also, compared with the Boolean endpoint

marker of Keras, the endpoint marker of TensorLayer is a string comprised of the name of the last

layer. Therefore, instead of asking users to manually determine whether to initialise the classifier, as

does Keras, TensorLayer automatically identifies which layer should be initialised by using the layer

name.

6.4 Efficient Life-Cycle Management

6.4.1 Components of the deep learning workflow: model, dataset, and task

The deep learning workflow is the pipeline for train the model that includes dataset acquisition,

model training, model evaluation, and saving the model for further use. A deep learning project

includes one or multiple experiments, which train models using a dataset and training pipeline [2].

TensorLayer’s life-cycle management tool, called TensorHub, provides the three basic components, as

shown in Figure 6.9, of: 1) the dataset that provides the data samples to train the model, 2) the neural

network model, including both the model architecture and parameters, and 3) the task that contains

the Python script related to the training pipeline including the description of the model architecture,
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Figure 6.9: Abstracting a deep learning project using TensorLayer.

data processing, loss function, training method, and evaluation method. All information of a deep

learning project can be represented by using these three components.

As described in Section 6.2.5, existing life-cycle management tools require users to predefine each

component of the training pipeline to fit a template before executing the experiment. This approach

restricts the algorithm development especially when different workflow components are interdependent

and change dynamically. An example is the model architecture of neural module networks [140], which

change dynamically according to each data sample such that the model architecture and training

pipeline cannot be separated.

To address this problem, instead of splitting the training pipeline into several components as do

other GUI life-cycle management tools, we directly use the Python script of the task to represent the

training pipeline. Researches can then implement their training pipeline freely without restricting

their implementation to fit with life-cycle management templates. For example, researches can use

arbitrary Python packages in the training pipeline, such as OpenCV 8 and NLTK 9 for image and

text processing, respectively. Also, researchers can dynamically connect multiple sub-models to form

a model in the Python script, such as a neural module network [140], which cannot be done if the

model architecture is predefined.

To manage the model, dataset, and task for versioning, sharing, further retrieval, and provenance, we

8https://opencv.org
9http://www.nltk.org

https://opencv.org
http://www.nltk.org
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store everything into a database. Separate database tables are created for the model, dataset, and

task, and each component (e.g., a model or a dataset) is a record in the database table. The reason

for using a database instead of a distributed file system is to address the data management challenges

found in deep learning projects. These issues include 1) allowing users to mark the model, dataset, and

task with user-defined keys, such as the version number, creation time, and accuracy, and 2) allowing

users to easily query the model, dataset, and task by applying the user-defined keys. In the database

system, the user-defined keys can be stored in the database table, allowing the model, dataset, and

task to be queried by the database.

We incorporate a NoSQL database instead of an SQL database to store the model, dataset, and task

for the following reasons. 1) The training process usually generates unstructured data, such as the

logs and model parameters with sizes that change dynamically. SQL databases require determining

the data size before storing data. However, in practice, it is hard to predefine the sizes of the data

for the model and dataset. NoSQL, on the other hand, does not require pre-determining of the data

size. 2) The user-defined keys can be extended or added dynamically. As deep learning research is

explored around experimentation, researches will determining try new evaluation metrics, new models,

and hyper-parameters, which requires the database to insert new keys into the table schemas. SQL

requires the data structure to be known in advance to ensure the data conforms to the predefined table

schemas. Table schemas in NoSQL, on the other hand, are relatively easy to extend. We selected

MongoDB as our NoSQL database system as it offers out-of-box deployability, and it is simple to

use with rich collections of third-party management and visualisation tools. However, our life-cycle

management is not limited to this database as other NoSQL databases, such as Google TableStore,

Amazon DynamoDB, and Azure CosmosDB are acceptable.

Specifically, TensorLayer provides a Python object, called TensorHub, as an instance that contains

a set of methods to store, restore, and query the model, dataset, and task. All the implementation

details are masked from the users, so users do not have to know the details about the database. Users

can initialise a TensorHub instance by providing a project name, database IP, and port number, and

the TensorHub instance will connect to the MongoDB using the IP and port number when it is created.

Next, when storing the model, dataset, and task using the TensorHub instance, the project name is

automatically added to the database records. In addition to versioning, sharing, further retrieval, and

provenance, TensorHub also facilitates deep learning research experiments, such as hyper-parameter

selection. By storing the task into the database, it can be accessed from different nodes (e.g., different
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processes from one or multiple machines). Therefore, these nodes can obtain the Python script from

the task record for local execution, and save the results into the task record. The following describes

how TensorLayer helps researchers manage models and datasets (Section 6.4.2) as well as how to

manage and execute tasks concurrently (Section 6.4.3).

6.4.2 Managing the model and dataset

Model

automatically fill in mandatory field from model object customised field

project name time model name architecture parameters accuracy ...

Dataset

automatically fill in mandatory field customised field

project name time dataset name dataset description ...

Table 6.3: The database tables of the model and dataset management in TensorLayer. When
using a TensorHub instance to store the model and database, the project name and create time are
automatically added to the records. For storing a model, users must provide a model name and a
TensorLayer model object to the TensorHub instance. The TensorHub instance first splits the model
object into a model architecture description and parameters, then stores them in the record separately.
Similarly, when storing a dataset, users must provide the data to the TensorHub instance. Moreover,
users can add any customised files into the tables. For example, the model accuracy can be used to
query model by performance, and the dataset description can provide more information about the
dataset.

A model includes two components of its architecture and parameters. To describe the model archi-

tecture, inspired by the model configuration file of Caffe, TensorLayer uses a list of layer settings to

describe the model architecture. As shown at the top of Figure 6.10, users can describe a model archi-

tecture in Python. However, for storing the model architecture as described in Python, it should be

converted to a list of layer settings as shown at the bottom of Figure 6.10. Specifically, the metadata

of a layer includes 1) the layer name, 2) layer class, such as “DenseLayer” for a fully connected layer

and “DropoutLayer” for a dropout layer, 3) the layer settings, such as the number of units, activation

function, and the probability for dropout, and 4) the layer name of the previous layer, which provides

the connection information between layers. To extract the metadata, the layer name, layer settings,

and name of the previous layer can be obtained from the input arguments of the layer (i.e., the input

arguments of the Python class). The layer class is the name of the Python class of the current layer.

Similar to collecting the layer parameters cumulatively, as described in Section 6.3.1, the new layer

also cumulatively collects the metadata from all previous layers enabling us to obtain a list of model

parameters and a list of the layer settings from the final layer of the model.
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Model architecture in Python

Model architecture in a list of layer settings

Figure 6.10: A neural network model architecture in Python and a list of layer settings using
TensorLayer’s model abstraction. Top: A TensorLayer model in Python. Bottom: A TensorLayer
model in a list of layer settings.

To store a model, the top portion of Table 6.3 shows the database table schema of the model. The

TensorHub instance first automatically adds the project name and create time (i.e., the “automatically
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fill in” fields in Table 6.3) into the model record. Since a deep learning project can have multiple models

(e.g., GAN has a generator and a discriminator), the TensorHub instance requires users to provide

a model name (i.e., the “mandatory field” in Table 6.3) when storing a model to the database.

Furthermore, the TensorHub instance will obtain a list of layer settings from the final layer of the

model and store it as the description of the model architecture (ie., the “architecture” of “from model

object” in Table 6.3).

Unlike the description of the model architecture, the model parameters are relatively large [45,46,163]

(e.g., the size of the MobileNet parameter is 17MB). We use a specification called GridFS from

MongoDB to store and retrieve model parameters that exceed 16MB. Specifically, the model parameter

is first stored into blob storage managed by the GridFS, which is designed for storing large files. Then,

the TensorHub instance obtains the location pointer representing the model parameter in the blob

storage. Next, the TensorHub instance stores the location pointer into the parameter field of the model

table (i.e., the “parameters” of “from model object” in Table 6.3). When retrieving the parameters

from the database, the TensorHub instance obtains the location pointer of the parameter from the

table and then obtains the parameter by indexing the blob storage. TensorHub masks these processes

from users, so knowledge of the database is not necessary. To support querying with user-defined keys,

users may add new keys (i.e., the “customised field” in Table 6.3) into the model table. For example,

users can add accuracy into the model enabling them to query the model based on its accuracy.

When querying the model, the TensorHub instance provides a method to obtain a model from the

database according to the create time, model name or the user-defined metric, such as accuracy. This

method returns the model that best matches the query condition. For example, users can find the

model with the highest accuracy from the database without manually checking each model. Given

the model architecture and model parameter, the entire model object can be restored. Also, users can

check the model information using third-party MongoDB management and visualisation tools, such

as Mongo Management Studio 10.

For managing the dataset, the bottom of Table 6.3 shows its table schema in the database. Similar

to the model, the project name and create time are automatically added to the dataset record when

created. Also, since a deep learning project can have multiple datasets, the TensorHub instance

requires users to provide a dataset name when storing one into the database. To support querying

with user-defined keys or provide more information about the dataset, users are allowed to add new

10https://mms.litixsoft.de

https://mms.litixsoft.de
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keys to the table (i.e., to the customised field). For example, users can add a description of the

dataset to allow other users to know more information. Similar to the model parameters, the dataset

is usually large, so we leverage the same GridFS approach to store and restore the dataset. The

TensorHub instance provides two methods to search the dataset from the database according to the

create time, dataset name or the user-defined keys, such as the dataset version. The first method

returns the dataset that best matches the query condition, such as finding the dataset with a specific

dataset name. The second method returns a list of datasets that match the query condition.

6.4.3 Managing and executing tasks

Managing tasks

Task

automatically fill in mandatory field

project name time status result task name python script

optional field customised field

hyper-parameters saved result keys description ...

Table 6.4: The database table for task management in TensorLayer. By using the TensorHub
instance to store a task, the project name and create time are automatically added to the task record
when created.

Different from the model and dataset, a task does not contain data at large scale, but all the detailed

information of the training pipeline and the result. Storing a task in the database assists researchers

in dealing with versioning, further retrieval, and provenance. Moreover, other nodes (e.g., different

processes in the same machine or alternate machine) can access the task via the database allowing the

task to be executed in different nodes. Based on the database, researchers can easily execute multiple

tasks concurrently using multiple nodes, facilitating the experiments of deep learning research, such

as hyper-parameter selection. The following describes how to store a task, execute a task, and store

the result followed by how our task abstraction helps execute multiple tasks concurrently.

The schema of the task management is shown in Table 6.4 where the TensorHub instance provides a

method to create a task record in the task table. First, as is similar to the model and dataset, when

users create a task record, the TensorHub instance requires users to provide a task name, which then

automatically adds the task name, project name and create time in the task record. As described in

Section 6.4.1, instead of splitting the training pipeline into several predefined components, we directly



6.4. Efficient Life-Cycle Management 165

use the Python script to store all detailed information. Therefore, users need to provide the code path

of the Python script from which the TensorHub instance will read it and store the code as a string

into the “python script” field of the task table.

Specifically, the “hyper-parameters” field is a dictionary (e.g., {‘parameter1’ : 100, ‘parameter2’:

200}), specifying the variables that are passed into the Python script. For example, the hyper-

parameters can be the number of units of the fully connected layer, and the Python script uses these

variables to initialise the model. Running the same Python script with alternate hyper-parameters can

achieves hyper-parameter selection. Moreover, the “hyper-parameters” field is not restricted to the

hyper-parameter selection for the model as it can also be used for other tasks, such as cross-validation

in which the hyper-parameter is not related to the model but to how to split the dataset for training

and validating. In terms of saving results, the “saved result keys” is a list of strings that specifies

which variables in the Python script need to be saved to the “result” field when the execution of the

script is complete. For example, we can compute the testing accuracy in the Python script and save

it to the “result” field. The “hyper-parameters” and “saved result keys” are optional because the

task may be used for other purposes other than hyper-parameter selection, such as process data only.

Moreover, when a task is just being created, the “status” field is set as “pending” to represent the

task not yet being executed.

Algorithm 13 An example of creating a deep learning training task using TensorHub.

Input: the hyper-parameter hyper parameter, the saved result keys result keys, the python script
script, the dataset dataset, and project name project name

1: TensorHub.init← project name; initialise a TensorHub instance.
2: TensorHub.dataset← dataset; create a dataset record in the dataset table.
3: TensorHub.task ← script, hyper parameter, result keys; create a task record in the task table.

In terms of usage, tasks can be created in the task table by following Algorithm 13. We first initialise

a TensorHub instance using the project name (line 1) and then put the dataset that the Python script

requires into the dataset table (line 2). Finally, the process creates a task record using the Python

script, hyper-parameters, and saved result keys (line 3). In the following, I describe how to execute

the task in the task table.

Executing tasks

TensorHub instance provides a method to find and execute a pending task in the database as Algo-

rithm 14 shows. Specifically, given a query condition for searching a task, such as a task name or the
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Algorithm 14 The process for TensorHub to execute a task.

Input: the query condition query
1: task ← TensorHub.task, query; find a pending task from the database
2: if task exists then
3: task.status← running; update the task status as “running”
4: script, hyper parameter, result keys ← task; get the Python script, hyper-parameter, and

saved result keys from the task.
5: execute the task script with the given hyper-parameter.
6: task.results← results; insert the results to the task with the given saved result keys.
7: task.status← finished; update the task status as “finished”.
8: return True
9: else

10: return False
11: end if

Algorithm 15 An example of a task runner to monitor the database and execute the pending task
using TensorHub

Input: the project name project name, the query condition query
1: TensorHub← project name; connect to the database via TensorHub
2: while True do
3: TensorHub.run top task(query); try to execute a pending task if exists
4: end while

ascending order by the create time, TensorHub first finds a task that matches the query condition

and has a status of “pending” (line 1). If no pending task exists or no pending task matches the

query condition, then it returns “False” (line 10). Otherwise, if a pending task exists and matches the

query condition, TensorHub updates the task status to “running” (line 3) to specify that this task is

in progress. Then, TensorHub obtains the Python script, the hyper-parameters, and the saved result

keys from the task record (line 4) and executes the Python script using the hyper-parameters (line

5). When the execution concludes, TensorHub stores the result variables specified by the saved result

keys in the task record (line 6), updates the task status to “finished” (line 7) specifying the task is

executed, and finally returns “True” (line 8).

All processes in Algorithm 14 are masked from users, so through the TensorHub instance, users can

implement a task runner to monitor the database and execute a pending task if one exists. Specifically,

Algorithm 15 shows an example of a task runner in which users first initialise a TensorHub instance

with the project name (line 1) and then continuously monitors the database (line 2), and, if a pending

task exists, then the TensorHub instance will execute it using Algorithm 14 (line 3).

Executing tasks concurrently
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Algorithm 16 An example of creating multiple deep learning tasks using TensorHub.

Input: a list of hyper-parameter hyper parameter list, the saved result keys result keys, the Python
script script, the dataset dataset, the project name project name, and the query condition of
model query

1: TensorHub.init← project name; initialise a TensorHub instance
2: TensorHub.dataset← dataset; insert the dataset into the database
3: for hyper parameter in hyper parameter list do
4: TensorHub.task ← script, hyper parameter, result keys; create a task in the database
5: end for
6: while TensorHub.check unfinished task() do
7: sleep 1 second;
8: end while
9: model ← TensorHub.model(query); when all tasks are finished, get the model with the best

performance
10: return model; return the best model

A deep learning project often contains many tasks. For example, hyper-parameter selection needs to

train multiple models with different settings [2]. To speed the training process, researchers usually

manually run multiple training scripts across many nodes simultaneously, and save the results and

models from each node separately. When all trainings are finished, to analyse the results, users must

collect the models and results from all nodes manually to analyse the results.

To automate this process, by extending Algorithm 13, users can create multiple tasks with different

hyper-parameters in the database as shown in lines 3 through 5 of Algorithm 16. Then, by starting

N task runners (Algorithm 15) on N nodes, these N tasks can be executed simultaneously (where N

is less than or equal to the total number of tasks). Moreover, the status of the task record prevents a

task runner from executing complete or in-progress tasks. The status enables fault-tolerant execution

because a task runner can only run a single task that has a status of “pending”.

As hyper-parameter selection looks to find the model with the best performance (e.g., accuracy),

instead of requiring users to check the results of each model manually, our life-cycle management

automatically returns the model with the best result. Specifically, the TensorHub instance provides a

method to check if all tasks are finished (line 6 of Algorithm 16), and the method will return “True” if

unfinished tasks exist (i.e., the tasks with a status of “pending” or “running”). When all task statuses

are “finished,” the method returns “False” and breaks the while loop in line 6. Then, users can find

the model with the best performance from the database using the descending order of the performance

(e.g., accuracy) (line 9).

Hyper-parameter selection is an example that benefits from running multiple tasks concurrently.
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Figure 6.11: Execute multiple tasks concurrently for training multiple models using TensorLayer.

Specifically, Figure 6.11 shows a concurrent process for training multiple models with different hyper-

parameters. In the first step, as indicated by “1,” Algorithm 16 is run locally as a task dispatcher to

insert a dataset and multiple tasks into the database. The status key of all tasks are set to “pending”

when they are created, and the task dispatcher starts to wait for all task statuses to be “finished.” In

the second step, as indicated by “2”, when a task runner finds a task record with a status of “pend-

ing,” it updates the status to be “running” and executes the corresponding Python script with its

hyper-parameters. In the third step, “3,” when training is finished, the task runner updates the status

of the task record to be “finished,” and saves the variables corresponding to the “saved result keys”

to the “result” field of the task record as well as saves the trained model into the database. Finally,

in “4,” when all tasks are finished, following lines 6 to 9, the task dispatcher obtains the model with

the best performance (e.g., accuracy) from the database.
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Figure 6.12: Execute multiple tasks concurrently for training one model with multiple data genera-
tors using TensorLayer.
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Another example that benefits from executing multiple tasks concurrently is deep reinforcement learn-

ing (DRL) [12,164]. Distinct from other deep learning tasks where the dataset is given and is constant,

such as in image classification [10] and visual question answering [165], the training data of DRL is

generated continuously from a simulated environment. In other words, the dataset is not predefined.

The challenge of training a DRL model is the speed at which to generate training data from the simu-

lated environment. The acceleration of training usually requires multiple nodes for the simulation [12].

To facilitate training, our life-cycle management tool allows for the building of a DRL training system

in which multiple nodes concurrently generate data samples and pass them into the training program

via the database. Specifically, Figure 6.12 shows the process of executing multiple tasks concurrently

while training one DRL model with multiple data generators. In the first step, indicated by “1,” users

have a local model trainer (i.e., a task dispatcher) for coordinating the tasks to the task runners for

starting multiple data generators. In this case, as all task runners generate the data samples in the

same way, the “hyper-parameter” and “saved result keys” do not need to be provided. In “2,” the

data generators create the training data samples and store them into the dataset table. The trainer

continuously queries the training data samples from the database and updates the model locally. In

“3,” after updating the model locally, the trainer updates the model in the database, and the data

generators synchronise their model parameters with the database.

6.5 Evaluation

We compares TensorLayer, Keras, and Pytorch to evaluate the model and pre-trained model abstrac-

tions. To evaluate the life-cycle management, we demonstrate the efficacy of TensorLayer using two

case studies followed by a comparison between TensorLayer and existing life-cycle management tools.

The relevant source codes can be found in the Appendix.

6.5.1 Model abstraction

A concern towards TensorLayer is speed degradation, which we investigate by running three classic

deep learning tasks 11 with the implementations of TensorLayer and a pure TensorFlow on a Titan

X Pascal GPU. We run each task 20 times and summarise the running speed for TensorLayer and

TensorFlow in Table 6.5. As the models are compiled to run and the data iterations use the same

11https://www.tensorflow.org/tutorials

https://www.tensorflow.org/tutorials
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TensorLayer TensorFlow

CIFAR 10
averaged images/sec 2530.5 2529.8
standard derivation 5.18 5.05
min/max images/sec 2520/2541 2519/2541

PTB LSTM
averaged words/sec 18066.3 18070.0
standard derivation 16.50 17.41
min/max words/sec 18038/18095 18032/18098

Word2Vec
averaged words/sec 58173.8 58171.4
standard derivation 26.37 22.28
min/max words/sec 58130/58209 58139/58210

Table 6.5: Comparison of TensorLayer and TensorFlow on classic benchmarks. CIFAR-10: image
classification, Penn TreeBank (PTB): language modelling, and Word2Vec: word embedding.

methods, the results show that TensorLayer and pure TensorFlow implementations offer nearly the

same running speed suggesting that the model abstraction would not sacrifice running speed.

Question Ranking Score

The simplicity of implementing new layers
TensorLayer 1.1
Keras 3
Pytorch 1.7

The simplicity of defining a model using existing layers
TensorLayer 1
Keras 1
Pytorch 2.93

Table 6.6: The ranking scores of the model abstractions for TensorLayer, Keras, and Pytorch. A
lower score indicates improved simplicity.

For evaluating the model abstraction, we recruited 30 researchers from Imperial College London,

Peking University, and Carnegie Mellon University. The participants were asked to finish two deep

learning development tasks and complete a user survey. The first task of evaluating the simplicity

of implementing new layers requires they implement a fully connected layer and convolutional layer

using TensorLayer, Keras, and Pytorch, respectively. The second task is to evaluate the simplicity

of defining models using the existing layers as they are required to define a VGG16 model using the

existing layer APIs of TensorLayer, Keras, and Pytorch, respectively.

Through the survey, users rank the ease of usage of TensorLayer, Keras, and Pytorch with a score

varying from 1 to 3, where 1 indicates the easiest and 3 indicates the hardest. If two methods have

similar simplicity, then the users can rank them to the same ranking score. We average the ranking

scores as our final scores for each method where a lower score means better simplicity. Table 6.6

shows the survey results, and the ranking scores show that TensorLayer has the best simplicity of

implementing new layers. It also presents equal simplicity with Keras for defining the model using the



6.5. Evaluation 171

existing layer APIs.

6.5.2 Pre-trained model abstraction

Keras

TensorLayer

Pytorch

Figure 6.13: Defining the entire VGG16 using TensorLayer, Keras, and Pytorch’s model abstractions.

Keras

TensorLayer

Pytorch

Figure 6.14: Obtaining the output of the feature extractor (i.e., “pool5”) of VGG16 using Tensor-
Layer, Keras, and Pytorch’s pre-trained model abstractions where “pool5” is the output of the fifth
(last) convolutional block. For Keras, to reduce the unnecessary parameter initialisation, users disable
the initialisation of the classifier (i.e., the fully connected layers) by setting “include top” to “False.”
For Pytorch, after initialising the entire VGG, the feature extractor denoted by “features” can be used
in the feedforward propagation.

The following compares the pre-trained model abstraction through TensorLayer, Keras, and Pytorch

for which we use to define VGG16 for four representative use cases, including 1) using the output
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Keras

TensorLayer

Pytorch

Figure 6.15: Obtaining the output of the fourth convolutional block (i.e., “conv4 3”) of VGG16
using TensorLayer, Keras, and Pytorch’s pre-trained model abstractions. For Keras, to reduce unnec-
essary layer initialisation, users can disable the initialisation of the classifier (i.e., the fully connected
layers) by setting “include top” to “False.” For Pytorch, after initialising the entire VGG, all layers
before“conv4 3” can be used from the feature extractor in the feedforward propagation.

of the entire model, 2) using the output of the feature extractor, 3) using the hidden output of the

feature extractor, and 4) using the hidden output of a classifier. These four cases can cover all possible

use cases of the pre-trained CNN models as described in Section 6.2.4.

First, as Figure 6.13 illustrates, users apply TensorLayer, Keras, and Pytorch to define the entire

VGG16 model. They all initialise the entire VGG16 (line 1) and then get the 1,000 probabilities

denoted by “outputs” for the ImageNet classification (line 2). In this case, as all libraries initialise all

layers of VGG16, they initialise the same number of parameters.

Second, to obtain the output of the feature extractor of VGG16 (as shown in the “B” model of

Figure 6.5), TensorLayer and Keras only initialise the feature extractor portion while Pytorch initialises

the entire model including the classifier. Specifically, as Figure 6.14 shows, the last layer of the feature

extractor is the max pooling layer of the fifth convolutional block, and TensorLayer uses “pool5”

as the endpoint marker (line 1 of TensorLayer) to obtain the output of the feature extractor (line

2 of TensorLayer). No unused layers will be initialised. Similarly, Keras provides an “include top”



6.5. Evaluation 173

Keras

TensorLayer

Pytorch

Figure 6.16: Obtaining the output of the second last fully connected layer (i.e., “fc2”) of VGG16
using TensorLayer, Keras, and Pytorch’s pre-trained model abstractions. For Keras and Pytorch,
users need to initialise the entire classifier.

argument to initialise a VGG model without initialising its classifier (line 1 of Keras), and will not

initialise unused layers. Pytorch’s CNN models have two attributes of“features” and “classifier” for

the feature extractor and classifier, respectively. After initialising the entire VGG model (line 4 of

Pytorch), Pytorch uses the feature extractor (line 5 of Pytorch) in the feedforward propagation directly

(line 8 of Pytorch). In this case, Pytorch initialises the unused classifier, while TensorLayer and Keras

would not.

Third, to obtain the hidden output of the feature extractor, the “C” model of Figure 6.5 shows an

example of using the output of the fourth convolutional block. In this case, TensorLayer uses “conv4 3”

as the endpoint marker (line 1 of TensorLayer) to obtain the output of the fourth convolutional block

(line 2 of TensorLayer), and no unused layers are initialised. In contrast, Keras still initialises the

entire feature extractor (line 1 of Keras), and Pytorch initialises the entire model to obtain the feature
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extractor (line 4 of Pytorch). Similar with TensorLayer, to obtain a specific layer output, Keras

provides a “get layer function” (line 2 of Keras) that indexes the layer output from the model using

a specific layer name. In this case, the unused fifth convolutional block is initialised by Keras. For

Pytorch, given the feature extractor (line 4 of Pytorch), users need to manually collect all layers before

“conv4 3” by using a layer index (lines 5 through 9 of Pytorch), and then these layers are used in

the feedforward propagation (lines 12 through 13). In this case, all layers after “conv4 3” are unused

while still being initialised by Pytorch.

Fourth, to obtain the output of the hidden layers of the classifier, the “D” model of Figure 6.5 shows

an example of using the output of the second last fully connected layer. In this case, as seen in the

code of Figure 6.16, both Keras and Pytorch initialise the entire model (line 1 of Keras and line 4 of

Pytorch). Next, to obtain the output of the second fully connected layer, Keras uses the “get layer

function” (line 2 of Keras) to index the layer output from the model with a specific layer name. For

Pytorch, users manually collect the first two fully connected layers and the ReLU layers from the

classifier by using a layer index (lines 7 through 10 of Pytorch). Then, these layers and the feature

extractor (line 5 of Pytorch) are used in the feedforward propagation (lines 13 through 16). In this

case, both Keras and Pytorch initialise the unused last fully connected layer. In contrast, to obtain

the output of second last fully connected layer of VGG16, TensorLayer uses “fc2” as the endpoint

marker (line 1 of TensorLayer) and does not initialise the last fully connected layer, unlike Keras and

Pytorch.

Based on these four representative use cases, TensorLayer’s pre-trained model abstraction avoids

initialising unused layers when applying the pre-trained CNN models differently. Therefore, compared

with Keras and Pytorch, it avoids unnecessary use of computer memory. In terms of its API interface,

compared with Pytorch, TensorLayer does not require users to define the feedforward propagation

manually. Compared with Keras, TensorLayer does not require users to manually control initialising

the classifier.

In the following, we compare the computer memory usage of TensorLayer, Keras, and Pytorch. VGG16

and MobileNet are the two most commonly used pre-trained CNN models for academia [28, 34, 166]

and industry [46]. TensorLayer’s pre-trained model abstraction is compared with Keras and Pytorch

in Table 6.7 with lists of the number of initialised parameters for obtaining different layer outputs of

VGG16 and MobileNet. As Pytorch always initialises both feature extractor and classifier, it includes

more unused parameters compared with TensorLayer and Keras when obtaining the hidden output
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VGG16

TensorLayer Keras Pytorch

outputs 138357544 138357544 138357544

fc2 134260544 138357544 138357544

fc1 117479232 138357544 138357544

pool5 14714688 14714688 138357544

pool4 7635264 14714688 138357544

pool3 1735488 14714688 138357544

pool2 260160 14714688 138357544

pool1 38720 14714688 138357544

MobileNet

TensorLayer Keras Pytorch

outputs 4253864 4253864 4253864

depth13 3228864 3228864 4253864

depth12 2162880 3228864 4253864

depth11 1627840 3228864 4253864

depth10 1356992 3228864 4253864

depth9 1086144 3228864 4253864

depth8 815296 3228864 4253864

depth7 544448 3228864 4253864

depth6 273600 3228864 4253864

depth5 137152 3228864 4253864

depth4 67264 3228864 4253864

depth3 31808 3228864 4253864

depth2 13248 3228864 4253864

depth1 3712 3228864 4253864

conv 992 3228864 4253864

Table 6.7: The number of initialised parameters for obtaining different layer outputs of VGG16
and MobileNet using TensorLayer, Keras, and Pytorch’s pre-trained model abstractions. The VGG16
feature extractor has five convolutional blocks with outputs denoted by “pool1” through “pool5”,
the classifier has three fully connected layers with outputs denoted by “fc1,” “fc2,” and “outputs.”
MobileNet’s feature extractor consists of 14 convolutional blocks with outputs denoted by “conv” and
“depth1” through “depth13”, and the classifier has only one layer denoted by “outputs.”

of the models. For Keras, while users can manually disable the initialisation of the classifier when

obtaining the output of the feature extractor, it still includes unused parameters when obtaining the

hidden output of the feature extractor or classifier.

Quantitatively, Table 6.7 demonstrates that when getting the output of the feature extractor from

VGG16, Pytorch initialises 9.4 times (i.e., 138357544/14714688) the number of parameters than Ten-

sorLayer and Keras. When obtaining the hidden output of the feature extractor, both Pytorch and

Keras initialise more parameters than TensorLayer. For example, for the output of the fourth convolu-

tional block (i.e., “pool4”), Keras initialises 1.9 times (i.e., 14714688/7635264) the number of param-

eters than TensorLayer. As the classifier of MobileNet include only one layer, Pytorch initialises 1.3
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times (i.e., 4253864/3228864) the number of parameters than TensorLayer and Keras when obtaining

the output of the feature extractor, which is less than for VGG16. However, with the state-of-the-

art CNN models, the feature extractors usually contain more layers than the classifier [3, 45–48] so

Keras will initialise many more parameters than TensorLayer when obtaining the hidden output of

the feature extractor. In summary, as TensorLayer does not initialise unused parameters and layers,

it result in fewer or equal initialised parameters compared with Keras and Pytorch for different use

cases, which directly reduces unnecessary computer memory consumption.

Question Ranking Score

The simplicity of using the entire pre-trained models
TensorLayer 1
Keras 1
Pytorch 1.03

The simplicity of using the output of the feature extractor
of pre-trained models

TensorLayer 1.03
Keras 1.03
Pytorch 3

The simplicity of using the hidden output of the feature extractor
of pre-trained models

TensorLayer 1
Keras 1.97
Pytorch 3

The simplicity of using the hidden output of the classifier
of pre-trained models

TensorLayer 1
Keras 1.93
Pytorch 3

Table 6.8: The ranking scores of the pre-trained model abstractions of TensorLayer, Keras, and
Pytorch.

To evaluate the pre-trained model abstraction, we follow the same survey approach as introduced

in Section 6.5.1 except that the participants were required to use TensorLayer, Keras, and Pytorch’s

pre-trained model abstraction APIs to define the VGG16 for four use cases described above, including:

a) the entire model, b) the feature extractor, c) the hidden output of the feature extractor, and d) the

hidden output of the classifier. They were then required to rank the simplicity of using TensorLayer,

Keras, and Pytorch for all use cases. A lower score indicates better simplicity.

The ranking scores presented in Table 6.8 show that TensorLayer, Keras, and Pytorch offer the same

simplicity when defining the entire pre-trained CNN models. However, TensorLayer and Keras provide

better simplicity than Pytorch when using the output of the feature extractor. TensorLayer has a

significantly better simplicity than Keras and Pytorch when using the hidden output of either the

feature extractor or classifier of the pre-trained CNN models.
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6.5.3 Life-cycle management

The life-cycle management approach of TensorLayer allows researchers to store the model, dataset, and

tasks for versioning, sharing, further retrieval, and provenance while also helping to facilitate the deep

learning research experiments through the execution of multiple tasks concurrently. In the following,

the life-cycle management is analysed in two cases that offer great examples of jointly leveraging the

model abstraction and life-cycle management tools. The first trains multiple models concurrently for

increasing the speed of hyper-parameter selection. The second trains a DRL model using multiple

data generators for speeding the training.

Case study 1: Hyper-parameter selection

We apply TensorLayer to implement a classic digits classification task for evaluating the lifecycle

management tool for hyper-parameter selection. MNIST 12 is a dataset for handwritten digits classifi-

cation with 60,000 training images and 10,000 testing images, each having a size of 28 × 28 pixels, i.e.,

784 floating-point pixel values. We split the training images into 50,000 for training and 10,000 for

validating. An MLP model with two hidden fully connected layers each having 800 output units with

ReLU activation. The output layer of MLP is fully connected with ten output units representing the

digits between 0 to 9. To avoid overfitting, we insert a dropout layer between the two hidden layers

and another dropout layer between the last hidden layer and the output layer. The hyper-parameters

we search are the dropout keeping probabilities set for the two dropout layers.

By varying the dropout keeping probabilities from 10% to 100% at an interval of 10% (i.e., applying

grid search), we generate 100 tasks (i.e., experiments that vary the hyper-parameter settings) for

hyper-parameter selection. For each task, to have a fair comparison, we use the same training settings

of a batch size of 500, training epochs of 100, and an Adam optimiser with a learning rate of 0.0001.

The hyper-parameter selection follows the process described in Section 6.4.3. Specifically, the task

dispatcher follows the process of Algorithm 16, and the task runners follow the process of Algorithm 15.

The experiments are run on a cluster with 8 Titan XP GPUs to test the system where each GPU

starts a task runner.

The red line in Figure 6.17 shows the relationship between the number of task runners and the total

run time to finish 100 tasks. As the number of task runner increases, the total running time is reduced

12http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
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Figure 6.17: Total run time vs the number of task runners used for a range in the number of tasks
of the hyper-parameter selection.

proportionally. For instance, as the red line indicates, when the number of task runners doubles from

1 to 2, 2 to 4 or 4 to 8, the total run time is halved. The reason is due to different tasks of the
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hyper-parameter selection are fully independent because the task runners only need to obtain the

dataset from the database before the training and save the model to the database after the training.

Moreover, by changing the interval of the dropout keeping probabilities, we evaluate the system using

50, 25, 10, and 5 tasks (i.e., experiments). When the number of tasks M is less than the number of task

runners N , then N −M task runners become redundant. For instance, as the blue line in Figure 6.17

shows, when the number of task runners is larger than five, there is no further speed improvement.

Also, if the number of tasks M cannot be evenly divided by the number of task runner N , then there

are N −M%N task runners in idle when running the last M%N experiments. For example, the green

line in Figure 6.17 shows the result for ten tasks, and when the number of task runners is two, each

task runner runs five tasks. When the number of task runners is three, all task runners first finish

tree tasks, then only a single task runner processes the remaining one task setting, the other two task

runners are idle resulting in no proportionally speed improvement. Another example is in the blue

line of Figure 6.17 showing that given three or four task runners, they will first finish three or four

tasks, respectively, and then one or two task runners will idle when processing the remaining one or

two tasks resulting in no speed improvement when increasing the number of task runners from three

to four.

In summary, when the running time of each task is the same, the total speedup ratio is the round up

to the integer of the fraction, which is the number of tasks M divided by the number of task runners

N i.e., dMN e. Therefore, when the number of tasks is far greater than the number of task runners, the

speedup ratio becomes linear as limM→+∞(dMN e) = M
N .

Case study 2: Deep reinforcement learning

We use TensorLayer to implement a classic deep reinforcement learning (DRL) task in a cluster that

has 10 Gbps connectivity for a second evaluation of our life-cycle management tool. As described in

Section 6.4.3, a bottleneck of DRL training is the speed to generate the training data. Unlike the

hyper-parameter selection where each task is independent, the acceleration of DRL training requires

multiple task runners (i.e., data generators) to generate training data concurrently, and send the data

to a model trainer via the database. We use the classic task of the Atari ping-pong game 13 [164] that

requires the DRL model to learn to play the game by directly observing the computer screen. The

model input of the Atari ping-pong game includes screen images of the game each composed of an

13https://gym.openai.com/envs/Pong-v0/

https://gym.openai.com/envs/Pong-v0/
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Number of task runners

Figure 6.18: Training throughput vs the number of task runners used for generating training samples.

80 × 80 pixel matrix, i.e., 6,400 floating-point values. The model output is the probabilities of three

actions of move-left, stop, and move-right.

For the DRL algorithm, we follow the verified model architecture and training pipeline introduced in

Karpathy et al. 14. The model includes one hidden fully connected layer with 200 units and ReLU

activation. The output layer is a fully connected layer with three units representing the probabilities

of three actions, and the model is trained using the REINFORCE algorithm [167]. An episode of the

ping-pong game is represented by a period from the start of the game to the ball hitting the border of

the ping-pong table. The model is updated once based on the images from ten episodes using the RMS

optimiser [62] with a learning rate of 0.0001. We start multiple Atari ping-pong games on multiple

nodes as data generators that simulate the game playing and send the generated samples including

the observations (i.e., images), actions and rewards, to the database.

In our experiment, each task runner is a data generator running on a 2.5 GHz Intel Core i7 CPU for

simulating the game environment and saving the generated data samples to the dataset at the end of

each episode. Meanwhile, we start a trainer on the local machine with a single GTX 980 GPU. The

trainer continuously obtains data samples from the database, updates the local model parameter, and

synchronises its model parameters to the database every ten updates. The data generators synchronise

the model parameter from the database every 20 episodes. Figure 6.18 illustrates the scalability of

TensorLayer in powering such a system. The row axis is the number of task runners equal to the

14http://karpathy.github.io/2016/05/31/rl/

http://karpathy.github.io/2016/05/31/rl/
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number of data generators, so the number of samples per second the system can generate increases

proportionally to the number of task runners. The column axis is the training throughput representing

the number of samples the model trainer can use every second. We increase the number of task runners

starting at five with an interval of five. The results show that when the number of task runners is less

than 20, the training throughput increases proportionally with the number of task runners suggesting

that the speed of generating training data is slower compared to the speed of model training. However,

when the number of task runners is increased from 20 to 25, the training throughput does not increase

proportionally suggesting that the speed of generating training data is no longer a bottleneck for DRL

training as the model trainer reaches maximum capacity.

Comparing to existing life-cycle management tools

TensorLayer ModelDB ModelHub AzureML SeaHorse

Supports model
management

Yes Yes Yes Yes Yes

Supports dataset
management

Yes No Yes Yes Yes

Supports training
pipeline management

Yes No Yes Yes Yes

Supports concurrent
training for hyper
parameter selection

Yes No Yes Yes No

Supports concurrent data
generation for deep
reinforcement learning

Yes No No No No

Supports management of
neural module networks

Yes No No No No

Supports automatic
model deployment

No No No Yes Yes

Easy to use 8.6 8.83 4.3 7.1 6.5

Easy to migrate 9.2 – 4.4 4.1 3.7

Easy for research 8.3 – 4.0 3.0 2.8

Table 6.9: Comparison of TensorLayer with other management tools.

To further evaluate the efficacy of our life-cycle management, we compare with four management

tools. The top seven rows of Table 6.9 show the availability of functions for different tools. First,

ModelDB [159] only helps users store and find models using a database via a GUI while others sup-

port the life-cycle management of deep learning workflows, including the model, dataset and training

pipeline.

TensorLayer supports dispatching multiple tasks on multiple nodes for training multiple models concur-
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rently, which speeds the training of hyper-parameter selection and running multiple tasks on multiple

nodes for generating data samples simultaneously, which also speeds the training of deep reinforce-

ment learning. Other tools only support the concurrent hyper-parameter selection where users must

manually start multiple trainings when using ModelHub and SeaHorse because these tools do not

support automatic task dispatching. In addition, TensorLayer is the only framework that supports

the life-cycle management of neural module networks because the model architecture changes dynam-

ically based on each training samples [140], and the data processing and model architecture cannot be

predefined separately. To avoid this problem, TensorLayer directly stores the Python code containing

all training information into the database instead of splitting each component of the training pipeline

to fit a predefined template.

While TensorLayer is competent for the above functionalities, its life-cycle management does not

support automatic model deployment to push trained model onto a model server when the model

performance matches a predefined evaluation metric (e.g., accuracy). Such automatic deployment

is desirable for a production system, but as the current design goal of TensorLayer is for research

purpose, this feature remains open for a future release.

In addition to reviewing the available functions, we further interviewed the same research participants

from the previous survey to evaluate the life-cycle management framework by rating the tools with a

score scaled from 1 to 10 representing very bad to very good for how straightforward the tools are to

integrate into their model building environments. The scoring included questions on:

• Easy to use: rate the ease of use without considering the research purpose.

• Easy to migrate: rate how easy it is to migrate the verified training pipeline into the tools.

• Easy for research: rate the ease of use for their research applications.

The averaged scores from all participants are included in the bottom three rows of Table 6.9 with results

suggesting that TensorLayer scores significantly higher for easy to migrate and easy for research.

These responses are attributed to the pure Python API that does not require researchers to learn

a GUI or command line interface as they can directly store the Python script into the task record

without restricting the implementation to conform to a template for the life-cycle management. While

ModelDB resulted in a higher score for easy to use compared to TensorLayer, ModelDB only supports

model management without supporting model training and lifecycle management [159]. This feature
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limitation is the reason why participants were not asked to rate MondelDB for how easy it is to migrate

the verified training pipeline and how easy it is for research.

6.6 Conclusions and Discussion

In this chapter, we presented a research-oriented library for efficient deep learning development, which

plays an important role in practical deep learning. We first proposed a new abstraction method for

model development that reduces the workload of library users when defining models as well as that

of library developers when implementing new layers. Moreover, we further proposed a pre-trained

model abstraction to provide fine-grained control to the layer initialisation for avoiding initialising

unused layers and reducing the unnecessary computer memory consumption. We evaluated our model

and pre-trained model abstractions by comparing them with two representative libraries, Keras and

Pytorch. In this study, we chose to use TensorFlow as our computational engine, but our model

abstraction is not limited to a specific engine.

In terms of life-cycle management, we abstract the deep learning workflow into three components

of the model, dataset and task. Instead of splitting each component of the training pipeline to fit

a pre-defined template, we directly store the Python code that contains all training details into the

database. By doing so, we enable users to store the model, dataset, and task for versioning, sharing,

further retrieval, and provenance while also helping users to facilitate the deep learning research

experiments via assisting the execution of multiple tasks concurrently. We evaluated the life-cycle

management using two case studies of running multiple tasks for model training and data generation

for increasing the speed for the training of the hyper-parameter selection and deep reinforcement

learning, respectively. We chose to use MongoDB, but our life-cycle management design is not limited

to a specific database.

Impact and award

TensorLayer has been released on Github 15 since September 2016. By September 2018, it has received

more than 4,300 stars, 100,000 installations, and has formed an active development community. The

contributors consist of PhD students from universities in the UK, such as Imperial College and Edin-

burgh University, and universities in US and China, such as CMU, Stanford, Tsinghua, and Zhejiang

15https://github.com/tensorlayer/tensorlayer

https://github.com/tensorlayer/tensorlayer
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universities, as well as many engineers from companies such as Google, Alibaba, Baidu, and Bloomberg.

The contributor list can be found in the Github contributor page 16. This library was awarded the Best

Open Source Software Award issued by ACM Multimedia (MM) 2017, and is featured in a published

book that introduces TensorLayer for deep learning development [39]. In addition, TensorLayer has

been used in many researches such as image super resolution [168], biomedical analysis [169], social

data analysis [170], action recognition [8], multi-model research [171], image transformation [90,166],

medical signal processing [41,172], and medical image reconstruction [173,174].

Availability

TensorLayer is open sourced under the license of Apache 2.0 and supports Linux, Mac OS, and

Windows environments. It provides English and Chinese documentation, abundant tutorials and

thorough examples, such as CNN models (e.g., VGG, ResNet, and Inception), text-related applications

(e.g., text generation, Word2vec, machine translation, and image captioning), GAN models (e.g., text-

to-image synthesis, CycleGAN, StackGAN, and SRGAN), and reinforcement learning algorithms (e.g.,

Deep Q-Network, REINFORCE, and Asynchronous Advantage Actor-Critic (A3C)).

16https://github.com/tensorlayer/tensorlayer/graphs/contributors

https://github.com/tensorlayer/tensorlayer/graphs/contributors
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Conclusion

7.1 Summary of Thesis

Recently, deep learning technologies have achieved great success by outperforming many non-deep

learning methods in many applications [1,3,13,25,27,29]. Despite the availability of deep neural net-

works, it remains challenging to learn from limited training data, especially for generative tasks [2,25].

One reason for this is because it is expensive to collect labelled data for supervised training and may

be impossible to collect such labelled data in some cases. Apart from the challenge of limited train-

ing data, another challenge faced by generative tasks is that results are difficult to control [2, 16, 17].

Moreover, deep learning development is explored around experimentation, so researches continuously

experiment with new evaluation metrics, new model architectures, new training pipelines, and new

hyper-parameter settings [21]. As deep learning algorithms become more complex, researchers require

more effort to deal with deep learning development. The studies in this thesis target the improvement

in the practicability of deep learning by exploring efficient deep learning algorithms for controllable

generative tasks with limited training data as well as designing a deep learning library for efficient

deep learning development. The contributions from the thesis include the following:

• A method for text-to-image synthesis that synthesises images using the object attribute infor-

mation from the input text descriptions. The results demonstrated that without extra domain

knowledge, such as more manual labelled data or pre-defined synonyms and grammar, image’s

visual quality could be improved. Moreover, we also demonstrated that our method, for the

first time, successfully learned the text-to-image synthesis on an unlabelled image dataset via

185
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transfer learning.

• A method for image-to-image translation that learns to synthesise images using the semantic

visual information from the input images in an unsupervised way. We show that by first training a

generator to synthesise images for images of two different domains, and then train an encoder that

maps images to a latent representation, then we can achieve image-to-image translation without

using paired images to supervise the training. We illustrated our method using applications of

face swapping, portrait gender transformation, and image inpainting.

• A method for semantic image synthesis that synthesises images using both the object attribute

information and the semantic visual information from the input text descriptions and images,

respectively. Instead of requiring the synthesised images to be the specific ground truth images,

the generator learns to change the input images by learning to fool the discriminator. By doing

so, we show that, without using any ground truth images, our method successfully achieved

semantic image synthesis. We also demonstrated that our method could learn the features of

the images and text descriptions to produce smooth interpolation results.

• A deep learning library, called TensorLayer, for efficient deep learning development. The model

and pre-trained model abstractions reduce the workload for defining models and implementing

new layers. By abstracting deep learning workflow into the three components of the model,

dataset and task, a life-cycle management tool helps users to manage the deep learning workflow,

and, more importantly, it helps facilitate the deep learning development by running multiple

tasks concurrently. We demonstrated its effectiveness by comparing it with other libraries.

Our result also demonstrated that our pre-trained model abstraction is easier to use and can

avoid unnecessary use of computer memory. In the end, we demonstrated the effectiveness of

our life-cycle management tool using two case studies of hyper-parameter selection and deep

reinforcement learning. This library is being used in the studies of other chapters of this thesis.

These methods have been shown to improve the efficient use of data, controllable generative tasks

as well as efficient deep learning development. Even though all of our generative tasks are based on

images, we hope that the methods in this thesis can be reused to solve problems with different data

types and help inspire future works.
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7.2 Future Works

While this thesis proposed methods for efficient use of data and a new deep learning development

framework, it remains clear that many challenges exist before we can achieve general artificial intel-

ligence. To make further progress, we believe the following three research areas should be addressed

next.

7.2.1 Unsupervised and weakly-supervised methods for concept learning

• e pi
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13Figure 7.1: An example of interpolating the high-level concept of two images. Concepts include the
height, colour, and location of the object. Given a tall and black cylinder on the bottom-left, and a
short and white cylinder on the top-right, their averaged interpolation is expected to be a grey and
medium height cylinder located in the middle.

As Richard Feynman said, “what I cannot create, I do not understand.”. We believe general artificial

intelligence is the combination of machine creativity and machine learning. What a computer cannot

generate is what it cannot understand. A human can learn object concepts such as colour, location,

and size, and imagine new data samples, such as given a red cup, the human can easily imagine how

a cup in different colours should appear. Therefore, it is meaningful if machines can learn to create

new data from the given data.

Even though our semantic image synthesis work [166] successfully learned the locations and colour

of the different parts of an object (e.g., the location and colour of the petals of flowers) without a

known the ground truth, many other concepts, such as the size, shape, and behaviour of the object,

are difficult to be learned in unsupervised or weakly-supervised ways. Therefore, future research is to

investigate new methods for concept learning in unsupervised and weakly-supervised scenarios. Based

on this research, we will further investigate the applications in the computer vision field. Details of

this plan are included in the following.
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• Learn interpolatable and explainable latent representations for high-level concepts, such as lo-

cation, size, and shape of the object. Figure 7.1 shows an example of interpolating two images

with two different cylinders, and we expect the colour, shape, and location can be changed lin-

early. To our best knowledge, there does not exist a method that can achieve these tasks in

unsupervised or weakly-supervised approaches.

• Given the interpolatable latent representation, we will improve the performance of computer

vision applications. For example, the video frame interpolation [175], which input two frames

to output their middle frame, if the latent representation contains the information of human

action, then the interpolating results will have a smooth change in the human activity.

• Create new data that can be used for further learning. Given the interpolatable latent represen-

tation, the interpolation can synthesise new data samples that do not exist in the original dataset.

We can study how to use these synthesised data as the auxiliary information for improving the

model training.

Overall, we believe the investigation on unsupervised and weakly-supervised concept learning is mean-

ingful for both machine learning theory and computer vision applications.

7.2.2 Combing deep learning with computer graphic techniques

Previous studies [41,166,171] have used many data augmentation methods, which are all based on real

data samples. A new research direction is to combine deep learning and computer graphic techniques

for simulating data that can be used for developing computer vision applications [116]. Using simulated

data from the virtual environment to develop reinforcement learning algorithms have shown great

success [12, 164] as well as attention from the computer vision community [115, 116]. For example,

a recent study [116] utilised the screenshots from a video game (GTA5) to synthesise a dataset for

image segmentation tasks. Combing deep learning and computer graphic techniques can potentially

achieve data-free learning which trains models without using real data.

Moreover, comparing with two-dimensional images, the labelling of three-dimensional scene data is

more labour-intensive, which can limit the development of three-dimensional vision tasks [115]. On the

other hand, three-dimensional environment simulation is a mature technique in computer graphic field

where the advanced computer graphic algorithms synthesise plausible images and automatically model
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large-scale scenes, such as procedural modelling of cities [176]. The simulated environment can provide

zero-error three-dimensional labelled data to facilitate deep learning development in three-dimensional

vision tasks. The details for the plan are included in the following.

• Study the methods to improve the simulated images by making it closer to the real images. Even

though there are some studies, including CycleGAN [25], that can be used to improve the sim-

ulated images [116], synthesising ultra-high-resolution (e.g., 4096 × 4096) and complex images

in an unsupervised way remains still unsolved. It may be interesting to combine unsupervised

and supervised techniques to achieve this goal.

• Apart from learning on the improved simulated images, we can investigate the methods to train

deep learning models directly on simulated data, and then use domain adaptation method [177]

to allow the model work for the real environment. This study can reduce the data requirement

of many computer vision tasks, such as traffic analysis [177] and pose estimation [115].

• Study three-dimensional objects and scene synthesis. Previous generative studies [90, 166, 171]

were based on two-dimensional images. As our world consists of three-dimensional physical

objects, using three-dimensional information to represent the physical objects is more accurate

than for the two-dimensional image. For example, rotating an object only needs to change one

parameter in three-dimensional information, but must change all pixels in the two-dimensional

image. Therefore, combining computer graphics with deep learning for studying unsupervised

and weakly-supervised concept learning methods for synthesising three-dimensional objects and

scenes is interesting to explore in the future work.

Overall, computer graphics can provide a fully controllable three-dimensional environment, we believe

it has the potential to largely reduce the data required for training the deep neural networks.

7.2.3 Next generation deep learning development platform

Given these plans, we believe the next generation deep learning platform should the training of deep

neural networks as well as the data generation by combing computer graphics with deep learning

techniques. There are existing simulators for training artificial intelligence systems, such as AirSim 1

1https://github.com/microsoft/airsim

https://github.com/microsoft/airsim
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from Microsoft for autonomous car research, and PyBullet 2 for robotics simulation and reinforcement

learning research. However, they do not combine deep learning techniques to improve the simulated

data further. A recent study from VisDa [116] showned the potential of combing computer graphics

and GAN techniques to improve the simulated data for further learning. Therefore, to facilitate our

deep learning research in computer vision and concept learning, we plan to develop a simulator that

simulates data and improves the simulated data in real-time.

Moreover, existing distributed training methods are designed for training a single network [178–180].

Even though these methods can be used to speed the training of multi-networks, it will be interesting

to develop the distributed training methods specifically for speeding up multi-networks. GANs, as

one of the most successful networks in recent years, is an example of multi-networks that consists of

at least a generator and discriminator [13,25,26,166]. There are many variants of GAN, for example,

CycleGAN [25], that requires two generators and two discriminators, and SRGAN [13] requires a

generator, a discriminator, and an image encoder (i.e., VGG). So, it will be interesting to develop a

distributed training method that can fit with the training of all multi-networks.

In addition, to further improve the deep learning development efficiency and popularise deep learning

techniques, the following three main functions must be considered for inclusion into TensorLayer. First,

despite CNN models beging currently provided for fast feedforward propagation, such as MobileNet [46]

and SqueezeNet [47], there exist many advanced methods to accelerate the deep neural network. For

example, recent studies in channel pruning [163] can compress and accelerate the trained models, which

is useful in practice. Providing a simple API that allows developers to compress their trained models

before deploying automatically is also of great interest. Second, to speed the process of production,

we could provide tools for model deployment, such as by converting models into TensorRT 3 for

float16 and int8 forward propagation. Third, apart from providing domain-specific layers, models for

common deep learning applications, such as object detection, pose estimation, speech-to-text, and

text-to-speech could be provided. These advanced layers would help developers without a strong deep

learning background to build their applications quickly.

Overall, the above development of a simulator, model APIs, and distributing a training method can

improve the three components of deep learning workflow, including the dataset, model and training

pipeline. These features are all essential to deep learning development and should be supported by

2https://pybullet.org
3https://developer.nvidia.com/tensorrt

https://pybullet.org
https://developer.nvidia.com/tensorrt
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future release.
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Appendix A

Appendix

A.1 Supplementary Information for Chapter 3

A.1.1 Implementation

The network architectures are defined as follow:

image size = 64 # image size

vocab size = 12000 # vocabulary size

word embedding size = 512 # word embedding size,

rnn hidden size = 256 # lstm hidden size

K = 300 # embedding size for image and text mapping

keep prob = 0.7 # dropout keeping probability

z dim = 100 # noise dimension

t dim = 128 # text representation dimension

c dim = 3 # 3 channels for rgb image

# the generator for text−to−image synthesis

def generator txt2img resnet(input z, net rnn embed=None, is train=True, reuse=False):

s = image size # output image size [64]

s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

gf dim = 196

w init = tf.random normal initializer(stddev=0.02)

gamma init = tf.random normal initializer(1., 0.02)

with tf . variable scope(”generator”, reuse=reuse):

193
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tl . layers .set name reuse(reuse)

net in = InputLayer(input z, name=’g inputz’)

if net rnn embed is not None:

net rnn embed = DenseLayer(net rnn embed, n units=t dim,

act=lambda x: tl.act. lrelu (x, 0.2) , W init = w init, name=’g reduce text/dense’)

net in = ConcatLayer([net in, net rnn embed], concat dim=1, name=’g concat z seq’)

else :

raise Exception(”No text info is used”)

net h0 = DenseLayer(net in, gf dim∗8∗s16∗s16, act=tf.identity,

netG:add(SpatialFullConvolution(opt.nz + opt.nt, ngf ∗ 8, 4, 4))

W init=w init, name=’g h0/dense’)

net h0 = ReshapeLayer(net h0, [−1, s16, s16, gf dim∗8], name=’g h0/reshape’)

net h0 = BatchNormLayer(net h0,

is train =is train , gamma init=gamma init, name=’g h0/batch norm’)

net h1 = Conv2d(net h0, gf dim∗2, (1, 1), (1, 1),

padding=’VALID’, act=None, W init=w init, name=’g h1/conv2d’)

net h1 = BatchNormLayer(net h1, act=tf.nn.relu, is train=is train,

gamma init=gamma init, name=’g h1/batch norm’)

net h2 = Conv2d(net h1, gf dim∗2, (3, 3), (1, 1),

padding=’SAME’, act=None, W init=w init, name=’g h2/conv2d’)

net h2 = BatchNormLayer(net h2, act=tf.nn.relu, is train=is train,

gamma init=gamma init, name=’g h2/batch norm’)

net h3 = Conv2d(net h2, gf dim∗8, (3, 3), (1, 1),

padding=’SAME’, act=None, W init=w init, name=’g h3/conv2d’)

net h3 = BatchNormLayer(net h3,

is train =is train , gamma init=gamma init, name=’g h3/batch norm’)

net h3.outputs = tf.add(net h3.outputs, net h0.outputs)

net h3.outputs = tf.nn.relu(net h3.outputs)

net h4 = DeConv2d(net h3, gf dim∗4, (4, 4), out size=(s8, s8) , strides =(2, 2),

padding=’SAME’, batch size=batch size, act=None, W init=w init, name=’g h4/decon2d’)

net h4 = BatchNormLayer(net h4,

is train =is train , gamma init=gamma init, name=’g h4/batch norm’)

net h5 = Conv2d(net h4, gf dim, (1, 1), (1, 1),

padding=’VALID’, act=None, W init=w init, name=’g h5/conv2d’)
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net h5 = BatchNormLayer(net h5, act=tf.nn.relu, is train=is train,

gamma init=gamma init, name=’g h5/batch norm’)

net h6 = Conv2d(net h5, gf dim, (3, 3), (1, 1),

padding=’SAME’, act=None, W init=w init, name=’g h6/conv2d’)

net h6 = BatchNormLayer(net h6, act=tf.nn.relu, is train=is train,

gamma init=gamma init, name=’g h6/batch norm’)

net h7 = Conv2d(net h6, gf dim∗4, (3, 3), (1, 1),

padding=’SAME’, act=None, W init=w init, name=’g h7/conv2d’)

net h7 = BatchNormLayer(net h7,

is train =is train , gamma init=gamma init, name=’g h7/batch norm’)

net h7.outputs = tf.add(net h4.outputs, net h7.outputs)

net h8 = DeConv2d(net h7, gf dim∗2, (4, 4), out size=(s4, s4) , strides =(2, 2),

padding=’SAME’, batch size=batch size, act=None, W init=w init, name=’g h8/decon2d’)

net h8 = BatchNormLayer(net h8, act=tf.nn.relu, is train=is train,

gamma init=gamma init, name=’g h8/batch norm’)

net h9 = DeConv2d(net h8, gf dim, (4, 4), out size=(s2, s2) , strides =(2, 2),

padding=’SAME’, batch size=batch size, act=None, W init=w init, name=’g h9/decon2d’)

net h9 = BatchNormLayer(net h9, act=tf.nn.relu, is train=is train,

gamma init=gamma init, name=’g h9/batch norm’)

net ho = DeConv2d(net h9, c dim, (4, 4), out size=(s, s) , strides =(2, 2),

padding=’SAME’, batch size=batch size, act=None, W init=w init, name=’g ho/decon2d’)

logits = net ho.outputs

net ho.outputs = tf.nn.tanh(net ho.outputs)

return net ho, logits

# the discriminator for text−to−image synthesis

def discriminator txt2img resnet(input images, net rnn embed=None, is train=True, reuse=False):

w init = tf.random normal initializer(stddev=0.02)

gamma init=tf.random normal initializer(1., 0.02)

df dim = 196

with tf . variable scope(”discriminator”, reuse=reuse):

tl . layers .set name reuse(reuse)

net in = InputLayer(input images, name=’d input/images’)

net h0 = Conv2d(net in, df dim, (4, 4), (2, 2), act=lambda x: tl.act. lrelu (x, 0.2) ,

padding=’SAME’, W init=w init, name=’d h0/conv2d’)

net h1 = Conv2d(net h0, df dim∗2, (4, 4), (2, 2), act=None,
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padding=’SAME’, W init=w init, name=’d h1/conv2d’)

net h1 = BatchNormLayer(net h1, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h1/batchnorm’)

net h2 = Conv2d(net h1, df dim∗4, (4, 4), (2, 2), act=None,

padding=’SAME’, W init=w init, name=’d h2/conv2d’)

net h2 = BatchNormLayer(net h2, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h2/batchnorm’)

net h3 = Conv2d(net h2, df dim∗8, (4, 4), (2, 2), act=None,

padding=’SAME’, W init=w init, name=’d h3/conv2d’)

net h3 = BatchNormLayer(net h3,

is train =is train , gamma init=gamma init, name=’d h3/batchnorm’)

# resnet

net h = Conv2d(net h3, df dim∗2, (1, 1), (1, 1), act=None,

padding=’VALID’, W init=w init, name=’d h3/conv2d2’)

net h = BatchNormLayer(net h, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h3/batchnorm2’)

net h = Conv2d(net h, df dim∗2, (3, 3), (1, 1), act=None,

padding=’SAME’, W init=w init, name=’d h3/conv2d3’)

net h = BatchNormLayer(net h, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h3/batchnorm3’)

net h = Conv2d(net h, df dim∗8, (3, 3), (1, 1), act=None,

padding=’SAME’, W init=w init, name=’d h3/conv2d4’)

net h = BatchNormLayer(net h,

is train =is train , gamma init=gamma init, name=’d h3/batchnorm4’)

net h3.outputs = tl.act. lrelu ( tf .add(net h.outputs, net h3.outputs), 0.2)

if net rnn embed is not None:

net reduced text = DenseLayer(net rnn embed, n units=t dim,

act=lambda x: tl.act. lrelu (x, 0.2) ,

W init=w init, name=’d reduce txt/dense’)

net reduced text = ExpandDimsLayer(net reduced text, axis=1, name=’expand dims1’)

net reduced text = ExpandDimsLayer(net reduced text, axis=2, name=’expand dims2’)

net reduced text = TileLayer(net reduced text, multiples=[1, 4, 4, 1], name=’tile’)

net h3 concat = ConcatLayer([net h3, net reduced text], concat dim=3, name=’d h3 concat’)

net h3 = Conv2d(net h3 concat, df dim∗8, (1, 1), (1, 1),

padding=’VALID’, W init=w init, name=’d h3/conv2d 2’)

net h3 = BatchNormLayer(net h3, act=lambda x: tl.act.lrelu(x, 0.2),
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is train =is train , gamma init=gamma init, name=’d h3/batch norm 2’)

else :

raise Exception(”No text info is used”)

net h4 = Conv2d(net h3, 1, (4, 4), (1, 1), padding=’VALID’, W init=w init, name=’d h4/conv2d 2’)

net h4 = FlattenLayer(net h4, name=’d h4/flatten’)

logits = net h4.outputs

net h4.outputs = tf.nn.sigmoid(net h4.outputs)

return net h4, logits

# the image encoder for training text encoder

def cnn(input imgs, is train , reuse) :

from tensorflow.contrib .slim.python.slim.nets.inception v3 import inception v3 base, inception v3 arg scope

tl . layers .set name reuse(reuse)

with slim.arg scope(inception v3 arg scope()) :

net img in = tl. layers .InputLayer(input imgs, name=’input image layer’)

network = tl. layers .SlimNetsLayer(layer=net img in, slim layer=inception v3,

slim args= {

’ trainable ’ : is train ,

’ is training ’ : is train ,

’reuse’ : reuse,

},

name=’InceptionV3’)# (64, 2048)

return network

def cnn embed(network, reuse):

with tf . variable scope(”rnn”, reuse=reuse):

network = DenseLayer(network, n units = K,

act = tf. identity , W init = initializer ,

b init = None, name=’image embedding’)

return network

# the text encoder

def rnn embed(input seqs, is train , reuse, return embed=True):

w init = tf.random normal initializer(stddev=0.02)

with tf . variable scope(”rnn”, reuse=reuse):

tl . layers .set name reuse(reuse)

network = EmbeddingInputlayer(

inputs = input seqs,

vocabulary size = vocab size,
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embedding size = word embedding size,

E init = w init,

name = ’wordembed’)

network = DynamicRNNLayer(network,

cell fn = tf.nn. rnn cell .LSTMCell,

n hidden = rnn hidden size,

dropout = (keep prob if is train else None),

initializer = w init,

sequence length = tl. layers . retrieve seq length op2 (input seqs) ,

return last = True,

name = ’dynamic’)

if return embed:

with tf . variable scope(”rnn”, reuse=reuse):

net embed = DenseLayer(network, n units = K,

act = tf. identity , W init = initializer ,

b init = None, name=’hidden state embedding’)

return net embed

else :

return network

The training script is as follows:

import math

import os

import numpy as np

import scipy

import time

from PIL import Image

import logging

LOG FILENAME = ’record.log’

logging.basicConfig(filename=LOG FILENAME, level=logging.DEBUG)

import tensorflow as tf

import tensorlayer as tl

from tensorlayer .prepro import ∗

from tensorlayer . layers import ∗

import nltk

from model im2txt import ∗
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from utils import ∗

# load image files list

images train dir = ’path to images’

images train list = tl. files . load file list (path=images train dir, regx=’\\.jpg’, printable=False)

images train list = [images train dir + s for s in images train list ]

images train list = np.asarray( images train list )

n images train = len( images train list )

checkpoint path = ”path to the checkpoint”

vocab file = ”path to the vocabulary file ”

mode = ’inference’ # the mode of image captioning module

top k = 3

## Build graph for pre−trained image captioning module

images = tf.placeholder( ’ float32 ’ , [ batch size , image height, image width, 3])

input seqs = tf.placeholder(dtype=tf.int64, shape=[batch size, None], name=’input seqs’)

net image embeddings = Build Image Embeddings(mode, images, train inception=False)

net seq embeddings = Build Seq Embeddings(input seqs)

softmax, net img rnn, net seq rnn, state feed = Build Model(mode, net image embeddings, net seq embeddings,

target seqs=None, input mask=None)

if tf . gfile . IsDirectory(checkpoint path):

checkpoint path = checkpoint path + ’/model.ckpt−1000000’

if not checkpoint path:

raise ValueError(”No im2txt checkpoint file found in: %s” % checkpoint path)

saver = tf. train .Saver()

def restore fn (sess) :

tf . logging. info(”Loading model from im2txt checkpoint: %s”, checkpoint path)

saver . restore (sess , checkpoint path)

tf . logging. info(”Successfully loaded im2txt checkpoint: %s”,

os.path.basename(checkpoint path))

restore fn = restore fn

## get the vocabulary.

vocab = tl.nlp.Vocabulary(vocab file)
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## define the graph for image and text mapping

t rnn image = tf.placeholder( ’ float32 ’ , [ batch size , image height, image width, 3], name = ’image txt/image’)

t rnn image w = tf.placeholder(’ float32 ’ , [ batch size , image height, image width, 3], name = ’image txt/image w’)

t rnn caption = tf.placeholder(dtype=tf.int64, shape=[batch size, None], name=’image txt/text’)

t rnn caption w = tf.placeholder(dtype=tf.int64, shape=[batch size, None], name=’image txt/text w’)

net cnn = cnn embed(cnn(t rnn image, is train=False, reuse=True), reuse=False)

x = net cnn.outputs

net rnn = rnn embed(t rnn caption, is train=True, reuse=False)

v = net rnn.outputs

x w = cnn embed(cnn(t rnn image w, is train=False, reuse=True), reuse=True).outputs

v w = rnn embed(t rnn caption w, is train=True, reuse=True).outputs

alpha = 0.2 # margin alpha

e loss = tf.reduce mean(tf.maximum(0., alpha − cosine similarity(x, v) + cosine similarity(x, v w))) + \

tf .reduce mean(tf.maximum(0., alpha − cosine similarity(x, v) + cosine similarity(x w, v)))

## define the graph for text−to−image synthesis.

t real image = tf.placeholder( ’ float32 ’ , [ batch size , image size, image size, 3], name = ’real image’)

t wrong image = tf.placeholder(’float32 ’ , [ batch size , image size, image size, 3], name = ’wrong image’)

t real caption = tf.placeholder(dtype=tf.int64, shape=[batch size, None], name=’real caption input’)

t z = tf.placeholder( tf . float32 , [ batch size , z dim], name=’z noise’)

net rnn2 = rnn embed(t real caption, is train=False, reuse=True, return embed=False)

net fake image, = generator txt2img resnet(t z,

net rnn2,

is train =True, reuse=False)

net d, disc fake image logits = discriminator txt2img resnet(

net fake image.outputs,

net rnn2,

is train =True, reuse=False)

, disc real image logits = discriminator txt2img resnet(

t real image ,

net rnn2,

is train =True, reuse=True)

, disc wrong image logits = discriminator txt2img resnet(

t wrong image,

net rnn2,

is train =True, reuse=True)
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# testing inference for txt2img

net g, = generator txt2img resnet(t z,

rnn embed(t real caption, is train =False, reuse=True, return embed=False),

is train =False, reuse=True)

## loss for text−to−image synthesis

d loss1 = tf.reduce mean(tf.nn.sigmoid cross entropy with logits ( disc real image logits ,

tf . ones like ( disc real image logits )))

d loss2 = tf.reduce mean(tf.nn.sigmoid cross entropy with logits (disc wrong image logits ,

tf . zeros like (disc wrong image logits)))

d loss3 = tf.reduce mean(tf.nn.sigmoid cross entropy with logits ( disc fake image logits ,

tf . zeros like ( disc fake image logits )))

cls weight = 0.5

d loss = d loss1 + cls weight ∗ d loss2 + (1−cls weight) ∗ d loss3

g loss = tf.reduce mean(tf.nn.sigmoid cross entropy with logits ( disc fake image logits ,

tf . ones like ( disc fake image logits )))

net fake image.print params(False)

net fake image. print layers ()

## the cost for txt2im (real = 1, fake = 0)

lr = 0.0002 # initial learning rate for adam

beta1 = 0.5 # momentum term of adam

lr decay = 0.5 # decay factor for adam

decay every = 40 # decay every number of epoch

n step epoch = int(80000/batch size)

e vars = tl. layers .get variables with name(’rnn’, True, True)

d vars = tl. layers .get variables with name(’discriminator ’ , True, True)

g vars = tl. layers .get variables with name(’generator’ , True, True)

with tf . variable scope( ’ learning rate ’ ) :

lr v = tf.Variable( lr , trainable=False)

d optim = tf.train .AdamOptimizer(lr v, beta1=beta1).minimize(d loss, var list=d vars )

g optim = tf.train .AdamOptimizer(lr v, beta1=beta1).minimize(g loss, var list=g vars )

grads, = tf.clip by global norm(tf .gradients( e loss , e vars) , 10)

optimizer = tf. train .AdamOptimizer(lr v, beta1=beta1)
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e optim = optimizer.apply gradients(zip(grads, e vars))

with tf .Session() as sess :

sess .run(tf . initialize all variables ())

## Restore the im2txt model from checkpoint.

restore fn (sess)

## Restore the txt2im model from checkpoint

net c name = os.path.join(save dir , ’net c .npz’)

net e name = os.path.join(save dir , ’net e .npz’)

net g name = os.path.join(save dir , ’net g.npz’)

net d name = os.path.join(save dir, ’net d.npz’)

if True:

print(” [∗] Loading RNN checkpoints ...”)

if not (os.path.exists (net e name) and os.path.exists(net c name)):

print(” [!] Loading RNN checkpoints failed!”)

else :

net c loaded params = tl. files .load npz(name=net c name)

tl . files .assign params(sess, net c loaded params, net cnn)

net e loaded params = tl. files .load npz(name=net e name)

tl . files .assign params(sess, net e loaded params, net rnn)

print(” [∗] Loading RNN checkpoints SUCCESS!”)

print(” [∗] Loading G and D checkpoints ...”)

if not (os.path.exists (net g name) and os.path.exists(net d name)):

print(” [!] Loading G and D checkpoints failed!”)

else :

net d loaded params = tl. files .load npz(name=net d name)

tl . files .assign params(sess, net d loaded params, net d)

print(” [∗] Loading D checkpoints SUCCESS!”)

net g loaded params = tl. files .load npz(name=net g name)

tl . files .assign params(sess, net g loaded params, net g)

print(” [∗] Loading G checkpoints SUCCESS!”)

max caption length = 25

n step = 1000000

n check step = 1

total d loss , total g loss , total e loss = 0, 0, 0

total e loss = 0

total d1 , total d2 , total d3 = 0, 0, 0
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errD, d1, d2, d3, errG, errE = 0, 0, 0, 0, 0, 0

for step in range(0, n step) :

try:

if step !=0 and ((step / n step epoch) % decay every == 0):

new lr decay = lr decay ∗∗ ((step / n step epoch) // decay every)

sess .run(tf . assign( lr v , lr ∗ new lr decay))

log = ” ∗∗ new learning rate: %f” % (lr ∗ new lr decay)

print(log)

logging.debug(log)

elif step == 0:

log = ” ∗∗ init lr : %f, n step epoch: %d, decay every epoch: %d, lr decay: %f” % (lr, n step epoch,

decay every, lr decay)

print(log)

logging.debug(log)

start time = time.time()

idexs = get random int(min=0, max=n images train−1, number=batch size)

b image file name = images train list [ idexs ]

b images = threading data(b image file name, prepro img, mode=’read image’)

b images = threading data(b images, prepro img, mode=’random size to 346’)

b images im2txt = threading data(b images, prepro img, mode=’346 central crop to 299’)

idexs w = get random int(min=0, max=n images train−1, number=batch size)

b image file name w = images train list [idexs w]

b images w = threading data(b image file name w, prepro img, mode=’read image’)

b images w = threading data(b images w, prepro img, mode=’random size to 346’)

b images rnn w = threading data(b images w, prepro img, mode=’346 random flip crop to 299’)

b images txt2im w = threading data(b images rnn w, prepro img, mode=’resize to 64’)

init state = sess.run(net img rnn. final state , feed dict={images: b images im2txt})

state = np.hstack(( init state .c, init state .h))

ids = [[vocab.start id ]] ∗ batch size

b sentences = [[] for in range(batch size) ]

b sentences ids = [[] for in range(batch size) ]

for in range(max caption length − 1):

softmax output, state = sess.run([softmax, net seq rnn. final state ],

feed dict={ input seqs : ids ,
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state feed : state ,

})

state = np.hstack((state.c, state .h))

ids = []

temp = threading data(softmax output, sample fn, top k=top k, vocab=vocab)

i = 0

for a id , word in temp:

b sentences[ i ]. append(word)

b sentences ids [ i ]. append(int(a id))

ids = ids + [[a id ]]

i = i + 1

b sentences ids = process sequences(b sentences ids, end id=vocab.end id, pad val=0, is shorten=True,

remain end id=True)

b images rnn = threading data(b images, prepro img, mode=’346 random flip crop to 299’)

b images txt2im = threading data(b images rnn, prepro img, mode=’resize to 64’)

b sentences ids w = b sentences ids[−1:]+b sentences ids[:−1]

b z = np.random.normal(loc=0.0, scale=1.0, size=(sample size, z dim)).astype(np.float32)

# update RNN − text−image mapping

for in range(1):

errE, = sess.run([ e loss , e optim], feed dict={

t rnn image : b images rnn,

t rnn image w : b images rnn w,

t rnn caption : b sentences ids ,

t rnn caption w : b sentences ids w,

})

total e loss += errE

# update D

errD, d1, d2, d3, = sess.run([ d loss , d loss1 , d loss2 , d loss3 , d optim], feed dict={

t real image : b images txt2im,

t wrong image : b images txt2im w,

t real caption : b sentences ids ,

t z : b z})

# update G

errG, = sess.run([ g loss , g optim], feed dict={

t real caption : b sentences ids ,
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t z : b z})

total d loss += errD; total g loss += errG; total e loss += errE

total d1 += d1; total d2 += d2; total d3 += d3

print(”step %d: d loss: %.4f (%.3f, %.3f, %.3f), g loss : %.4f, e loss : %.5f (%.2f sec) , ept: %d” %

(step, errD, d1, d2, d3, errG, errE, time.time()−start time, prepro img failed counter))

if step != 0 and step % n check step == 0:

## print loss

log = ” ∗∗ avg step: %d d loss: %.4f (%.3f, %.3f, %.3f), g loss : %.4f, e loss : %.5f: ” % (step,

total d loss /n check step,

total d1/n check step, total d2/n check step, total d3/n check step,

total g loss /n check step, total e loss /n check step)

logging.debug(log)

total d loss , total g loss , total e loss = 0, 0, 0

total d1 , total d2 , total d3 = 0, 0, 0

## save model to npz format

if step % (n check step∗10) == 0:

tl . files .save npz(net cnn.all params, name=net c name, sess=sess)

tl . files .save npz(net rnn.all params, name=net e name, sess=sess)

tl . files .save npz(net g.all params, name=net g name, sess=sess)

tl . files .save npz(net d.all params, name=net d name, sess=sess)

print(” [∗] Saving txt2im checkpoints SUCCESS!”)

except Exception as err :

print(err)

A.2 Supplementary Information for Chapter 4

A.2.1 Implementation

The network architectures are defined as follow:

import tensorflow as tf

import tensorlayer as tl

from tensorlayer . layers import ∗

# the architecture of generator

def generator(inputs, is train =True, reuse=False):/
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FLAGS = tf.app.flags.FLAGS

image size = 64

s2, s4, s8, s16 = int(image size/2), int(image size/4), int(image size/8), int(image size/16)

gf dim = 128

c dim = FLAGS.c dim

batch size = FLAGS.batch size

w init = tf.random normal initializer(stddev=0.02)

b init = None

gamma init = tf.random normal initializer(1., 0.02)

with tf . variable scope(”generator”, reuse=reuse):

tl . layers .set name reuse(reuse)

net in = InputLayer(inputs, name=’g/in’)

net h0 = DenseLayer(net in, n units=gf dim∗8∗s16∗s16, W init=w init, b init=b init,

act = tf. identity , name=’g/h0/lin’)

net h0 = ReshapeLayer(net h0, shape=[−1, s16, s16, gf dim∗8], name=’g/h0/reshape’)

net h0 = BatchNormLayer(net h0, act=tf.nn.relu, is train=is train,

gamma init=gamma init, name=’g/h0/batch norm’)

net h1 = DeConv2d(net h0, gf dim∗4, (5, 5), out size=(s8, s8) , strides =(2, 2),

padding=’SAME’, batch size=batch size, act=None, W init=w init, b init=b init, name=’g/h1/decon2d’)

net h1 = BatchNormLayer(net h1, act=tf.nn.relu, is train=is train,

gamma init=gamma init, name=’g/h1/batch norm’)

net h2 = DeConv2d(net h1, gf dim∗2, (5, 5), out size=(s4, s4) , strides =(2, 2),

padding=’SAME’, batch size=batch size, act=None, W init=w init, b init=b init, name=’g/h2/decon2d’)

net h2 = BatchNormLayer(net h2, act=tf.nn.relu, is train=is train,

gamma init=gamma init, name=’g/h2/batch norm’)

net h3 = DeConv2d(net h2, gf dim, (5, 5), out size=(s2, s2) , strides =(2, 2),

padding=’SAME’, batch size=batch size, act=None, W init=w init, b init=b init, name=’g/h3/decon2d’)

net h3 = BatchNormLayer(net h3, act=tf.nn.relu, is train=is train,

gamma init=gamma init, name=’g/h3/batch norm’)

net h4 = DeConv2d(net h3, c dim, (5, 5), out size=(image size, image size) , strides =(2, 2),

padding=’SAME’, batch size=batch size, act=None, W init=w init, name=’g/h4/decon2d’)

logits = net h4.outputs

net h4.outputs = tf.nn.tanh(net h4.outputs)
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return net h4, logits

# the architecture of discriminator

def discriminator(inputs, is train =True, reuse=False):

FLAGS = tf.app.flags.FLAGS

df dim = 64 # Dimension of discrim filters in first conv layer . [64]

c dim = FLAGS.c dim # n color 3

batch size = FLAGS.batch size # 64

w init = tf.random normal initializer(stddev=0.02)

b init = None

gamma init = tf.random normal initializer(1., 0.02)

with tf . variable scope(”discriminator”, reuse=reuse):

tl . layers .set name reuse(reuse)

net in = InputLayer(inputs, name=’d/in’)

net h0 = Conv2d(net in, df dim, (5, 5), (2, 2), act=lambda x: tl.act. lrelu (x, 0.2) ,

padding=’SAME’, W init=w init, name=’d/h0/conv2d’)

net h1 = Conv2d(net h0, df dim∗2, (5, 5), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d/h1/conv2d’)

net h1 = BatchNormLayer(net h1, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d/h1/batch norm’)

net h2 = Conv2d(net h1, df dim∗4, (5, 5), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d/h2/conv2d’)

net h2 = BatchNormLayer(net h2, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d/h2/batch norm’)

net h3 = Conv2d(net h2, df dim∗8, (5, 5), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d/h3/conv2d’)

net h3 = BatchNormLayer(net h3, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d/h3/batch norm’)

net h4 = FlattenLayer(net h3, name=’d/h4/flatten’)

net h4 = DenseLayer(net h4, n units=1, act=tf.identity,

W init = w init, name=’d/h4/output real fake’)
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logits = net h4.outputs

net h4.outputs = tf.nn.sigmoid(net h4.outputs)

net h5 = FlattenLayer(net h3, name=’d/h5/flatten’)

net h5 = DenseLayer(net h5, n units=2, act=tf.identity,

W init = w init, name=’d/h5/output classes’)

logits2 = net h5.outputs

net h5.outputs = tf.nn.softmax(net h5.outputs)

return net h4, logits , net h5, logits2 , net h3

# the architecture of encoder

def imageEncoder(inputs, is train=True, reuse=False):

# it uses the same architecure with the discriminator except the output layer

FLAGS = tf.app.flags.FLAGS

df dim = 64

c dim = FLAGS.c dim

batch size = FLAGS.batch size

w init = tf.random normal initializer(stddev=0.02)

b init = None

gamma init = tf.random normal initializer(1., 0.02)

with tf . variable scope(”imageEncoder”, reuse=reuse):

tl . layers .set name reuse(reuse)

net in = InputLayer(inputs, name=’p/in’)

net h0 = Conv2d(net in, df dim, (5, 5), (2, 2), act=lambda x: tl.act. lrelu (x, 0.2) ,

padding=’SAME’, W init=w init, name=’p/h0/conv2d’)

net h1 = Conv2d(net h0, df dim∗2, (5, 5), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’p/h1/conv2d’)

net h1 = BatchNormLayer(net h1, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’p/h1/batch norm’)

net h2 = Conv2d(net h1, df dim∗4, (5, 5), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’p/h2/conv2d’)

net h2 = BatchNormLayer(net h2, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’p/h2/batch norm’)
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net h3 = Conv2d(net h2, df dim∗8, (5, 5), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’p/h3/conv2d’)

net h3 = BatchNormLayer(net h3, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’p/h3/batch norm’)

net h4 = FlattenLayer(net h3, name=’p/h4/flatten’)

net h4 = DenseLayer(net h4, n units=FLAGS.z dim)

W init = w init, name=’p/h4/output real fake’)

return net h4

The training script is as follows:

import os

import pprint

import numpy as np

import tensorflow as tf

import tensorlayer as tl

from tensorlayer . layers import ∗

from tensorlayer .prepro import ∗

from random import shuffle

import argparse

pp = pprint.PrettyPrinter()

flags = tf.app.flags

flags .DEFINE integer(”epoch”, 100, ”Epoch to train [100]”)

flags .DEFINE float(”learning rate”, 0.0002, ”Learning rate of for adam [0.0002]”)

flags .DEFINE float(”beta1”, 0.5, ”Momentum term of adam [0.5]”)

flags .DEFINE integer(”batch size”, 64, ”The number of batch images [64]”)

flags .DEFINE integer(”image size”, 64, ”The size of image to use (will be center cropped) [64]”)

flags .DEFINE integer(”z dim”, 100, ”Size of Noise embedding”)

flags .DEFINE integer(”class embedding size”, 5, ”Size of class embedding”)

flags .DEFINE integer(”sample size”, 64, ”The number of sample images [64]”)

flags .DEFINE integer(”c dim”, 3, ”Dimension of image color. [3]”)

flags .DEFINE integer(”sample step”, 500, ”The interval of generating sample. [500]”)

flags .DEFINE integer(”save step”, 100, ”The interval of saveing checkpoints. [200]”)

flags .DEFINE integer(”imageEncoder steps”, 30000, ”Number of train steps for image encoder”)

flags .DEFINE string(”dataset”, ”svhn”, ”The name of dataset [celebA, obama hillary, svhn]”)

flags .DEFINE string(”checkpoint dir”, ”data/Models”, ”Directory name to save the checkpoints [checkpoint]”)
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flags .DEFINE string(”sample dir”, ”data/samples”, ”Directory name to save the image samples [samples]”)

FLAGS = flags.FLAGS

os.system(’mkdir data’)

os.system(’mkdir {}’.format(FLAGS.sample dir))

os.system(’mkdir {}’.format(FLAGS.sample dir+’/step1’))

os.system(’mkdir {}’.format(FLAGS.sample dir+’/step2’))

import data loader

import model

from utils import ∗

generator = model.generator

discriminator = model.discriminator

imageEncoder = model.imageEncoder

def train ac gan() :

z dim = FLAGS.z dim

z noise = tf.placeholder( tf . float32 , [FLAGS.batch size, z dim], name=’z noise’)

z classes = tf.placeholder( tf . int64 , shape=[FLAGS.batch size, ], name=’z classes’)

real images = tf .placeholder( tf . float32 , [FLAGS.batch size, FLAGS.image size, FLAGS.image size,

FLAGS.c dim], name=’real images’)

# z embedding

if FLAGS.class embedding size != None:

net z classes = EmbeddingInputlayer(inputs = z classes, vocabulary size = 2, embedding size =

FLAGS.class embedding size, name =’classes embedding’)

else :

net z classes = InputLayer(inputs = tf.one hot(z classes , 2), name =’classes embedding’)

# z −−> generator for training

net g, = generator(tf.concat(1, [ z noise , net z classes .outputs]) , is train =True, reuse=False)

# generated fake images −−> discriminator

net d, d logits fake , , d logits fake class , = discriminator(net g.outputs, is train =True, reuse=False)

# real images −−> discriminator

, d logits real , , d logits real class , = discriminator(real images, is train =True, reuse=True)
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# sample z −−> generator for evaluation, set is train to False

net g2, = generator(tf.concat(1, [ z noise , net z classes .outputs]) , is train =False, reuse=True)

# cost for updating discriminator and generator

# discriminator: real images are labelled as 1

d loss real = tl. cost .sigmoid cross entropy( d logits real , tf . ones like ( d logits real ) , name=’dreal’)

# discriminator: images from generator (fake) are labelled as 0

d loss fake = tl. cost .sigmoid cross entropy( d logits fake , tf . zeros like ( d logits fake ) , name=’dfake’)

d loss = d loss real + d loss fake + d loss class

# generator: try to make the the fake images look real (1)

g loss fake = tf.reduce mean(tf.nn.sigmoid cross entropy with logits ( d logits fake ,

tf . ones like ( d logits fake )))

g loss class = tl. cost .cross entropy( d logits fake class , z classes , name=’g’)

g loss = g loss fake + g loss class

t vars = tf. trainable variables ()

g vars = [var for var in t vars if ’generator’ in var.name]

e vars = [var for var in t vars if ’classes embedding’ in var.name]

d vars = [var for var in t vars if ’discriminator ’ in var.name]

# optimizers for updating discriminator and generator

d optim = tf.train .AdamOptimizer(FLAGS.learning rate, beta1=FLAGS.beta1) \

.minimize(d loss, var list =d vars)

g optim = tf.train .AdamOptimizer(FLAGS.learning rate, beta1=FLAGS.beta1) \

.minimize(g loss, var list =g vars + e vars)

sess=tf.Session()

tl .ops. set gpu fraction (sess=sess, gpu fraction=0.5)

sess .run(tf . initialize all variables ())

net g name = os.path.join(FLAGS.checkpoint dir, ’{} net g.npz’.format(FLAGS.dataset))

net d name = os.path.join(FLAGS.checkpoint dir, ’{} net d.npz’.format(FLAGS.dataset))

net e name = os.path.join(FLAGS.checkpoint dir, ’{} net e.npz’.format(FLAGS.dataset))

if not FLAGS.retrain:

if not (os.path.exists (net g name) and os.path.exists(net d name) and os.path.exists(net e name)):
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print(” [!] Could not load weights from npz files ”)

else :

net g loaded params = tl. files .load npz(name=net g name)

net d loaded params = tl. files .load npz(name=net d name)

net e loaded params = tl. files .load npz(name=net e name)

tl . files .assign params(sess, net g loaded params, net g)

tl . files .assign params(sess, net d loaded params, net d)

tl . files .assign params(sess, net e loaded params, net z classes )

print(” [∗] Loading checkpoints SUCCESS!”)

else :

print(” [∗] Retraining AC GAN”)

class1 files , class2 files , class flag = data loader.load data(FLAGS.dataset, split = ”train”)

is class balance = True

if is class balance :

total batches = 2 ∗ max(len( class1 files ) , len( class2 files )) /FLAGS.batch size

class1 files = np.asarray( class1 files )

class2 files = np.asarray( class2 files )

else :

all files = class1 files + class2 files

total batches = len( all files )/FLAGS.batch size

shuffle ( all files )

print(” all files ”, len( all files ))

print(”Total batches”, total batches)

for epoch in range(FLAGS.epoch):

for bn in range(0, int( total batches)) :

if is class balance :

idex = get random int(min=0, max=len(class1 files)−1, number=int(FLAGS.batch size /2)) #/2)

batch files = class1 files [idex]

idex = get random int(min=0, max=len(class2 files)−1, number=int(FLAGS.batch size /2)) #/2)

batch files = np.concatenate((batch files , class2 files [idex]) )

else :

batch files = all files [bn∗FLAGS.batch size : (bn + 1) ∗ FLAGS.batch size]

batch z = np.random.normal(loc=0.0, scale=1.0, size=(FLAGS.sample size, z dim)).astype(np.float32)
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batch images = threading data(batch files, fn=get image fn)

batch images = threading data(batch images, fn=distort fn)

if ”svhn” in FLAGS.dataset:

batch images[:int(FLAGS.batch size/2)] = threading data(batch images[:int(FLAGS.batch size/2)],

fn=add noise fn, keep=0.8)

batch z classes = [0]∗ int(FLAGS.batch size/2) + [1]∗int(FLAGS.batch size/2)

else :

batch z classes = [0 if class flag [file name ] == True else 1 for file name in batch files ]

errD, = sess.run([ d loss , d optim], feed dict={

z noise : batch z,

z classes : batch z classes ,

real images: batch images

})

for in range(2):

errG, = sess.run([ g loss , g optim], feed dict={

z noise : batch z,

z classes : batch z classes ,

})

print(”d loss={}\t g loss={}\t epoch={}\t batch no={}\t total batches={}”.format(errD, errG, epoch,

bn, total batches))

if bn % FLAGS.save step == 0:

print(” [∗] Saving Models...”)

tl . files .save npz(net g.all params, name=net g name, sess=sess)

tl . files .save npz(net d.all params, name=net d name, sess=sess)

tl . files .save npz( net z classes .all params, name=net e name, sess=sess)

# Saving after each iteration

tl . files .save npz(net g.all params, name=net g name + ” ” + str(epoch), sess=sess)

tl . files .save npz(net d.all params, name=net d name + ” ” + str(epoch), sess=sess)

tl . files .save npz( net z classes .all params, name=net e name + ” ” + str(epoch), sess=sess)

print(” [∗] Models saved”)
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generated samples = sess.run([net g2.outputs], feed dict={

z noise : batch z,

z classes : batch z classes ,

}) [0]

generated samples other class = sess.run([net g2.outputs], feed dict={

z noise : batch z,

z classes : [0 if batch z classes [ i ] == 1 else 1 for i in range(len( batch z classes )) ],

}) [0]

combine and save image sets( [batch images, generated samples, generated samples other class],

FLAGS.sample dir+’/step1’)

def train imageEncoder():

z dim = FLAGS.z dim

z noise = tf.placeholder( tf . float32 , [FLAGS.batch size, z dim], name=’z noise’)

z classes = tf.placeholder( tf . int64 , shape=[FLAGS.batch size, ], name=’z classes’)

if FLAGS.class embedding size != None:

net z classes = EmbeddingInputlayer(inputs = z classes, vocabulary size = 2, embedding size =

FLAGS.class embedding size, name =’classes embedding’)

else :

net z classes = InputLayer(inputs = tf.one hot(z classes , 2), name =’classes embedding’)

net g, = generator(tf.concat(1, [ z noise , net z classes .outputs]) , is train =False, reuse=False)

net p = imageEncoder(net g.outputs, is train=True)

net g2, = generator(tf.concat(1, [net p.outputs, net z classes .outputs]) , is train =False, reuse=True)

t vars = tf. trainable variables ()

p vars = [var for var in t vars if ’imageEncoder’ in var.name]

p loss = tf.reduce mean( tf.square( tf .sub( net p.outputs, z noise) ))

p optim = tf.train .AdamOptimizer(FLAGS.learning rate/2, beta1=FLAGS.beta1) \

.minimize(p loss, var list =p vars)

sess = tf.Session()

tl .ops. set gpu fraction (sess=sess, gpu fraction=0.5)

tl . layers . initialize global variables (sess)

# restore the trained ACGAN
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net g name = os.path.join(FLAGS.checkpoint dir, ’{} net g.npz’.format(FLAGS.dataset))

net e name = os.path.join(FLAGS.checkpoint dir, ’{} net e.npz’.format(FLAGS.dataset))

if not (os.path.exists (net g name) and os.path.exists(net e name)):

print(” [!] Loading checkpoints failed !”)

return

else :

net g loaded params = tl. files .load npz(name=net g name)

net e loaded params = tl. files .load npz(name=net e name)

tl . files .assign params(sess, net g loaded params, net g2)

tl . files .assign params(sess, net e loaded params, net z classes )

print(” [∗] Loading checkpoints SUCCESS!”)

net p name = os.path.join(FLAGS.checkpoint dir, ’{} net p.npz’.format(FLAGS.dataset))

if not FLAGS.retrain:

net p loaded params = tl. files .load npz(name=net p name)

tl . files .assign params(sess, net p loaded params, net p)

print(” [∗] Loaded Pretrained Image Encoder!”)

else :

print(” [∗] Retraining ImageEncoder”)

model no = 0

for step in range(0, FLAGS.imageEncoder steps):

batch z classes = [0 if random.random() > 0.5 else 1 for i in range(FLAGS.batch size)]

batch z = np.random.normal(loc=0.0, scale=1.0, size=(FLAGS.sample size, z dim)).astype(np.float32)

batch images, gen images, , errP = sess.run([net g.outputs, net g2.outputs, p optim, p loss ], feed dict={

z noise : batch z,

z classes : batch z classes ,

})

print(”p loss={}\t step no={}\t total steps={}”.format(errP, step, FLAGS.imageEncoder steps))

if step % FLAGS.sample step == 0:

print(” [∗] Sampling images”)

combine and save image sets([batch images, gen images], FLAGS.sample dir+’/step2’)

if step % 2000 == 0:
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model no += 1

if step % FLAGS.save step == 0:

print(” [∗] Saving Model”)

tl . files .save npz(net p.all params, name=net p name, sess=sess)

tl . files .save npz(net p.all params, name=net p name + ” ” + str(model no), sess=sess)

print(” [∗] Model p(encoder) saved”)

def main():

parser = argparse.ArgumentParser()

parser.add argument(’−−train step’, type=str, default=”ac gan”,

help=’Step of the training : ac gan, imageEncoder’)

parser.add argument(’−−retrain’, type=int, default=0,

help=’Set 0 for using pre−trained model, 1 for retraining the model’)

args = parser.parse args()

if not os.path.exists (FLAGS.checkpoint dir):

os.makedirs(FLAGS.checkpoint dir)

if not os.path.exists (FLAGS.sample dir):

os.makedirs(FLAGS.sample dir)

if args. train step == ”ac gan”:

train ac gan()

elif args. train step == ”imageEncoder”:

train imageEncoder()

if name == ’ main ’:

main()

A.3 Supplementary Information for Chapter 5

We illustrate more success and failed 64 × 64 results on the Oxford-102 flower and Caltech-200 bird

datasets, and discuss the possible reasons for the failure. The summary of failure can help to under-
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stand our limitation.

A.3.1 Additional results

We illustrate more flower images with diverse shapes in Figure A.1. When the text description contains

shape information e.g. “skinny yellow petals”, the proposed method successfully maintains the outline

of flowers and change only the related part i.e. the petals. Compared with bird dataset, in flower

dataset, the performance of background reconstruction is poorer, except some simple backgrounds e.g.

the fourth column. The reason is that comparing with the backgrounds from bird dataset such as wire,

branch and sky, the backgrounds of flower dataset mainly contain leaves with arbitrary and diverse

shapes, which is more challenging.
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Test	set	without	central	crop

Source	image

This	is	an	orange	and	golden	
flower.

This	flower	has	petals	that	are	
white	 fading	to	pink.

The	 flower	has	dark	stamens	with	
skinny	yellow	petals.

This	flower	has	petals	with	a	
combination	of	white	and	lavender.

The	 flower	is	light	blue	with	bright	
yellow	stamens.

This	beautiful	flower	has	many	
red	ruffled	petals.

The	 flower	have	mixed	colors of	
purple,	yellow	and	green.

The	petals	are	white	with	yellow	
shading.

Figure A.1: Additional zero-shot 64 × 64 results of semantic image synthesis without pre-trained
VGG encoder on the Oxford-102 flower dataset.

For Caltech-200 bird dataset, first, our method can correctly locate different parts of birds. Second,

compared with flower dataset, the background reconstruction of bird dataset is better, it can correctly

reconstruct the object in the background with rare colour e.g. the red objects in second and sixth

columns of Figure A.2. The third column demonstrated that even the background object is small or

thin, our method still able to reconstruct it.
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Test	set	without	central	crop

Our	method	 (without	VGG)

Source	image

A	red	body	bird	with	black	wings	
and	a	gray	beak

A	white	bird	with	red	crown	and	
red	head.

This	bird	is	yellow	in	color	and	has	
black	wings.

A	bird	is	white	in	color	with	grey	
wings.

This	bird	has	a	red	belly	and	breast,	
and	a	blue	head.

This	bird	has	wings	that	are	black	
with	a	black	head.

A	bird	with	green	wings	and	a	
yellow	breast.

This	bird	has	wings	that	are	brown	
and	has	a	white	belly.

Figure A.2: Additional zero-shot 64 × 64 results of semantic image synthesis without pre-trained
VGG encoder on the Caltech-200 bird dataset.

A.3.2 Failure cases

Figure A.3 and A.4 show the failure cases of both Oxford-102 flower and Caltech-200 bird datasets.

The main reasons for failure cases are:

• Complex and unrecognised background information: Take the second example of the

bottom row of Figure A.3 for example, as the blue background is rare in the flower dataset, the

synthesised image fails to maintain the background and generate the green background which is
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common in the flower dataset. For bird failure cases in Figure A.4, the car park background in

the top-left example is also rare in the bird dataset, resulting the red car become a part of the

bird in the synthesised image.

• Diverse and complicated shape of objects: In Figure A.4, as the second example of bottom

row shows, even the background is simple, the bird with an uncommon size will lead to a failed

result. Similarly, the top-right flower in Figure A.3 has complex petals, the synthesised flower

can maintain the general shape, but if we look closely, we can found that the shape details totally

changed.

-

Source	image

The	 flower	has	purple	and	white	
petals	with	blue	anther.

A	flower	with	yellow	petals	and	
no	visible	stamen.

This	red	and	pink	flower	has	
rounded	petals	and	black	stamens.

This	white	 flower	has	rounded	petals	
and	a	yellow	orange	stamen.

Figure A.3: Failure cases of zero-shot 64×64 results of semantic image synthesis without pre-trained
VGG encoder on the Oxford-102 flower dataset.
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-

Source	image

A	red	body	bird	with	black	wings	
and	a	gray	beak.

This	bird	has	a	red	belly	and	
breast,	and	a	blue	head.

white	bird	with	red	crown	and	red	
head.

This	bird	is	completely	black.

Figure A.4: Failure cases of zero-shot 64×64 results of semantic image synthesis without pre-trained
VGG encoder on the Caltech-200 bird dataset.

A.3.3 Implementation

The network architectures for synthesising both 64 × 64 and 256 × 256 images.

import tensorflow as tf

import tensorlayer as tl

from tensorlayer . layers import ∗

import os

# hyper−parameters for text−to−image mapping

t dim = 128

rnn hidden size = t dim

vocab size = 8000

word embedding size = 256

# the text encoder

def rnn embed(input seqs, is train=True, reuse=False):

w init = tf.random normal initializer(stddev=0.02)

LSTMCell = tf.contrib.rnn.BasicLSTMCell

with tf . variable scope(”rnnftxt”, reuse=reuse):

tl . layers .set name reuse(reuse)

net = EmbeddingInputlayer(

inputs = input seqs,

vocabulary size = vocab size,

embedding size = word embedding size,
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E init = w init,

name = ’rnn/wordembed’)

net = DynamicRNNLayer(net,

cell fn = LSTMCell,

cell init args = {’ state is tuple ’ : True, ’reuse’ : reuse},

n hidden = rnn hidden size,

dropout = None,#(keep prob if is train else None),

initializer = w init,

sequence length = tl. layers . retrieve seq length op2 (input seqs) ,

return last = True,

name = ’rnn/dynamic’)

return net

# the image encoder for training the text encoder

def cnn encoder(inputs, is train =True, reuse=False, name=’cnnftxt’):

w init = tf.random normal initializer(stddev=0.02)

gamma init = tf.random normal initializer(1., 0.02)

df dim = 64

with tf . variable scope(name, reuse=reuse):

tl . layers .set name reuse(True)

net in = InputLayer(inputs, name=’/in’)

net h0 = Conv2d(net in, df dim, (4, 4), (2, 2), act=lambda x: tl.act. lrelu (x, 0.2) ,

padding=’SAME’, W init=w init, name=’cnnf/h0/conv2d’)

net h1 = Conv2d(net h0, df dim∗2, (4, 4), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=None, name=’cnnf/h1/conv2d’)

net h1 = BatchNormLayer(net h1, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’cnnf/h1/batch norm’)

net h2 = Conv2d(net h1, df dim∗4, (4, 4), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=None, name=’cnnf/h2/conv2d’)

net h2 = BatchNormLayer(net h2, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’cnnf/h2/batch norm’)

net h3 = Conv2d(net h2, df dim∗8, (4, 4), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=None, name=’cnnf/h3/conv2d’)

net h3 = BatchNormLayer(net h3, act=lambda x: tl.act.lrelu(x, 0.2),
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is train =is train , gamma init=gamma init, name=’cnnf/h3/batch norm’)

net h4 = FlattenLayer(net h3, name=’cnnf/h4/flatten’)

net h4 = DenseLayer(net h4, n units=t dim,

W init = w init, b init = None, name=’cnnf/h4/embed’)

return net h4

# the generator without VGG for 64x64 images

def encode generator(inputs, t txt=None, is train=True, reuse=False, batch size=None):

gf dim = 128

w init = tf.random normal initializer(stddev=0.02)

b init = None

gamma init=tf.random normal initializer(1., 0.02)

with tf . variable scope(”encode generator”, reuse=reuse):

tl . layers .set name reuse(reuse)

net in = InputLayer(inputs, name=’g/images’)

## downsampling

net h0 = Conv2d(net in, gf dim, (3, 3), (1, 1), act=tf.nn.relu ,

padding=’SAME’, W init=w init, name=’g h0/conv2d’)

net h1 = Conv2d(net h0, gf dim∗2, (4, 4), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’g h1/conv2d’)

net h1 = BatchNormLayer(net h1, act=tf.nn.relu,

is train =is train , gamma init=gamma init, name=’g h1/batchnorm’)

net h2 = Conv2d(net h1, gf dim∗4, (4, 4), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’g h2/conv2d’)

net h2 = BatchNormLayer(net h2, act=tf.nn.relu,

is train =is train , gamma init=gamma init, name=’g h2/batchnorm’)

## join image and text representations

if t txt is not None:

net txt = InputLayer(t txt, name=’g join/input text’)

net txt = DenseLayer(net txt, n units=t dim ∗ 2,

act=lambda x: tl.act. lrelu (x, 0.2) ,

W init=w init, b init=None, name=’g join reduce txt/dense’)

def KL loss(mu, log sigma):

with tf .name scope(”KL divergence”):

loss = −log sigma + .5 ∗ (−1 + tf.exp(2. ∗ log sigma) + tf.square(mu))



224 Appendix A. Appendix

loss = tf.reduce mean(loss)

return loss

mean = net txt.outputs[:, :t dim]

log sigma = net txt.outputs [:, t dim:]

epsilon = tf.truncated normal(tf.shape(mean))

stddev = tf.exp(log sigma)

c = mean + stddev ∗ epsilon

kl loss = KL loss(mean, log sigma)

net txt c = InputLayer(c, name=’c’)

net txt c .all params.extend(net txt.all params)

net txt = ExpandDimsLayer(net txt c, 1, name=’g join reduce txt/expanddim1’)

# net txt = ExpandDimsLayer(net txt, 1, name=’g join reduce txt/expanddim1’)

net txt = ExpandDimsLayer(net txt, 1, name=’g join reduce txt/expanddim2’)

net txt = TileLayer(net txt, [1, 16, 16, 1], name=’g join reduce txt/tile’)

net h2 concat = ConcatLayer([net h2, net txt], concat dim=3, name=’g join reduce txt/concat’)

net h2 = Conv2d(net h2 concat, gf dim∗4, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’g join/conv2d’)

net h2 = BatchNormLayer(net h2, act=tf.nn.relu,

is train =is train , gamma init=gamma init, name=’g join/batch norm’)

else :

raise Exception(”missing text embedding”)

for i in range(4):

net = Conv2d(net h2, gf dim∗4, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’g residual{}/conv2d 1’.format(i))

net = BatchNormLayer(net, act=tf.nn.relu,

is train =is train , gamma init=gamma init, name=’g residual{}/batch norm 1’.format(i))

net = Conv2d(net, gf dim∗4, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’g residual{}/conv2d 2’.format(i))

net = BatchNormLayer(net,

is train =is train , gamma init=gamma init, name=’g residual{}/batch norm 2’.format(i))

net h2 = ElementwiseLayer(layer=[net h2, net], combine fn=tf.add, name=’g residual{}/add’.format(i))

net h2.outputs = tf.nn.relu(net h2.outputs)

net h3 = UpSampling2dLayer(net h2, size=[32, 32], is scale=False, method=1, align corners=False,
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name=’g up/upsample2d 1’)

net h3 = Conv2d(net h3, gf dim∗2, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’g up/conv2d 1’)

net h3 = BatchNormLayer(net h3, act=tf.nn.relu,

is train =is train , gamma init=gamma init, name=’g up/batch norm 1’)

net h4 = UpSampling2dLayer(net h3, size=[64, 64], is scale=False, method=1, align corners=False,

name=’g up/upsample2d 2’)

net h4 = Conv2d(net h4, gf dim, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’g up/conv2d 2’)

net h4 = BatchNormLayer(net h4, act=tf.nn.relu,

is train =is train , gamma init=gamma init, name=’g up/batch norm 2’)

## down to 3 channels for RGB

network = Conv2d(net h4, 3, (3, 3), (1, 1),

padding=’SAME’, W init=w init, name=’g out/conv2d’)

logits = network.outputs

network.outputs = tf.nn.tanh(network.outputs)

return network, logits , kl loss

# the generator with VGG for 64x64 images

def encode generator 244to64(inputs, t txt=None, is train=True, reuse=False, batch size=None):

gf dim = 128

w init = tf.random normal initializer(stddev=0.02)

b init = None

gamma init=tf.random normal initializer(1., 0.02)

with tf . variable scope(”generator”, reuse=reuse):

tl . layers .set name reuse(reuse)

inputs = (inputs + 1) ∗ 127.5

mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name=’img mean’)

net in = InputLayer(inputs − mean, name=’vgg input im’)

””” conv1 ”””

network = tl. layers .Conv2dLayer(net in,

act = tf.nn.relu ,

shape = [3, 3, 3, 64],

strides = [1, 1, 1, 1],
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padding=’SAME’,

name =’vgg conv1 1’)

network = tl. layers .Conv2dLayer(network,

act = tf.nn.relu ,

shape = [3, 3, 64, 64],

strides = [1, 1, 1, 1],

padding=’SAME’,

name =’vgg conv1 2’)

network = tl. layers .PoolLayer(network,

ksize=[1, 2, 2, 1],

strides =[1, 2, 2, 1],

padding=’SAME’,

pool = tf.nn.max pool,

name =’vgg pool1’)

””” conv2 ”””

network = tl. layers .Conv2dLayer(network,

act = tf.nn.relu ,

shape = [3, 3, 64, 128],

strides = [1, 1, 1, 1],

padding=’SAME’,

name =’vgg conv2 1’)

network = tl. layers .Conv2dLayer(network,

act = tf.nn.relu ,

shape = [3, 3, 128, 128],

strides = [1, 1, 1, 1],

padding=’SAME’,

name =’vgg conv2 2’)

network = tl. layers .PoolLayer(network,

ksize=[1, 2, 2, 1],

strides =[1, 2, 2, 1],

padding=’SAME’,

pool = tf.nn.max pool,

name =’vgg pool2’)

””” conv3 ”””

network = tl. layers .Conv2dLayer(network,

act = tf.nn.relu ,

shape = [3, 3, 128, 256],

strides = [1, 1, 1, 1],

padding=’SAME’,
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name =’vgg conv3 1’)

network = tl. layers .Conv2dLayer(network,

act = tf.nn.relu ,

shape = [3, 3, 256, 256],

strides = [1, 1, 1, 1],

padding=’SAME’,

name =’vgg conv3 2’)

network = tl. layers .Conv2dLayer(network,

act = tf.nn.relu ,

shape = [3, 3, 256, 256],

strides = [1, 1, 1, 1],

padding=’SAME’,

name =’vgg conv3 3’)

network = tl. layers .PoolLayer(network,

ksize=[1, 2, 2, 1],

strides =[1, 2, 2, 1],

padding=’SAME’,

pool = tf.nn.max pool,

name =’vgg pool3’)

””” conv4 ”””

network = tl. layers .Conv2dLayer(network,

act = tf.nn.relu ,

shape = [3, 3, 256, 512],

strides = [1, 1, 1, 1],

padding=’SAME’,

name =’vgg conv4 1’)

network = tl. layers .Conv2dLayer(network,

act = tf.nn.relu ,

shape = [3, 3, 512, 512],

strides = [1, 1, 1, 1],

padding=’SAME’,

name =’vgg conv4 2’)

network = tl. layers .Conv2dLayer(network,

act = tf.nn.relu ,

shape = [3, 3, 512, 512],

strides = [1, 1, 1, 1],

padding=’SAME’,

name =’vgg conv4 3’)

net h2 = tl. layers .PoolLayer(network,
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ksize=[1, 2, 2, 1],

strides =[1, 2, 2, 1],

padding=’SAME’,

pool = tf.nn.max pool,

name =’vgg pool4 4’)

with tf . variable scope(”decoder”, reuse=reuse):

# join image and text representation

if t txt is not None:

net txt = InputLayer(t txt, name=’input text’)

net txt = DenseLayer(net txt, n units=t dim ∗ 2,

act=lambda x: tl.act. lrelu (x, 0.2) ,

W init=w init, b init=None, name=’dense’)

def KL loss(mu, log sigma):

with tf .name scope(”KL divergence”):

loss = −log sigma + .5 ∗ (−1 + tf.exp(2. ∗ log sigma) + tf.square(mu))

loss = tf.reduce mean(loss)

return loss

mean = net txt.outputs[:, :t dim]

log sigma = net txt.outputs [:, t dim:]

epsilon = tf.truncated normal(tf.shape(mean))

stddev = tf.exp(log sigma)

c = mean + stddev ∗ epsilon

kl loss = KL loss(mean, log sigma)

net txt c = InputLayer(c, name=’c’)

net txt c .all params.extend(net txt.all params)

net txt = ExpandDimsLayer(net txt c, 1, name=’expanddim1’)

net txt = ExpandDimsLayer(net txt, 1, name=’expanddim2’)

net txt = TileLayer(net txt, [1, 16, 16, 1], name=’tile’)

net h2 concat = ConcatLayer([net h2, net txt], concat dim=3, name=’concat’) # (64, 4, 4, 640)

net h2 = Conv2d(net h2 concat, gf dim∗4, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’conv2d’)

net h2 = BatchNormLayer(net h2, act=tf.nn.relu,

is train =is train , gamma init=gamma init, name=’batch norm’)

else :

raise Exception(’missing text embedding’)
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## residual block x 4(for 64−−256)

for i in range(4):

net = Conv2d(net h2, gf dim∗4, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’res{}/c1’.format(i))

net = BatchNormLayer(net, act=tf.nn.relu,

is train =is train , gamma init=gamma init, name=’res{}/bn1’.format(i))

net = Conv2d(net, gf dim∗4, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’res{}/c2’.format(i))

net = BatchNormLayer(net,

is train =is train , gamma init=gamma init, name=’res{}/bn2’.format(i))

net h2 = ElementwiseLayer(layer=[net h2, net], combine fn=tf.add, name=’res{}/add’.format(i))

net h2.outputs = tf.nn.relu(net h2.outputs)

net h3 = UpSampling2dLayer(net h2, size=[32, 32], is scale=False, method=1, align corners=False,

name=’up1’)

net h3 = Conv2d(net h3, gf dim∗2, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’c1’)

net h3 = BatchNormLayer(net h3, act=tf.nn.relu,

is train =is train , gamma init=gamma init, name=’bn1’)

net h4 = UpSampling2dLayer(net h3, size=[64, 64], is scale=False, method=1, align corners=False,

name=’up2’)

net h4 = Conv2d(net h4, gf dim, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’c2’)

net h4 = BatchNormLayer(net h4, act=tf.nn.relu,

is train =is train , gamma init=gamma init, name=’bn2’)

## down to 3 channels

network = Conv2d(net h4, 3, (3, 3), (1, 1), act=tf.nn.tanh,

padding=’SAME’, W init=w init, name=’encode generator 244 out/conv2d’)

return network, kl loss

# the generator for 256x256 images

def cyclegan generator resnet(image, t txt=None, is train=True, reuse=False, batch size=None):

b init = None

w init = tf. truncated normal initializer (stddev=0.02)

g init = tf.random normal initializer (1., 0.02)

, nx, ny, nz = image.get shape(). as list ()
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with tf . variable scope( ’generator’ , reuse=reuse):

tl . layers .set name reuse(reuse)

gf dim = 32

net in = InputLayer(image, name=’in’)

net c1 = Conv2d(net in, gf dim, (7, 7), (1, 1), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’c7s1−32’)

net c1 = BatchNormLayer(net c1, act=tf.nn.relu,

is train =is train , gamma init=g init, name=’bn1’)

net c2 = Conv2d(net c1, gf dim ∗ 2, (3, 3), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d64’)

net c2 = BatchNormLayer(net c2, act=tf.nn.relu,

is train =is train , gamma init=g init, name=’bn2’)

net c3 = Conv2d(net c2, gf dim ∗ 4, (3, 3), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d128’)

net c3 = BatchNormLayer(net c3, act=tf.nn.relu,

is train =is train , gamma init=g init, name=’bn3’)

## join image and text representation

if t txt is not None:

net txt = InputLayer(t txt, name=’txt/in’)

net txt = DenseLayer(net txt, n units=t dim,

act=lambda x: tl.act. lrelu (x, 0.2) ,

W init=w init, b init=None, name=’txt/den’)

net txt c = InputLayer(mean, name=’txt/mean’)

net txt c .all params.extend(net txt.all params)

net txt = ExpandDimsLayer(net txt c, 1, name=’txt/expand1’)

net txt = ExpandDimsLayer(net txt, 1, name=’txt/expand2’)

# net txt = TileLayer(net txt, [1, 64, 64, 1], name=’txttile’)

net txt = TileLayer(net txt, [1, int(nx/4), int(ny/4), 1], name=’txt/tile’)

net c3 concat = ConcatLayer([net c3, net txt], concat dim=3, name=’txt/concat’)

net c3 = Conv2d(net c3 concat, gf dim∗4, (3, 3), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’txt/c’)

net c3 = BatchNormLayer(net c3, act=tf.nn.relu,
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is train =is train , gamma init=g init, name=’txt/bn’)

else :

raise Exception(’missing text embedding’)

n = net c3

for i in range(16):

nn = Conv2d(n, gf dim ∗ 4, (3, 3), (1, 1), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’res/c1/%s’ % i)

nn = BatchNormLayer(nn, act=tf.nn.relu,

is train =is train , gamma init=g init, name=’res/bn/%s 1’ % i)

nn = Conv2d(nn, gf dim ∗ 4, (3, 3), (1, 1), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’res/c2/%s’ % i)

nn = BatchNormLayer(nn,

is train =is train , gamma init=g init, name=’res/bn/%s 2’ % i)

nn = ElementwiseLayer([n, nn], tf.add, ’ res/add/%s’ % i)

n = nn

net r9 = n

net d1 = DeConv2d(net r9, gf dim ∗ 2, (3, 3), out size=(128,128),

strides =(2, 2), padding=’SAME’, batch size=batch size, act=None, W init=w init, b init=b init,

name=’u64’)

net d1 = BatchNormLayer(net d1, act=tf.nn.relu,

is train =is train , gamma init=g init, name=’bn/d1’)

net d2 = DeConv2d(net d1, gf dim, (3, 3), out size=(256,256),

strides =(2, 2), padding=’SAME’,batch size=batch size, act=None, W init=w init, b init=b init,

name=’u32’)

net d2 = BatchNormLayer(net d2, act=tf.nn.relu,

is train =is train , gamma init=g init, name=’bn/d2’)

net c4 = Conv2d(net d2, 3, (7, 7), (1, 1), act=tf.nn.tanh, W init=w init,

padding=’SAME’, name=’c7s1−3’)

return net c4, None

# the discriminator for 64x64 images

def discriminator txt2img 64(input images, t txt=None, is train=True, reuse=False):

w init = tf.random normal initializer(stddev=0.02)

gamma init=tf.random normal initializer(1., 0.02)

df dim = 64
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s = 64

s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

with tf . variable scope(”discriminator”, reuse=reuse):

tl . layers .set name reuse(reuse)

net in = InputLayer(input images, name=’d input/images’)

net h0 = Conv2d(net in, df dim, (4, 4), (2, 2), act=lambda x: tl.act. lrelu (x, 0.2) ,

padding=’SAME’, W init=w init, name=’d h0/conv2d’)

net h1 = Conv2d(net h0, df dim∗2, (4, 4), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=None, name=’d h1/conv2d’)

net h1 = BatchNormLayer(net h1, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h1/batchnorm’)

net h2 = Conv2d(net h1, df dim∗4, (4, 4), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=None, name=’d h2/conv2d’)

net h2 = BatchNormLayer(net h2, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h2/batchnorm’)

net h3 = Conv2d(net h2, df dim∗8, (4, 4), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=None, name=’d h3/conv2d’)

net h3 = BatchNormLayer(net h3,

is train =is train , gamma init=gamma init, name=’d h3/batchnorm’)

net = Conv2d(net h3, df dim∗2, (1, 1), (1, 1), act=None,

padding=’VALID’, W init=w init, b init=None, name=’d h4 res/conv2d’)

net = BatchNormLayer(net, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h4 res/batchnorm’)

net = Conv2d(net, df dim∗2, (3, 3), (1, 1), act=None,

padding=’SAME’, W init=w init, b init=None, name=’d h4 res/conv2d2’)

net = BatchNormLayer(net, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h4 res/batchnorm2’)

net = Conv2d(net, df dim∗8, (3, 3), (1, 1), act=None,

padding=’SAME’, W init=w init, b init=None, name=’d h4 res/conv2d3’)

net = BatchNormLayer(net,

is train =is train , gamma init=gamma init, name=’d h4 res/batchnorm3’)

net h4 = ElementwiseLayer(layer=[net h3, net], combine fn=tf.add, name=’d h4/add’)

net h4.outputs = tl.act. lrelu (net h4.outputs, 0.2)

net txt = InputLayer(t txt, name=’d input txt’)

net txt = DenseLayer(net txt, n units=t dim,
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act=lambda x: tl.act. lrelu (x, 0.2) ,

W init=w init, name=’d reduce txt/dense’)

net txt = ExpandDimsLayer(net txt, 1, name=’d txt/expanddim1’)

net txt = ExpandDimsLayer(net txt, 1, name=’d txt/expanddim2’)

net txt = TileLayer(net txt, [1, 4, 4, 1], name=’d txt/tile’)

net h4 concat = ConcatLayer([net h4, net txt], concat dim=3, name=’d h3 concat’)

net h4 = Conv2d(net h4 concat, df dim∗8, (1, 1), (1, 1),

padding=’VALID’, W init=w init, b init=None, name=’d h3/conv2d 2’)

net h4 = BatchNormLayer(net h4, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h3/batch norm 2’)

net ho = Conv2d(net h4, 1, (s16, s16), (s16, s16), padding=’VALID’, W init=w init, name=’d ho/conv2d’)

logits = net ho.outputs

net ho.outputs = tf.nn.sigmoid(net ho.outputs)

return net ho, logits

# the discriminator for 256x256 images

def discriminator txt2img 256(input images, t txt=None, is train=True, reuse=False):

w init = tf.random normal initializer(stddev=0.02)

b init = None

gamma init = tf.random normal initializer(1., 0.02)

df dim = 32

s2, s4, s8, s16 = int(df dim/2), int(df dim/4), int(df dim/8), int(df dim/16)

with tf . variable scope(”discriminator”, reuse=reuse):

tl . layers .set name reuse(reuse)

net in = InputLayer(input images, name=’d input/images’)

net h0 = Conv2d(net in, df dim, (3, 3), (2, 2), act=lambda x: tl.act. lrelu (x, 0.2) ,

padding=’SAME’, W init=w init, name=’d h0/conv2d’)

net h1 = Conv2d(net h0, df dim∗2, (3, 3), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d h1/conv2d’)

net h1 = BatchNormLayer(net h1, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h1/batchnorm’)

net h2 = Conv2d(net h1, df dim∗2, (3, 3), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d h2/conv2d’)

net h2 = BatchNormLayer(net h2, act=lambda x: tl.act.lrelu(x, 0.2),
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is train =is train , gamma init=gamma init, name=’d h2/batchnorm’)

net h3 = Conv2d(net h2, df dim∗4, (3, 3), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d h3/conv2d’)

net h3 = BatchNormLayer(net h3, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h3/batchnorm’)

net h4 = Conv2d(net h3, df dim∗4, (3, 3), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d h4/conv2d’)

net h4 = BatchNormLayer(net h4, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h4/batchnorm’)

net h5 = Conv2d(net h4, df dim∗4, (3, 3), (2, 2), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d h5/conv2d’)

net h5 = BatchNormLayer(net h5, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h5/batchnorm’)

net h6 = Conv2d(net h5, df dim∗16, (1, 1), (1, 1), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d h6/conv2d’)

net h6 = BatchNormLayer(net h6, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d h6/batchnorm’)

net h7 = Conv2d(net h6, df dim∗8, (1, 1), (1, 1), act=None,

padding=’SAME’, W init=w init, b init=b init, name=’d h7/conv2d’)

net h7 = BatchNormLayer(net h7,

is train =is train , gamma init=gamma init, name=’d h7/batchnorm’)

net h8 = net h7

net txt = InputLayer(t txt, name=’d t txt’)

net txt = DenseLayer(net txt, n units=t dim,

act=lambda x: tl.act. lrelu (x, 0.2) ,

W init=w init, b init=None, name=’d reduce txt/dense’)

net txt = ExpandDimsLayer(net txt, 1, name=’d reduce txt/expanddim1’)

net txt = ExpandDimsLayer(net txt, 1, name=’d reduce txt/expanddim2’)

net txt = TileLayer(net txt, [1, 4, 4, 1], name=’d reduce txt/tile’)

net h8 concat = ConcatLayer([net h8, net txt], concat dim=3, name=’d txt concat’)

net h8 = Conv2d(net h8 concat, df dim∗4, (1, 1), (1, 1),

padding=’SAME’, W init=w init, b init=b init, name=’d txt/conv2d 2’)

net h8 = BatchNormLayer(net h8, act=lambda x: tl.act.lrelu(x, 0.2),

is train =is train , gamma init=gamma init, name=’d txt/batch norm 2’)

logits = net ho.outputs

net ho.outputs = tf.nn.sigmoid(net ho.outputs)
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return net ho, logits

The training script for text encoder is as follow:

import tensorflow as tf

import tensorlayer as tl

from tensorlayer . layers import ∗

import numpy as np

from scipy. io import loadmat

import time, os, re , nltk , scipy

import model

# load data

print(”Loading data from pickle ... ”)

import pickle

with open(”data/ vocab.pickle”, ’rb’) as f :

vocab = pickle.load(f)

with open(”data/ image train.pickle”, ’rb’) as f :

images train = pickle.load(f)

with open(”data/ image test.pickle”, ’rb’) as f :

images test = pickle.load(f)

with open(”data/ n.pickle”, ’rb’) as f :

n captions train , n captions test , n captions per image, n images train, n images test = pickle.load(f)

with open(”data/ caption.pickle”, ’rb’) as f :

captions ids train , captions ids test = pickle.load(f)

images train = np.array(images train)

images test = np.array(images test)

print(images train.shape)

save dir = ”samples”

tl . files . exists or mkdir( save dir )

checkpoint dir = ”checkpoint”

tl . files . exists or mkdir(checkpoint dir)

save dir cnn = os.path.join(checkpoint dir , ’rnn encoder cnn.npz’)

save dir rnn = os.path.join(checkpoint dir , ’rnn encoder.npz’)
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def to64 fn(x):

x = tl.prepro. flip axis (x, axis=1, is random=True)

x = tl.prepro.rotation(x, rg=16, is random=True, fill mode=’nearest’)

x = tl.prepro.imresize(x, size=[64+15, 64+15], interp=’bicubic’, mode=None)

x = tl.prepro.crop(x, wrg=64, hrg=64, is random=True)

x = x / 127.5 − 1

return x

def main train():

batch size = 64

ni = int(np. ceil (np.sqrt(batch size)))

t real image = tf.placeholder( ’ float32 ’ , [ batch size , 64, 64, 3], name = ’matching image’)

t wrong image = tf.placeholder(’float32 ’ , [ batch size , 64, 64, 3], name = ’mismatching image’)

t real caption = tf.placeholder(dtype=tf.int64, shape=[batch size, None], name=’matching text’)

t wrong caption = tf.placeholder(dtype=tf.int64, shape=[batch size, None], name=’mismatching text’)

# matching image

net cnn = model.cnn encoder(t real image, is train=True, reuse=False)

x = net cnn.outputs

# matching text

net rnn = model.rnn embed(t real caption, is train=True, reuse=False)

v = net rnn.outputs

# mismatching image

x w = model.cnn encoder(t wrong image, is train=True, reuse=True).outputs

# mismatching text

v w = model.rnn embed(t wrong caption, is train=True, reuse=True).outputs

alpha = 0.2 # margin alpha

rnn loss = tf.reduce mean(tf.maximum(0., alpha − tl.cost.cosine similarity(x, v)

+ tl. cost . cosine similarity (x, v w))) + tf .reduce mean(tf.maximum(0., alpha −

tl.cost.cosine similarity(x, v) + tl. cost . cosine similarity (x w, v)))

lr = 0.0002

lr decay = 0.5

decay every = 50

beta1 = 0.5

cnn vars = tl. layers .get variables with name(’cnnftxt’ , True, True)

rnn vars = tl. layers .get variables with name(’rnnftxt’ , True, True)
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with tf . variable scope( ’ learning rate ’ ) :

lr v = tf.Variable( lr , trainable=False)

optimizer = tf. train .AdamOptimizer(lr v, beta1=beta1)

grads, = tf.clip by global norm(tf .gradients(rnn loss , rnn vars + cnn vars), 10)

rnn optim = optimizer.apply gradients(zip(grads, rnn vars + cnn vars))

sess = tf. InteractiveSession ()

tl . layers . initialize global variables (sess)

n epoch = 50

print freq = 1

n batch epoch = int(n images train / batch size)

for epoch in range(0, n epoch+1):

start time = time.time()

if epoch !=0 and (epoch % decay every == 0):

new lr decay = lr decay ∗∗ (epoch // decay every)

sess .run(tf . assign( lr v , lr ∗ new lr decay))

log = ” ∗∗ new learning rate: %f” % (lr ∗ new lr decay)

print(log)

elif epoch == 0:

log = ” ∗∗ init lr : %f decay every epoch: %d, lr decay: %f” % (lr, decay every, lr decay)

print(log)

for step in range(n batch epoch):

step time = time.time()

## get matching text

idexs = tl. utils .get random int(min=0, max=n captions train−1, number=batch size)

b real caption = captions ids train [ idexs ]

b real caption = tl.prepro.pad sequences(b real caption, padding=’post’)

## get matching image

b real images =

images train[np.floor(np.asarray(idexs) .astype(’ float ’ )/n captions per image).astype(’ int ’ ) ]

## get mismatching caption
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idexs = tl. utils .get random int(min=0, max=n captions train−1, number=batch size)

b wrong caption = captions ids train[idexs ]

b wrong caption = tl.prepro.pad sequences(b wrong caption, padding=’post’)

## get mismatching image

idexs2 = tl. utils .get random int(min=0, max=n images train−1, number=batch size)

b wrong images = images train[idexs2]

b real images = tl.prepro.threading data(b real images, to64 fn)

b wrong images = tl.prepro.threading data(b wrong images, to64 fn)

## updates text−to−image mapping

errRNN, = sess.run([rnn loss , rnn optim], feed dict={

t real image : b real images,

t wrong image : b wrong images,

t real caption : b real caption ,

t wrong caption : b wrong caption})

print(”Epoch: [%2d/%2d] [%4d/%4d] time: %4.4fs, rnn loss: %.8f” \

% (epoch, n epoch, step, n batch epoch, time.time() − step time, errRNN))

## save model

if (epoch != 0) and (epoch % 10) == 0:

tl . files .save npz(net cnn.all params, name=save dir cnn, sess=sess)

tl . files .save npz(net rnn.all params, name=save dir rnn, sess=sess)

print(” [∗] Save checkpoints SUCCESS!”)

if name == ’ main ’:

import argparse

parser = argparse.ArgumentParser()

parser.add argument(’−−mode’, type=str, default=”train”,

help=’train, train encoder, translation ’ )

args = parser.parse args()

main train()

The training script for the generator is as follow:
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import tensorflow as tf

import tensorlayer as tl

from tensorlayer . layers import ∗

from tensorlayer .prepro import ∗

from tensorlayer . cost import ∗

import numpy as np

import scipy

from scipy. io import loadmat

import time, os, re , nltk

from utils import ∗

from model import ∗

import model

t real image = tf.placeholder( ’ float32 ’ , [ batch size , image size, image size, 3], name = ’real image’)

t real caption = tf.placeholder(dtype=tf.int64, shape=[batch size, None], name=’match caption input’)

t wrong caption = tf.placeholder(dtype=tf.int64, shape=[batch size, None], name=’mismatch caption input’)

t relate caption = tf.placeholder(dtype=tf.int64, shape=[batch size, None], name=’relate caption input’)

discriminator txt2img = model.discriminator txt2img 64

net rnn = rnn embed(t real caption, is train =False, reuse=False)

net rnn w = rnn embed(t wrong caption, is train=False, reuse=True)

net rnn a = rnn embed(t relate caption, is train =False, reuse=True)

net fake image, , kl loss = encode generator(t real image,

net rnn a.outputs,

is train =True, reuse=False)

net d, disc fake image logits = discriminator txt2img(

net fake image.outputs,

net rnn a.outputs,

is train =True, reuse=False)

, disc real image logits = discriminator txt2img(

t real image , net rnn.outputs, is train =True, reuse=True)

, disc mismatch logits = discriminator txt2img(

t real image , net rnn w.outputs, is train =True, reuse=True)
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net fake image2, , = encode generator(t real image,

net rnn.outputs, is train =False, reuse=True)

# loss function

d loss1 = tl. cost .sigmoid cross entropy( disc real image logits , tf . ones like ( disc real image logits ) , name=’d1’)

d loss2 = tl. cost .sigmoid cross entropy(disc mismatch logits , tf . zeros like (disc mismatch logits) , name=’d2’)

d loss3 = tl. cost .sigmoid cross entropy( disc fake image logits , tf . zeros like ( disc fake image logits ) , name=’d3’)

d loss = d loss1 + d loss2 ∗ 0.5 + d loss3 ∗ 0.5

g loss2 = tl. cost .sigmoid cross entropy( disc fake image logits , tf . ones like ( disc fake image logits ) ,

name=’g any’)

g loss = g loss2 + kl loss ∗ 2

lr = 0.0002

lr decay = 0.5

decay every = 50

beta1 = 0.5

d vars = tl. layers .get variables with name(’discriminator ’ , True, True)

encode generator vars = tl. layers .get variables with name(’encode generator’, True, True)

with tf . variable scope( ’ learning rate ’ ) :

lr v = tf.Variable( lr , trainable=False)

d optim = tf.train .AdamOptimizer(lr v, beta1=beta1).minimize(d loss, var list=d vars )

g optim = tf.train .AdamOptimizer(lr v, beta1=beta1).minimize(g loss, var list=encode generator vars)

sess = tf. InteractiveSession ()

tl . layers . initialize global variables (sess)

# load the latest checkpoints

net rnn name = os.path.join(save dir, ’net rnn.npz’)

net txtim2im name = os.path.join(save dir, ’net txtim2im g.npz’)

net d name = os.path.join(save dir, ’net txtim2im d.npz’)

if load and assign npz(sess=sess, name=net rnn name, model=net rnn) is False:

raise Exception(”missing rnn model”)

# seed for generation

sample size = batch size

idexs = get random int(min=0, max=n captions train−1, number=sample size, seed=100)
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sample sentence = captions ids train [ idexs ]

sample sentence = tl.prepro.pad sequences(sample sentence, padding=’post’)

sample image = images train[np.floor(np.asarray(idexs).astype(’ float ’ )/n captions per image).astype(’ int ’ ) ]

sample image = threading data(sample image, prepro img, mode=’test’)

color ids = [vocab.word to id(w) for w in [”red”, ”green”, ”yellow”, ”blue”, ”white”, ”pink”, ”purple”, ”orange”,

”black”, ”brown”, ”lavender”]]

sample sentence change = change id(sample sentence, color ids, vocab.word to id(”red”))

for i , sentence in enumerate(sample sentence):

print( i , [vocab.id to word(w) for w in sentence])

save images(sample image, [ni, ni ], ’samples/txtim2im/ sample images.png’)

n epoch = 600

n batch epoch = int(n images train / batch size)

for epoch in range(0, n epoch+1):

start time = time.time()

if epoch !=0 and (epoch % decay every == 0):

new lr decay = lr decay ∗∗ (epoch // decay every)

sess .run(tf . assign( lr v , lr ∗ new lr decay))

log = ” ∗∗ new learning rate: %f” % (lr ∗ new lr decay)

print(log)

elif epoch == 0:

log = ” ∗∗ init lr : %f decay every epoch: %d, lr decay: %f” % (lr, decay every, lr decay)

print(log)

for step in range(n batch epoch):

step time = time.time()

# get matched text

idexs = get random int(min=0, max=n captions train−1, number=batch size)

b real caption = captions ids train [ idexs ]

b real caption = tl.prepro.pad sequences(b real caption, padding=’post’)

# get match image

b real images = images train[np.floor(np.asarray(idexs) .astype(’ float ’ )/n captions per image).astype(’ int ’ ) ]

# get mismatching caption

b wrong caption = np.append(b real caption[1:], [ b real caption [0]], axis=0)

# get related caption
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idexs = get random int(min=0, max=n captions train−1, number=batch size)

b relate caption = captions ids train [ idexs ]

b relate caption = tl.prepro.pad sequences(b relate caption, padding=’post’)

b real images = threading data(b real images, prepro img, mode=’train strong’)

## updates D

errD, errD1, errD2, errD3, = sess.run([ d loss , d loss1 , d loss2 , d loss3 , d optim], {

t real image : b real images,

t wrong caption : b wrong caption,

t real caption : b real caption ,

t relate caption : b relate caption ,

})

## updates G

errG, = sess.run([ g loss , g optim], {

t real image : b real images,

t relate caption : b relate caption ,

})

print(”Epoch: [%2d/%2d] [%4d/%4d] time: %4.4fs, d loss: %.8f (%.8f %.8f %.8f), g loss: %.8f” \

% (epoch, n epoch, step, n batch epoch, time.time() − step time, errD, errD1, errD2, errD3,

errG))

print(” ∗∗ Epoch %d took %fs” % (epoch, time.time()−start time))

img gen, rnn out = sess.run([net fake image2.outputs, net rnn.outputs], {

t real caption : sample sentence,

t real image : sample image,

})

save images(img gen, [ni , ni ], ’samples/txtim2im/train {:02d}.png’.format(epoch))

img gen, rnn out = sess.run([net fake image2.outputs, net rnn.outputs], {

t real caption : sample sentence change,

t real image : sample image,

})

save images(img gen, [ni , ni ], ’samples/txtim2im/train {:02d}c.png’.format(epoch))

# save model

if (epoch != 0) and (epoch % 5) == 0:

tl . files .save npz(net d.all params, name=net d name, sess=sess)

tl . files .save npz(net fake image.all params, name=net txtim2im name, sess=sess)
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if (epoch != 0) and (epoch % 100) == 0:

tl . files .save npz(net d.all params, name=net d name+str(epoch), sess=sess)

tl . files .save npz(net fake image.all params, name=net txtim2im name+str(epoch), sess=sess)

For 256 × 256 images, the loss functions are defined as follow:

encode generator = model.cyclegan generator resnet

discriminator txt2img = model.discriminator txt2img 256

net g, = encode generator(

t real image ,

net rnn relevant .outputs, is train =True, reuse=False)

net d, disc fake image logits = discriminator txt2img(

net g.outputs,

net rnn relevant .outputs, is train =True, reuse=False)

net g cycle , = encode generator(

net g.outputs,

net rnn match.outputs, is train=True, reuse=True)

, disc match logits = discriminator txt2img(

t real image ,

net rnn match.outputs, is train=True, reuse=True)

, disc mismatch logits = discriminator txt2img(

t real image ,

net rnn mismatch.outputs, is train=True, reuse=True)

## loss

d loss1 = tl. cost .mean squared error(disc match logits, tf . ones like ( disc match logits ) , is mean=True)

d loss2 = tl. cost .mean squared error(disc mismatch logits, tf . zeros like (disc mismatch logits) , is mean=True)

d loss3 = tl. cost .mean squared error(disc fake image logits , tf . zeros like ( disc fake image logits ) , is mean=True)

d loss = d loss1 + d loss2 ∗ 0.5 + d loss3 ∗ 0.5

cycle loss = tl. cost . absolute difference error (net g cycle .outputs, t real image , is mean=True)

g loss1 = tl. cost .mean squared error(disc fake image logits , tf . ones like ( disc fake image logits ) , is mean=True)
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g cycle loss = cycle loss ∗ 0.1

g loss = g loss1 + g cycle loss

A.4 Supplementary Information for Chapter 6

A.4.1 Model performance

CIFAR-10

The following code is the implementation of the CIFAR-10 experiment.

import tensorflow as tf

import tensorlayer as tl

from tensorlayer . layers import ∗

import numpy as np

import time

from PIL import Image

import os

import io

model file name = ”model cifar10 tfrecord.ckpt”

## Download data, and convert it to TFRecord format

X train, y train , X test, y test = tl. files . load cifar10 dataset (

shape=(−1, 32, 32, 3), plotable=False)

def data to tfrecord (images, labels , filename):

””” Save data into TFRecord format ”””

if os.path. isfile (filename):

print(”%s exists” % filename)

return

print(”Converting data into %s ... ” % filename)

cwd = os.getcwd()

writer = tf.python io.TFRecordWriter(filename)

for index, img in enumerate(images):

img raw = img.tobytes()

label = int( labels [index])
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example = tf.train.Example(features=tf.train.Features(feature={

”label”: tf . train .Feature( int64 list =tf.train . Int64List(value=[label ]) ) ,

’img raw’: tf . train .Feature( bytes list =tf.train .BytesList(value=[img raw])),

}))

writer .write(example.SerializeToString())

writer . close ()

def read and decode(filename, is train =None):

””” Return tensor to read from TFRecord ”””

filename queue = tf.train .string input producer ([filename])

reader = tf.TFRecordReader()

, serialized example = reader.read(filename queue)

features = tf.parse single example(serialized example ,

features={

’ label ’ : tf .FixedLenFeature([], tf . int64) ,

’img raw’ : tf .FixedLenFeature([], tf . string) ,

})

# You can do more image distortion here for training data

img = tf.decode raw(features[’img raw’], tf . float32 )

img = tf.reshape(img, [32, 32, 3])

# img = tf.cast(img, tf . float32 ) #∗ (1. / 255) − 0.5

if is train == True:

# 1. Randomly crop a [height, width] section of the image.

img = tf.random crop(img, [24, 24, 3])

# 2. Randomly flip the image horizontally.

img = tf.image. random flip left right (img)

# 3. Randomly change brightness.

img = tf.image.random brightness(img, max delta=63)

# 4. Randomly change contrast.

img = tf.image.random contrast(img, lower=0.2, upper=1.8)

# 5. Subtract off the mean and divide by the variance of the pixels .

try: # TF 0.12+

img = tf.image.per image standardization(img)

except: # earlier TF versions

img = tf.image.per image whitening(img)

elif is train == False:

# 1. Crop the central [height, width] of the image.

img = tf.image.resize image with crop or pad(img, 24, 24)
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# 2. Subtract off the mean and divide by the variance of the pixels .

try: # TF 0.12+

img = tf.image.per image standardization(img)

except: # earlier TF versions

img = tf.image.per image whitening(img)

elif is train == None:

img = img

label = tf. cast( features [ ’ label ’ ], tf . int32)

return img, label

## Save data into TFRecord files

data to tfrecord (images=X train, labels=y train, filename=”train.cifar10”)

data to tfrecord (images=X test, labels=y test, filename=”test.cifar10”)

batch size = 128

sess = tf.Session(config=tf.ConfigProto(allow soft placement=True))

# prepare data in cpu

x train , y train = read and decode(”train.cifar10”, True)

x test , y test = read and decode(”test.cifar10”, False)

x train batch , y train batch = tf. train . shuffle batch ([ x train , y train ],

batch size=batch size, capacity=2000, min after dequeue=1000, num threads=32)

x test batch , y test batch = tf. train .batch([ x test , y test ],

batch size=batch size, capacity=50000, num threads=32)

def model(x crop, y , reuse) :

W init = tf. truncated normal initializer (stddev=5e−2)

W init2 = tf. truncated normal initializer (stddev=0.04)

b init2 = tf. constant initializer (value=0.1)

with tf . variable scope(”model”, reuse=reuse):

tl . layers .set name reuse(reuse)

net = InputLayer(x crop, name=’input’)

net = Conv2d(net, 64, (5, 5), (1, 1), padding=’SAME’,

W init=W init, name=’cnn1’)

net = MaxPool2d(net, (3, 3), (2, 2), padding=’SAME’,name=’pool1’)

net = LocalResponseNormLayer(net, depth radius=4, bias=1.0,

alpha=0.001 / 9.0, beta=0.75, name=’norm1’)
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net = Conv2d(net, 64, (5, 5), (1, 1), padding=’SAME’,

W init=W init, name=’cnn2’)

net = LocalResponseNormLayer(net, depth radius=4, bias=1.0,

alpha=0.001 / 9.0, beta=0.75, name=’norm2’)

net = MaxPool2d(net, (3, 3), (2, 2), padding=’SAME’,name=’pool2’)

net = FlattenLayer(net, name=’flatten’)

net = DenseLayer(net, n units=384, act=tf.nn.relu,

W init=W init2, b init=b init2, name=’relu1’)

net = DenseLayer(net, n units=192, act=tf.nn.relu,

W init=W init2, b init=b init2, name=’relu2’)

net = DenseLayer(net, n units=10, act=tf.identity,

W init=tf. truncated normal initializer (stddev=1/192.0),

name=’output’)

y = net.outputs

ce = tl. cost .cross entropy(y, y , name=’cost’)

# L2 for the MLP, without this, the accuracy will be reduced by 15%.

L2 = tf.contrib . layers . l2 regularizer (0.004)(net.all params [4]) + \

tf . contrib . layers . l2 regularizer (0.004)(net.all params [6])

cost = ce + L2

correct prediction = tf.equal(tf . cast( tf .argmax(y, 1), tf . int32) , y )

acc = tf.reduce mean(tf.cast( correct prediction , tf . float32 ))

return net, cost , acc

network, cost , acc, = model(x train batch, y train batch, False)

, cost test , acc test = model(x test batch, y test batch, True)

## train

n epoch = 50000

learning rate = 0.0001

print freq = 1

n step epoch = int(len(y train)/batch size)

n step = n epoch ∗ n step epoch

with tf .device( ’/gpu:0’) :
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train op = tf. train .AdamOptimizer(learning rate, beta1=0.9, beta2=0.999,

epsilon=1e−08, use locking=False).minimize(cost)

tl . layers . initialize global variables (sess)

network.print params(False)

network.print layers ()

print( ’ learning rate : %f’ % learning rate)

print( ’ batch size : %d’ % batch size)

print( ’ n epoch: %d, step in an epoch: %d, total n step: %d’ % (n epoch, n step epoch, n step))

coord = tf. train .Coordinator()

threads = tf. train .start queue runners(sess=sess, coord=coord)

step = 0

for epoch in range(n epoch):

start time = time.time()

train loss , train acc , n batch = 0, 0, 0

for s in range(n step epoch):

err , ac, = sess.run([cost , acc, train op ])

step += 1; train loss += err; train acc += ac; n batch += 1

if epoch + 1 == 1 or (epoch + 1) % print freq == 0:

print(”Epoch %d : Step %d−%d of %d took %fs” % (epoch, step, step + n step epoch, n step,

time.time() − start time))

print(” train loss : %f” % (train loss/ n batch))

print(” train acc: %f” % (train acc/ n batch))

test loss , test acc , n batch = 0, 0, 0

for in range(int(len(y test )/batch size)) :

err , ac = sess.run([ cost test , acc test ])

test loss += err; test acc += ac; n batch += 1

print(” test loss : %f” % (test loss/ n batch))

print(” test acc: %f” % (test acc/ n batch))

if (epoch + 1) % (print freq ∗ 50) == 0:

print(”Save model ” + ”!”∗10)

saver = tf. train .Saver()

save path = saver.save(sess , model file name)
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coord.request stop()

coord.join(threads)

sess . close ()

PTB LSTM

The following code is the implementation of the PTB LSTM experiment.

import sys

import time

import numpy as np

import tensorflow as tf

import tensorlayer as tl

def main( ):

# hyper−parameter setting

init scale = 0.1

learning rate = 1.0

max grad norm = 5

num steps = 20

hidden size = 200

max epoch = 4

max max epoch = 13

keep prob = 1.0

lr decay = 0.5

batch size = 20

vocab size = 10000

# load PTB dataset

train data , valid data , test data , vocab size = tl. files .load ptb dataset()

sess = tf. InteractiveSession ()

# define models

input data = tf.placeholder( tf . int32 , [ batch size , num steps])

targets = tf.placeholder( tf . int32 , [ batch size , num steps])

input data test = tf.placeholder( tf . int32 , [1, 1])

targets test = tf.placeholder( tf . int32 , [1, 1])
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def inference(x, is training , num steps, reuse=None):

init = tf. random uniform initializer(− init scale , init scale )

with tf . variable scope(”model”, reuse=reuse):

net = tl. layers .EmbeddingInputlayer(x, vocab size, hidden size, init , name=’embedding’)

net = tl. layers .DropoutLayer(net, keep=keep prob, is fix=True, is train=is training , name=’drop1’)

net = tl. layers .RNNLayer(

net,

cell fn =tf.contrib .rnn.BasicLSTMCell,

cell init args ={’forget bias ’ : 0.0},

n hidden=hidden size,

initializer =init,

n steps=num steps,

return last =False,

name=’basic lstm layer1’

)

lstm1 = net

net = tl. layers .DropoutLayer(net, keep=keep prob, is fix=True, is train=is training , name=’drop2’)

net = tl. layers .RNNLayer(

net,

cell fn =tf.contrib .rnn.BasicLSTMCell,

cell init args ={’forget bias ’ : 0.0},

n hidden=hidden size,

initializer =init,

n steps=num steps,

return last =False,

return seq 2d=True,

name=’basic lstm layer2’

)

lstm2 = net

net = tl. layers .DropoutLayer(net, keep=keep prob, is fix=True, is train=is training , name=’drop3’)

net = tl. layers .DenseLayer(net, vocab size, W init=init, b init =init, act=None, name=’output’)

return net, lstm1, lstm2

# inference for training

net, lstm1, lstm2 = inference(input data, is training =True, num steps=num steps, reuse=None)

# inference for validating

net val , lstm1 val , lstm2 val = inference(input data, is training =False, num steps=num steps, reuse=True)

# inference for testing (evaluation)

net test , lstm1 test , lstm2 test = inference(input data test , is training =False, num steps=1, reuse=True)
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sess .run(tf . global variables initializer ())

def loss fn (outputs, targets) :

loss = tf.contrib .legacy seq2seq.sequence loss by example(

[outputs], [ tf .reshape(targets , [−1]) ], [ tf . ones like ( tf .reshape(targets , [−1]) , dtype=tf.float32) ]

)

cost = tf.reduce sum(loss) / batch size

return cost

# cost for training

cost = loss fn(net.outputs, targets)

# cost for validating

cost val = loss fn(net val .outputs, targets)

# cost for testing (evaluation)

cost test = loss fn( net test .outputs, targets test )

# truncated backpropagation for training

with tf . variable scope( ’ learning rate ’ ) :

lr = tf.Variable (0.0, trainable=False)

tvars = tf. trainable variables ()

grads, = tf.clip by global norm(tf .gradients(cost , tvars) , max grad norm)

optimizer = tf. train .GradientDescentOptimizer(lr)

train op = optimizer.apply gradients(zip(grads, tvars))

sess .run(tf . global variables initializer ())

net.print params()

net. print layers ()

tl . layers . print all variables ()

print(”Start learning a language model by using PTB dataset”)

for i in range(max max epoch):

# decreases the initial learning rate after several epoachs

new lr decay = lr decay∗∗max(i − max epoch, 0.0)

sess .run(tf . assign( lr , learning rate ∗ new lr decay))

# training

print(”Epoch: %d/%d Learning rate: %.3f” % (i + 1, max max epoch, sess.run(lr)))
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epoch size = ((len(train data) // batch size) − 1) // num steps

start time = time.time()

costs = 0.0

iters = 0

state1 = tl. layers . initialize rnn state (lstm1. initial state )

state2 = tl. layers . initialize rnn state (lstm2. initial state )

for step, (x, y) in enumerate(tl. iterate . ptb iterator (train data , batch size , num steps)):

feed dict = {

input data: x,

targets : y,

lstm1. initial state : state1 ,

lstm2. initial state : state2 ,

}

feed dict .update(net.all drop)

cost , state1 , state2 , = sess.run(

[ cost , lstm1. final state , lstm2. final state , train op ], feed dict=feed dict

)

costs += cost

iters += num steps

if step % (epoch size // 10) == 10:

print(

”%.3f perplexity : %.3f speed: %.0f wps” %

(step ∗ 1.0 / epoch size , np.exp(costs / iters ) , iters ∗ batch size / (time.time() −

start time))

)

train perplexity = np.exp(costs / iters )

print(”Epoch: %d/%d Train Perplexity: %.3f” % (i + 1, max max epoch, train perplexity))

# validing

start time = time.time()

costs = 0.0

iters = 0

state1 = tl. layers . initialize rnn state (lstm1 val . initial state )

state2 = tl. layers . initialize rnn state (lstm2 val . initial state )

for step, (x, y) in enumerate(tl. iterate . ptb iterator (valid data , batch size , num steps)):

feed dict = {

input data: x,
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targets : y,

lstm1 val . initial state : state1 ,

lstm2 val . initial state : state2 ,

}

cost , state1 , state2 , = sess.run(

[ cost val , lstm1 val . final state , lstm2 val . final state ,

tf .no op() ], feed dict=feed dict

)

costs += cost

iters += num steps

valid perplexity = np.exp(costs / iters )

print(”Epoch: %d/%d Valid Perplexity: %.3f” % (i + 1, max max epoch, valid perplexity))

print(”Evaluation”)

start time = time.time()

costs = 0.0

iters = 0

state1 = tl. layers . initialize rnn state (lstm1 test . initial state )

state2 = tl. layers . initialize rnn state (lstm2 test . initial state )

for step, (x, y) in enumerate(tl. iterate . ptb iterator (test data , batch size=1, num steps=1)):

feed dict = {

input data test : x,

targets test : y,

lstm1 test . initial state : state1 ,

lstm2 test . initial state : state2 ,

}

cost , state1 , state2 = sess.run(

[ cost test , lstm1 test . final state , lstm2 test . final state ], feed dict=feed dict

)

costs += cost

iters += 1

test perplexity = np.exp(costs / iters )

print(”Test Perplexity: %.3f took %.2fs” % (test perplexity , time.time() − start time))

if name == ” main ”:

tf .app.run()
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Word2Vec

The following code is the implementation of the Word2Vec experiment.

import sys

import time

import numpy as np

import tensorflow as tf

import tensorlayer as tl

from six.moves import xrange

def main word2vec basic():

tf . logging. set verbosity ( tf . logging.DEBUG)

tl . logging. set verbosity ( tl . logging.DEBUG)

sess = tf.Session(config=tf.ConfigProto(allow soft placement=True))

# Step 1: Download the data, read the context into a list of strings and set hyper parameters

words = tl. files .load matt mahoney text8 dataset()

data size = len(words)

UNK = ” UNK”

vocabulary size = 50000

batch size = 128

embedding size = 128

skip window = 1

num skips = 2

num sampled = 64

learning rate = 1.0

n epoch = 20

model file name = ”model word2vec 50k 128”

num steps = int((data size / batch size) ∗ n epoch)

print( ’%d Steps in a Epoch, total Epochs %d’ % (int(data size / batch size) , n epoch))

print( ’ learning rate : %f’ % learning rate)

print( ’ batch size : %d’ % batch size)

# Step 2: Build the dictionary and replace rare words with ’UNK’ token.

data, count, dictionary , reverse dictionary = tl.nlp.build words dataset(words, vocabulary size, True, UNK)

print( ’Most 5 common words (+UNK)’,
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count [:5]) # [[’UNK’, 418391], (b’the’, 1061396), (b’of ’, 593677), (b’and’, 416629), (b’one’, 411764)]

print( ’Sample data’, data [:10], [ reverse dictionary [ i ] for i in data [:10]])

# Step 3: Function to generate a training batch for the Skip−Gram model.

batch, labels , data index = tl.nlp.generate skip gram batch(data=data, \

batch size=8, num skips=4, skip window=2, data index=0)

for i in range(8):

print(batch[i ], reverse dictionary [batch[i ]], ’−>’, labels [ i , 0], reverse dictionary [ labels [ i , 0]])

batch, labels , data index = tl.nlp.generate skip gram batch(data=data, \

batch size=8, num skips=2, skip window=1, data index=0)

for i in range(8):

print(batch[i ], reverse dictionary [batch[i ]], ’−>’, labels [ i , 0], reverse dictionary [ labels [ i , 0]])

# Step 4: Build a Skip−Gram model.

train inputs = tf.placeholder( tf . int32 , shape=[batch size])

train labels = tf.placeholder( tf . int32 , shape=[batch size, 1])

valid dataset = tf.constant(valid examples, dtype=tf.int32)

# Look up embeddings for inputs.

emb net = tl.layers .Word2vecEmbeddingInputlayer(

inputs=train inputs,

train labels =train labels ,

vocabulary size=vocabulary size,

embedding size=embedding size,

num sampled=num sampled,

nce loss args ={},

E init=tf.random uniform initializer(minval=−1.0, maxval=1.0),

E init args={},

nce W init=tf. truncated normal initializer (stddev=float(1.0 / np.sqrt(embedding size))),

nce W init args={},

nce b init =tf. constant initializer (value=0.0),

nce b init args ={},

name=’word2vec layer’,

)

# Construct the optimizer

cost = emb net.nce cost

train params = emb net.all params
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train op = tf. train .AdagradOptimizer(learning rate, initial accumulator value=0.1,

use locking=False).minimize(cost, var list =train params)

# Compute the cosine similarity between minibatch examples and all embeddings.

normalized embeddings = emb net.normalized embeddings

valid embed = tf.nn.embedding lookup(normalized embeddings, valid dataset)

similarity = tf.matmul(valid embed, normalized embeddings, transpose b=True)

# Step 5: Start training .

sess .run(tf . global variables initializer ())

print(”Load existing model” + ”!” ∗ 10)

tl . files . load and assign npz dict(name=model file name + ’.npz’, sess=sess)

emb net.print params(False)

emb net.print layers ()

tl .nlp.save vocab(count, name=’vocab text8.txt’)

average loss = 0

step = 0

print freq = 2000

while step < num steps:

start time = time.time()

batch inputs, batch labels , data index = tl.nlp.generate skip gram batch(data=data, \

batch size=batch size, num skips=num skips, skip window=skip window, data index=data index)

feed dict = {train inputs: batch inputs, train labels : batch labels}

# We perform one update step by evaluating the train op

, loss val = sess.run([train op , cost ], feed dict=feed dict)

average loss += loss val

if step % print freq == 0:

if step > 0:

average loss /= print freq

print(”Average loss at step %d/%d. loss: %f took: %fs” % \

(step, num steps, average loss , time.time() − start time))

average loss = 0

# Prints out nearby words given a list of words.

if step % (print freq ∗ 5) == 0:

sim = similarity . eval( session=sess)
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for i in xrange( valid size ) :

valid word = reverse dictionary [valid examples[ i ]]

top k = 8

nearest = (−sim[i, :]) . argsort() [1: top k + 1]

log str = ”Nearest to %s:” % valid word

for k in xrange(top k):

close word = reverse dictionary [nearest[k ]]

log str = ”%s %s,” % (log str, close word)

print( log str )

if (step % (print freq ∗ 20) == 0) and (step != 0):

print(”Save model, data and dictionaries” + ”!” ∗ 10)

tl . files . save npz dict(emb net.all params, name=model file name + ’.npz’, sess=sess)

tl . files .save any to npy(

save dict={

’data’ : data,

’count’: count,

’dictionary ’ : dictionary ,

’ reverse dictionary ’ : reverse dictionary

}, name=model file name + ’.npy’

)

step += 1

# Step 6: Visualize the normalized embedding matrix by t−SNE.

final embeddings = sess.run(normalized embeddings) #.eval()

tl . visualize .tsne embedding(final embeddings, reverse dictionary, plot only=500, \

second=5, saveable=False, name=’word2vec basic’)

# Step 7: Evaluate by analogy questions. see tensorflow/models/embedding/word2vec optimized.py

analogy questions = tl.nlp. read analogies file ( eval file =’questions−words.txt’, word2id=dictionary)

# The eval feeds three vectors of word ids for a, b, c, each of

# which is of size N, where N is the number of analogies we want to

# evaluate in one batch.

analogy a = tf.placeholder(dtype=tf.int32)

analogy b = tf.placeholder(dtype=tf.int32)

analogy c = tf.placeholder(dtype=tf.int32)

# Each row of a emb, b emb, c emb is a word’s embedding vector.

# They all have the shape [N, emb dim]

a emb = tf.gather(normalized embeddings, analogy a)
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b emb = tf.gather(normalized embeddings, analogy b)

c emb = tf.gather(normalized embeddings, analogy c)

target = c emb + (b emb − a emb)

# Compute cosine distance between each pair of target and vocabulary.

dist = tf.matmul(target, normalized embeddings, transpose b=True)

# For each question (row in dist) , find the top ’n answer’ words.

n answer = 4

, pred idx = tf.nn.top k(dist , n answer)

def predict(analogy):

”””Predict the top 4 answers for analogy questions.”””

idx, = sess.run([pred idx ], {analogy a: analogy [:, 0], analogy b: analogy [:, 1], analogy c: analogy [:, 2]})

return idx

# Evaluate analogy questions and reports accuracy.

correct = 0

total = analogy questions.shape[0]

start = 0

while start < total:

limit = start + 2500

sub = analogy questions[start: limit , :]

idx = predict(sub) # 4 answers for each question

start = limit

for question in xrange(sub.shape[0]):

for j in xrange(n answer):

if idx[question, j ] == sub[question, 3]:

print(

j + 1, tl .nlp.word ids to words([idx[question, j ]], reverse dictionary ) , ’ : ’ ,

tl .nlp.word ids to words(sub[question, :], reverse dictionary )

)

correct += 1

break

elif idx[question, j ] in sub[question, :3]:

# We need to skip words already in the question.

continue

else :

# The correct label is not the precision@1

break

print(”Eval %4d/%d accuracy = %4.1f%%” % (correct, total, correct ∗ 100.0 / total))
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if name == ’ main ’:

main word2vec basic()

A.4.2 Hyper parameter selection

Task runner

The following code is the implementation the task runner for the hyper parameter selection experiment.

import time

import tensorlayer as tl

# connect to database

db = tl.db.TensorHub(ip=’localhost’, port=27017, dbname=’temp’, project name=’tutorial’)

# monitor the database and pull tasks to run

while True:

print(”waiting task from distributor”)

db.run top task(task name=’mnist’, sort=[(”time”, −1)])

time.sleep(1)

Task dispatcher

The following code is the implementation of the task dispatcher that create 100 tasks for the hyper

parameter selection experiment.

import time

import tensorlayer as tl

import tensorflow as tf

tl . logging. set verbosity ( tl . logging.DEBUG)

# connect to database

db = tl.db.TensorHub(ip=’localhost’, port=27017, dbname=’temp’, project name=’tutorial’)

# delete existing tasks , models and datasets in this project
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db.delete tasks ()

db.delete model()

db.delete datasets ()

# save dataset into database, then allow other servers to use it

X train, y train , X val, y val , X test, y test = tl. files .load mnist dataset(shape=(−1, 784))

db.save dataset((X train, y train , X val, y val , X test, y test ) , ’mnist’, description=’handwriting digit’)

# push tasks into database, then allow other servers pull tasks to run

for drop1 in range(1, 11):

for drop2 in range(1, 11):

db.create task(

task name=’mnist’, script=’task script .py’, hyper parameters=dict(drop1=drop1/10., drop2=drop2/10.),

saved result keys=[’test accuracy ’ ], description=’100tasks−{}−{}’.format(drop1, drop2)

)

# wait all tasks to be finished

while db.check unfinished task(task name=’mnist’):

print(”waiting runners to finish the tasks”)

time.sleep(1)

# get the best model

print(”all tasks finished”)

sess = tf. InteractiveSession ()

net = db.find top model(sess=sess, model name=’mlp’, sort=[(”test accuracy”, −1)])

print(”the best accuracy {} is from model {}”.format(net. test accuracy, net. name))

Task script

The following code is the implementation of the training pipeline (i.e., the script field of task record)

for training MLP classifier on MNIST.

import tensorflow as tf

import tensorlayer as tl

tf . logging. set verbosity ( tf . logging.DEBUG)

tl . logging. set verbosity ( tl . logging.DEBUG)
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sess = tf. InteractiveSession ()

# connect to database

db = tl.db.TensorHub(ip=’localhost’, port=27017, dbname=’temp’, project name=’tutorial’)

# load dataset from database

X train, y train , X val, y val , X test, y test = db.find top dataset(’mnist’)

# define placeholder

x = tf.placeholder( tf . float32 , shape=[None, 784], name=’x’)

y = tf.placeholder( tf . int64 , shape=[None], name=’y ’)

# define the network

def mlp(x, is train =True, reuse=False):

with tf . variable scope(”MLP”, reuse=reuse):

net = tl. layers .InputLayer(x, name=’input’)

net = tl. layers .DenseLayer(net, n units=800, act=tf.nn.relu, name=’relu1’)

net = tl. layers .DropoutLayer(net, keep=drop1, is fix=True, is train=is train , name=’drop1’)

net = tl. layers .DenseLayer(net, n units=800, act=tf.nn.relu, name=’relu2’)

net = tl. layers .DropoutLayer(net, keep=drop2, is fix=True, is train=is train , name=’drop2’)

net = tl. layers .DenseLayer(net, n units=10, act=None, name=’output’)

return net

# define inferences

net train = mlp(x, is train=True, reuse=False)

net test = mlp(x, is train=False, reuse=True)

# cost for training

y = net train.outputs

cost = tl. cost .cross entropy(y, y , name=’xentropy’)

correct prediction = tf.equal(tf .argmax(y, 1), y )

acc = tf.reduce mean(tf.cast( correct prediction , tf . float32 ))

# cost and accuracy for evalution

y2 = net test.outputs

cost test = tl. cost .cross entropy(y2, y , name=’xentropy2’)

correct prediction = tf.equal(tf .argmax(y2, 1), y )

acc test = tf.reduce mean(tf.cast( correct prediction , tf . float32 ))
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# define the optimizer

train params = tl. layers .get variables with name(’MLP’, True, False)

train op = tf. train .AdamOptimizer(learning rate=0.0001).minimize(cost, var list=train params)

# initialize all variables in the session

tl . layers . initialize global variables (sess)

# train the network

tl . utils . fit (

sess , net train , train op , cost , X train, y train , x, y , acc=acc, batch size=500, n epoch=100, print freq=5,

X val=X val, y val=y val, eval train=False

)

# evaluation and save result that match the result key

test accuracy = tl. utils . test (sess , net test , acc test , X test, y test , x, y , batch size=None, cost=cost test)

test accuracy = float(test accuracy)

# save model into database

db.save model(net train, model name=’mlp’, name=str(n units1) + ’−’ + str(n units2), test accuracy=test accuracy)

A.4.3 Deep reinforcement learning

Model trainer

The following code is the implementation of the model trainer for the deep reinforcement learning

experiment.

import tensorflow as tf

import tensorlayer as tl

import gym

import numpy as np

import time

# hyper parameters

image size = 80

D = image size ∗ image size

H = 200

batch size = 10
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learning rate = 1e−4

gamma = 0.99

decay rate = 0.99

np. set printoptions (threshold=np.nan)

from tensorlayer .db import TensorHub

# This is to initialize the connection to your MondonDB server

db = TensorHub(ip=’IP ADDRESS’, port=27017, db name=’DATABASE NAME’, user name=None,

password=None, project name=’drl’)

states batch pl = tf.placeholder( tf . float32 , shape=[None, D])

# policy network

net = tl. layers .InputLayer(states batch pl, name=’input’)

net = tl. layers .DenseLayer(net, n units=H, act=tf.nn.relu, name=’relu1’)

net = tl. layers .DenseLayer(net, n units=3, act=tf.identity , name=’output’)

probs = net.outputs

sampling prob = tf.nn.softmax(probs)

actions batch pl = tf.placeholder( tf . int32 , shape=[None])

discount rewards batch pl = tf.placeholder( tf . float32 , shape=[None])

loss = tl. rein . cross entropy reward loss (probs, actions batch pl ,

discount rewards batch pl)

train op = tf. train .RMSPropOptimizer(learning rate, decay rate).minimize(loss)

with tf .Session() as sess :

tl . layers . initialize global variables (sess)

net.print params()

net. print layers ()

start time = time.time()

game number = 0

n = 0

total n examples = 0

while True:

is found = False

while is found is False :

data, f id = db.find one params(args={’type’: ’train data’}, lz4 decomp=True)

if (data is not False) :
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epx, epy, epr = data

db.del params(args={’type’: ’train data ’ , ’ f id ’ : f id })

is found = True

else :

time.sleep (0.5)

disR = tl. rein .discount episode rewards(epr, gamma)

disR −= np.mean(disR)

disR /= np.std(disR)

sess .run(train op,{

states batch pl : epx,

actions batch pl : epy,

discount rewards batch pl: disR

})

n examples = epx.shape[0]

total n examples += n examples

print(” [∗] Update {}: n examples: {} / total averaged speed: {} examples/second”.format(n, n examples,

round(total n examples/(time.time() − start time), 2)))

n += 1

if n % 10 == 0:

db.del params(args={’type’: ’network parameters’})

db.save params(sess.run(net.all params), args={’type’: ’network parameters’}, lz4 comp=True)

Data generator

The following code is the implementation of the data generator for the deep reinforcement learning

experiment.

import tensorflow as tf

import tensorlayer as tl

import gym

import numpy as np

import time, os

import argparse

from bson.objectid import ObjectId

os.environ[”CUDA VISIBLE DEVICES”]=””
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from tensorlayer .db import TensorHub

db = TensorHub(ip=’IP ADDRESS’, port=27017, db name=’DATABASE NAME’, user name=None,

password=None, project name=’drl’)

def main(args):

# hyper parameters

image size = 80

D = image size ∗ image size

H = 200

batch size = 10

gamma = 0.99

np. set printoptions (threshold=np.nan)

def prepro(I) :

””” preprocess 210x160x3 uint8 frame into 6400 (80x80) 1D float vector ”””

I = I[35:195]

I = I [::2, ::2, 0]

I [ I == 144] = 0

I [ I == 109] = 0

I [ I != 0] = 1

return I .astype(np.float ) . ravel ()

env = gym.make(”Pong−v0”)

observation = env.reset()

prev x = None

running reward = None

reward sum = 0

episode number = 0

xs, ys, rs = [], [], []

# observation for training and inference

states batch pl = tf.placeholder( tf . float32 , shape=[None, D])

# policy network

net = tl. layers .InputLayer(states batch pl, name=’input’)

net = tl. layers .DenseLayer(net, n units=H, act=tf.nn.relu, name=’relu1’)

net = tl. layers .DenseLayer(net, n units=3, act=tf.identity , name=’output’)

probs = net.outputs
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sampling prob = tf.nn.softmax(probs)

with tf .Session() as sess :

tl . layers . initialize global variables (sess)

net.print params()

net. print layers ()

start time = time.time()

game number = 0

while True:

task = db.get task()

cur x = prepro(observation)

x = cur x − prev x if prev x is not None else np.zeros(D)

x = x.reshape(1, D)

prev x = cur x

prob = sess.run(sampling prob, feed dict={states batch pl: x})

# action. 1: STOP 2: UP 3: DOWN

action = np.random.choice([1, 2, 3], p=prob.flatten())

observation, reward, done, = env.step(action)

reward sum += reward

xs.append(x)

ys.append(action − 1)

rs .append(reward)

if done:

episode number += 1

game number = 0

if episode number % batch size == 0:

print( ’batch over ...... saving training data ...... ’ )

epx = np.vstack(xs)

epy = np.asarray(ys)

epr = np.asarray(rs)

disR = tl. rein .discount episode rewards(epr, gamma)

disR −= np.mean(disR)

disR /= np.std(disR)
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xs, ys, rs = [], [], []

print(” [∗] Generated {} examples”.format(epx.shape[0]))

f id = db.save params([epx, epy, epr], args={’type’: ’ train data ’}, lz4 comp=True)

running reward = reward sum if running reward is None else running reward ∗ 0.99 + reward sum ∗

0.01

print( ’ resetting env. episode reward total was %f. running mean: %f’ % (reward sum,

running reward))

reward sum = 0

observation = env.reset()

prev x = None

if reward != 0:

print(( ’episode %d: game %d took %.5fs, reward: %f’ %

(episode number, game number,

time.time() − start time, reward)),

( ’ ’ if reward == −1 else ’ !!!!!!!! ’ ))

start time = time.time()

if (episode number % 20 == 0) and (game number == 0):

try:

params, f = db.find one params(args={’type’: ’network parameters’}, lz4 decomp=True)

if (params is not False) :

tl . files .assign params(sess, params, net)

print(” [∗] Update Model”)

except:

continue

game number += 1

if name == ” main ”:

parser = argparse.ArgumentParser()

parser.add argument(”−−task id”, type=str, required=True, help=”Task ID.”)

args = parser.parse args()

main(args)
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