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Abstract. The BICEP2 collaboration has reported a strong B mode signal in the CMB
polarization, which is well fit by a tensor-to-scalar ratio of r ' 0.2. This is greater than the
upper limit r < 0.11 obtained from the temperature anisotropies under the assumption of a
constant scalar spectral index ns. This discrepancy can be reduced once the statistical error
and the contamination from polarized dust are accounted for. If however a large value for
r will be confirmed, it will need to be reconciled with the temperature anisotropies data.
The most advocated explanation involves a variation of ns with scales (denoted as running)
that has a magnitude significantly greater than the generic slow roll predictions. We instead
study the possibility that the large scale temperature anisotropies are not enhanced because
of a suppression of the scalar power at large scales. Such a situation can be achieved for
instance by a sudden change of the speed of the inflaton (by about 14%), and we show that it
fits the temperature anisotropies and polarization data considerably better than a constant
running (its χ2 improves by ∼ 7.5 over that of the constant running, at the cost of one more
parameter). We also consider the possibility that the large scale temperature fluctuations
are suppressed by an anti-correlation between tensor and scalar modes. Unfortunately, while
such effect does affect the temperature fluctuations at large scales, it does not affect the
temperature power spectrum and cannot, therefore, help in reconciling a large value of r
with the limits from temperature fluctuations.
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1 Introduction

The BICEP2 experiment [1] has observed a B-mode polarization of the Cosmic Microwave
Background (CMB) that can be well fit by a lensed-ΛCDM + tensor theoretical model, with
tensor-to-scalar ratio r = 0.2+0.07

−0.05, with r = 0 disfavored at 7σ. It is possible that the actual
primordial component of the B-mode found by BICEP2 is smaller than r = 0.2. A number of
tests were performed on the BICEP2 data to ensure that the the observed value is not due to
any instrumental effects. Moreover, the lensing contribution to B-modes does not appear to
be sufficiently large to explain the measured value. The signal, observed by BICEP2, peaks
at ` ≈ 100, where the primordial signal is expected to dominate, whilst the lensing signal
peaks at ` ≈ 1000.

Other potential contaminants are the Galactic synchrotron and polarized-dust emission.
Whilst the former effect is negligible at the BICEP2 observing frequency, the polarized dust
is a substantial contaminant. Although the area of sky probed by BICEP2 is very clean with
respect to the total intensity emission by dust there is still much uncertainty in the level
of polarised dust contamination due to the lack of observations. A number of models were
considered by BICEP2 for the subtraction of the dust contamination which result in some
shift in the maximum likelihood values in r. A further argument for the primordial nature of
the signal is that cross-correlation between frequencies (specifically, the preliminary BICEP2
× Keck cross-correlation shown in [1]) displays little change in the observed amplitude. This
appears to indicate that frequency dependent foregrounds are not the dominant contributor
to the observed B-modes. On the other hand, more recent works [2] (appeared after the first
version of this manuscript) argue that the polarized dust contamination is likely stronger
than what assumed in [1]. This could invalidate BICEP2 claim of a primordial origin of
the observed signal, or at least reconcile it with the Planck limit [3] r < 0.11. In this
work we assume that the BICEP2 noise estimate is correct. The data already collected by
Planck should have the sensitivity and frequency range to definitely confirm or rule out the
primordial nature of such a large signal.

If the primordial contribution to the B-modes is confirmed, it will represent the first
detection of gravity waves from inflation [1]. This is of paramount importance, since - un-
der the assumption that the observed gravity waves are those created by a period of quasi
de-Sitter inflationary expansion (namely that Pt ∼ V/M4

p , where Pt is the tensor power spec-

trum, V 1/4 is the energy scale of inflation, and Mp ' 2.4× 1018 GeV is the reduced Planck
mass) - it allows us, for the first time, to determine the energy scale of inflation. From
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the parametrization r ≡ Pt/Ps, and from the measured value of the scalar power spectrum,
Ps ' 2.45× 10−9, one obtains the well known relation

V 1/4 ' 2.25 · 1016 GeV
( r

0.2

)1/4
. (1.1)

Therefore, if the B-mode signal observed by BICEP2 is due to inflationary vacuum modes,
we have now learnt that inflation took place at the GUT scale.

As we already mentioned, taken at face value, the BICEP2 value is in strong tension with
the 2σ limit r < 0.11 obtained by the Planck inflation analysis [3]. Such a limit however relies
on the scaling of the temperature anisotropy data (supplemented by the WMAP large-scale
polarization likelihood), and not on the direct measurement of the B-mode polarization.
The r < 0.11 limit appears robust under the inclusion of several data sets (such as the
ACT+SPT temperature data, BAO, and the Planck lensing [3]). However, it crucially relies
in the assumption of a constant spectral tilt ns.

Specifically, it is obtained from the Planck+ACT+SPT temperature data (with the
Planck data supplemented by the WMAP large-scale polarization likelihood), under the
assumption of constant spectral tilt ns = 0.960 ± 0.007 [3]. As discussed in [3], a more
relaxed limit is obtained if ns is allowed to vary with scale k. Specifically, it is customary to
parametrize the scalar power spectrum as

Ps (k) ≡ P (k0)

(
k

k0

)ns−1+ 1
2
αs ln

k
k0

, (1.2)

where k0 = 0.05 Mpc−1, is the chosen pivot scale (this is the scale at which also r is defined)
and the parameter αs denotes the running of the scalar spectral tilt [4] with αs = dns

d ln k .
If αs 6= 0, the r < 0.11 limit is relaxed to r <∼ 0.25. From Figure 5 of [3] we infer that

a value αs ∼ −0.02 is required to reconcile the temperature data with r = 0.2. Such a large
value of |αs| is not a generic prediction of slow roll inflationary models. Indeed, in terms of
the slow roll parameters

ε ≡
M2
p

2

(
V,φ
V

)2

, η ≡M2
p

V,φφ
V

, ξ2 ≡M4
p

V,φV,φφφ
V 2

, (1.3)

where V denotes the potential of the inflaton φ and comma denotes a derivative, we have
the well known slow roll relations

r = 16 ε , ns − 1 = 2η − 6ε ,

αs = −2ξ2 +
r

2
(ns − 1) +

3

32
r2 ' −2ξ2 − 0.00025 ,

(1.4)

where ns = 0.96, r = 0.2 has been used in the final numerical estimate. This is typically
much smaller than the required value, since, as evident in (1.4), the running is generically of
second order in slow roll.

In principle, models can be constructed in which the third derivative term ξ2 is “anoma-
lously large”. However, besides being hard to motivate, it is difficult to maintain a large third
derivative, while the first two derivatives are small, for a sufficiently long duration of infla-
tion, [5, 6], so that the models in which a large running is achieved have potentials with
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some bump-like feature or superimposed oscillations [5, 7, 8, 10, 11], or possess some peculiar
aspects beyond standard scenarios [12–16].

In summary, it appears that r = 0.2 can be reconciled with the limits from the tem-
perature anisotropies through a negative running, which is however of substantially larger
magnitude than the generic slow roll prediction. It is possible that the value of r from the
polarization will shift towards r ∼ 0.1, in which case the tension with the temperature data
can be relaxed (or disappear altogether). This can happen factoring in both the statistical
uncertainty in the BICEP2 r = 0.2+0.07

−0.05 result, and the decrease of r that appears in most of
the model-dependent dust corrections [1].

Remarkably, r close to 0.15 appears as a prediction of the simplest models of inflation,
such as chaotic inflation [17] and natural inflation [18]. Even if UV complete theories typically
leads to a lower inflationary scale, it is possible to construct models that can evade the
fundamental constraints which typically make high-scale inflation difficult to realize [19–22]
and still display such simple potentials.

However, from a theoretical point of view, it is interesting to understand the implications
that a large measured value for r from polarization would have for inflationary model building.
In this work we discuss two additional possibilities (in addition to the already mentioned
running of the spectral tilt) to suppress the large scale temperature signal in presence of a
large r ' 0.2.

The first mechanism relies on the presence of a large scale suppression in the scalar
power. A similar idea was already explored in [23], in order to address the suppressed power
of the temperature anisotropies at the largest scales. The best fit to the first year WMAP
data was obtained if the power drops to zero at scales k <∼ 5 × 10−4 Mpc−1 [24]. Such a
strong suppression can for example occur if the universe is closed, with a curvature radius
comparable to the horizon at the onset of inflation [25], or if the inflaton was in fast roll
at the beginning of the last ∼ 60 e-folds of inflation [23]. In this case, one also expects a
suppression of the tensor signal at large scales, although this suppression is milder than that
of the scalar power [26]. Here, for simplicity, we only consider a simple model for suppression
in order to explore the viability of such a model in explaining the surprisingly discrepancy
between TT and BB spectra. We do not assume that the power drastically drops to ' 0 at
large scales, but that it decreases by a factor (1−∆)2 for k smaller than a given scale k∗
(a similar analysis on Planck data only was performed in [27]). Our best fit is characterized
by a ∼ 26% drop in power that can be achieved for example by a change of slope of the
inflaton potential, such that the inflaton goes slightly faster when the largest modes were
generated. However, the system never leaves the slow-roll regime. Therefore, contrary to
the situation studied in [23, 24] there is no discontinuity in the tensor power. Specifically,
we study the model originally proposed by Starobinsky [28] for this change in slope (see
also [29]). Alternatively, a change in power can result from a change of the sound speed of
the inflaton perturbations [30] (see also [31, 32] for other models leading to a similar effect).

The second possibility that we discuss is a negative correlation between the scalar and
tensor signal1. This correlation will affect the sum of the scalar and tensor modes on the
temperature anisotropy. Some degree of non-vanishing scalar-tensor correlation is expected in
the presence of the breaking of Lorentz invariance, and for example it arises if the background
expansion is anisotropic [36–39]. Unfortunately, we will see that such a correlation does not

1In a previous version of this manuscript we reached a different conclusion. This section has been modified
after the findings of [33, 34], see also [35].
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Figure 1. The total contribution to the TT spectrum from scalar and tensors. The black (solid)
curve shows the best-fit suppression (or Starobinsky) model with r = 0.18 from the MCMC chains.
The tensor contribution compensates for the loss of large-scale scalar power but also allows a better
fit to the low points in the range 20 < ` < 30. The red (dashed) model is the best-fit model from the
“base r” Planck+WP MCMC runs with r = 0.004.

affect the temperature power spectrum, and will therefore not help reconcile the constraints
on r from TT with those from BB spectra.

The plan of the paper is the following: In Section 2 we discuss the effects of a large scale
suppression of the scalar power. In Section 3 we discuss the effects of an anti-correlation
between scalar and tensor modes. In Section 4 we present our conclusions. Finally, in
Appendix A we study a parametrization of the scalar power spectrum characterized by a
step function suppression. This parametrization lacks the “ringing” effect that is typically
encountered in concrete models (see Figure 2). The comparison between the two analyses
shows that the ringing present in the Starobinsky model has a minor impact on the data.

2 Suppression of large scale scalar modes

A simple mechanism that produces a suppression at large scales is the Starobinsky model
[28]

V (φ) =

{
V0 + C+ (φ− φ∗) , φ ≥ φ∗
V0 + C− (φ− φ∗) , φ ≤ φ∗

, (2.1)

where we assume that all the parameters are positive, and C− < C+. As the inflaton φ rolls
past φ∗ during inflation, it goes from a region of greater (C+) to a region of smaller (C−)
slope in the potential, and the scalar perturbations produced in this second stage, namely
those with momentum k > k∗, where k∗ is the momentum of the mode that leaves the horizon
when φ = φ∗, have a greater power than those produced in the first stage, namely, those with
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momentum k < k∗. Defining ∆ ≡ C+−C−
C+

and κ ≡ k/k?, one obtains [28, 40]:

Ps(k) = A

(
k

k0

)ns−1
×

{
1 +

9∆2

2

(
1

κ
+

1

κ3

)2

+
3∆

2

(
4 + 3∆− 3∆

1

κ4

)
1

κ2
cos(2κ)

+ 3∆

[
1− (1 + 3∆)

1

κ2
− 3∆

1

κ4

]
1

κ
sin(2κ)

}
, (2.2)

with A ≡ P (k0), and k0 is a pivot scale. The curly parenthesis in eq. (2.2) contains the
precise suppression of power at large scales

lim
κ→0

Ps(k) = (1−∆)2A

(
k

k0

)ns−1
, lim
κ→∞

Ps(k) = A

(
k

k0

)ns−1
, (2.3)

together with a “ringing” in the power that is typically obtained in models that give sup-
pression of the power [23]. We show the power spectrum (2.2) for the best fit to the Planck
and BICEP2 data in Figure 2. The best fit value ∆ = 0.14 (see below) results in a ∼ 26%
suppression of the power at large wrt short scales.

We assume that eq. (2.1) reproduces the potential close to the transition (φ ' φ∗), but
we do not necessarily assume that the potential remains linear at all φ. For this reason, in
eq. (2.2) we allow for an arbitrary spectral tilt ns. In the data fitting, ns has an impact on
scales k � k∗, and there is no reason to assume that eq. (2.1) applies at φ arbitrarily far
away from φ∗ (in fact, we know that V needs to change from (2.1) so to have a minimum
with Vmin = 0).

Moreover, we stress that the suppression of the power that is considered here is much
smaller than the one studied in [23]. The goal of that work was to essentially suppress all the
power at large scales, so to address the problem of the anomalously small observed quadrupole
(` = 2). To achieve this, ref. [23] advocated a period of kinetion domination (φ̇2 � V ) before
the onset of inflation. This also resulted in a very different evolution of H in this initial
stage, and to a modification of the gravity wave power [26]. In the present situation we
assume slow roll evolution before and after the transition, and a continuous potential at the
transition. Therefore H is always slow roll evolving, and there is no transition in the tensor
modes power. For this reason, we simply assume PT (k) = r A (k/k0)

nt and constrain the
tensor spectral index to be given by the slow-roll consistency relation nt = −r/8.

Using a modified version of the CAMB [41] package we calculate the total contribution to
the TT spectrum from both scalar and tensor modes and the tensor contribution to the BB
spectrum. The total contribution can then be fit to the combined Planck+WP+BICEP2 data
set that include Planck TT data, WMAP9 polarisation data, and the new BICEP2 results.
We do this by employing a modified version of CosmoMC [42] with extra parameters k? and ∆
included. For simplicity we carry out a MCMC exploration of the reduced parameter space
spanned by τ the optical depth to reionization, ns the scalar spectral index, ln(1010A) the
logarithm of the primordial curvature perturbation, r the tensor-to-scalar ratio, k?, and ∆
and keep all other cosmological and nuisance parameters fixed to the best-fit values of the
“base r” Planck+WP run reported in [43]. The “base r” ΛCDM + tensor model will be the
reference model for fit comparison. We adopt uniform prior ranges for the four parameters
with τ = [0.01, 0.8], ns = [0.9, 1.1], ln(1010A) = [2.7, 4], r = [0, 0.8], k? = [0, 0.015], and
∆ = [0, 1.0]. We also compare to the ΛCDM + tensor + αs model which has been highlighted
as a way to reconcile the high tensor amplitude with the TT data. All runs include lensing
effects when calculating model C`s.
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Figure 2. Primordal scalar power spectrum with the best fit parameters for (i) a constant spectral
index, (ii) a constant running, and (iii) the inflation potential (2.1) with a ∆ = 0.14 change in slope.
This corresponds to a ∼ 26% suppression at large scales. The ` values indicated near the x−axis
correspond to the multipole that is mostly sensitive to the mode with that momentum k.
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Figure 3. The BB spectra for the same two models shown in Figure 1. The Planck “base r” best-fit
model has a B-mode spectrum that is far below the BICEP2 detection, in the un-lensed limit ` < 100.
The suppression model is compatible with the detection having r = 0.18 whilst giving a better fitting
TT spectrum. The best-fit parameters for the suppression model are ∆ = 0.14 and k? = 0.0015
Mpc−1.

Figure 1 shows the total (scalar + tensor) contribution to the TT spectrum for the best-
fit model obtain by Planck in their “base r” run [43], with r = 0.004. This fit was obtained
with the Planck+WP combination only. We compare this with the best-fit suppression
model for the Planck+WP+BICEP2 data combination. The best-fit suppression parameters
are k? = 0.0015 Mpc−1, ∆ = 0.14, and the best-fit tensor-to-scalar ratio is r = 0.18. The
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Figure 4. The marginalised, normalised, 1 and 2-D posteriors for k? and ∆. The parameters are
well constrained by the TT data. We recall that the best fit value ∆ = 0.14 corresponds to a ∼ 26%
suppression of the scalar power at large scales.

Planck+WP+BICEP2 ∆Np χ2 ∆χ2 r

ΛCDM + tensor – 9853.104 – 0.18
ΛCDM + tensor + αs +1 9846.426 -6.68 0.18
Suppression +2 9838.87 -14.23 0.18

Table 1. Relative changes in effective χ2 values for the three models considered. The change in
number of model parameters with respect to the ΛCDM + tensor model is shown as ∆Np. The
r column shows the best-fit value of the tensor-to-scalar ratio for each case. Only the case with
suppressed scalar power can accommodate the observed amplitude of r ∼ 0.2.

suppression model has the freedom to obtain a better fit than the conventional ΛCDM +
tensor run by fitting the low power observed at ` < 30. In particular the model allows a
better fit to the low cluster of points in the range 20 < ` < 30. Including the BICEP2 results
in the ΛCDM + tensor fit forces the tensor amplitude up to a best-fit value of r = 0.18. The
effective χ2 = −2 lnL for the best-fit is significantly higher than the best-fit model in the
suppression case. Table 1 shows the change in effective χ2 relative to the ΛCDM + tensor
model for fits including the Planck+WP+BICEP2 data combination. The change in χ2 is
indicative that the suppression model is strongly favoured over both standard and running
case. 2 We attempt to quantify this by evaluating the Akaike Information Criterion AIC for
the three models. The AIC is defined as

AIC = 2Np + χ2 , (2.4)

2Concerning the running, we find the best fit value αs = −0.016 and the marginalized constraints αs =
−0.028± 0.010.
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Planck+WP+BICEP2 Np ∆AIC Rel. Likelihood

ΛCDM + tensor 21 -10.617 2.45× 10−5

ΛCDM + tensor + αs 22 -5.939 0.0026
Suppression 23 – 1.0

Table 2. Change in AIC for the three models. The relative likelihood can be interpreted, in this case,
as the probability that the model minimizes the information required to describe the data relative to
the suppression model that gives the best fit. The AIC attempts to properly penalise for any increase
in number of parameters in the models.

where Np is the number of parameters in the model. It attempts to properly take into account
the penalty for using models with increasing number of parameters to describe a set of data.
The relative likelihood between a model with minimum AIC value and a second model

LAIC = exp
[
(AICmin −AIC)/2

]
, (2.5)

gives an estimate of the probability that the second model minimizes the information required
to describe the data3. The results of this analysis are summarised in table 2 and show the
suppression model is strongly favoured despite the extra parameters.

The results show that models with a suppression of scalar power at large scales are
favoured with respect to ones that employ running of the scalar spectral index notwithstand-
ing the additional parameter required in the suppression model. Both models do better than
the ΛCDM + tensor model but the running case only marginally so given the additional
parameter. This is not surprising since the case with running reduces power, for a negative
αs, on scales that are both lower and higher than the pivot scale of k = 0.05 Mpc−1, see
Figure 2. The model with running is therefore not a natural one to appeal to if all that is
required is to modify the scalar power on large scales.

Figure 3 shows the BB spectra for the same two models as in Figure 1. The spectra
include the pure tensor contribution and the contribution from lensing. The BICEP2 data
points are included for comparison. The conventional “base r” Planck best-fit model has
a very low tensor spectrum which is incompatible with the BICEP2 detection whilst the
suppression model has a best-fit value of r = 0.18 in agreement with BICEP2.

The suppression parameters are well constrained by the Planck data, as shown in Fig-
ure 4, with marginalised constraints; k? = (1.80+0.86

−0.69) × 10−3 Mpc−1 and ∆ = 0.106+0.092
−0.013.

The null hypothesis that the suppression is either absent or occurs on scales larger than those
observable seems to be ruled out strongly.

3 Scalar-tensor anticorrelations?

Since the temperature fluctuations in the CMB take contributions from both scalar and
tensor perturbations whereas the B-modes are sourced only by the latter, one can wonder
whether it is possible to reduce the temperature power spectrum without affecting the B-
mode one by introducing an (anti)correlation between primordial tensors and scalars. In
this case one would not need to break primordial scale invariance to effectively suppress the

3The corrected AIC also includes the effect of finite effective degrees of freedom Nd in the data but we
cannot use it here as it is very difficult to define what Nd is for the PLANCK+WP data combination since
it is a correlated data set whose likelihood is evaluated in both multipole and pixel space. However we know
that Nd ∼ O(103) and the correction goes as ∼ N2

p/Nd and is therefore sub-dominant in this case.
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temperature power spectrum only at large scales ` . 100, since only at those scales the effect
of tensors is not suppressed. On the other hand, such a correlation can be obtained only at
the price of breaking Lorentz invariance. As a consequence, it would be interesting to explore
possible connections to the large scale anomalies observed in WMAP and Planck. Here we
will not study those implications but we focus on the main question of whether, and how,
a primordial 〈ζ hij〉 correlator can affect the temperature power spectrum. Nevertheless, we
want to point out the following numerical coincidence. If the goal of the cross correlation is
to reduce the impact of the tensor modes on the temperature anisotropies from ∼ 20% to
∼ 10%, it should amount to ∼ 10% of the total power. Interestingly, a <∼ O (0.1) amount
of statistical anisotropy, only at the largest scales, appears to be present in the WMAP [45]
and in the Planck [46] temperature data.

As we will show below, a primordial scalar-tensor correlation will affect the observable
Clm l′m′ ≡ 〈a∗lm al′m′〉. However, as noted in [33, 34] (see also [35]), it will not affect the tem-
perature power spectrum Cl ≡ 1

2l+1

∑
m〈a∗lm alm〉, and will not, therefore, help suppressing

the impact of a large value of r on the temperature anisotropies as they are measured by
Planck.

In this section we will study the effect on Clm l′m′ of a simple form of scalar-tensor
correlator, assuming that the primordial correlation functions are scale invariant and that
the scalars affect the temperature fluctuations only through the Sachs-Wolfe effect.

We define the coefficients

Clm l′m′ ≡
∫
dk dk′

(2π)3

∫
dΩp dΩp′ 〈

δT

T
(k, p)∗

δT

T
(k′, p′)〉Y m

l (p)Y m′
l′ (p′)∗ , (3.1)

where δT will receive contributions both from the scalar perturbations and from the tensors:
δT = δT s + δT t. In the equation above p is the unit vector directed along the line of sight.

The contribution to Clm l′m′ from a primordial scalar-tensor correlation reads

Ccorr
lm l′m′ =

∫
dk dk′

(2π)3

∫
dΩp dΩp′Y

m
l (p)Y m′

l′ (p′)∗

×
〈
δT t

T
(k, p)∗

δT s

T
(k′, p′) +

δT s

T
(k, p)∗

δT t

T
(k′, p′)

〉
, (3.2)

that is proportional to the correlator between ζ and hij , that we assume to take the form

〈ζ(k)∗hij(k
′)〉 = 2π2

δ(k− k′)

k3
Πij

ab(k′) Θab , (3.3)

where Θab is some given constant background tensor. For simplicity, we assume that Θab =
σ va vb, for some constant vector v (the generalization to an arbitrary tensor is straight-
forward) and with σ = ±1. It is then convenient to choose a coordinate system where
v = (0, 0, v). The term Πij

ab is the projector on the transverse-traceless modes, as required

by the tensor nature of hij : Πij
ab = Πa

i Πb
j− 1

2Πij Πab with Πab = δab−k̂ak̂b and with k̂ ≡ k/k.
An explicit calculation then shows that the only non vanishing coefficients are Ccorr

lm lm

and Ccorr
lm l+2m. The off-diagonal terms read

Ccorr
lm l+2m =

2π

75

σ v2

l (l + 1)

(
7 l2 + 21 l + 27

)
(l + 2) (l + 3) (2 l + 3)

√
((l + 1)2 −m2) ((l + 2)2 −m2)

(2 l + 1)(2 l + 5)
,

(3.4)
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whereas the diagonal terms are

Ccorr
lm lm = −4π

15

σ v2

l (l + 1) (4 l2 + 4 l − 3)

(
l2 + l − 3m2

)
. (3.5)

Since 1
2 l+1

∑l
m=−lm

2 = 1
3 l (l + 1), the above result shows that the correlation has no effect

on the coefficients Cl ≡ 1
2l+1

∑
m〈a∗lm alm〉.

4 Conclusions

The BICEP2 experiment has detected a B-mode polarization signal in the CMB that can
be explained by a lensed-ΛCDM + tensor theoretical model, with tensor/scalar ratio r =
0.2+0.07
−0.05. While keeping in mind that the central value can be reduced with more statistics

or with the subtraction of the dust-polarized signal, we discussed some possible mechanism
that may explain how r = 0.2 can be reconciled with the upper limits on tensor modes from
the temperature anisotropies measurements.

A possible way to reconcile this discrepancy is already offered in the Planck [3] and
the BICEP2 [1] analyses, where a running of the spectral tilt is advocated. However, if the
central value r = 0.2 will be confirmed, the required magnitude of the running is significantly
greater than the generic slow-roll predictions. Motivated by this, we discussed two alternative
possibilities for suppressing the large scales temperature anisotropies.

The first possibility involves a large scale suppression in the scalar power. This can
for instance be achieved if the inflaton zero mode has a greater speed, or if the inflaton
perturbations have a larger speed of sound, when the largest observable scales are produced.
This resembles the study of [23], in which the power at very large drops to a negligible value
due to a period of kinetic dominated regime at the beginning of the last ∼ 60 e-folds of
inflation. Contrary to that case, here we study the possibility that a partial drop of scalar
power occurs at scales that are larger than but comparable to the first acoustic peak. The
best fit to the temperature data is obtained for a transition scale k∗ ' 1.5 × 10−3 Mpc−1,
with a ' 26% decrease in power. This fit improves over the Planck ones with conventional
models due to the suppression in power in the 10 <∼ ` <∼ 30 region. Moreover, the model
easily fits the tensor-to-scalar ratio r ∼ 0.2 observed by BICEP2. Quite interestingly, the
χ2 of the fit of this model to the Planck+WP+BICEP2 data improves by about ∼ 7.5 with
respect to the fit of the same data of a model with constant running. This is a considerable
improvement, given that the suppression model has only one more parameter than the model
with a constant running. The significance of the improvement is supported by the Akaike
Information Criterion, see Table 2.

A second possibility is a negative correlation between tensor and scalar modes. Such a
correlation is expected to occur, to some degree, in models with broken rotational symmetry.
Such a situation actually appears to be present in the WMAP [45] and in the Planck [46]
temperature data. Unfortunately, a primordial tensor-scalar correlation does not affect the
temperature power spectrum, that is used by Planck to set limits on the tensor-to-scalar
ratio, and cannot therefore help reconcile the bounds on r found from BICEP2 with those
from Planck. It would be interesting to study whether, and under what conditions, such a
conclusion might be avoided.
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Figure 5. The marginalised, normalised, 1 and 2-D posteriors for k? and βs in eq. (A.1).

A Step-function suppression of the scalar power

In this Appendix we consider the possibility of a step-function suppression of the scalar
power:

Ps (k) = Aβs k
ns−1 , (A.1)

with βs = 1 for k ≥ k∗ and βs < 1 for k < k∗. This parametrization should be compared
for instance with the power spectrum (2.2) obtained in the Starobinsky model (2.1), with
the identification βs ≡ (1−∆)2. As compared to that model, this parametrization does not
have the “ringing” in the power visible in Figure 2. One could imagine alternative specific
models that result in the suppression of power at large scales, as for instance a varying speed
sound of the inflaton perturbations [30]. We expect that each different model will result in a
different “ringing” structure. It is therefore instructive to compare the results presented in
the main text with the results for a parametrization in which the ringing is absent.

We compare the parametrization (A.1) with the data, and obtain the results summarized
in Figure 5. This result should be compared with the one shown in Figure 4 for the Starobin-
sky model. In this case we obtain marginalised constraints k∗ =

(
4.07+0.70

−2.45
)
× 10−3 Mpc−1

and βs = 0.74+0.11
−0.09, with an improvement ∆χ2 = −14.23 over the ΛCDM + tensor fit. Upon

the identification βs ≡ (1−∆)2, the result for βs translates into ∆ = 0.14+0.05
−0.06. Both values

of k∗ and ∆ are consistent with those obtained in the main text for the Starobinsky model
(2.1). Moreover, the improvement in χ2 is practically identical to that obtained in the main
text for the more physically defined Starobinsky model. The small impact of the ringing
effect on the data analysis is due to the fact that a range of values of k contributes to any
given C`, and this softens the impact of the oscillation in the primordial power spectrum.
This conclusion may not apply for models that present more marked oscillations.
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