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Abstract

Robots can learn new skills by autonomously acquiring internal mod-
els that can be used for action planning and control. The ability of
learning internal models with no prior information allows robots to
be fully autonomous not only in the acquisition of such models and
motor skills, but also in adapting to new environments and working
set-ups. This is particularly important for robots interacting with hu-
mans in unconstrained environments. Autonomous learning eases the
engineering work of pre-programming each robotic system for each
particular task, while endowing robots with flexibility, adaptability
and versatility.

This thesis investigates how the use of multiple sources of inform-
ation can influence such autonomous learning process. In particular,
multiple prediction hypotheses provided by different prediction mod-
els, as well as information available to a robot from multiple sensory
modalities (such as vision, touch, proprioception) are leveraged to en-
hance the learning process.

Through autonomous exploration a robot can bootstrap internal
models of its own sensorimotor system that enable it to predict the
consequences of its actions (forward models) or to generate new ac-
tions to reach target states (inverse models). This thesis studies how
multiple information can enhance the bootstrapping process of these
models or their use in environments and tasks that involve integration
of different types of data.
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It is shown that the use of multiple sources of information benefits
the learning process. The combination of multiple predictors allows to
enhance forward models’ accuracy. The use of multiple sensory mod-
alities is fundamental to perform tasks that are inherently multimodal,
such as playing a piano keyboard. Also, multimodal integration al-
lows a versatile applicability of the model learned. Furthermore, the
learned multimodal model can be deployed in learning and control
frameworks to predict the robot and other agents’ motion, and to plan
the robot’s actions.
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CHAPTER 1

Introduction

Complex robots rely on internal models to achieve motor control and
planning. Classical approaches to robot control and motion planning
include formulating these models analytically, by using predefined
parameters and structures. These approaches, however, present sev-
eral drawbacks. For example, the mechanical structure of the robot
may vary over time due to wear or damages. Also, the tasks that a
robot will perform over its life time may change. A fixed and pre-
programmed behaviour is effective for industrial robots, which are in-
volved in repetitive actions and do not interact with human users. On
the contrary, robots interacting with humans in their everyday activ-
ities must be able to adapt to new environments and to learn quickly
new skills. For this type of robots, a fixed and pre-programmed ap-
proach to design their behaviour is not ideal.

The focus of this thesis is to endow robots with learning capabilities,
with the goal of making them learn their sensorimotor capabilities in
an autonomous way. This knowledge can then be used to accomplish
complex cognitive tasks involving the interaction with human users,
such as imitation and prediction of others’ actions.

Learning processes can effectively be used to acquire models of
actions, sensory systems, skills. Humans are vivid examples of suc-
cessful applications of autonomous learning approaches. There are
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18 introduction

neuroscientific evidences that humans develop their internal models
through a learning process which starts in the first months of their in-
fants’ life. Based on such examples and findings, a branch of robotics,
namely developmental robotics, aims to acquire internal models for
robots by designing learning mechanisms to let the robots build their
own perceptive and behavioural repertoires. The focus is to investig-
ate the acquisition of motor skills from sensorimotor interaction with
the environment. As a result, the developmental approach aims to en-
dow robots with all the learning capabilities that may be necessary to
build rich and flexible sensorimotor representations. These represent-
ations generally correspond to internal models. There are two types
of internal models: the forward and the inverse models. The forward
model can predict the next sensory state, given the current sensory
state and the motor command. The inverse model is a mapping in the
opposite direction: given a target (goal) state and the current state, it
provides the motor commands needed to reach the goal. These mod-
els have been related to the central nervous system that internally
simulates the motor system in planning, control and learning. Also,
interestingly humans can use their internal models not only to predict
their own actions, but also to make predictions about others’ actions.

This thesis investigates how the use of multiple sources of inform-
ation can influence autonomous learning processes on humanoid ro-
bots. The research questions addressed in this thesis are the following:

• Can the use of multiple predictors enhance autonomous learn-
ing of robots forward models, and how?

• Can multiple sensory modalities be integrated and combined in
the learning process of inverse models and in imitation tasks,
and how?

• Can multimodal self-learned internal models be used by a robot
to predict and imitate others’ actions, and how?

In this thesis, a humanoid iCub robot has been used to demonstrate
the methods proposed to learn internal models from self-experience
and through the integration of information from multiple sources. On-
line ensemble learning algorithms have been developed to learn for-
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ward models, and a multimodal least square regression approach has
been adopted to learn multimodal inverse models. Furthermore, a
deep neural network has been proposed to predict and imitate other
agents’ motion. The methods developed and the results presented in
this thesis have implications for researchers interested in continuous
online autonomous learning. Also, the use of multiple sensory mod-
alities in the learning process is a fundamental contribution in the
field of autonomous model learning. The approaches considered in
this thesis make no assumptions on prior knowledge available to a
robot regarding its kinematic/dynamic structure. This hypothesis al-
lows the use of the same methods on different robotics platforms.
Finally, the use of the self-learned internal models on tasks involving
a human teacher is demonstrated, thus showing the potential of this
approach also in contexts where the robot can learn and interact with
other agents.

1.1 contributions of this thesis

The main contribution of this thesis is the integration of multiple
sources of information in the autonomous learning process that a ro-
bot can use to acquire its own internal models. Different approaches
are proposed to acquire models from multiple sensorimotor informa-
tion in a fully autonomous manner, assuming no prior knowledge on
the robot kinematic or dynamic structure. The proposed approaches
are based on learning internal forward and inverse models in a fully
autonomous way, using robot motor babbling. In this thesis, it is
shown that multiple sources of information benefit the learning pro-
cess deployed to acquire internal models, either by exploiting and
combining multiple predictor models, or by using and integrating
multiple sensory modalities (e.g. vision, touch, proprioception). The
self-learned models allow robots not only to predict and plan their
own motion, but also to learn new skills from imitating human demon-
strators, and to make predictions of the motion of another agent (e.g. a
human). The novelties of the proposed approaches are the use and in-
tegration of multiple sensory modalities for learning, and the exploit-
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ation of the learned models to go beyond the self and to effectively
interact, interpret and learn from others.

The original contributions of this thesis can thus be summarised as
follows.

• Autonomous learning of forward models using ensembles of different
types of predictors. The anticipation capabilities of an autonomous
robot must be accurate in order to achieve a proper understand-
ing of its own motion capabilities and of its environment. The
problem of assuring accuracy of the self-learned forward models
has thus been considered. Ensemble methods have been proved
effective to enhance the accuracy of classifiers and predictors.
This is obtained by combining strategically multiple predictors
so that the final prediction benefits from each predictor contri-
bution in the best possible way. In order to realise a method that
allows the robot to learn continuously as new data are avail-
able, online ensemble algorithms have been developed. The pro-
posed methods leverage the diversity among different types of
predictors. The methods enhance the prediction accuracy of self-
learned forward models, and can update online as the robot
collects new information from self-exploration and interaction
with human demonstrators.

• Autonomous learning of multimodal inverse models and imitation learn-
ing exploiting information from multiple senses. The integration of
multiple modalities has been considered in the learning process
to build multimodal internal models able to integrate data from
different sensors. This is an important aspect in the learning
process, which has rarely been taken into consideration. Hu-
mans make extensive use of different senses in order to capture
information about their body and environments. Analogously,
in this thesis multimodal data have been considered to learn
internal models. By integrating and leveraging multimodal in-
formation, the learned internal models can take into considera-
tion different types of constraints, which in turns allow to per-
form imitation tasks exploiting different sensory modalities dur-
ing the execution of a multimodal task. The method proposed
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to address multimodal imitation is based on least square regres-
sion and allows to achieve on-the-fly imitation of multimodal
references.

• Use self-learned models to predict and imitate others through recon-
structing non-observable sensory modalities. It has been shown that
humans use their internal models not only to predict and plan
their own actions, but also to make predictions of actions of oth-
ers. This skill is fundamental for autonomous robots that are
required to interact with human users or more generally with
other agents. Being able to make predictions about others’ mo-
tion, is likely to be fundamental in order to achieve a smooth
interaction. The main challenge in using self-learned internal
models to predict others, is the difference of the data available to
the robot to make predictions. While self-data are usually com-
pletely available at every time for the robot, only the visual in-
formation can be captured when observing others. To solve this
issue, a multimodal deep variational autoencoder has been pro-
posed not only to reconstruct the missing sensory modalities,
but also to generate new data, such as motor commands needed
for example to imitate the observed movements.

1.2 roadmap

Figure 1.1 provides an overview of the robotics system, its environ-
ment, sensorimotor system and internal models as used in this thesis.

The rest of this thesis is organised as follows:

• Chapter 2 sets the overall scene by reviewing the relevant literat-
ure on internal model and model learning. Internal models are
introduced both from a developmental psychology and from a
robotics perspective, while model learning is presented in light
of recent advances in the robotics field.

• Chapter 3 presents how the use of multiple predictors allows
to improve the prediction accuracy of forward models learned
from self-exploration, when no prior knowledge is assumed for
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Figure 1.1: Thesis roadmap. A robot can learn internal models from
autonomous exploration. A human can provide the robot with
target state or observations, that the robot can use to achieve com-
plex cognitive tasks, such as imitation and prediction of others’
motion. The red rectangles refer to the associated chapter where
each component is discussed.

the robot. The ensemble learning methods proposed are based
on online learning algorithms that also leverage the multimodal
sensorimotor data available to the robot.

• Chapter 4 addresses the problem of using self-learned internal
models to achieve complex cognitive tasks, such as imitation,
only based on self-acquired sensorimotor mappings. The method
proposed is based on a least square regression formulation and
allows to achieve on-the-fly imitation of multimodal references.

• Chapter 5 illustrates the implementation of a more complex
learning architecture based on a self-learned multimodal deep
variational autoencoder, which allows to reconstruct data from
partial observations, to predict and imitate others’ motion only
based on self-learned mappings.



1.3 publications 23

• Chapter 6 summarises the important points of this thesis and
suggests directions for future research.

• In Appendix, details are given on the specific learning algorithms
used to construct the ensemble method, and on the experimental
platforms (including the iCub humanoid robot, the YARP mid-
dleware, and the piano keyboard used in the experiments). Ad-
ditional experiments conducted on a Baxter robot are also repor-
ted.
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CHAPTER 2

Background and literature review

In this chapter, the main notions of internal models and model learn-
ing are recalled, and the relevant literature is presented. Internal mod-
els are illustrated from the perspective of both human cognitive de-
velopment and robotics. Studies from the developmental psychology
and neuroscience fields are revised to give an account of the funda-
mental notions on which the thesis is based on. The robotics literature
is presented, with particular focus on the areas of model learning and
developmental robotics, including classical approaches as well as re-
cent advances in these fields.

2.1 internal models

Studies in the field of neuroscience and neurophysiology have provided
evidence of the existence of multiple representations of the body in
the human brain, associated with different objectives and functionalit-
ies (Marshall and Meltzoff, 2015; Wolpert, Diedrichsen and Flanagan,
2011; Miall and Wolpert, 1996; Wolpert and Flanagan, 2001; Ishikawa
et al., 2016). Internal models of the body have emerged in different
experiments, and used to process sensory inputs such as propriocep-
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Figure 2.1: A forward model (left) and an inverse model (right).

tion from muscle and joints, vision, tactile perception (Marshall and
Meltzoff, 2015).

The body maps existing between motor and sensory variables are
also termed internal models as they represent features of the body or
the environment (Wolpert, Diedrichsen and Flanagan, 2011). There
are two types of internal model: forward models and inverse models.
The former provide predictions of the state of the agent given the
current state and an action, while the latter provide mappings in the
opposite direction: given a target state and the current state, they re-
trieve the action to bring the system from the current state to the
target. A schematic representation of these models is shown in Fig-
ure 2.1. These two internal models play important roles in human
brains and are involved in action planning, prediction, control (Wolp-
ert and Kawato, 1998; Wolpert and Flanagan, 2001).

Forward models: Forward models have been related to the central
nervous system which internally simulates the motor system in plan-
ning, control and learning (Miall and Wolpert, 1996). Several studies
in human and primates (Miall et al., 2007; Nowak et al., 2007; Izawa,
Criscimagna-Hemminger and Shadmehr, 2012; Popa, Hewitt and Eb-
ner, 2013; Ishikawa et al., 2016) suggested that the cerebellum is re-
lated to the forward model, which plays a fundamental role by provid-
ing predictions of sensory consequences of motor commands and al-
lowing the discrimination between external sensory input and input
deriving from motor action. They are also strictly related to anticip-
ation, a fundamental aspect that distinguishes cognitive agents from
adapted reactive systems, which do not perform explicit predictions
(Pezzulo, 2007). Anticipation presents several advantages: it enhances
adaptability and play a role not only in increasing individual cognit-
ive functions, but also in extending the capabilities to learn complex
and abstract concepts, as well as in developing efficient social interac-
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tions. Furthermore, the use of forward models for internal feedback
allows to estimate the outcome of an action before sensory feedback
is available. In other words, they make possible to realise mental prac-
tice, that is predicting the outcomes of actions without actually ex-
ecuting them (Wolpert, Ghahrmani and Jordan, 1995).

Motor prediction and mirror neurons: Motor prediction plays an im-
portant role in motor control but also in high level cognitive func-
tions such as observation and understanding of others (Wolpert and
Flanagan, 2001), mental practice, imitation and social cognition (Wolp-
ert and Kawato, 1998). Studies have shown that people can make pre-
dictions of their own actions as well as others’ behaviour through the
use of internal models of the central nervous system (Blakemore, De-
cety and Albert, 2001; Decety and Sommerville, 2003; Wolpert and
Flanagan, 2001; Kilner, Friston and Frith, 2007; Pickering and Clark,
2014; Wolpert, Doya and Kawato, 2003). More interestingly, people
predict others’ behaviours using the same internal models that they
use for predicting their own behaviour, through a process called sim-
ulation (Gallese and Goldman, 1998; Cruz and Gordon, 2003; Hesslow,
2012). Assuming existing similarities between agents, the internal model
used to predict one’s own actions can be instrumental to predict the
(visual) consequences of someone else’s actions (Pickering and Clark,
2014). The mirror neuron system plays a key role in this framework.
Mirror neurons are special brain cells which activate both when pro-
ducing own actions and when observing similar actions executed
by other individuals (Rizzolatti, 2005; Cattaneo and Rizzolatti, 2009).
This indicates that perception and action generation share the same
neural structure (Gallese and Goldman, 1998; Fabbri-Destro and Rizzo-
latti, 2008). The discovery of mirror neurons had a great influence
in understanding how people perceive and potentially imitate oth-
ers (Demiris, Aziz-Zadeh and Bonaiuto, 2014a). A mirror neuron is a
neuron that “mirrors” the behaviour of the other, as if the observer
were itself acting. In other words, when we are looking at someone
performing an action, the same motor circuits that are recruited when
we ourselves perform that action are concurrently activated. This led
to the hypothesis that one possible function of the mirror neuron sys-
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tem could be to promote learning by imitation: when new motor skills
are learned, some time is often spent in the first training phases to rep-
licate the movements of an observed instructor (Gallese and Goldman,
1998). These observations link directly to the ability of understanding
others’ actions as well as the ability of simulating them using our own
internal models.

Inverse models: Inverse models can also be referred to as behaviours
or controllers (Narendra and Balakrishnan, 1997; Lazkano et al., 2007).
While the main objective in learning forward models is to obtain pre-
dictions that are as close as possible to the actual state of the agent,
specifications to learn inverse models are less straightforward. This is
related to the fact that there exist multiple actions an agent may take
to achieve a goal. There is physiological evidence showing that parts
of the cerebellum represent inverse models and output directly to the
controller (Kawato, 1999; Wolpert, Miall and Kawato, 1998). Further-
more, a number of cortical areas (e.g. the primary motor cortex, the
premotor contex, the parietal cortex and the prefrontal cortex) contrib-
ute to the voluntary control of arm movements, and several studies
(Haruno, Wolpert and Kawato, 2001; Kawato and Gomi, 1992) sug-
gested that the cerebellum plays a role in the generation of motor
commands as an inverse model.

Experience: Finally, internal models are not fixed entities: as the body
of the agent changes and experience is accumulated, new models
need to be acquired and existing models need to be updated. Internal
models must hence be learned and updated throughout experience
(Wolpert and Flanagan, 2001). Studies have argued that infants use
self-exploration and self-stimulation to “calibrate” their sensorimotor
and body representations (Spencer and Quinn, 1997). The role of ex-
ploration is thus fundamental to form and test models.
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2.2 model learning in robotics

Several robotic systems use manually designed mathematical mod-
els, such as kinematic and dynamic models (Siciliano and Khatib,
2016), based on the assumption that the motor system of such ro-
botic systems is known beforehand. However, learning approaches
present numerous benefits: they can cope with changes of the robot
morphology over time, they allow to ease the programming effort of
modelling complex robotic structures from sensor data, they enable
the use of the same software on different robots, they can adapt to
different types of interaction with environments and users. Learning
algorithms are effective in building internal models for robots. They
achieve flexibility and adaptability in building robots’ kinematic and
dynamic models, by incorporating uncertainties and nonlinearities, as
well as dynamical changes due to wear, and in limiting the influence
of specific engineered settings.

Several studies addressed the problem of model learning in ro-
botics. Typically, learning forward models has been less investigated
(compared to learning inverse models) in traditional robotics because
they can be directly defined based on the kinematic structure of the
robot. For example, forward models of serial robots can easily be com-
puted analytically. However, forward models of complex, advanced
robots may be difficult to formulate. Also, learning forward models
is fundamental for robots to be able to make accurate predictions not
only about their own actions but also about others’ actions. Learn-
ing methods based on multilayer perceptrons networks have been
used to learn forward kinematic models of a number of simple sys-
tems (Nguyen, Patel and Khorasani, 1990; Sadjadian and Taghirad,
2005). In (Nguyen, Patel and Khorasani, 1990), it was shown that a
three-layer back-propagation network was capable of learning the for-
ward kinematics of a simulated two degrees-of-freedom planar arm
without any knowledge of the manipulator’s kinematic structure. In
(Sadjadian and Taghirad, 2005), a more complex robotic system was
considered, namely a three degrees-of-freedom actuator redundant
hydraulic parallel manipulator, involving highly coupled nonlinear
equations. Different neural network structures were studied to learn
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the forward kinematics of such system, showing satisfactory perform-
ance on tracking and error estimation. A method based on Bayesian
networks has been proposed in (Dearden and Demiris, 2005), where
a robot was able to autonomously learn forward models of its motor
system and then use it to imitate human movements.

While forward models are uniquely determined, inverse models
are generally not and do not always exist. Three main approaches
have been used to learn inverse models (Wolpert and Kawato, 1998):
direct inverse modelling (Miller, 1987; Kuperstein, 1988), distal super-
vised learning (Jordan and Rumelhart, 1992) and feedback error learn-
ing (Kawato, 1990). Direct inverse modelling treats the problem of
learning an inverse model as a classical supervised learning problem.
Distal supervised learning and feedback-error-learning instead rely
on the ability to convert errors at the trajectory level into error at the
motor level. Unlike the direct inverse modelling approach, they can
acquire accurate inverse models even for redundant systems, while
the direct approach can fail in learning control of redundant robots
because of the existence of a one-to-many inverse kinematics problem
(Jordan and Rumelhart, 1992).

A comprehensive survey focused on model learning for robot con-
trol was presented in (Nguyen-Tuong and Peters, 2011). Many ap-
proaches to learn controllers for robots have been proposed, including
for example reinforcement learning (Sutton and Barto, 1998; Abbeel
et al., 2007) and learning by demonstration (Argall et al., 2009; Billard
et al., 2008; Atkeson and Schaal, 1997).

Several approaches have been proposed in which the inverse model
is directly learned from data, by adopting machine learning tech-
niques. Gaussian processes have been used in (Deisenroth and Rasmussen,
2011) to learn a probabilistic dynamics model (i.e. PILCO - probabil-
istic inference for learning control) where the model uncertainty was
explicitly incorporated into long-term planning, and in (Williams et
al., 2009), where the multi-task learning problem rising from solv-
ing the inverse dynamic problem for a robotic manipulator holding
different loads was addressed. In (Hunt et al., 1992), a survey on
the use of neural networks from a classical control theoretic point
of view, addressing problems of modelling, identification and con-
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trol of nonlinear systems was presented. Neural networks were also
considered in (Kawato et al., 1988), where a hierarchical model was
introduced to deal with computational problems at different levels,
including determination of desired trajectories in the visual coordin-
ates, transformation of the trajectory from visual coordinates to body
coordinates, and generation of motor commands. Applications to the
robotics field were also outlined in that work. The Locally Weighted
Projection Regression (LWPR) algorithm has been used in (D’Souza,
Vijayakumar and Schaal, 2001) to learn the inverse kinematics of a hu-
manoid robot, while the Infinite Mixture of Linear Experts algorithm
has been used in (Damas, Jamone and Santos-Victor, 2013) to solve
the same problem. Both these approaches allow to learn the model
while performing a task, and are based on finding an approximation
of the Jacobian.

A broadly used class of methods to learn inverse models is the
Learning by Demonstration, or Programming by Demonstration frame-
work (Billard et al., 2008). Seminal works on this class of approaches
are for example (Billard, 2001; Calinon, Guenter and Billard, 2007). In
(Billard, 2001), a biologically inspired model for motor skills imita-
tion was presented. Inspired by the control of movements in primates
and the functions of different areas of the brain, that study proposed
a model based on modules corresponding to different functionalit-
ies and level of abstractions. A framework for extracting relevant fea-
tures of a given task and for addressing the problem of generalizing
the acquired knowledge to different contexts was instead proposed in
(Calinon, Guenter and Billard, 2007). There, a method was proposed
to extract the important features of a task based on spatio-temporal
correlations across a multivariate dataset, to determine a generic met-
ric to evaluate the robot’s imitative performance, and to optimize the
robot’s reproduction of the task, according to the metric of imitation
performance in new contexts. In order to learn inverse models from
data, approaches based on learning by demonstration typically rely
on the acquisition of target trajectories, that can be collected from mul-
tiple demonstrations of each task. This approach has been explored
for example in (Korkinof and Demiris, 2013; Chatzis et al., 2012; Soh
and Demiris, 2013; Soh and Demiris, 2015), where statistical meth-
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ods have been proposed to infer models from multiple demonstrated
trajectories. However, multiple demonstrations might be difficult to
obtain. Other methods are based on a single demonstration instead,
e.g. in (Wu, Su and Demiris, 2014; Wu and Demiris, 2010b; Wu and
Demiris, 2010a; Wu and Demiris, 2009). In this case, however, it is as-
sumed that all input features are observable. A diverse approach was
proposed in (Lee et al., 2013; Lee, Kim and Demiris, 2012), where con-
text free grammars were used in order to learn sequences of demon-
strated actions.

A considerable number of works has recently addressed the prob-
lem of task learning and policy search adopting the reinforcement
learning approach (Andrew Bagnell, 2014) to learn complex move-
ment tasks in robotics. In (Kormushev, Calinon and Caldwell, 2013),
the expectation-maximization-based reinforcement learning approach
was applied to real robots ranging from bipedal robots to planar ro-
botic arms. In (Deisenroth, Fox and Rasmussen, 2015), an approach
based on a probabilistic, non-parametric Gaussian process transition
model was proposed to speed up learning by extracting more inform-
ation from data. In (Levine, Wagener and Abbeel, 2015) the guided
policy search approach was used to learn a set of trajectories for a de-
sired motion skill then unified into a single control policy that can
generalize to new situations. An automatic method for interactive
control of physical humanoid robots based on high-level tasks has
been proposed in (Mordatch et al., 2016). The method proposed in
that study is based on the combination of a model-based policy that
is trained off-line in simulation and sends high-level commands to
a model-free controller that executes these commands on the phys-
ical robot. Although these approaches achieve high performance on
a number or different tasks, they typically require a large amount of
data and training time. Another crucial aspect of these approaches is
the definition of a reward/cost function to be optimise, which usually
depends on the specific task.

Finally, deep learning methods have recently received increasing
attention and have proven successful in several robotics applications
(LeCun, Bengio and Hinton, 2015; Hinton, Osindero and Teh, 2006;
Levine et al., 2016; Sigaud and Droniou, 2016). These methods are
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based on deep artificial neural networks consisting of more than one
hidden layer. They represent an effective approach to learn data rep-
resentations, in particular when a large number of inputs or dimen-
sions are involved. In (Ngiam et al., 2011), a multimodal deep learn-
ing approach was presented, able to cope with data of different types,
such as visual and audio data, with cross-modal learning and recon-
struction. Deep learning has been previously exploited also in the
context of developmental learning, for example in (Droniou, Ivaldi
and Sigaud, 2015). In that study, an architecture based on deep net-
works was proposed to make a humanoid robot iCub learn a task
from multiple perceptual modalities (namely proprioception, vision,
audition). Two recent works (Baraglia et al., 2015; Copete, Nagai and
Asada, 2016) have applied deep autoencoders to make a robot predict
others’ actions through predictive learning. In these studies, it was
shown how a robot can use a self-acquired model to make predictions
of others’ goals.

developmental learning “Developmental robotics is the in-
terdisciplinary approach to the autonomous design of behavioral and cognit-
ive capabilities in artificial agents (robots) that takes direct inspiration from
the developmental principles and mechanisms observed in the natural cognit-
ive systems of children” (Cangelosi, Schlesinger and Smith, 2015).

In developmental robotics, robots’ internal models are acquired by
designing learning mechanisms to let a robot build its own perceptive
and behavioural repertoire. The focus is to investigate the acquisition
of motor skills from sensorimotor interaction with the environment
(Lungarella et al., 2003). As a result, the developmental approach aims
to endow robots with all the learning capabilities that may be neces-
sary to build rich and flexible sensorimotor representations (Sigaud
and Droniou, 2016).

Biological systems are a good example of the importance of sen-
sorimotor learning to the system’s adaptability and robustness, and a
general agreement also exists on the importance of learning internal
models in robotics frameworks (Bays and Wolpert, 2007; Wolpert, Mi-
all and Kawato, 1998; Hoffmann et al., 2010). Sensorimotor learning
involves learning the mappings between motor and sensory variables.
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Well-established learning systems for motor prediction and control
(Wolpert and Kawato, 1998; Kawato, 1999; Demiris and Khadhouri,
2006) are based on internal models. Inspired by findings in human
brain and cognitive development, robotics control architectures have
been proposed and implemented using forward and inverse mod-
els. Notable examples are the HAMMER (Hierarchical Attentive Mul-
tiple Models for Execution and Recognition) architecture (Demiris
and Khadhouri, 2006), and the MOSAIC (MOdular Selection And
Identification for Control) architecture (Sugimoto et al., 2012; Haruno,
Wolpert and Kawato, 2003).

Exploration: Inspired by infants’ developmental steps, biologically in-
spired architectures are based on self-exploration strategies to collect
the information used to learn internal models. Analogously, a ro-
bot can explore its sensorimotor capabilities through self-exploration,
or motor babbling (Demiris and Meltzoff, 2008). The motor babbling
strategy has been adopted in different works, e.g. (Demiris and Dearden,
2005; Dearden and Demiris, 2007; Schillaci, 2013; Ramırez-Contla, Can-
gelosi and Marocco, 2012; Zhong, Cangelosi and Wermter, 2014). Other
studies, however, claim that early movements are already goal-directed
(Hofsten, 2004). A variation of the motor babbling approach, called
goal babbling, has been proposed in (Rolf, Steil and Gienger, 2010) to
learn inverse models from self-exploration, a strategy that has been
used for example also in (Rolf, Steil and Gienger, 2011; Jamone et al.,
2011).

online learning A real challenge in robot learning is devising
algorithms that allow online adaptation. The importance of online
learning in robotic applications is related to the fact that robots are
required to interact in a continuously evolving environment. Also,
changing of contexts, such as tools and other agents, make online
strategies attractive (Jamone et al., 2012; Hersch, Sauser and Billard,
2008; Jamone et al., 2013). Another motivation for online model learn-
ing is that it is difficult if not impossible to cover the complete state
space with data beforehand (Nguyen-Tuong and Peters, 2011). Al-
though many state-of-the-art learning paradigms are based on batch
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processing, several works have proposed online strategies to learn ro-
bot internal models.

Several studies have explored online learning methods on humanoid
robots. A biologically inspired model for online and continuous learn-
ing of visuo-motor coordination has been proposed in (Schillaci, Hafner
and Lara, 2014), where dynamic self-organising maps associated through
Hebbian links have been adopted for learning the visuo-motor co-
ordination online on a Nao humanoid robot. An online learning ap-
proach to achieve reaching behaviour in a humanoid robot has been
proposed in (Jamone et al., 2012), where the receptive field weighted
regression algorithm (Vijayakumar and Schaal, 2000b) has been em-
ployed to learn online a representation of the robot’s reachable space.
In (Hersch, Sauser and Billard, 2008) an online strategy has been im-
plemented to learn the kinematic structure of a humanoid robot, yield-
ing the position of each segment and computing the associated Jacobi-
ans.

Studies on mobile robots also addressed online learning. In (Hoff-
mann, 2007), authors showed that the ability to anticipate acquired by
a mobile robot can be exploited for perceptual judgement. In partic-
ular, the forward model learned autonomously by the mobile robot
has been effectively used to realise mental simulation, hence achiev-
ing tasks such as distance estimation and recognition of a dead end.
In (Tani and Nolfi, 1999), an online learning scheme was developed
using a mixture of recurrent neural networks, and examined through
simulation experiments involving the online navigation learning prob-
lem. The learning architecture proposed in that study is based on a set
of modules (recurrent neural networks) that can self-organise on mul-
tiple levels of abstraction in order to account for different categories
of sensorimotor information.

Online algorithms have been also used to learn inverse dynamic
models for anthropomorphic arms: the locally weighted projection
regression (Vijayakumar and Schaal, 2000b) has been used in (Schaal,
Atkeson and Vijayakumar, 2002), a support vector regression approach
has been used in (Choi, Cheong and Schweighofer, 2007), and the
local Gaussian process regression approach has been illustrated in
(Nguyen-Tuong, Seeger and Peters, 2009). Although these methods
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have been shown to be effective in learning control policies online,
their ability of scaling on high dimensional spaces to describe the ro-
botic system is usually limited.

multimodal learning Vision perception plays a key role in
cognitive tasks and in the execution of everyday activities. Works in
the fields of cognitive science, neuroscience, as well as robotics and
computer vision, have studied vision perception from different per-
spectives. In (Harding et al., 2012; Leitner et al., 2012) the objective
was to learn to locate objects from vision using artificial neural net-
works and a genetic programming method. In (Borji and Itti, 2013)
the focus was put on visual attention modelling, thus linking vision
with a notion of relevance. A large number of works in the literature
(e.g. (Sturm, Plagemann and Burgard, 2009) and (Kajic et al., 2014))
have employed visual markers or color blobs to identify and track the
object of interest in the visual frames, e.g. to identify and learn the
position of the hand or end-effector of a robot in the visual space. Al-
though this is a practical way of approaching visual learning, it also
implies an augmentation of the reality of a robot, by adding external
elements to the original structure. More recent works, e.g. (Broun et
al., 2014), have used optical flow and recent techniques developed
in computer vision fields to build kinematic model for robots. An
interesting branch of computer vision has developed methods to seg-
ment figures and motion and to identify skeletons of moving agents
(e.g. (Ross, Tarlow and Zemel, 2010)). These techniques represent a
promising way to recognise limbs or body structure, without relying
on external clues. Whereas a variety of different sensors has become
available on advanced robots, most of the approaches to model learn-
ing are still based on the use of data from a single modality, usually
vision.

Despite the key role of vision, however, many of the tasks per-
formed during everyday activities intrinsically involve the use of dif-
ferent sensory feedback from multiple senses. For example, to draw
on a board we engage vision to check the result of our drawing,
proprioception to perform smooth movements with our arm, and
touch to sense the contact with the board. Playing an instrument also
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involves sound, in addition to the visual, tactile and proprioceptive
feedback.

The problem of integrating inputs of different types has been stud-
ied in the research areas of sensor fusion and pattern recognition. Sev-
eral works have addressed the problem of learning representations
from multiple sources, e.g. text and audio or text and images (Ram-
isa et al., 2017; Yan et al., 2014; Poria et al., 2016), sensor networks
or signals from different robots in multi-robot set-ups (Olfati-Saber
and Shamma, 2005; Gravina et al., 2017; Dietrich et al., 2016; Cho et
al., 2014; Chen, Jafari and Kehtarnavaz, 2016). Recent advances on
deep neural networks have allowed the development of several effect-
ive solutions, for example based on convolutional neural networks
(CNN). Studies in multimedia research has also focussed on the prob-
lem of learning representations from multimedia contexts, such as
scene descriptions, event detection and cross-domain feature learn-
ing (Cho, Courville and Bengio, 2015; Gan et al., 2015; Kang et al.,
2015; Chang et al., 2017; Yang, Zhang and Xu, 2015). Solutions in this
field take advantage of the progress in deep feature representations
and unsupervised learning, and are often based on measures of the
correlation between different sources of information.

In robotics, the approach of multimodal learning can be used to
leverage the different sensing capabilities of robots to build a more
complete and effective representation of their structure. Recent work
has been developed in this direction. Vision and proprioception were
considered e.g. in (Sturm, Plagemann and Burgard, 2009; Schillaci,
2013; Dearden and Demiris, 2007). The touch sense was used e.g. in
(Roncone et al., 2014; Yoshikawa et al., 2002; Fuke, Ogino and As-
ada, 2007). Vision and audition were used in (Martinez, Lungarella
and Pfeifer, 2008). Multiple modalities have been taken into consid-
eration also in (Tidemann, Öztürk and Demiris, 2009; Schmidts, Lee
and Peer, 2011; Stepanova et al., 2017; Zhong, Cangelosi and Ogata,
2017). A combination of sound and movements has been adopted
in (Tidemann, Öztürk and Demiris, 2009) to imitate human drum-
ming behaviours, while motion and force data have been used to
teach grasping gestures to a simulated manipulator in (Schmidts, Lee
and Peer, 2011). In (Stepanova et al., 2017) simultaneous tactile and
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linguistic inputs were used to cluster body parts. In (Zhong, Can-
gelosi and Ogata, 2017), experiments have been presented to study
the abstraction capabilities of networks from multimodal time series.
Other studies, e.g. (Fadlil et al., 2013; Araki et al., 2011; Batula et al.,
2013; Johnsson and Balkenius, 2011), have presented solutions for mer-
ging different sensors’ data to address classification-type problems,
such as object/gesture recognition or speaker identification/spatial
localisation, rather than predicting or imitating demonstrated beha-
viours. Recently, studies have presented advances in integrating lan-
guage in a multimodal framework for robot learning. For example,
in (Zhong et al., 2017; Zhong, Cangelosi and Ogata, 2017), different
types of recurrent neural networks have been deployed to address
the problem of learning and performing abstraction using multiple
modalities, including language. Finally, information from different
sensors have also been used to solve imitation learning using dif-
ferent sensor informations, such as hierarchical architectures based
on multiple internal models (Wu and Demiris, 2010a; Demiris and
Dearden, 2005; Lopes and Santos-Victor, 2005; Tidemann, Öztürk and
Demiris, 2009), and Gaussian Mixture Regression together with Hid-
den Markov Model (Schmidts, Lee and Peer, 2011).

2.3 summary

In this chapter, several studies relevant to the contributions of this
thesis have been revised. The work of this thesis is fundamentally
grounded in the developmental learning approach to robotics, based
on learning internal (forward and inverse) models from experience
derived from the interaction of a robot with its environment. The stud-
ies and approaches presented in Section 2.1 are thus adopted in this
thesis as a guideline and as fundamental references. Works presen-
ted in Section 2.2, relative to model learning in robotics, vary with
respect to applications, hardware, goals. The set-up and goals of this
thesis relate particularly to previous work on learning forward mod-
els (Dearden and Demiris, 2005), to principles of developmental robot-
ics (Cangelosi, Schlesinger and Smith, 2015), to fundamental studies
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on multimodal learning (Ngiam et al., 2011) and approaches based on
deep networks applied to robotics (Baraglia et al., 2015; Copete, Nagai
and Asada, 2016). One of the challenges left open in learning internal
models in a developmental fashion is how to integrate the informa-
tion available from the different robot’s sensors. While the majority
of studies focussed on visual data and joint angles, there are many
more sources of information that can be taken into consideration dur-
ing learning, such as sound, touch, as well as the sensorimotor rep-
resentations that can be synthesised by different learning algorithms.
All this information can contribute to the learning process by intro-
ducing additional clues or to achieve more accurate representations.
On the other hand, several studies on multimodal learning were only
tested on datasets that were not directly related to a dynamical sys-
tem (e.g. a robot) interacting with an environment and acting its own
sensorimotor system. This scenario poses many challenges including
the noise in the data collected, the misalignment of data streams, and
the interdependencies among data generated by a possibly redundant
system. This thesis set out to develop methods to learn internal mod-
els from multiple sources of information, through ensemble methods
and multimodal learning. One of the working assumptions was to
account for as little prior knowledge as possible at the beginning of
the learning process. Unlike more classical approaches to control and
planning (e.g. (Hunt et al., 1992; Siciliano and Khatib, 2016)), where
typically several assumptions are made on the robot’s structure and
model, the methods proposed in this thesis contribute to the research
area of autonomous developmental learning by including learning
strategies based on self-experience that rely on information from mul-
tiple sources. Another working paradigm considered in this thesis has
been to leverage the multiple different sensors available on the iCub,
including motor encoders for proprioception, RGB cameras for vis-
ion, artificial tactile skin for touch. In addition to these data sources,
a piano keyboard was used, from which sound data could also be
collected. For such a complex scenario, methods including motor bab-
bling and imitation learning have been considered to collect data for
learning, while methods based on reinforcement learning where not
due to the fact that they typically require very large amount of data
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for learning. Only a small number of methods revised in the previ-
ous sections have been shown to effectively manage learning using
multimodal data and using a developmental approach. The learning
methods proposed in this thesis take advantage of the progresses in
the area of ensemble learning and deep learning. While ensemble
methods (Dietterich, 2000) allow effective combinations of predictors,
deep neural networks such as variational autoencoders (Kingma and
Welling, 2013), allow to capture complex representations of data. In
conclusion, this thesis addresses the challenges of integrating mul-
timodal learning and learning from multiple sources of information
into a developmental framework on a physical iCub robot.

Background sections, focussing on more specific aspects of the thesis
subjects, are included in the following chapters in order to provide a
more specific contextualisation for each of the research challenges ad-
dressed.



CHAPTER 3

Online Ensemble Learning of Forward Models

This chapter addresses the first research question:

Can the use of multiple predictors enhance autonomous
learning of robots forward models, and how?

In this chapter, it is shown that the use of multiple predictors benefits
the robot learning process to acquire a forward model by enhancing
the model accuracy significantly.

An introduction on forward model learning on robots and humans
and the relevant background are summarised in Section 3.1. The solu-
tion proposed to implement autonomous online learning of forward
models on robots is then illustrated (Section 3.2). This is the first block
of the learning architecture anticipated in Chapter 1.

3.1 learning forward models from self-exploration

Complex robots rely on internal models describing the kinematics
and dynamics for controlling and planning actions. Constructing ana-
lytical models of complex robotic platforms, however, often presents
critical difficulties and costs. In particular, analytical models might be
inaccurate because they are based on assumptions that are not real-
istic, such as the complete rigidity of the links. Also, nonlinearities

41
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and uncertainties of the system are often difficult to include. Another
critical problem related to the use of analytical models is that they
are usually highly specific for a particular robotic platform. This also
implies a reformulation of the model in case of modifications of the
platform, thus adding time, computational and economical costs.

These observations motivate the interest in endowing robots with
learning capabilities, in order to enable them to build their internal
models through learning processes (Kawato, 1999; Haruno, Wolpert
and Kawato, 2001; Demiris and Khadhouri, 2006) in which relations
between actions and associated changes in sensory inputs, are in-
volved. Another benefit of self-learned models is that, in principle,
they can update over the life-time of the robot, avoiding re-modelling
in case, for example, of damaged parts or hardware failures. If in-
ternal models are learned by the robot continuously, they can handle
changes in the robot morphology or in the robot sensory system,
while eliminating the need for explicit analytical model formulation
and dealing with model drifts (Cully et al., 2015). Contrary to more
classical control approaches based on hand-crafted kinematic and dy-
namic models, methods based on autonomous learning of sensorimo-
tor representations can achieve complex behaviours, such as imitation,
without the need of explicit model formulation.

A vivid and successful example of systems where autonomous learn-
ing of motor skills is continuously used is represented by humans.
It is argued that infants use self-exploration and self-stimulation to
“calibrate” their sensorimotor and body representations (Spencer and
Quinn, 1997). Studies on motor behaviour of infants have shown that
mobility at early age is characterised by variations in movement tra-
jectories and in temporal and quantitative aspects of mobility, that
are not neatly tuned to environmental conditions (Hadders-Algra,
2000). Analogously, a robot can explore its sensorimotor capabilities
through self-exploration, or motor babbling (Spencer and Quinn, 1997;
Demiris and Meltzoff, 2008; Demiris and Dearden, 2005; Mochizuki et
al., 2013). This approach allows a robot to autonomously explore its
own sensorimotor capabilities, avoiding the use of pre-programmed
engineered behaviours or the analytical formulation of kinematic and
dynamic models.
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online ensemble learning The focus of this chapter is to
learn forward models with high prediction accuracy online. Ensemble
learning is an effective approach to improve the classification or pre-
diction performance of a model. In ensemble learning systems, mul-
tiple models, such as classifiers or experts, are strategically generated
and combined to solve a particular problem. The key for the success
of an ensemble system and its ability to correct the errors of some of
its members is the diversity among the classifiers of the ensemble. The
intuition is that if each model makes different errors, then a strategic
combination can reduce the total error.

Ensemble methods are popular research directions in machine learn-
ing and pattern recognition (Ranawana and Palade, 2006). Several
methods (Dietterich, 2000; Ren, Zhang and Suganthan, 2016; Kuncheva
and Rodríguez, 2014; Breiman, 1996a; Breiman, 2001) have been ex-
tensively studied and applied in the research areas of pattern recogni-
tion and sensor fusion. Several approaches combine feature selection
algorithms with ensemble strategies, and evaluate popular ensemble
approaches in different domains, spanning from text classification to
biology, from concept detection to emotion recognition or land clas-
sification (Awais et al., 2011; Yijing et al., 2016; Schuller et al., 2005;
Sun, Zhang and Zhang, 2007; Gislason, Benediktsson and Sveinsson,
2006; Whitehead and Yaeger, 2010; Tang et al., 2012; Yan et al., 2016;
Sun et al., 2015; Onan, Korukoğlu and Bulut, 2016). Many ensemble
learning algorithms have been used in robotics to solve problems such
as localization, detection, recognition, decision making (Nyga, Balint-
Benczedi and Beetz, 2014; Heinrich et al., 2013). However, the use of
combinations of different predictors has rarely been deployed to build
internal models or to learn and produce motor behaviours on robots.
Nonetheless ensemble methods have been shown effective in differ-
ent learning frameworks to achieve high prediction accuracy (Choraś
et al., 2009; Valentini and Masulli, 2002; Mendes-Moreira et al., 2012).

Several approaches exist to solve offline regression problems (Mendes-
Moreira et al., 2012), however, it is desirable that robots update their
internal model in an online fashion, as new data become available
from experience and explorations. Online ensemble learning algorithms
for regression have recently been advanced (Ikonomovska, Gama and
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Džeroski, 2015; Soares and Araújo, 2015). The online learning problem
of predicting with experts was first presented in (Littlestone and War-
muth, 1994; Freund and Schapire, 1997; Cesa-Bianchi et al., 1997), and
many algorithms have been developed in order to address difficult
objectives such as learning with unknown number of experts, cop-
ing with different combinations of experts, achieving smaller regret
while ensuring robustness. The AdaNormalHedge algorithm (Luo
and Schapire, 2015) has been recently proposed in order to achieve
all the diverse goals of online learning simultaneously, without using
any prior information on the learners. Other well-known algorithms
to build ensembles of multiple learners are the Bagging algorithm
(Breiman, 1996a) and Random forests (Breiman, 2001). These algorithms
have been used in many different applications, including computer
vision and robotics ones. Finally, a very recent study has addressed
the problem of online learning using multiple sliding Gaussian Pro-
cesses (Meier and Schaal, 2016). This method has proved to be suc-
cessful in building accurate predictors in robotics applications, such
as solving the inverse dynamics problem.

3.2 online heterogeneous ensembles of experts

In this section, the proposed methods to realise ensembles of different
types of predictors are illustrated. The ensemble models presented are
learned by a robot from data only in an online fashion. The learned
models provide predictions of the multimodal sensory state of the
robot, given the current states and motor commands. Hence, they are
effectively forward models for the robot.

3.2.1 Model formulation

The formalisation of the proposed method is general and not confined
to specific robotic platforms. Denote the sensory state vector contain-
ing different sensory modalities (note that some modalities can be
multidimensional) as x = [x

1

x

2

. . . x

N

]T and the motor commands ap-
plied to the M motors of the body part as the vector u = [u

1

u

2

. . . u

M

]T .
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Following seminal works such as (Wolpert and Kawato, 1998; Jordan
and Rumelhart, 1992) and (Maye and Engel, 2011), a sensorimotor rep-
resentation mapping is formulated as a system that can be described
by the equation

x

0 = f(x, u) (3.1)

where x

0 is the sensory state after applying the motor command u from
state x. The unknown map f is learned incrementally throughout the
experience accumulated by the robot itself. The sets where x and u

take values are denoted as X and U, respectively.
Exploration steps are performed to acquire a set of data points used

to learn online an estimate of the sensorimotor representation map-
ping f, used as a forward model that predicts the next sensory data
x

0, given the current state x and a motor command u. To learn this
forward mapping, a new method is proposed based on an online en-
semble of different online regression algorithms. This method allows
to obtain accurate predictions by leveraging the properties of the en-
semble strategy adopted.

3.2.2 Online heterogeneous ensemble

In this section, an Online Heterogeneous Ensemble (OHE) is presen-
ted. The method illustrated is novel to solving online regression prob-
lems using an ensemble of predictors of different types.

the ensemble learning strategy : Main ingredients in en-
semble learning methods are ensemble generation and ensemble in-
tegration. Ensemble generation refers to the generation of base models
(or experts), where the objective is to build a set of N

e

base mod-
els, also called pool of models (F

N

e

= {f̂
i

, i= 1, . . . ,N
e

}), to approximate
a true function f. If the models in F

N

e

are all generated using the
same induction algorithm, the ensemble is called homogeneous, while
if more than one algorithm is used to build F

N

e

, the ensemble is het-
erogeneous. Less work exists on heterogeneous ensembles than in ho-
mogeneous ones (Mendes-Moreira et al., 2012), however, combining
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different algorithms is a promising strategy to obtain diversity, which
has been shown of great importance in enhancing prediction accuracy
(Kuncheva and Whitaker, 2003).

The ensemble integration step can be realised in a number of differ-
ent ways. A common solution is to compute the ensemble estimate by
taking the weighted average of the base models: f̂

E

=
P

N

e

i=1

w

i

f̂

i

, where
w

i

2 [0, 1], P
N

e

i=1

w

i

=1, are the weights assigned to each base model f̂

i

.
The weights state the importance of the single base models in build-
ing the ensemble, according to some application-dependent or op-
timality criterion. The weights can be constant or dynamically calcu-
lated according to each data sample. Popular algorithms to obtain en-
semble weights are stacked regression (Breiman, 1996b) and dynamic
weighting (Rooney et al., 2004). Given a learning set L with K data
samples, the stacked regression approach calculates the weights by
minimising P

K

k=1

⇥
f(x

k

) -
P

N

e

i=1

w

i

f̂

i

(x
k

)
⇤
2, while the dynamic weight-

ing method sets the weights according to performance measurements
of the predictors.

pool of models : In this thesis, a heterogeneous online ensemble
learning method is proposed. This method combines predictors of
different types in an online manner. The following four algorithms
(see Fig. 3.1) have been considered to populate the pool of models:

1. Echo State Networks (ESN) (Jaeger, 2002), which are a class of
recurrent neural networks,

2. Online Echo State Gaussian Processes (OESGPs) (Soh and De-
miris, 2015), which combine ESN with sparse Gaussian Processes,

3. Locally Weighted Projection Regression (LWPR) (Vijayakumar
and Schaal, 2000a), which exploits piecewise linear models to
realise an incremental learning algorithm,

4. Recursive ARX models (RARX) identified using the recursive
least square method (Ljung, 1998; Ljung, 1983).

These four algorithms can all update in an online manner (e.g. in-
crementally or recursively). However, they differ from each other in
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several aspects: firstly, while the ESN, OESGP and LWPR are non-
parametric approaches, the RARX is parametric and fits the data by
finding polynomial coefficients. Also, the chosen algorithms rely on
different structures, i.e. neural networks, Gaussian processes, piece-
wise linear models, polynomial transfer functions. Contrary to a large
number of other learning algorithms, these are online algorithms,
which are able to update as new data is available, iteratively or re-
cursively. Moreover, an advantage of using these different algorithms
is that their dissimilarities guarantee the necessary diversity between
the base models that constitute the ensemble, particularly in terms of
prediction errors (e.g. overshoot vs. undershoot, offsets).

The base models are trained separately and in parallel, and the up-
date step is different for each of the diverse models. In the ESN model,
only the output weights (wout) of the recurrent neural network are
updated, and the prediction is obtained by computing tanh(wout

x(t))

(Jaeger, 2002). The OESGP model’s prediction is obtained through the
Gaussian predictive distribution N(µ,�2), where the mean µ and the
variance �2 are estimated incrementally during training (Soh and De-
miris, 2015). The RARX model updates the parameter estimates ✓̂ at
each iteration, while the prediction is calculated as  T (t)✓̂(t) where  
represents the gradient of the predicted model output (Ljung, 1983).
The LWPR model updates local models’ parameters by minimising a
predicted residual sums of squares function and then produces an
estimated f̂ as a weighted combination of local models, (Vijayaku-
mar and Schaal, 2000a). A more detailed description of each model
is presented in Appendix A.

Multiple models for each learning algorithm can be instantiated by
using different initialisation parameters: for example, different num-
bers of internal units in the ESNs, different length scales for the Gaus-
sian distributions in the OESGPs, different orders for the polynomials
of the RARX models and different weight activation thresholds for
new local models to be generated for LWPR. One of the advantages
of the ensemble approach is also the flexibility allowed by the possib-
ility of instantiating several different predictors without the need of
fine parameter tuning.
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weights computation : Each base model provides an estimate
f̂

i

of the true function f, that can be used to compute predicted val-
ues of x̂

0
i

. The ensemble prediction is obtained by combining the base
models’ estimates through the ensemble integration. The subscript E

will be used to indicate the ensemble estimates in the following. The
ensemble estimate x̂

E

is computed online at each time step t as:

x̂

t,E =
X

i

w

t,ix̂t,i(t) (3.2)

where w

t,i are the normalised ensemble weights
�P

i

w

t,i=1
�
. The aim is

to calculate the ensemble weights so that the combination of models
gives the closest estimate to the true value to be predicted.

A new method to update the ensemble weights is proposed, which
takes into account both the cumulative and instantaneous base mod-
els’ performance, so that both the overall behaviour and the accuracy
at the last data point available are used to evaluate the base models.

At each time step t, that is for each new data point available, each
base model i produces an estimate x̂

0
i

. The performance scores ob-
tained are evaluated through the following two values:

e

c

t,i =
1

t

tX

⌧=1

⇣
x

0
⌧

- x̂

0
⌧,i

⌘
2

, e

s

t,i =
⇣
x

0
t

- x̂

0
t,i

⌘
2

(3.3)

representing the cumulative mean squared error and the instantan-
eous squared error at the current time step, respectively, for all the
base models i = 1, ...,N

e

.
A convex combination of the instantaneous and cumulative errors

is then used to compute the score

e

t,i = ↵
⇣
e

s

t,i

⌘-1

+ (1-↵)
⇣
e

c

t,i

⌘-1

, (3.4)

where ↵ is a non-negative parameter, that can be chosen so that more
importance can be given either to the inverse of the cumulative error
or to the inverse of the instantaneous error.

The final ensemble weights are then computed as

w

t,i =
e

t,iP
i

e

t,i
. (3.5)
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Figure 3.1: Multimodal forward model: predict the multimodal sensory state
of the robot. The proposed online heterogeneous ensemble (OHE)
approach (as well as the AdaNormalHedge variant) allows to
learn forward models online by combining multiple learning
algorithms, i.e. Echo State Networks (ESNs), Online Echo State
Gaussian Processes (OESGPs), Recursive ARX (RARX) and Loc-
ally Weighted Projection Regression (LWPR) models.

Note that at each time step the quality of each base model is reas-
sessed and the ensemble weights change dynamically. The final en-
semble predictions are obtained by combining the base models ac-
cording to the weights computes in eq. 3.5 using eq. 3.2.

A visualisation of the method illustrated in this chapter is shown
in Figure 3.1. The ensemble model acts as a forward model, provid-
ing the predictions of the sensory state, given the current state and a
motor command.

3.2.3 Online ensemble learning using AdaNormalHedge with confidence-
rated experts

The computation of the ensemble weights proposed in the previous
section (eq. 3.3-3.5) is very effective, as it will be shown in the exper-
iment section. The selection of the base models using these weights
is typically aggressive: very large weights are assigned to better per-
forming models while very small weights are assigned to models per-
forming worse. This approach may however harm the final ensemble
by discarding models that could be accurate just locally.

In order to enhance the update of the forward models maintain-
ing an online approach, a state-of-the-art algorithm has been adopted,
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namely the AdaNormalHedge (Luo and Schapire, 2015). This section
illustrates how the AdaNormalHedge method has been integrated
with the ensemble presented in the previous paragraphs. AdaNor-
malHedge has been chosen among several online learning algorithms
because it is a parameter-free algorithm, it does not require to know
the number of experts, it presents nice properties in terms of regret
bounds, and allows online update of the predictions. It also allows
to mitigate the aggressive ensemble weight update proposed previ-
ously. Moreover, it can accommodate variants in order to inject con-
fidence measures in the computation of the ensemble weights, while
preserving properties in terms of regret bounds. This characteristic is
leveraged and details about the proposed variant are presented in the
following parts of this section.

The problem of online learning with experts is usually formulated
as follows. At each time t, the player first chooses a distribution p

t

over N

e

experts, the the adversary decides each expert’s loss `
t,i 2 [0, 1],

and reveals the losses of the player. The player then suffers the weighted
average loss ˆ̀

t

= p
t

· `
t

, where `
t

= (`
t,1, ..., `

t,N
e

). The instantaneous re-
gret to expert i at time step t is denoted by r

t,i = ˆ̀
t

- `
t,i, the cumu-

lative regret is denoted by R

t,i =
P

t

⌧=1

r

⌧,i, and the cumulative loss by
L

t,i =
P

t

⌧=1

`

⌧,i. The goal of the player is to minimise the cumulative
regret.

AdaNormalHedge uses a potential function �(R,C) and a weight
function ⌦(R,C), dependent on the regret and on a scale parameter C.
These two functions are defined as �(R,C) = exp

✓
[R]2+
3C

◆
, with �(0, 0) , 1,

and ⌦(R,C) = 1

2

(�(R+ 1,C+ 1)-�(R- 1,C+ 1)). The prediction step con-
sists in setting p

t,i to be proportional to ⌦(R
t-1,i,C

t-1,i) where C

t,i =
P

t

⌧=1

|r
⌧,i|, that is the cumulative magnitude of the instantaneous re-

grets up to time t. The player is allowed to have a prior distribution q

over the experts, which can be simply set as a uniform distribution if
no prior knowledge is available.

A generalisation of AdaNormalHedge to deal with confidence-rated
experts is formulated as follows. At each time t, each expert produces
a prediction and a corresponding confidence w

t,i 2 [0, 1]. The player
then predicts p

t

as usual, and still suffer the loss ˆ̀
t

= p
t

· `
t

. The in-
stantaneous regret is though redefined to be r

t,i = w

t,i
�ˆ̀
t

- `
t,i

�
, that is
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Algorithm 1: Final ensemble algorithm using AdaNormalHedge
and ensemble weights as confidence scores
Initialize : 8i 2 {1, 2, ...,N

e

}, R

0,i = 0, C

0,i = 0

for t = 1 to T do
Compute error scores e

c

t,i, es
t,i, e

t,i (eq. 3.3-3.4)
Compute ensemble weights w

t,i (eq. 3.5)
Predict p

t,i / 1

N

e

w

t,i⌦(R
t-1,i,C

t-1,i)

Adversary reveals loss vector `
t

and
player suffers loss ˆ̀

t

= p
t

· `
t

Set 8i 2 {1, 2, ...,N
e

}, r
t,i = ˆ̀

t

- `
t,i,

R

t,i = R

t-1,i + r

t,i, Ct,i = C

t-1,i + |r
t,i|.

Compute the ensemble prediction x̂

t,E =
P

i

p

t,ix̂t,i(t).

the difference between the loss of the player and expert i weighted by
the confidence. The prediction step is now defined by setting

p

t,i /
1

N

e

w

t,i⌦(R
t-1,i,C

t-1,i), (3.6)

where the term 1

N

e

indicates a prior uniform distribution among the
base models. This is consistent with an agnostic approach regarding
the performance of each base model.

The confidence rate plays a key role for the performance of the
ensemble. It is proposed to formulate the confidence measure w

t,i

as the ensemble weights calculated as in equation 3.5. The ensemble
estimate x̂

E

is finally computed online at each time step t as:

x̂

t,E =
X

i

p

t,ix̂t,i(t). (3.7)

The final algorithm is summarised in Algorithm 1.

3.3 experiments and discussion

In this section, the results achieved by the proposed methods are
presented. It will be shown that the proposed methods achieve the
best prediction accuracy over different datasets compared to other
methods.
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Figure 3.2: Scenario: the iCub humanoid robot interacting with a piano key-
board, learning internal models from multimodal sensory signals.
The enclosed pictures show the view from the robot’s left eye
camera (top) and the hand taxels activated when keys are pressed
(bottom).

3.3.1 Datasets for performance evaluation

The proposed algorithms have been evaluated on synthetic data and
exploration data collected from the robots motor babbling.

Synthetic data: A synthetic dataset has been produced. To create
the synthetic data, 1000 samples have been drown from a function
f(x) = sin(2x) + 2 exp(-16x

2) to which Gaussian noise with variance 0.12

has been added (the same test data were used for example in (Meier
and Schaal, 2016) to test a model performance).

iCub data: This dataset has been collected and built from a pseudo-
random motor babbling of one of the arms of a humanoid iCub robot
interacting with a piano MIDI keyboard1 (see Figure 3.2).

Note that the iCub dataset used to test the proposed method is
multimodal, that is it includes multiple sensory modalities used as
input to the forward model. It is argued that multimodal information
fosters the prediction accuracy of the learned forward model. This
hypothesis is analysed later in this section.

1 MIDI is a symbolic representation of musical information incorporating both timing
and velocity for each note played, which is associated to a specific integer number.
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self-exploration on the icub robot As infants in their first
months perform series of gross movements of variable speed and
amplitude, which lack distinctive sequencing (Hadders-Algra, 2000),
analogously a robot can explore its sensorimotor representations through
self-generated movements. Random sinusoidal motor commands are
sent to the robot’s joint actuators as velocity commands defined, for
each joint j, as u

j

(t) = ↵
j

sin(2⇡!t), where the amplitudes ↵
j

are sampled
for each joint at each cycle from a uniform distribution U(-ū, ū), and
the frequency ! is fixed so that each cycle starts and terminates at
zero (i.e. null velocity). The choice of the velocity control compared
to alternatives, such as position control, is motivated by the fact that
no assumptions are made for the robot motion capabilities, e.g. joints’
range of motion. The use of the velocity control allows to avoid en-
coding this prior knowledge during exploration.
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Figure 3.3: Data from self-exploration (representative examples). Joints po-
sitions (q

0

, ...,q
3

) are recorded from the motor encoders, visual
positions (x

R

,y
R

, x
L

,y
L

) are acquired from the RGB cameras of
the robot’s eyes. Tactile and sound signals are acquired from the
skin and the keyboard, respectively. Random sinusoidal velocity
commands (u

0

, ...,u
3

) are issued to the arm joints to perform mo-
tor babbling.
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Sensory feedback is simultaneously collected from different sensors
of the robot:

- positions of the four arm joints (shoulder and elbow joints) from
the corresponding motor encoders,

- position of the hand of the robot in the visual space from the
robot’s RGB cameras (4D position obtained by using the 2D po-
sitions from the two robot’s eyes),

- tactile signal (one-dimensional binary data) from the robot’s ar-
tificial skin present on the hand fingertips,

- musical signal from the MIDI keyboard used (one-dimensional
data encoding the note played).

The dataset collected contains 7380 data points, corresponding to ap-
proximately 30 minutes. All data collected were normalised to range
between -1 and 1, and representative examples of the data used are
shown in Fig. 3.3. The task is to learn a model that predicts all the dif-
ferent sensory states at the next step, given the current sensory state
and the motor commands.

comparison measures In order to compare the results obtained
by diverse solutions the mean squared error (MSE) score has been
used. Denoted x̂ as the vector of n predictions, and x as the vector
of observed values, the MSE of the predictor can be computed as
MSE = 1

n

P
n

i=1

(x̂
i

- x

i

)2. For better visualization of the results, the root
MSE (RMSE) score will be also used (RMSE =

p
MSE).

3.3.2 Experiments on synthetic data

The first experiment on synthetic data has been carried out using dif-
ferent numbers of base models instantiated to build the ensembles.
With this experiment, it is possible to examine the performance of
the proposed ensemble under different conditions. Each base model
forming the ensemble is initialised with different parameters, namely
different numbers of internal nodes for the ESNs, different length
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Figure 3.4: Ensemble performance on synthetic data using different numbers
of base models. Coloured bars illustrate the mean squared error
scores achieved by homogeneous ensembles of ESNs (blue), OES-
GPs (orange), RARX models (yellow), LWPR models (purple),
and by the proposed OHE (green) and AdaOHE (light blue). An
increase of the number of models instantiated corresponds to a
decrease of the mean squared error, and to an increase of the total
computational time. In all cases the proposed ensembles (green
and light blue bars) outperforms homogeneous ensembles. The
AdaNormalHedge variant (light blue) achieves improved accur-
acy compared to the proposed OHE (green).

scales for the GPs, different polynomial orders for the RARX mod-
els, and different activation thresholds for the LWPR models (details
on the parameters used are reported in Appendix A). This approach
allows to avoid fine tuning of the parameters, as well as providing
diversity among the base models. Results are shown in Figure 3.4. In
this figure, the mean squared error scores achieved on synthetic data
by homogeneous ensembles and by the proposed OHE and AdaOHE
are illustrated. Homogeneous ensembles are obtained by applying the
same proposed ensemble methods on instances of models of the same
type, thus obtaining four ensembles, one for each learning algorithm
used. In this experiment, different numbers of base models have been
tested: for each type of algorithm, different numbers of base model
have been instantiated, namely N

e

= {1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. The
total number of models constructing the ensemble is four times each
number, that is from 4 up to 200 models instantiated. Further details
on the parameters used to instantiate the base models are reported in
Appendix A.
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It can be noted that an increase of the number of models instan-
tiated corresponds to a decrease of the mean squared error, and to
an increase of the computational time up to even 30 minutes for the
whole computation using 200 models on the 1000 points of the syn-
thetic dataset. The proposed AdaOHE outperforms all the alternat-
ives. In particular, AdaOHE achieves better prediction accuracy also
compared with the OHE.

In order to provide evidence to support the proposed AdaOHE ap-
proach, a comparison has been conducted to evaluate the perform-
ance of the proposed OHE, AdaOHE and the basic AdaNormalHedge
algorithm. The OHE acts in the most aggressive way in selecting the
base models to compose the ensemble. The weights assigned to each
base model following the OHE strategy strongly depend on the direct
measure of the current and instantaneous mean squared errors. This
results in a strong polarisation of large weights to the better perform-
ing models and of small weights to the worse performing models. The
basic AdaNormalHedge algorithm, on the contrary, applies a softer
selection among the models, assigning weights that are distributed
more uniformly among base models. The proposed AdaOHE sits in a
position in between these two approaches, balancing the two effects.
Plots in Figure 3.5 show that the proposed AdaOHE outperforms the
other two approaches, achieving the best prediction accuracy. The
temporal profiles of the mean squared error obtained at each time
step, and the average mean squared error scores achieved by each
approach are depicted. In both representations, the results obtained
with the AdaOHE are superior to those obtained with the OHE and
the basic AdaNormalHedge.

Figure 3.6 shows the predictions and the MSE temporal profiles
obtained using the proposed AdaOHE algorithm. Note that the pro-
posed online ensemble achieves a prediction error score lower than
0.01 in less than 100 samples. Note also that the achieved performance,
with a MSE score of 0.0065, is also more than two times more accurate
than results obtained by using the drifting Gaussian processes repor-
ted in (Meier and Schaal, 2016), which achieved a MSE score of 0.0148

on the same task.
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Figure 3.5: Comparison between three ensemble strategies, namely the pro-
posed OHE, the basic AdaNormalHedge and the proposed
AdaOHE (confidence-rated AdaNormelHedge using proposed
ensemble weights). (a) shows the temporal profile of the mean
squared error at each time step (a logarithmic scale is used for
the vertical axis to obtain a better visualisation of the results). (b)
shows the average mean squared error scores for each variant.
OHE acts in the most aggressive way to weight the base models
of the ensembles, while the basic AdaNormalHedge acts in the
least aggressive way. The proposed AdaOHE approach balances
these two approaches achieving the best prediction accuracy.
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Figure 3.6: Prediction and mean squared error (MSE) temporal profile ob-
tained on synthetic data by the proposed Online Heterogeneous
Ensemble using AdaNormalHedge (AdaOHE). In the upper fig-
ure, the base models’ predictions are represented with transpar-
ent dashed lines, while the AdaOHE predictions are represented
by the solid light blue line. While the single base models’ pre-
dictions can be inaccurate, their combination through the pro-
posed method achieves high prediction accuracy. The bottom fig-
ure shows that the proposed method achieves a prediction error
score lower than 0.01 in less than 100 iterations.



58 online ensemble learning of forward models

3.3.3 Experiments on iCub data

The proposed ensemble methods have then been tested on datasets
collected from the iCub humanoid robot.

First the methods have been evaluated on the dataset consisting
of data collected from pseudo-random motor babbling of the robot
arms. Then the methods have been applied to predict trajectories of
the robot imitating a human teaching playing a piano keyboard.

Similarly to the previous experiment, the ensemble has been tested
using different numbers of base models allocated. Specifically, 1, 5,
10, 15, 20, 25, 30, 35, 40, 45, or 50 models have been allocated for each
type of algorithm, leading to a total of 4 to 200 models instantiated.
The models are allocated with increasing complexity: while the first
base models are initialised with parameters in order to obtain a low
complexity (e.g. small polynomial orders for RARX models, or lower
activation rates for LWPR models), the base models allocated when
the number of models increases are more complex models (e.g. higher
polynomial orders for RARX models). More details about the para-
meters used to initialise base models are provided in Appendix A.
Results are reported in Figure 3.7. Note that the proposed AdaOHE
outperforms the other combinations in all cases. However, by increas-
ing the number of models, the overall ensemble performance does not
improve, due to the diminished performance of certain base models
when increasing their complexity, such as the case of RARX models.

The results presented in the following part of this section refer to
the combination of five base models instantiated for each type of ex-
pert. This choice has been made in light of the results presented in
Figure 3.4 and Figure 3.7, so to achieve a compromise between di-
versity among models and computational time, while achieving high
prediction accuracy.

In Fig. 3.8 the root mean squared error (RMSE) scores over the learn-
ing time steps are shown. The scores depicted in this figure are the av-
erage scores obtained over all the sensory modality dimensions, that
is averaging the results obtained for the different sensory modalit-
ies. The ensemble achieves the best accuracy, that is the lowest RMSE
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Figure 3.7: Average mean squared error scores obtained by the homogen-
eous and heterogeneous ensembles on the iCub motor babbling
data, using different numbers of base models. The scores rep-
resent the average MSE scores over the 10 dimensions of the ro-
bot multimodal sensory space. Coloured bars illustrate the mean
squared error scores achieved by homogeneous ensembles of
ESNs (blue), OESGPs (orange), RARX models (yellow), LWPR
models (purple), and by the and AdaOHE (light blue). The pro-
posed ensemble outperforms alternatives in all cases. Also, in-
creasing the number of models does not improve the ensemble
performance, due to the diminished performance of certain base
models when increasing their complexity, such as the case of
RARX models.

curve outperforming all the other single predictors as well as other
homogeneous ensembles.

A comparison of the proposed heterogeneous online ensemble with
other ensemble combinations, as well as with the single base models,
has also been carried out. Results are shown in Fig. 3.9. The proposed
heterogeneous ensemble scores the best accuracy compared to the
alternatives not only on training data, that is on the data collected
during self-exploration, but also on test datasets. Fig. 3.9b shows the
RMSE scores on a validation dataset consisting of the trajectories ex-
ecuted during the imitation task on the piano keyboard (presented
in Chapter 4). These results not only confirm the trend observed on
training data, but also show that the learned forward models are able
to generalise on novel uncharted gesture executions. Fig. 3.10 shows
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the predicted trajectories (dashed) in the proprioception, vision and
touch spaces. Accurate results are achieved on all the multimodal di-
mensions. In the touch space, predictions capture the overall beha-
viour but, compared to the other modalities, the accuracy is lower
due to the binary nature of this data.

Figure 3.11 shows how the ensemble weights (computed as in equa-
tion 3.6) evolve over time. Recall that for the experiment carried out
here, five instances for each type of algorithm were instantiated. The
average values of the weights assigned to each type of algorithm over
the learning period are shown in the figure. Higher weights are as-
signed to better performing base models. For example, the LWPR
models are here assigned higher weights on average, compared to
other models, coherently to the results shown in the previous figures.
All models contribute to the ensemble, since none of the ensemble
weights is null.

The proposed ensemble has been compared with other methods, in-
cluding bagging trees (Breiman, 1996a), random forest (RF) (Breiman,
2001), and artificial neural networks (ANN) (Fabisch, A. Kassahun, Y.
Wöhrle, H. Kirchner, 2014). The results obtained on this task show that
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Figure 3.8: Average root mean squared error (RMSE) scores over iterations
(logarithmic scale is used for the horizontal axis). (a) shows the
comparison between all the base models (lines of the same col-
our correspond to the results obtained with base models of the
same type) and the proposed heterogeneous ensemble. (b) shows
the comparison between the homogeneous ensembles and the
proposed heterogeneous ensemble. The ensemble predictions are
more accurate than predictions obtained using all other altern-
atives. The error also decreases monotonically as more data are
acquired over time.
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Figure 3.9: (a) RMSE scores (average over different multimodal dimensions)
obtained using single base modes (5 instances for each learning
model), homogeneous ensembles (using the ensemble method on
models of the same type: in the order ESN ensemble, OESGP
ensemble, RARX ensemble and LWPR ensemble), and the pro-
posed heterogeneous ensemble (light blue). The proposed het-
erogeneous ensemble scores the best accuracy compared to the
alternatives. (b) RMSE scores on test data: the data for this valid-
ation experiment consists of the trajectories executed during the
imitation task on the piano keyboard.
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Figure 3.10: Predicted (dashed) and executed (solid) trajectories during the
imitation task. The ensemble predictions are accurate on unfore-
seen data.
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Figure 3.11: Ensemble weights (see eq. 3.6) over time steps. In the experi-
ment, five instances for each type of algorithm were instantiated.
The average values of the weights assigned to each type of al-
gorithm over the learning period are shown. Higher weights are
assigned to better performing base models (e.g. LWPR models
are here assigned higher weights on average, compared to other
models). All models contribute, since none of the ensemble
weight is null.

Table 3.1: Predictive performance on iCub data, comparison with other meth-
ods. MSE scores are shown. The proposed ensembles outperform
alternatives on all the data dimensions. Also, the AdaNormal-
Hedge variation achieves improved accuracy compared to the pro-
posed OHE.

Modality Bagging RF ANN OHE AdaOHE

q

0

0.0089 0.0148 0.0136 0.0017 0.0016

q

1

0.0078 0.0101 0.0091 0.0027 0.0027

q

2

0.0161 0.0262 0.0231 0.0073 0.0068

q

3

0.0105 0.0188 0.0218 0.0023 0.0022

x

R

0.0088 0.0113 0.0102 0.0066 0.0028

y

R

0.0078 0.0178 0.0139 0.0072 0.0037

x

L

0.0042 0.0123 0.0114 0.0039 0.0024

y

L

0.0075 0.0157 0.0128 0.0075 0.0040

touch 0.2071 0.3165 0.1864 0.1791 0.1763

sound 0.3524 0.3681 0.2175 0.2113 0.2034
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the proposed method achieves the best predictive performance on the
multimodal dataset, outperforming other methods. Quantitative res-
ults are summarised in Table 3.1. The mean squared error scores of
the predicted sensory data have been reported. Note that the tactile
and the sound signals are the most difficult to predict. This is due to
the fact that while all the other modalities are continuous signals, the
touch and MIDI signals are discrete (binary in the case of the tactile
signals). Also, these two signals are the least accurate among the re-
corded data, due to the little reliability of the tactile sensors, and to
the delays and noise present in the MIDI data. For example, some of
the tactile sensors may blink during the experiment even without any
actual touch event. Similarly, the MIDI information acquired from the
keyboard may be inaccurate with respect for example to the timing of
the data recorded compared to the actual execution. These problems
cause misleading signals that make predicting the touch and sound
discrete trajectories given the current robot state and velocity motor
commands significantly more difficult compared to the case of the
other modalities. More details about the data and the experimental
set-ups are provided in Appendix C.

3.3.4 Multimodality influence on prediction accuracy

To test the hypothesis that multimodal data favour the prediction ac-
curacy in the task of learning forward models, results obtained by
performing predictions of the visual and tactile modalities while in-
cluding different numbers and types of inputs have been compared.

Prediction of visual data: The following cases have been compared:

1. learning a forward model for the x visual coordinate taking as
input the motor commands together with the current position
of x only;

2. learning a forward model for the x visual coordinate taking as
input the motor commands together with the positions of the
robot’s joints and the current position of x only;
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3. learning a forward model for the x visual coordinate taking as
input the motor commands together with the positions of the
robot’s joints and the current position of x,y.

The MSE scores obtained for the three cases were 0.0072, 0.0066 and
0.0032, respectively, showing an improvement of the predictive per-
formance of the learned forward model when multimodal data are
taken into account. The analogous cases of forward models for the y

visual coordinates have been tested. For the y coordinate, MSE = 0.0074,
MSE = 0.0068, MSE = 0.0040 have been obtained for the three cases, re-
spectively. These results confirm those obtained for the x coordinate.
It is thus possible to conclude that the predictive accuracy is enhanced
when using signals from multiple sources.

Prediction of touch data: The following cases have been compared:

1. learning a forward model for the tactile data taking as input the
motor commands together with the current tactile signal only;

2. learning a forward model for the tactile data taking as input
the motor commands together with the positions of the robot’s
joints and the current tactile signal only;

3. learning a forward model for the tactile data taking as input
the motor commands together with the positions of the robot’s
joints, the current tactile sensation, the current visual position
and the sound data.

The third case was already implemented in the previous experi-
ments, and the corresponding MSE is 0.1763 (see Table 3.1). The MSE
scores obtained for the first and second cases were 0.1899 and 0.1859,
respectively, demonstrating that using multimodal data has a positive
impact on the predictive performance of the learned forward models.

3.4 summary

In this chapter, a method to learn a forward model leveraging mul-
tiple sources of information in an online manner has been presented.
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It has been shown that the combination of multiple predictors fosters
the prediction accuracy of the forward model learned.

Results obtained on the different datasets have shown that the pro-
posed heterogeneous ensemble of experts outperforms other algorithms
in prediction accuracy. This is important in order to learn forward
models that are accurate and that can be used effectively in complex
control and learning architectures.

It is interesting to note that the implementation of the AdaNormal-
Hedge algorithm to combine the predictors of the ensemble allows
to achieve even improved accuracy. This result is supported by prop-
erties analysed and proofed in detailed in (Luo and Schapire, 2015),
such as the regret bounds, which guarantees that the algorithm can-
not do worse than the single best component. Also, importantly this
method is parameter free, thus suitable for the “sleeping expert prob-
lem”, a case where the number of experts is not defined a priori.

Furthermore, because the proposed solution is based on an on-
line learning procedure, the learned forward models are continuously
updated as new data are available from multiple different sensors
present on the robot. This allows to obtain a system that continuously
adapts to new data, which might come for example from the explora-
tion of different areas of the reachable space of the robot.

Finally, the proposed system can easily incorporate multiple dif-
ferent modalities, so that data from different sensors can play a role
in the learning of the robot’s forward models. The results presented
show that the multimodal nature of the input data can improve the ac-
curacy of the prediction of the forward models, highlighting another
important aspect of the proposed method.

contributions The main contributions illustrated in this chapter
have been published/presented in:

• M. Zambelli and Y. Demiris, “Online Multimodal Ensemble Learning
using Self-learnt Sensorimotor Representations”, IEEE Transactions on
Cognitive and Developmental Systems, vol. 9(2), pp.113-126, 2016.

• M. Zambelli and Y. Demiris, “Online Ensemble Learning of Sensorimo-
tor Contingencies”, Workshop on Sensorimotor Contingencies for Ro-
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botics, IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015.



CHAPTER 4

Multimodal Imitation using Self-learned
Representations

This chapter addresses the second research question:

Can multiple sensory modalities be integrated and com-
bined in the learning process of inverse models and in im-
itation tasks, and how?

An introduction on inverse model learning and multimodal learn-
ing is presented in Section 4.1, together with a summary of the rel-
evant background. The solution proposed to implement an inverse
model which integrates different sensory modalities to achieve mul-
timodal tasks is then illustrated in Section 4.2. The multimodal inverse
model is the second block of the learning architecture anticipated in
Chapter 1. This model is linked to the forward model presented in
Chapter 3: the new motor commands produced by the inverse model
can feed the forward model to realise mental simulation and predic-
tion of the robot’s own actions.

67
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4.1 inverse model and multimodal learning

An inverse model provides actions that, given a target (goal) state
and the current state, allow to reach the goal. While forward mod-
els are uniquely determined, inverse models are generally not and
do not always exist. Direct inverse modelling treats the problem of
learning an inverse model as a classical supervised learning problem
(Jordan and Rumelhart, 1992). Other methods to learn inverse mod-
els rely on reinforcement learning (Andrew Bagnell, 2014; Stulp and
Sigaud, 2013; Kormushev, Calinon and Caldwell, 2013; Deisenroth,
Fox and Rasmussen, 2015; Levine, Wagener and Abbeel, 2015; Mord-
atch et al., 2016). Another popular approach is learning by demonstra-
tion (Billard et al., 2008; Billard, 2001; Calinon, Guenter and Billard,
2007; Hayes and Demiris, 1994), which rely on the acquisition of tar-
get trajectories, that can be collected from multiple demonstrations.
With the goal of reproducing a trajectory of a human motion, motion
capture systems, kinaesthetic and teleoperation have often been used
(Tidemann, Öztürk and Demiris, 2009; Schmidts, Lee and Peer, 2011).
However, manual design of the system and usually a certain number
of demonstrations are required by these approaches. Motor babbling
and self-exploration, as opposite, are bottom-up approaches (Demiris
and Dearden, 2005; Mochizuki et al., 2013), which require less prior
design and leverage the advantages of a developmental approach to
learning, such as more autonomy, incremental learning and adaptab-
ility to new conditions.

multimodal learning and imitation In this chapter, the fo-
cus is put on the integration of multiple sensory modalities to acquire
sensorimotor representations from self-exploration data. These rep-
resentations are then applied as inverse models which can be used to
achieve multimodal imitation tasks, such as playing a piano keyboard.
Multimodal learning leverages the different sensing capabilities of ro-
bots to build a more complete and effective representation of their
structure. Recent work has been developed in this direction, e.g. in
(Schillaci, 2013; Baraglia et al., 2015; Copete, Nagai and Asada, 2016;
Roncone et al., 2014; Yoshikawa et al., 2002; Fuke, Ogino and Asada,
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Figure 4.1: Multimodal inverse model: multiple modalities describe the sen-
sorimotor state of the robot. Imitation targets are demonstrated
by a human. The multimodal inverse model generates a new mo-
tor command to meet concurrent multimodal task constraints us-
ing multimodal sensorimotor representations. Multimodal rep-
resentations are stored as a multimodal matrix, where each
column corresponds to the information relative to the execution
of an exploration step. The multimodal sensory points that are
closest to the imitation target can be selected from the columns
of the multimodal matrix, and the corresponding actions can be
combined to generate new motor commands.

2007; Martinez, Lungarella and Pfeifer, 2008). Multimodal learning is
a powerful strategy to enhance robot learning, in particular in the ap-
plication to imitation. Imitation is considered a fundamental part of
learning in humans and has been successfully used as a mechanism
of learning in robots.

4.2 inverse model using multimodal data

The objective of this chapter is to show how information from mul-
tiple modalities can be integrated in learning an inverse model. A
visualisation of the method that will be illustrated in this chapter is
shown in Figure 4.1. The approach adopted here follows the same ap-
proach presented in the previous chapter: learning from self-exploration.
This is achieved by letting the robot explore its multimodal sensorimo-
tor space in order to collect data that can be used to learn multimodal
representations and internal models.
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4.2.1 Model formulation

Inverse model learning can also be reformulated as the problem of
learning the motor commands required to achieve a target state x

⇤

given the current state. With this formulation, it is thus straightfor-
ward to associate the inverse model learning problem with imitation
tasks. The mathematical formalization of the method proposed here is
general, and not specific to particular robot or sensors set-ups. Hence
the method is illustrated using a general notation in the following.

Consider multiple modalities, yielding a state space of dimension
N. The data collected during n self-exploration movements can be
stacked to form a N⇥n multimodal sensory matrix
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where �
x

⌫

,i represents the change of the sensory state x

⌫

that has been
observed during the execution of the exploration movement i. More
specifically �

x

⌫

,i encodes the change of the sensory state relative to
the starting position, due to the application of the motor command u

i

.
Analogously the motor commands used to perform n self-exploration
movements can be stacked to form a J⇥n actuation primitives’ matrix
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Target trajectories defining an imitation task can be expressed as
reference trajectories (functions of time) r

1

(t), r
2

(t), ..., r
N

(t). At each time,
the imitation error ", defined on each modality space as the difference
between the reference r

⌫

(t) and the current state x

⌫

(t), is defined as
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At each step during the execution of the imitation task, the ro-
bot moves towards the next reference point, using a combination of
the primitives explored. The velocity commands to apply to the mo-
tors in order to achieve the multimodal target, defined as the vector
u

⇤ =
⇥
u

⇤
1

,u⇤
2

, · · · ,u⇤
J

⇤
T , is obtained as a combination of those primitives

that led to sensory results which are close to the current target. The
experience accumulated during the exploration and the learned sen-
sorimotor representations can then be scanned to search for those
states that are closest to the vector ". This corresponds to a search
on the rows of the multimodal sensory matrix S containing the sensory
dimensions on which a reference/target trajectory is defined.

A range search strategy has been used to find all neighbours within
a designed distance. A kd-tree (Berg et al., 2008), created from the mul-
timodal sensory matrix S was used in order to optimize the search.
The kd-tree algorithm partitions the multimodal sensory matrix S by
recursively splitting points in k-dimensional space into a binary tree.
The nearest neighbours of the query observation is then found by
restricting the training data space to the training observations in the
leaf node that the query observation belongs to. The kd-tree algorithm
is particularly useful when k, which represents the number of con-
strained modalities, is smaller than the available dimensions, that is
the number of samples n in the exploration dataset. The condition
n � k is always satisfied, thus assuring the efficiency of the kd-tree
implementation.

The range search gives as result the columns of the multimodal
sensory matrix S containing the closest points to the query ("). The
indices of those columns are then used to select the corresponding
columns in the actuation primitives’ matrix. Denote the matrices ob-
tained by selecting the indexed columns of S and A as ˜

S and ˜

A, re-
spectively. The sensory states contained in ˜

S can now be associated
to the current state. To achieve this correspondence, a least square
regression problem can be defined as follows:

˜

Sw = ", (4.4)
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where w is a weighting vector. The solution of this equation gives the
solution for the control problem in the task (sensory) space. The best
approximate solution, also the minimum norm solution of equation
(4.4), is given by w = ˜

S

†
", where ˜

S

† denotes the Moore-Penrose pseudo-
inverse of the matrix ˜

S. Since each column in ˜

S is directly related to a
particular column in ˜

A, the same vector w can be used to generate new
motor commands as combinations of the primitives recorded during
exploration:

u

⇤ = ˜

Aw. (4.5)

Equation (4.5) defines the desired motor command vector as a com-
bination of the nearest primitives previously observed through the
weight vector w. Note that the desired motor command vector u

⇤

is found without requiring access to the Jacobian or any kinematic
model of the robot.

4.2.2 Robot’s multimodal data

The approach carried out throughout this thesis is based on the ro-
bot’s self-exploration of its sensorimotor space. Pseudo-random con-
trol signals, also referred to as actuation primitives (see also (Kor-
mushev, Demiris and Caldwell, 2015)), are issued to the robot’s arm
joints to generate exploratory movements. These control signals that
populate the actuation primitives’ matrix (eq. 4.2), are designed as
velocity commands, in the same way as presented in the previous
chapter. Data from multiple modalities are acquired during the exe-
cution of the exploratory movements, including the joints positions
from the motor encoders, the position of the hand in the vision field
through the robot’s eye cameras, the tactile information through the
tactile sensors placed on the robot’s skin, and the sound data from a
MIDI keyboard. The duration of the primitives, which is the period of
the sinusoidal waves designed, is denoted as D in the following. The
peaks correspond to the furthest reached position, e.g. in the visual
or proprioceptive spaces peaks correspond to the samples at D/2. The
initial time of each primitive i is denoted as t

0

i

.
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Proprioception data: Proprioception information is acquired from the
motor encoders. The positions q

1

, . . . ,q
J

of the J joints are acquired
and normalised according to each joint’s limits. A J⇥n matrix

S

P
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2
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, (4.6)

is then built, where �

q

j

,i = q

j

(t
0

i

+ D

/2) - q

j

(t
0

i

) denotes the relative
position of joint j from the starting point of execution of primitive i.

Vision data: The robot’s eye cameras are used to acquire visual data.
The position of the hand in the visual space is represented by the four-
dimensional vector [x

L

,y
L

, x
R

,y
R

]T of the coordinates of the centre of
the hand in the 2D image frames of the left and right camera, respect-
ively. The centre of the hand is computed as the average of the feature
points detected by using the OpenCV optical flow algorithm (Brad-
ski and Kaehler, 2008), and then normalised according to the frame
dimensions. A 4⇥n matrix
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is then built, where the relative displacements of the hand coordin-
ates from the starting point of execution of primitive i is contained in
�

x

L/R

,i = x

L/R

(t
0

i

+D

/2)- x

L/R

(t
0

i

) and �
y

L/R

,i = y

L/R

(t
0

i

+D

/2)-y

L/R

(t
0

i

).

Touch data: The iCub robot’s skin consists of a network of tactile
sensors (taxels), from which tactile information is recorded. In the
presented experiments, the main focus is on the hand skin, which con-
tains 60 taxels, including the fingertips. For each taxel l of the hand
(l = {1, 2, ..., 60}), a binarised pressure output can be read. Each signal
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is then normalised and the average pressure sensed on the hand is
calculated as p = 1

60

P
60

l=1

p

l

. A 1⇥n vector

S

T

=


�

p,1 · · · �

p,n

�
(4.8)

is then built, where �
p,i = p

i

(t
0

i

+D

/2)-p

i

(t
0

i

) contains the tactile feed-
back (on/off) during the execution of primitive i.

Sound data: Sound information is acquired using a MIDI keyboard.
MIDI is a symbolic representation of musical information incorporat-
ing both timing and velocity for each note played. In this work, the
information encoding the note played has been used, so that each key
pressed is associated to a specific integer number. Similarly to the
touch case, a single value is associated to each primitive execution,
which is the code of the note if a note was played, or zeros if not. A
1⇥n vector

S

K

=


s

1

· · · s

n

�
(4.9)

is then built, where s

1

, . . . , s
n

are normalised integer numbers encod-
ing the note played or zeros.

4.2.3 Combining and updating internal models

The forward model presented in Chapter 3 and the inverse model
presented in the previous sections can be combined to build a learn-
ing architecture that allows to continuously learn and update the in-
ternal models. A representation is shown in Fig. 4.2. The learning
architecture proposed in this study retraces well-known learning ar-
chitectures proposed for example in (Haruno, Wolpert and Kawato,
2001; Demiris and Khadhouri, 2006), in which coupled forward and
inverse models are used to achieve learning and motion behaviour on
robots. A comprehensive discussion on the biological plausibility of
this general learning scheme has been presented in (Demiris, Aziz-
Zadeh and Bonaiuto, 2014b). It is worth remarking that, although
the learning architecture and the learning strategy are biologically
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Figure 4.2: Architecture summary: forward models produce predictions of
the sensory state given the current state and a motor command.
This motor command can be the efferent copy of the signal cal-
culated by the inverse model, which produces a new motor com-
mand given a target state. (Upper part) Online ensemble learning
of forward models (see Fig. 3.1). (Lower part) Multimodal inverse
model (see Fig. 4.1).

inspired, the proposed methods are implemented as engineered solu-
tions that resort machine learning approaches to build forward and
inverse models.

In order to refine the internal models, data points need to be ac-
quired, either through exploration steps or from query points.

When a new control command is applied, the new reached state
x

r

can be observed and used to calculate �x = x

r

- x, that is the state
update caused by the new experienced motor commands. The new
control command u

⇤ and �x can then be added to the robot experience.
If the error e

r

= x

⇤ - x

r

obtained at the reached position exceeds a
predefined tolerance threshold, then more exploration is required for
the robot to refine its internal models.
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Figure 4.3: Learning architecture scheme: the inverse model is responsible
for producing new motor commands u

⇤ given a reference x

⇤. Mo-
tor commands are sent to the robot (characterised by the mul-
timodal state x), and, as an efferent copy, to the forward model,
which produces a prediction x

0 of the next state. The prediction
error (e

p

) and the tracking error (e
r

) are then computed and used
to refine the internal models.

In parallel to the execution of the calculated motor command u

⇤,
an efferent copy of the same command is sent to the forward model,
which performs an internal simulation of the action taken. The error
e

p

= x

0 - x

r

between the prediction obtained by the forward model and
the actual reached position is then evaluated. If the prediction error
e

p

exceeds a tolerance threshold, then the forward model needs to be
refined.

The tracking error e

r

and the prediction error e

p

can be used to
define confidence measures for the inverse and forward models, re-
spectively. Confidence values, C

r

and C

p

for e

r

and e

p

respectively, can
be calculated as functions of the corresponding errors. Note that, since
the sensory data is normalised, x, x

r

, x 0, x⇤ take values in [-1, 1], and
e

r

, e
p

2 [-2, 2]. The confidence has been designed as a normal distribu-
tion over the error, C ⇠ N(µ,�2), with µ = 0 and � = 0.4, so that when the
error is close to zero, the confidence is approximately equal to 1 and
when the error increases (symmetrically towards 2 or -2) the confid-
ence values tend to zero. A threshold c̄ for the confidence is set to 0.6,
corresponding to a deviation of approximately 1�.

Depending on the confidence value, more exploration might be re-
quired. For every new query point, the inverse model produces a new
motor command u

⇤, which can be passed as efferent copy to the for-
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Algorithm 2: Internal models update.
Initialise : 

r

= 0, 
p

= 0

Update :
if C

r

< c̄ then 

r

= 
r

+ 1

if C

p

< c̄ then 

p

= 
p

+ 1

Execute u

⇤

Update forward and inverse models
if 

r

> ̄ or 
p

> ̄ then
Explore and update forward model
Set 

r

= 0 and 

p

= 0

Update inverse model

ward model. After the execution of u

⇤ and after the prediction x

0 is ob-
tained, both the forward and the inverse model are updated with the
new data point. Meanwhile, counters 

r

and 

p

are kept to check how
many times the conditions C

r

> c̄ and C

p

> c̄ are violated. If 
r

or 
p

overstep a predetermined limit, ̄, then more data points are required
to refine the internal models and exploration steps are triggered. The
procedure is summarised in Algorithm 2.

The state predictions provided by the forward models can be used
to support the robot behaviour during imitation by giving the ro-
bot an anticipation of the tracking performance. If both the forward
and inverse models are accurate enough, then the forward model can
represent a considerable support to the imitation behaviour. For this
reason, an important contribution to the overall behaviour perform-
ance is given by the prediction error and by the tracking error (see
Fig. 4.3 for a schematic representation). In the implementation presen-
ted here, these measurements are used to trigger model refinement,
according to the procedure described in Algorithm 2.

4.3 experiments and discussion

The proposed approach to multimodal learning has been demonstrated
on an iCub humanoid robot. The iCub first learns its sensorimotor
representations models while interacting with a piano keyboard enga-
ging vision, touch, proprioception and sound, while executing motor-
babbling (see Fig. 3.2).
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After exploration, a demonstrator shows the robot how to play a
sequence of notes. The task assigned to the robot is to imitate the
demonstrator execution based on the visual trajectory demonstrated.
Touch and sound are fundamental in order to successfully play the
piano keys. The task is multimodal, that is it forces constraints on
different modalities, namely vision, touch and sound. In order to
demonstrate the method including also the proprioception space, a
constraint on proprioception has been added by fixing one degree of
freedom of the arm, so that the robot is forced to execute the imitation
task without actually exploiting one of the arm’s degrees of freedom.
This constraint can also be seen as simulating a faulty joint: the ro-
bot is required to complete the task nonetheless, while its operational
space is reduced.

Experiments show that the robot is able to leverage the multimodal
data acquisition and the self-learned multimodal sensorimotor rep-
resentations to complete the multimodal imitation task. The stacking
method used to build the multimodal matrices benefits multimodal
imitation tasks by allowing requirements defined on different sens-
ory data to be met concurrently.

4.3.1 Experimental setup: data and exploration

A humanoid iCub robot and a MIDI keyboard have been used (see
Fig. 3.2). The exploration data are the same used in the previous
chapter, and shown in Fig. 3.3. Four of the robot’s arm joints have
been used for motor babbling and imitation, namely the shoulder
pitch, roll and yaw, and the elbow. The visual information both of
the robot’s motion and of the teacher demonstrations has been ex-
tracted from feature points found by using the OpenCV optical flow
algorithm on the image frames acquired from the robot’s on-board
2D RGB cameras (with resolution 320⇥ 240 pixel). Representative tra-
jectories are shown in Fig. 4.4. It is worth noting that the experimental
set-up, mostly concentrated on the piano keyboard and the moving
hand, allows to avoid problems caused for example by different por-
tions of arm visible in the image, or moving background. Also, the
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Figure 4.4: Visual trajectories: explored (coloured lines), demonstrated (black
lines). The exploration is based on up-and-down motions, that
correspond to movements of the robot arm aiming for the pi-
ano keys. There is a common starting point for all explored tra-
jectories (close to the labelled ’Start’ point). The demonstrated
trajectory is not necessarily completely contained within the
same ranges of explored visual space. The points marked on the
demonstrated trajectory help visualising the sequence of move-
ments demonstrated.

Figure 4.5: Demonstrating visual trajectories to the iCub robot. The human
teacher and the iCub robot share the same point of view. The
glove wore by the teacher was instrumental for feature tracking,
however alternative tracking methods can be used instead.
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robot and the teacher share the same point of view during the demon-
strated execution (see Fig. 4.5). This is a common assumption, while
alternative solutions could rely on perspective taking (Fischer and
Demiris, 2016). Proprioceptive references (joint angle data) could be
acquired for example from motion capture systems, as in (Schmidts,
Lee and Peer, 2011; Tidemann, Öztürk and Demiris, 2009), or using
more elaborate vision processing (Chang and Demiris, 2015). For the
purpose of demonstrating the effectiveness of the proposed method,
synthetic target trajectories have been used instead. The tactile refer-
ence is also synthetically provided, that is it is not acquired from the
human demonstrator but it is designed as a piece-wise constant ref-
erence. More specifically, the target tactile reference p

⇤ is defined as
p

⇤ = 1 when a key should be hit, and p

⇤ = 0 during transition move-
ments. The sound information collected during the imitation task ex-
ecution is compared with the demonstrator one, so to assess if the
completion of the task was successful.

4.3.2 Multimodal imitation on piano keyboard

The task designed for this experiment is to follow a demonstrated
execution of a sequence of notes on the piano keyboard, exploiting
the trajectory demonstrated on the vision space, while pressing the
piano keys and without using one of the shoulder joints (constrained
to remain fixed in a certain position). Note that the task can present
some difficulties related to the extent to which the robot explored its
sensorimotor system in the first exploration phase. This reflects in the
number of times the robot touched the keyboard, in the extent of the
region of the visual field where positions of the hand were registered,
and, related to this, in the possibility that the demonstrated trajectory
covers parts of the visual field that were not explored. Furthermore,
due to the constraint forced on the proprioceptive space, the opera-
tional space of the robot’s arm is effectively reduced: the robot needs
to solve on-the-fly the imitation task using less degrees of freedom
than the degrees available during the exploration.
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Figure 4.6: Multimodal imitation: results on the vision, touch, propriocep-
tion and sound spaces, using n = 20 (top row - blue coloured
lines) and n = 50 (bottom row - yellow/red coloured lines). Ref-
erence trajectories are depicted with black lines. A constraint on
the shoulder yaw is forced, so that the robot should complete the
imitation while keeping it fixed to a certain position. The tem-
poral profile of the error, evaluated as the Euclidean distance of
each point to the corresponding point in the target trajectory, is
depicted in the right most pictures. The improvement in the per-
formance achieved using more exploration steps can be noted es-
pecially in the vision and proprioception cases. All figures show
the results of 10 repetitions performed on the real robot.

Experimental results show that these issues can be effectively handled
by the proposed method. The search on the multimodal space, rather
than on single modalities, plays a fundamental role. A total of 50 re-
petitions of the experiment have been run on the real robot, where the
iCub robot is required to imitate a demonstrator playing consequen-
tially two notes. The success achieved, that is the successful execution
of the two notes, was 45 over 50 (90%). In the failed attempts the pres-
sure applied in order to play the piano keys was not sufficient, due to
the fact that the tactile data acquired from the robot’s fingertip were
sometimes imprecise.

experimental analysis Fig. 4.6 shows the results of the mul-
timodal imitation task for 10 repetitions of the task performed on the
real robot. It is possible to note that the robot aims at achieving a mul-
timodal target: while following the demonstrated visual trajectory, it
also moves in order to satisfy the touch modality requirement, that is
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actually touching the piano keys, and also trying to avoid moving the
constraint joint.

The demonstration can include any number of keys at different po-
sitions on the keyboard that is contained in the robot’s visual field.
However, since no prior information is assumed, the information on
the sensorimotor representations, the learned models and the data
used to learn them, have a notable impact on the imitation outcome.
The experimental results show that the proposed method allows to
effectively combine previous information to reach target points in the
multimodal space, although a considerable difference can be noted
between the executions obtained after n = 20 or n = 50 exploration prim-
itives. The parameter n indicates the number of exploration primitives
executed, hence the duration of the exploration phase and the number
of sensorimotor samples gathered. The two values (20 and 50) have
been chosen to provide representative behaviours of the imitation task
on the real robot. Ten repetitions have been performed for both cases
on the real robot. Note that the number of touch and sound events in
just 20 primitives is considerably small (in these experiments only 6

touch events were present in the 20 primitives used). Also, the over-
all visual space explored in 20 primitives’ executions is significantly
smaller than the one obtained with 50. These two factors have a visible
influence on the overall imitation performance. This effect is also con-
firmed by the results shown in Fig. 4.7, where the results obtained by
using different amount of exploration data (n = 20 and n = 50), for 10

repetitions performed on the real robot, are reported. It can be noted
that a considerable improvement is achieved by increasing the num-
ber of primitives used from n = 20 to n = 50 especially in the vision
and proprioception space, while the touch space seams instead to be
less influenced. In particular, the movement performed using n = 50

is more precise (see Fig. 4.6). In both cases, nonetheless, it is possible
to note that the most critical moment in the imitation can be identi-
fied around time step 50, when the first key is reached and then the
movement to reach the second key starts. The temporal profile of the
vision error in Fig. 4.6 presents a maximum at this point, also because
of the constraint forced on the proprioception space: note the pick of
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Figure 4.7: Effect of the parameter n on multimodal imitation performance.
On the horizontal axis the multimodal sensory dimensions are
reported, while the mean squared error scores are reported on
the vertical axis.

the proprioception error in correspondence to the pick in the vision
space.

The number of points defining the target trajectories (n
trg

) also
plays an important role in the imitation results. It reflects on the time
taken to complete the imitation task and on the quality of the imita-
tion: the more points are acquired, the more refined is the trajectory
path, the more accurate is the tracking result, the slower the execu-
tion. The imitation obtained with increasing values of n

trg

results in
more accurate outcomes. In order to show the effect of the parameter
n

trg

, experiments have been performed on a visual imitation task.
The original number of points (95 points) of the visual trajectory used
as reference has been interpolated in order to obtain an increment-
ally finer granularity of the trajectory. Results are reported in Fig. 4.8:
note that both the accuracy of the executed trajectories and the execu-
tion time increase significantly as more data points are considered. A
trade-off should then be considered. In the experiments presented in
this section n

trg

= 135 was used.
Another important parameter to analyse is the parameter r, used to

define the width of the range search on columns of S . This parameter
effectively impacts on the number of column vectors used to build
the matrices ˜

S and ˜

A . It can be noted that increasing values of r might
potentially cause higher computational complexity, since ˜

S must be in-
verted to find the weight vector w. However, in practice, the inversion
of ˜

S is always easily computable, as the number of neighbours found
remains limited. Unlike a k-nearest-neighbour search, with the range
search it is possible to choose the maximum distance allowed from
the query points, without the need of a prior ad hoc specification of
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Figure 4.8: Effect of the number of target points on imitation performance.
(a) Trajectories executed by the real robot using target trajectories
defined by different number of points n

trg

. The black line repres-
ents the demonstrated trajectory, while the coloured lines repres-
ent the trajectories executed by the robots. Different colours refer
to different number of points used to define the target trajectory.
(b) Effect of n

trg

on the mean squared error and execution time
(in seconds): the more points used, the smaller the imitation error
(coloured bars), but the larger the execution time (grey bars).

a certain number of neighbours, which in turn could include vectors
that are actually far from the query point. Using the range search, the
number of neighbours varies for every query point. Notably, when
no neighbours are found, this corresponds to a situation in which the
robot has never experienced anything sufficiently similar to the query.
A void search would then correspond to the robot staying still, as no
motor commands could be chosen among the columns of the matrix
A. This behaviour should not be seen as a limitation, instead it reflects
directly the influence of the previous experience on the imitation task.
Therefore, either a larger r is allowed, or more exploration should be
performed. The first case would push the robot to try and combine
the learned sensorimotor representations to reach for the target any-
way. The second case would instead lead the robot to collect more
data from self-exploration and thus refine the internal models. Also,
because the number of neighbours in fact depends on the number of
samples n collected in the exploration phase and the portion of the
multimodal space actually explored, experimental results show that
if r is chosen so that there exist neighbours almost at all times, the
imitation performance does not improve sensibly by increasing r. Fig-
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Figure 4.9: Trajectories executed to perform the imitation task on the visual
space obtained by using a range of values between 0.1 and 0.5
for the range search parameter r. As long as r is chosen so that
there exist neighbours almost at all times, the obtained imitation
performances do not present significant improvements.

Figure 4.10: Effect of the parameter r on multimodal imitation performance.
On the horizontal axis the multimodal sensory dimensions are
reported, while the mean squared error scores are reported on
the vertical axis.

ure 4.9 shows the results obtained by the robot imitating the visual
trajectory only. Note that the performance obtained using a range of
values between 0.1 and 0.5 for the parameter r does not present sig-
nificant changes. The values chosen for this evaluation are so that
the nearest neighbour search is not void: the minimum value used
(r = 0.1) allows to have non-empty matrices ˜

S and ˜

A at all time steps,
while the maximum value used (r = 0.5) makes the search resulting in
the selection of all the columns of S. To evaluate the multimodal imit-
ation on the real robot, three representative values have been chosen,
i.e. r = 0.25, r = 0.3,r = 0.35. Figure 4.10 confirms the previous results:
as long as r is chosen so that there exist neighbours almost at all
times, the obtained imitation performances do not present significant
improvements.
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Table 4.1: Comparison with ANN and LWPR: MSE scores and standard de-
viation obtained on the imitation task. Best results are shown in
bold.

Vision - x coord. Vision - y coord. Touch

ANN 0.0053± 0.0047 0.0116± 0.0064 0.55± 0.24

LWPR 0.0023± 0.0001 0.0087± 0.0022 0.48± 0.33

Proposed 0.00037 ± 0.00004 0.00050 ± 0.00017 0.121 ± 0.054

scalability : Experiments have been carried out using different
constraint setups in order to evaluate the behaviour of the robot on the
imitation task when different constraints are forced on the propriocep-
tion space. Forcing a constant reference on the robot joints simulates
the case of a faulty joint. Results are reported in Fig. 4.11, where four
cases are represented: the first is obtained when no constraints are
forced, the second and third when forcing constraints to one joint at
time (the shoulder pitch q

0

and the shoulder yaw q

2

, respectively),
and the fourth when two joints (both q

0

and q

2

) are forced to remain
fixed. These results show that despite the task becoming increasingly
difficult as more joints are constrained (the tactile space presents in-
creasing shifts in time), the imitation task is successfully completed in
all cases.

comparisons : The proposed method has been compared against
two well-known algorithms that have been broadly used in the frame-
work of model learning in robotics, namely artificial neural networks
(ANN) and locally weighted projection regression (LWPR). The com-
parison has been performed on the behaviours obtained when imitat-
ing the visual trajectory to play two keys of the keyboard while sat-
isfying the tactile constraint (no restrictions are imposed to the arm
joints). In Table 4.1 the average mean squared error (MSE) and the
standard deviation over 10 repetitions of the task using the real ro-
bot have been reported. For these experiments, a network with 10

hidden layers and a LWPR model have been trained to learn the map-
ping between the motor commands and the target space consisting of
the visual coordinates and touch. The results obtained show that the
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Figure 4.11: Comparison between behaviours obtained forcing different con-
straints on the proprioception space. These pictures show that
the imitation task is achieved when no constraints are forced
(first row, purple lines), as well as when forcing constraints to
the shoulder pitch q

0

(second row, yellow lines), to the shoulder
yaw q

2

(third row, orange lines), and to both (fourth row, blue
lines). Proprioception trajectories present significant changes.
Although the results on the tactile space present increasing
delays when more joints are constrained, the imitation task is
fulfilled in all cases.
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proposed method achieves the smallest imitation errors on the target
space.

limitations : One issue that can rise at different level in the pro-
posed architecture is how to deal with lack of information or incom-
plete data. The hypothesis considered in the proposed implementa-
tion is that the sampling times for all the different sensors are syn-
chronised, that is all the information is gathered at a predefined rate
(i.e. approximately 5 Hz), which allows to align the data collected.
Concerning the implementation of the proposed inverse model used
to achieve imitation, stacking unimodal data allows to include only
the desired modality references while letting others free. This type
of solution thus directly includes the possibility of dealing with in-
complete information in terms of number of modalities considered
for imitation. Finally, the problem of making predictions with miss-
ing data points is a well-known problem in many machine learning
applications. A solution to tackle this issue is presented in the next
Chapter.

4.4 summary

In this chapter, a method to endow robots with multimodal learning
skills enabling imitation learning has been presented. The proposed
method is based on multimodal sensorimotor representations which
are learned during exploratory actions, and it has been shown to be
effective in performing on-the-fly multimodal imitation by combin-
ing the knowledge acquired during the multimodal learning steps.
The proposed approach to multimodal imitation benefits from learn-
ing sensorimotor representations using data from multiple sensors
from self-exploration. The multimodal sensory matrices and the range
search on a multimodal space are key aspects of the proposed method
to achieve successful imitation of multimodal tasks. The formulation
of the proposed method is general and allows to accommodate differ-
ent modalities. Although the experiments presented have been con-
ducted on an iCub humanoid robot, since no prior knowledge is as-
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sumed on the kinematic and dynamic models of the robot, the pro-
posed method can be applied to different robotic platforms. The pro-
posed method is scalable and accurate. It has been shown that it out-
performs neural networks and the LWPR method on the multimodal
imitation task, achieving more accurate tracking performance. Over-
all, it has been shown how the use of multiple modalities can be used
effectively in an imitation learning scenario, where a robot can learn
multimodal sensorimotor representations.

The structure of the proposed method is simple and effective, how-
ever retaining large amounts of experience and learning flexible and
generalizable multimodal representations may be difficult with the ri-
gid matrix formulation. Also, the method proposed in this Chapter
allows to achieve accurate multimodal imitation, but all the reference
trajectories should be provided. However, typical scenarios would
only allow a robot to access visual clues, for example when observing
other agents’ motions. The method proposed in this Chapter does not
provide a way to directly reconstruct missing information from the
one observed. These issues are resolved by the architecture presented
in the next chapter, which allows to overcome the mentioned prob-
lems, and to learn more flexible and complex multimodal representa-
tions from self-exploration.

contributions The main contributions illustrated in this chapter
have been published in:

• M. Zambelli and Y. Demiris, “Online Multimodal Ensemble Learning
using Self-learnt Sensorimotor Representations”, IEEE Transactions on
Cognitive and Developmental Systems, vol. 9(2), pp.113-126, 2016.

• M. Zambelli and Y. Demiris, “Multimodal Imitation using Self-learned
Sensorimotor Representations”, IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016.
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CHAPTER 5

Using Self-learned Internal Models to Predict
and Imitate Others’ Sensorimotor States

This chapter addresses the third research question:

Can multimodal self-learned internal models be used by a
robot to predict and imitate others’ actions, and how?

An introduction on the use of self-learned models to predict and im-
itate others’ actions and the relevant background are summarised in
Section 5.1. The solution proposed to implement a self-learned model
able to reconstruct missing data and generate actions is then illus-
trated (Section 5.2). This part builds up from the principles underling
the forward model presented in Chapter 3, and the multimodal in-
verse model presented in Chapter 4.

The architecture presented in this Chapter allows to overcome is-
sues related to the rigid model presented in the previous chapter, by
learning flexible and complex multimodal representations as probabil-
ity distributions rather than storing directly sensorimotor information.
The learned distributions allow to generalize the experience accumu-
lated through the robot’s self-exploration. The architecture proposed
in this Chapter is also a versatile model that allows to achieve the
functions of both a forward and an inverse model.

91
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5.1 predict others using self-learned internal models

One of the challenges that need to be addressed to allow robots to
be a significant part of our everyday life is to improve the quality of
their interactions with human users. Studies have revealed that the
ability of humans to make predictions is not only essential for motor
control, but it is also fundamental for high level cognitive functions
including action recognition, understanding, imitation, mental replay,
and social cognition (Wolpert and Flanagan, 2001). Robots thus need
to develop a learning system which enables not only motor control
and prediction of their own body, but also fosters the understanding
of others’ actions.

People can predict both themselves and others by using internal
models (Blakemore, Decety and Albert, 2001). More interestingly, people
predict others’ behaviours using the same internal models that they
use for predicting their own behaviour, through a process called sim-
ulation (Gallese and Goldman, 1998; Cruz and Gordon, 2003; Hesslow,
2012). Assuming existing similarities between agents, the internal model
used to predict one’s own actions can be instrumental to predict the
(visual) consequences of someone else’s actions (Pickering and Clark,
2014).

The problem of understanding trajectories of motion have been ad-
dressed in different ways, either by predicting actions of the agent (e.g.
learning a forward model), or by predicting actions of others (e.g. hu-
man trajectories from images or videos) (Shotton et al., 2013; Kuderer
et al., 2012; Hu et al., 2015). However, the combination and synergy of
these two approaches are rarely considered in the literature.

deep architecture to learn internal models The main
goal of this chapter is to develop an architecture to learn a model
of the self that can be applied to interpret (e.g. predict and imitate)
actions of others. The architecture presented in this chapter is based
on a self-learned model, which is built, trained and updated only ac-
cording to the experience accumulated by the agent. One of the major
obstacles in using self-learned internal models to predict motion of
others is the intrinsic difference between the available data. While the
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Figure 5.1: Predicting and imitating sensory trajectories using self-learned
models. Internal models can be used to make predictions not
only on actions performed by the agent itself, but also on actions
observed from other agents. However, only visual information is
available when observing someone else’s motion. A multimodal
deep learning approach is proposed to tackle this challenge by
reconstructing the missing modalities to make predictions. The
reconstructed motor information can also be used to directly con-
trol the robot, thus realizing, for example, imitation tasks.

model is learned and exploited by the agent using a whole range of
available sensory modalities, only the visual information is available
when observing someone else’s motion. This challenge is overcome by
implementing a model which is able to retrieve the missing sensory
information and motor commands needed for simulation and predic-
tion of others’ motion. In this Chapter, a multimodal deep variational
autoencoder is introduced. This model can be used in a versatile man-
ner to (1) reconstruct missing sensory modalities, (2) predict the sen-
sorimotor state of self and others, and (3) imitate the observed agent.
This architecture represents a unified representation of the traditional
forward and inverse models, leveraging their synergy to implement
functions that are fundamental for autonomous systems. An overview
of the proposed learning architecture is shown in Fig. 5.2.

A relevant study for the problem addressed in this chapter was
presented in (Ngiam et al., 2011). There, a multimodal deep learning
approach was proposed to cope with data of different types, such as
visual and audio data, with cross-modal learning and reconstruction.
The deep network that will be illustrated in this chapter, takes inspir-
ation from the principles presented in (Ngiam et al., 2011) to deal
with multimodal data, such as the strategy to train the network with
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Figure 5.2: Overview of the learning architecture. The self-learned deep
model can be used to (1) reconstruct missing data (black), (2)
make predictions (blue), (3) control the robot’s motion (green).
When observing others, only the visual information is available
(v⇤). The model learned can reconstruct the multimodal state of
the robot, including the proprioceptive (qr), visual (vr), tactile (pr),
acoustic (sr) data and the motor commands (ur). The reconstruc-
ted data can then be fed back to the network to make predictions
(v 0). The reconstructed motor commands can be issued directly to
the robot’s motor joints to perform, for example, imitation tasks.

partial unimodal data to achieve cross-modal learning and reconstruc-
tion. However, while in (Ngiam et al., 2011) only the visual and audio
data were considered, in this thesis the implementation has been ex-
panded to accommodate several different sensory modalities. In par-
ticular, the network is applied to sensorimotor modelling on physical
robots, thus considering a much more complex system, in the context
of developmental learning. Deep learning architectures have been ex-
ploited in the context of developmental learning to learn tasks from
multiple perceptual modalities (namely proprioception, vision, audi-
tion) (Droniou, Ivaldi and Sigaud, 2015), or to predict others’ goal
through predictive learning (Baraglia et al., 2015; Copete, Nagai and
Asada, 2016). Compared to those studies, the architecture presented
in this chapter not only learns the cross-modal relationships between
sensory modalities, but also retrieves missing information and uses
the reconstructed data to both predict and control motion. Also, con-
trary to the mentioned works, in this thesis a fully autonomous ex-
ploration is used by a robot to acquire its own sensorimotor data.
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Finally, the variational autoencoder that is proposed here can be seen
as a more general and versatile model for robots not only to predict
self and others’ motion, but also to perform imitation tasks. It also
presents one major advantage compared to the models presented in
(Droniou, Ivaldi and Sigaud, 2015; Baraglia et al., 2015; Copete, Nagai
and Asada, 2016), namely the ability to capture the redundancy of the
robotic system.

5.2 multimodal deep variational autoencoder model

The architecture introduced in this chapter relies on a recent variant
of autoencoder, named variational autoencoder (Kingma and Welling,
2013; Doersch, 2016).

Variational autoencoders (Kingma and Welling, 2013) have recently
emerged as one of the most popular approaches for unsupervised
learning of complex distributions of data. One of their key character-
istics is that they can model the probability distribution of the recon-
structed data and its distribution in the latent space. The use of vari-
ational autoencoders provides two main features: 1) like traditional
(de-noising) autoencoders, the variational autoencoders is able to re-
construct missing parts of only partially observed data; 2) in contrast
with traditional autoencoders, variational autoencoders are generat-
ive models that reconstruct the probability distribution of the data.
These two features have been used to reconstruct the probability dis-
tribution of non-observed modalities (e.g. joint positions and velocit-
ies) given observed modalities (e.g. visual position of the end-effector).
Using probability distributions is particularly important in the case of
robotics applications, as it allows the system to take into account the
redundancy of the system. Typically, several joint positions lead to the
same end-effector position, and such relationships can be captured by
the learned conditional probability distribution.

The main concept of a traditional autoencoder is to reconstruct a
signal y provided as input by sequentially encoding and decoding it,
in order to re-generate the initial signal. The encoding-decoding pro-
cedure presents several interesting properties. First, this operation can
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be robust to noise or corruption in the data. Typically, if the input sig-
nal is noisy or corrupted (e.g. with some part of the data missing), the
autoencoder can retrieve the noiseless (or original) data. Second, the
encoded representation of the input signal (noted z) is often of lower
dimensionality. Thanks to this property, an autoencoder is a prom-
ising approach to reduce the dimensionality of datasets by projecting
it into a latent space.

Variational autoencoders extend this concept to the domain of prob-
abilistic distributions. In this case, the encoder determines the prob-
ability distribution p(z|y) which represents the latent distribution as-
sociated with input signal. Similarly to traditional autoencoders, this
latent representation can be used to reconstruct (decode) the signal by
defining the probability distribution p(y|z), which captures the poten-
tial values of the signal y given z. The encoder and decoder are most
of the time defined using neural networks that learn the unknown
(and intractable) functions z = encoder(y) and y = decoder(z). More
details can be found in (Kingma and Welling, 2013).

In this thesis, the concept of variational autoencoders is applied to
multimodal sensorimotor data. A multimodal deep learning architec-
ture has been proposed in (Ngiam et al., 2011), based on the use of
Restricted Boltzmann Machines to learn a shared representation of
the different modalities. The main difference that characterizes the
multimodal deep learning approach compared to a standard deep net-
work is that sub-networks can be used to pre-process each modality
and then learning cross-modal relations through the shared hidden
layers (see Fig. 5.3).

This type of variational model presents various advantages in a ro-
botic framework. First, the ability of variational autoencoders to learn
the distribution of a dataset in latent space is a powerful feature to
generate a shared representation of the different modalities. For in-
stance, the latent representation can be used to learn relationships and
dependencies present in the sensorimotor experience of robots. This
can be used to generate new artificial perception by sampling from
the latent distribution in the latent space. Second, this shared latent
representation also allows the robot to reconstruct missing modalities.
For example, if data from a sensor is unavailable, this model can be
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Figure 5.3: Multimodal Deep Variational Autoencoder. The input (Y) is com-
posed by different sensorimotor data (Y

A

, Y
B

, Y
C

), including mul-
tiple sensory modalities and motor commands. Each modality is
encoded and decoded by separate autoencoders (shown with dif-
ferent colours). A shared layer (in grey, in the centre) allows to
learn a shared representation among different dimensions. This
architecture is trained with complete as well as partial data. Each
uni-modal autoencoder can be trained separately, allowing for
single modality learning. The cross-modality representations are
also learned through the shared layer. The output of the net-
work consists of the reconstruction of each different data part
(Yr

A

, Yr

B

, Yr

C

), thus composing the reconstructed data (Yr)
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used to model the probability distribution of the data that should be
observed from this sensor conditioned on the data from other sensors
of the robot. Finally, their ability to predict probability distributions
is fundamental to take into account the redundancy of complex ro-
bots, such as the iCub humanoid robot used in this study. With this
property, the model can capture the fact that for a given end-effector
position, several joint configurations are possible. These three prop-
erties are combined into a single framework for the prediction and
imitation of other agents, based only on the experience of the robot.

5.2.1 Variational autoencoder formalism

Variational autoencoders are generative models, which combine ideas
from deep learning with statistical inference (Kingma and Welling,
2013), and can be used to learn a low dimensional representation
z of high dimensional data y. In contrast to standard autoencoders,
y and z are random variables. The encoder is an approximation to
the intractable true posterior p

✓

(z|y) implemented as a multilayer per-
ceptrons, and is represented by the model q

�

(z|y): given a data point
y the encoder produces a distribution (e.g. a Gaussian) over the pos-
sible values of the latent variable z from which the data point y could
have been generated. Analogously, the decoder is implemented as a
multilayer neural network, and is represented by the model p

✓

(y|z):
given a latent variable z the decoder produces a distribution over the
possible corresponding values of y. The variational approximate pos-
terior is chosen to be a multivariate Gaussian with a diagonal covari-
ance structure: q

�

(z|y
i

) = N(z;µ
i

,�2

i

I) where the mean and standard
deviation of the approximate posterior, µ

i

and �
i

, are outputs of the
encoding multilayer perceptrons, i.e. nonlinear functions of data point
y
i

and the variational parameters �. Data are then sampled from the
posterior z

i,l ⇠ q

�

(z|y
i

) using z
i,l = µ

i

+�
i

� ✏
l

, where ✏
l

⇠ N(0, I), and �

indicating the element-wise product.
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loss function The loss function used to train this model is defined
as follows:

L(✓,�,y
i

) = -D

KL

�
q

�

(z|y
i

)||p
✓

(z)
�
+

1

L

LX

l=1

log
�
p

✓

(y
i

|z
i,l)

�
(5.1)

where D

KL

is the Kullback-Leibler (KL) divergence, which can be com-
puted and differentiated without estimation (see (Kilner, Friston and
Frith, 2007) for full details). This first term on the right-hand side of
equation (5.1) represents the latent loss, that is the cost associated to
the encoding part building the latent space. The second term on the
right-hand side of equation (5.1) represents instead the reconstruction
loss, that is the cost associated to the decoding part, responsible of re-
constructing the input data through sampling from the latent space.

The output distributions have been set as normal distributions, hence
the term in the loss function can be written in closed form:

logp(y|z) = logN(y⇤;µ,�2I), (5.2)

where y⇤ represents the complete data (i.e. with all the modalities be-
ing visible, see (1) in Table 5.1), and � and µ are the outputs of the
neural network that define the normal distribution of the reconstruc-
ted data.

In order to put more emphasis on modalities with lower dimension-
ality, independent loss values for each modality have been computed,
and the dimensionality of each modality has been used to weight each
corresponding loss value. This is achieved by creating independent
variational networks for each modality and corresponding independ-
ent reconstruction loss scores. Each cost is then weighted according to
the number of dimensions of the corresponding modality. Finally, the
sum of the costs is optimized. This approach has an interesting effect,
that is it emphasizes the contribution of the worst modalities. This
is due to the fact that costs are log-likelihoods, and hence summing
the costs corresponds to multiplying the likelihoods. This approach
in turn helps the network to learn even the most difficult parts of the
state space, such as discrete or binary dimensions of the sensory space
(see tactile example in Section 5.3).
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5.2.2 Training the architecture

The training dataset contains multimodal sensorimotor data collected
during a self-exploration phase (more details in Section 5.3.1). Data
can be captured from different sensors of the robot, such as the pos-
ition of the hand in the robot’s visual space, tactile and sound data,
and proprioception (joint positions) from the motor encoders. In par-
ticular, the position of the hand in the visual space is extracted by
considering the centre point of a tracking window around the mov-
ing hand. All data are then normalized to take values in the range
[-1, 1].

Time series data from the self-exploration dataset recorded, and
also used in the previous chapters, have been shown in Fig. 3.3. De-
note by u

t

the vector of velocity commands issued at time t, q
t

the
vector of joints position (proprioception) at time t, v

t

the vector of the
visual position at time t, p

t

the tactile signal at time t and s
t

the sound
signal at time t. Note that other modalities can also be included. The
input of the architecture is a multi-dimensional vector

y
t

= [q
t

, q
t-1

, v
t

, v
t-1

, p
t

, p
t-1

, s
t

, s
t-1

, v
t

, v
t-1

]. (5.3)

The input vector contains both data from time t and t- 1 to capture
the temporal relationship between the different modalities.

The network is trained on both complete and partial data of the
training dataset collected during the robot self-exploration. This data-
set is augmented with samples that require the network to reconstruct
the missing modalities given only one of them. This is realized by du-
plicating the dataset, while using a flag value (namely the arbitrary
value -2, which is outside the range of any sensorimotor signal after
normalization) to denote the non-observable modalities. The training
dataset follows the structure in Table 5.1 to enable the network to per-
form predictions and reconstruction in multiple conditions of missing
information. The different conditions will be recalled and referred to
in the following paragraphs.
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Table 5.1: Training dataset structure.

(1) qt qt-1 vt vt-1 pt pt-1 st st-1 ut ut-1

(2) - q
t-1

- v
t-1

- p
t-1

- s
t-1

- u
t-1

(3) - q
t-1

v
t

v
t-1

- - - - - -
(4) - - v

t

v
t-1

- - - - - -

5.2.3 The different usages of the architecture

One of the major assets of the proposed model is its versatility. More
specifically the possibility of using the same learned model to achieve
different goals. This section illustrates how the learned multimodal
deep variational autoencoder can be deployed to achieve three differ-
ent functions:

1. reconstructing missing data;

2. predicting both the robot and others’ sensorimotor state;

3. controlling the robot in an online control loop.

In these three cases, the training, structure, and parameters of the
neural network remain the same. Details for each of the aforemen-
tioned functions that the model can achieve are given in the remaining
part of the section.

reconstructing missing data This first capability of the pro-
posed architecture is relatively straightforward as it is the main pur-
pose of de-noising autoencoders. For this application, the missing
modalities of the input fed to the network are set to -2 (as explained
in Section 5.2.2), while the network outputs the probability distribu-
tion of the reconstructed inputs.

This capability of the network is fundamental to address the prob-
lem of predicting others’ motion from only visual information by re-
lying on internal models of the self. In such an application, an agent
learns internal representations of its sensorimotor space, in particu-
lar relating motor actions with multimodal sensory effects. However,
when observing someone else performing an action, only the visual
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information is available. The agent, which relies on full information
from all its senses (i.e. sensors), must then be able to retrieve the miss-
ing information and interpret the observed motion in relation with
its own internal representations. The architecture proposed in this
chapter allows robots to achieve this by reconstructing the missing
sensorimotor information (i.e. joint configuration, touch, sound and
motor information) from observations of the visual input (see (4) in
Table 5.1).

predicting both the robot and others’ sensorimotor state

People can predict others’ behaviours using the same forward mod-
els that they use for predicting their own behaviour, through a pro-
cess called simulation (Gallese and Goldman, 1998; Cruz and Gordon,
2003; Hesslow, 2012). This can be applied to robots, to enable better
and smoother interactions. An underlying assumption is that there ex-
ist similarities between agents and their actions. If this assumption is
true, then the model learned to predict the consequences of the robot’s
own actions becomes the resource to predict the (visual) consequences
of another’s action.

There exists a number of challenges to achieve the goal of having
robots predict a human action by using their own internal models.
The first one concerns the correspondence problem that might exist
between the morphological and kinematic structures of a robot and a
human user. Various techniques have been proposed to tackle this is-
sue in contexts such as Learning by Demonstration (Argall et al., 2009;
Billard et al., 2008; Atkeson and Schaal, 1997). To resolve this issue,
the results obtained in (Chang and Demiris, 2015; Chang et al., 2016)
on finding kinematic structure correspondences can be leveraged. An-
other challenge is the difference in the spatial perspective that the
robot acquires of its own and of others’ actions. A solution to solve
this problem has been proposed in (Fischer and Demiris, 2016). In this
work, it is assumed that agents share the same perspective (the same
assumption is generally made in similar applications, (Baraglia et al.,
2015; Copete, Nagai and Asada, 2016)), but the method developed in
(Fischer and Demiris, 2016) can be applied to generalize this aspect.
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Figure 5.4: Using the learned neural network to make predictions. The re-
constructed state (qt, vt, ..., ut) can be fed back as input of the
network to predict the sensorimotor state of the agent at the next
step (qt+1, vt+1, ..., ut+1). This is realised by exploiting two consec-
utive times the configuration (2) presented in Table 5.1.

Finally, the difference between the data that the agent has used to
learn its sensorimotor representations, and the data that is available
to the agent when observing others, is the last major challenge that
needs to be addressed in order to achieve the goal. More specific-
ally, while data from all sensory modalities is available to the agent
when learning the models, only the visual input, from an ego-centric
perspective is available when observing others. This implies that only
data referring to the visual input are available in y (see (4) in Table 5.1).

In this respect, the reconstruction of missing modalities described
above plays a key role. The neural network can act as a forward model
to predict the next sensorimotor state yt+1 from the current state of the
agent yt (see line (2) in Table 5.1). However, when observing someone
else, the current state of the agent is not fully available, as only vision
information can be observed. To address this issue, the robot employs
the reconstruction abilities of its model (described above) to retrieve
the missing parts of the agent’s state. This reconstructed state yr

t can
then be fed back to the input of the network to predict the current
sensorimotor state of the agent at the next step yt. In summary, this
capability enables the network to first reconstruct the current sensor-
imotor perceptions of the observed agent and then to use these re-
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constructed perceptions to predict the next state of the agent. This
approach is illustrated in Figure 5.4.

A possible different solution to predict sensorimotor states is to use
the ability of the network to reconstruct missing modalities and then
use them as input (efferent copy) to the learned forward model presen-
ted in Chapter 3. Hence, the visual prediction of another agent’s mo-
tion, denoted by v 0, can be written as v 0 = f(g(v⇤)), where the mapping
f is the learned forward model (e.g. the ensemble of predictor presen-
ted in Chapter 3), and the mapping g is the multimodal variational
autoencoder. More specifically, g can reconstruct the complete sen-
sorimotor state (yr) from just the visual information observed from
someone else’s motion (v⇤): yr = g(v⇤). The reconstructed signal can
then be used by f: v 0 = f(yr).

controlling the robot in an online control loop In
addition to the abilities of the architecture to reconstruct and predict
the perceptions of other agents, the learned model can be used as a
controller for the robot. In particular, the model can be placed in a
control loop to regulate the sensory state of the robot given a target
state. This approach can be used for instance in imitation learning
scenarios, where the robot imitates a target trajectory. In the scenario
presented above, the robot observes someone else’s visual trajectory
and use the learned model to replicate such trajectory.

The control loop is depicted in Fig. 5.5. Notably, the joint and visual
configurations (qt-1, vt-1) of the robot are fed back to the network in
order to provide the correct current state at each time. This prevents
the network from drifting during the online cycles of the control loop,
due to the dependencies between different input modalities. For ex-
ample, areas of the sensory space that lie far from the training space
have increased uncertainty. This condition is made more severe by
the multimodal nature of the data, which come independently from
diverse sensors. The feedback loop implemented to provide the net-
work with the real current data from the robot helps preventing the
accumulation of errors in different dimensions of the sensorimotor
state.
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Figure 5.5: Using the learned neural network in an online control loop. The
current joint and visual configuration (qt-1, vt-1) of the robot is
fed back to the network at each time step in order to close the
control loop. The network then uses the current robot configura-
tion and the target visual position observed from other agents to
reconstruct missing data, in particular the motor commands (ut),
which is then used to control the robot motion. This is realised
by exploiting the configuration (3) presented in Table 5.1.

It is also important to emphasize that using the learned network
as a controller for the robot is not a trivial application, since the net-
work itself represents a model of the robotic system. The ability of the
network to produce motor commands is then key to achieve a con-
troller behaviour, but this is not sufficient to implement an effective
controller. It is important to provide the network with all the sens-
ory information that can help the model to learn the kinematics and
dynamics of the system, in particular the sensory states at two con-
secutive time steps. This is key for the network to build meaningful
representations of the robot kinematics and dynamics, and in turn to
generate sensible motor commands.

5.3 experiments and discussion

5.3.1 Experimental setup

The proposed approach has been demonstrated using a humanoid
iCub robot. The architecture is trained using data collected from the
robot through experience, by performing pseudo-random self-exploratory
movements (i.e. motor babbling). Similarly to the experiments illus-
trated in the previous chapters, in the scenario considered in these
experiments, the robot is interacting with a MIDI keyboard (Fig. 3.2).
Then, the robot uses the learned architecture to (1) reconstruct miss-
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ing sensory modalities, (2) predict the sensorimotor state of self and
other, and (3) control itself to imitate the observed agent.

Four joints of one of the robot’s arms (q
0

, ...,q
3

) are used during mo-
tor babbling. Visual information encoding the position of the hand
in the 2D visual field of the robot is acquired from the robot’s eye
cameras, with coordinates x

R

,y
R

and x

L

,y
L

for the right and left eye,
respectively. A binary one-dimensional tactile signal is acquired from
the robot’s artificial skin, which consists of a network of taxels (“tact-
ile pixels”). Sound data is also acquired from the MIDI keyboard, in
the form of a one-dimensional vector containing the information re-
lated to the key played. The commands sent to the robot’s motors
(u

0

, ...,u
3

) to perform autonomous self-exploration (motor babbling)
are velocity references, defined for each joint j as u

j

(t) = ↵

j

sin(2⇡!t),

where the amplitudes ↵
j

are sampled for each joint at each cycle from
a uniform distribution U(-ū, ū), and the frequency ! is fixed so that
each cycle starts and terminates at zero (i.e. null velocity). No prior
knowledge is assumed on the robot’s kinematic or dynamic structure.
The choice of using velocity commands aims to keep this prior know-
ledge to a minimum by avoiding to rely on the inverse kinematic of
the robot. However, the proposed method can accommodate other
implementation choices, such as position or torque control. Normal-
ization is applied to all data to obtain signals in the range [-1, 1] (see
Figure 3.3).

The input fed to the network is a 28-dimensional vector, includ-
ing two four-dimensional joint position vectors (qt, qt-1), two four-
dimensional visual position vectors (vt, vt-1), two one-dimensional tact-
ile vectors (pt, pt-1), two one-dimensional sound vectors (st, st-1), and
two four-dimensional motor commands vectors (ut, ut-1).

Extensive validation tests of the proposed method have been per-
formed. Three different datasets have been used: (1) test data from
the robot self-exploration, (2) data from a RGB-D camera of a human
playing a piano keyboard, and (3) data from a RGB-D camera of the
Imperial-PRL KSC Dataset (data used in (Chang and Demiris, 2015;
Chang et al., 2016) to validate kinematic structure correspondences
methods). Finally, to demonstrate the proposed method in practice, it
is shown that the iCub robot is able to leverage its capability of pre-
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dicting another agent’s actions and to plan its own actions to imitate
a human on the piano keyboard.

5.3.2 Architecture structure

Tensorflow (Abadi et al., 2015) has been used for the implementation
of the multimodal deep variational autoencoder. The network imple-
mented consists of five unimodal sub-networks, for the proprioceptive
(joint positions), visual, tactile, sound and motor modalities, respect-
ively. The encoders of each unimodal sub-network consist of two lay-
ers, while the decoders consist of three layers. For the proprioception,
visual and motor networks, the two encoder layers consist of 40 and
20 units, respectively, and the three decoder layers consist of 40, 8 and
8 units. For the tactile and sound networks, the two encoder layers
consist of 10 and 5 units, respectively, and the three decoder layers
consist of 10, 2 and 2 units. The difference in the number of units is
to take into account that tactile and sound data are two-dimensional
vectors, while the other modalities consist of eight-dimensional vec-
tors. The outputs of all the unimodal encoders are concatenated to
feed into the shared network, which consists of a two-layer encoder
with 100 and 28 units, and a two-layer decoder with 100 and 70 units,
respectively.

A comparison among different structures of Multimodal Deep Vari-
ational Autoencoders (MDVAE) has been carried out to evaluate al-
ternatives. Parameters of the different structures tested are reported
in Table 5.2, and results are shown in Fig. 5.6. This figure shows the
mean squared error scores obtained on each sensorimotor modality
for each structure. Each colour corresponds to one of the sensorimotor
modalities, with darker tones corresponding to the results obtained
when reconstructing with complete data available, and lighter tones
corresponding to the results obtained when reconstructing with only
visual information available. Note that no variation is registered for
the visual data, since this information is available in both tests. Note
also that the lowest accuracy is obtained for the discrete tactile and
sound data: not only the absolute error scores obtained in the two
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Figure 5.6: Architecture structures comparison. Different structures are com-
pared in terms of mean squared error. Each colour corresponds
to one of the sensorimotor modalities: q - joint positions (blue),
v - visual positions (brown), p - touch (yellow), s - sound (pink),
u - motor commands (green). Darker tones correspond to the
results obtained when reconstructing with complete data avail-
able, while lighter tones correspond to the results obtained when
reconstructing with only visual information available (note that
no variation is rightly registered for the visual data). The first
structure MDVAE 1 allows to achieve the best overall behaviour
among all the modalities, and particularly on the discrete tactile
and sound ones. On the contrary, the worst overall performance
is obtained using the shallower and smaller network MDVAE 5.
All parameters are specified in Table 5.2.

tests is greater than that of the other modalities, but also the differ-
ence between the scores obtained in the two experiments is signific-
antly bigger. This is due to the fact that these data are considerably
more difficult to infer when only visual information is provided. The
quality of the MDVAEs can be evaluated not only in terms of absolute
mean squared error scores, but also noting the difference between the
reconstruction results obtained when complete data are provided and
when only visual information is given. The structure described above
corresponds to the MDVAE 1, which is shown to achieve the best
overall performance among all the modalities, and particularly on the
discrete tactile and sound ones. The chosen structure presents the best
behaviour not only in terms of absolute error scores but also in terms
of such relative error score.
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Table 5.2: Comparison of different structures of the Multimodal Deep Vari-
ational Autoencoder (MDVAE). The number of units for each layer
is reported in square brackets. Shallow layers are represented by
empty brackets. Details for each modality network and for the
shared network are given. The architecture used in the following
experiments is MDVAE 1. MDVAE 4 and 5 are shallow networks
consisting of the shared network only.

q v p s u shared

MDVAE 1

Enc [40,20] [40,20] [10,5] [10,5] [40,10] [100,28]
Dec [40,8,8] [40,8,8] [10,2,2] [10,2,2] [40,8,8] [100,70]

MDVAE 2

Enc [20,10] [20,10] [5,3] [5,3] [20,10] [50,28]
Dec [20,8,8] [20,8,8] [5,2,2] [5,2,2] [20,8,8] [50,36]

MDVAE 3

Enc [40] [40] [10] [10] [40] [100,28]
Dec [8,8] [8,8] [2,2] [2,2] [8,8] [100,140]

MDVAE 4

Enc [] [] [] [] [] [70,28]
Dec [] [] [] [] [] [70]

MDVAE 5

Enc [] [] [] [] [] [50,28]
Dec [] [] [] [] [] [50]

5.3.3 Reconstruction of sensorimotor data

The multimodal deep variational autoencoder is first trained using
data points explored during motor babbling. The dataset collected
during babbling is split into a training dataset and a validation data-
set. As described in Section 5.2, the network is trained on both com-
plete and partial data of the training set.

In order to evaluate the reconstruction ability of the network, it is
first assessed whether the encoding and decoding of the variational
autoencoder manages to retrieve complete input data (when all the
modalities are present). Then the model is validated on the recon-
struction of missing modalities, using only the visual information as
input.

The experiments conducted showed that the learned network achieves
considerable results in terms of reconstruction and beyond that in
terms of capturing the complexity of the system. The network is able
to provide an estimate of the input reconstructed even when the ma-
jority of the modality dimensions are missing. Importantly, the model
is also able to provide a measure of the uncertainty due, for example,
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Figure 5.7: Reconstruction results on joints’ positions, motor commands,
visual positions, touch and sound, given complete and partial
input data (blue and orange lines, respectively). Reconstruction
results on the joint and motor spaces display the effect of the
redundancy of the robot’s arm: the same visual position can be
reconstructed using diverse configurations, and applying diverse
motor commands. Reconstruction errors occur simultaneously on
different degrees of freedom, according to the robot’s kinematic
structure. The redundancy effect is particularly evident for the
second and third joints (q

1

,q
2

). A representation of the degrees
of freedom of the iCub arm is depicted in the lower-right picture.
When only visual information is provided, reconstructing the dis-
crete tactile and sound data is more difficult, thus the uncertainty
of these reconstructed signals is higher compared to the results
obtained when complete information is provided.
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to the redundancy of the system. Results of the reconstruction ob-
tained using the multimodal variational autoencoder are shown in
Fig. 5.7. This figure shows the reconstruction results on the joints, mo-
tor, tactile, sound and visual spaces, obtained with both complete and
partial input data. It is possible to note that while the reconstruction
of the visual signals is very accurate, the reconstruction of the joints’
positions and of the motor commands presents a peculiar behaviour.
In particular, reconstruction errors occur simultaneously for diverse
degrees of freedom. A closer analysis of these results shows that the
joints where the reconstruction errors are simultaneous are related
to the kinematic structure of the robot. The results shown in Fig. 5.7
demonstrate how this redundancy is captured by the multimodal vari-
ational autoencoder, thus demonstrating the power of this type of net-
work on such difficult tasks. More specifically, the multimodal vari-
ational autoencoder allows to learn the general sensorimotor struc-
ture underlying the robot’s movements rather than single trajectories
or single motion sequences. In other words, a robot learns that there
can be diverse configurations to achieve a target (for example a visual
target). For instance, it can be seen that for q

1

and q

2

the variance
of the reconstruction is particularly large. This comes from the fact
that several joint configurations can explain the visual information
provided to the architecture. Note that the true data to be reconstruc-
ted remains most of the time within the confidence range of the re-
construction. This phenomenon can also be interpreted as the ability
of the network to capture the overall complexity of the robotic system,
in particular the redundancy of its forward kinematics. The data used
for this experiment belongs to the dataset collected from the robot
self-exploration phase, but have not been used during the training of
the model. It can be observed that the reconstruction obtained with
partial data is very accurate. These results show that the network is
able to correctly retrieve missing information, reconstructing them as
accurately as when complete data is available. Note that although the
number of dimensions to be reconstructed is relatively high compared
with the number of available modalities, accurate results are still ob-
tained.
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Table 5.3: Mean squared error scores for each dimension of the multimodal
reconstructed signal on validation data (babbling data that have
not been used from training the network). The error scores
achieved with partial data are comparable to those obtained when
feeding complete data to the network, showing the ability of the
network to learn cross-relations between the modalities.

q v p s u

Rec. complete data 0.0396 0.0056 0.1818 0.2081 0.0663

Rec. partial data 0.0573 0.0058 0.1847 0.2137 0.0985

The results obtained show another interesting capability of the learned
network, namely the ability of learning a forward kinematics only us-
ing 2D images from the robot’s cameras, while not having direct ac-
cess to the 3D position of the hand in the robot’s operational space.
This allows the system to avoid the use of stereo vision algorithms
(with the related calibration and matching issues), while having the
possibility to rely on the on-board 2D RGB cameras. The successful
reconstruction of the robot joints’ configuration when only visual in-
formation is provided shows the effectiveness of the learned model in
achieving such forward kinematic mappings.

The mean squared errors of the reconstructed sensorimotor signals
on validation data for each modality have been computed to provide
a quantitative account of the network performance. In Table 5.3, the er-
ror scores obtained both when complete and partial data are provided
to the network have been reported. Note that the error scores achieved
with partial data are comparable to those obtained when feeding com-
plete data to the network. This shows that the performance of the net-
work is not degraded significantly when the input data consists only
of partial data (i.e. vision only). This also shows that the network has
successfully learned not only a direct reconstruction of each single
modality but also cross-relations between the modalities and the way
to reconstruct one of them provided only visual data are available.
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5.3.4 Prediction of sensorimotor states of self and others

Using the multimodal deep variational autoencoder trained on data
of the robot itself, the robot is able to make predictions also of others’
motion trajectories in the visual space. When observing others, the
robot only has access to the visual information. The learned model is
then used to retrieve the motor commands (together with the other
missing sensory modalities) that would enable the robot to reproduce
the trajectory observed to perform mental simulation of the observed
action.

First, the proposed architecture has been evaluated using test data
from the robot’s own data collected from motor babbling. Results of
the predictions of the visual trajectories obtained on data explored
during motor babbling are shown in Fig. 5.8. The mean squared pre-
diction error score obtained on this experiment is 0.0083. The data
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Figure 5.8: Prediction results using the learned model to predict the visual
trajectories (with coordinates x

L

,y
L

, x
R

,y
R

) of the robot’s own
motion (a representative part of the trajectories is depicted). Solid
black lines represent the real data (part of the test database),
while blue lines represent the predicted mean and the shaded
light blue areas the predicted variance (uncertainty) of the model.
In each plot, the time steps are represented on the horizontal axis,
while the magnitude (normalised) of each of the four dimensions
of the visual state are represented on the vertical axis.
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Figure 5.9: (a) Kinect data of a human upper-body movements while play-
ing a piano keyboard with one hand. (b) Kinect data from the
Imperial-PRL KSC Dataset. The trajectory of the left hand vPRL

has been used as test dataset.

on which the experiment is carried out is the test database, that is a
part of the data from the robot’s self-exploration which was not used
for training the model. These results show that the network is able to
effectively make accurate predictions by first reconstructing missing
data from visual positions only, and then iterating the process for a
second time in order to achieve the next step prediction.

Then the architecture has been evaluated on data collected from the
observation of other agents. Experiments have been carried out using
two different datasets. The first test dataset consists of movements of
a human playing a piano keyboard, that has been recorded by the
authors using a RGB-D camera (Fig. 5.9a). The second test dataset
is part of the Imperial-PRL KSC Dataset (data used in (Chang and
Demiris, 2015; Chang et al., 2016) to validate kinematic structure cor-
respondences methods). It contains kinect data of a human moving
his hands (represented in Fig. 5.9b). The 3D visual positions of these
two datasets are then translated into 2D data by using two of the three
available dimensions. This corresponds to a coarse approximation of
the projection of the 3D trajectories onto the two eyes’ cameras of the
robot.

While the first dataset is similar to the self-exploration dataset in
terms of scenario and application, the second one is significantly dif-
ferent, involving the free motion of the human arms, which are not
confined within the scope of a keyboard. The first test dataset allows
us to demonstrate that the robot can effectively reconstruct and pre-
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Figure 5.10: Predictions of others’ trajectories. Solid black lines represent the
real data, while blue lines represent the predicted mean and the
shaded light blue areas the predicted variance (uncertainty) of
the prediction model. Prediction of human playing a piano key-
board (left) and prediction of the left hand motion vPRL (right). In
each plot, the time steps are represented on the horizontal axis,
while the magnitude (normalized) of two visual coordinates are
represented on the vertical axis.

dict another agent’s performing a sequence of motions that are similar
to those performed in the motor babbling phase by using the learned
internal models. The second test dataset allows us to demonstrate that
the robot is able to reconstruct and predict others’ motion using the
learned models also when the type of motion is significantly different
from the data acquired by the robot from self-exploration.

Results are shown in Fig. 5.10. In this figure, the results obtained for
the two datasets are reported. More specifically the left graphs show
the prediction performance on the kinect data collected from a human
playing a piano keyboard (see Fig. 5.9a), and the right graphs show
the prediction performance on the kinect data from the Imperial-PRL
dataset (specifically on vPRL, see Fig. 5.9b). The corresponding mean
squared error scores obtained are 0.0258 and 0.0278 (without unit
because of the normalization applied to the data) for the two data-
sets, respectively. Note that these results are one order of magnitude
higher than the scores obtained on data of the robot’s self-exploration.
This result is in line with results on cognitive development in humans
(Wolpert and Flanagan, 2001; Decety and Sommerville, 2003), explain-
ing how the prediction discrepancy between the predicted and the ac-
tual consequences of movements is related to whether the action was
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self-produced or generated by another agent. The results achieved
thus demonstrate that the proposed architecture obtains predictions
of others’ sensorimotor data by only making use of internal models
of self.

5.3.5 Control to imitate other observed agents

The learned model can also be used in a control loop (Fig. 5.5). This
corresponds to using the model as a controller for the robot’s motion.
By deploying the learned model as a controller, it is possible to imple-
ment, for example, imitation tasks, where the robot tracks trajectories
in the sensory space. The learned model is able to reconstruct the
motor commands necessary to achieve reference trajectories. The re-
trieved motor commands can then be issued to the robot’s motors. For
this experiment, two datasets have been used: (1) target trajectories
from motor babbling, and (2) data observed from the human playing
a piano keyboard (dataset used also for predictions in the experiment
presented in the previous paragraph). The first dataset consists of tra-
jectories from the part of the babbling dataset that has not been used
for training the network. This test dataset thus contains data that have
not been seen by the network before, though they are similar to the
data used for training. In particular, the associations between posi-
tions in the sensory space and corresponding values of the velocity
motor commands are similar. The second dataset is more challenging,
particularly because it may contain visual positions that were not con-
tained in the training set, and this can in turn lead to combinations of
the multimodal dimensions of the input that the network was never
presented before. The objective is for the robot to imitate the observed
target trajectories. The target trajectory is used as reference and fed
to the network in place of vt, while the current visual position of the
robot and the current joint configuration of the robot (vt-1 and qt-1)
are fed back to the network. All the other modalities are considered
missing, in particular the motor commands that are produced by the
network online after each new observation.
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Figure 5.11: Results of the imitation task on robot’s own movements realized
by using the built-in Cartesian controller (yellow line) and the
learned model (green line) to control online the robot’s move-
ments. The proposed method outperformed the built-in model,
achieving higher accuracy in tracking the reference visual tra-
jectory (grey line). The left plot shows the 2D visual position
representation of the reference and executed trajectories, while
the right plots show the corresponding temporal profiles of the
positions (x and y coordinates). For clarity of the representation,
only the trajectories acquired from the left eye camera of the ro-
bot are depicted, while similar results were obtained from the
right camera.

In the first experiment, the proposed method has been compared
with the Cartesian controller available on the iCub. The stereo vis-
ion system of the iCub is used to determine the 3D position in the
Cartesian space associated with 2D visual inputs. This information
is then used by the Cartesian controller to reach the target positions.
Results obtained on the first dataset are represented in Fig. 5.11. It can
be noted that the robot is able to reproduce target trajectories using
the learned model, which outperformed the built-in Cartesian control-
ler. The mean squared error score achieved by the proposed model on
this task on the four-dimensional visual data is only 0.0195, a very low
value considering the resolution of the image and the precision of the
visual data encoding the hand position throughout the experiments.
The built-in Cartesian controller achieved a less accurate tracking of
the reference visual trajectory, with a mean squared error score on the
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Figure 5.12: Results of the imitation task on the data collected from a human
playing a piano keyboard. The proposed multimodal deep vari-
ational autoencoder (MDVAE) model (green lines) allows the
robot to effectively track the reference visual trajectories (grey
lines), outperforming the least square regression (LSR) method
presented in Chapter 4 (pink lines) of one order of magnitude.
The leftmost plot shows the 2D visual position representation
of the reference and executed trajectories, while the central and
rightmost plots show the corresponding temporal profiles of the
positions (x and y coordinates). For the clarity of the represent-
ation, only the trajectories acquired from the left eye camera
of the robot are depicted, while similar results where obtained
from the right camera.

four-dimensional visual data of 0.0431, that is more than double the
error achieved with the proposed method.

The experiments on the second dataset are also instrumental to
show that the proposed method allows a robot to use data observed
from another agent and imitate them. Results are represented in Fig-
ure 5.12. Here, the results obtained with the proposed multimodal
deep variational autoencoder (MDVAE) are also compared against
the results obtained on the same task by the least square regression
(LSR) method presented in Chapter 4. The proposed MDVAE model
outperforms the LSR model, achieving more accurate imitation res-
ults. The mean squared error scores achieved on this task on the four-
dimensional visual data are 0.0054 and 0.0572 for the MDVAE and LSR
models, respectively. The proposed MDVAE thus outperforms the pre-
vious method by one order of magnitude. It is also possible to note
that the results on the y coordinate are more accurate than those ob-
tained on the x coordinate. This reflects the structure of the actions
performed during the exploration, which are used for training the
model. While the exploratory movements spanned a wide range on
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the vertical direction, a smaller part of the space was explored on the
horizontal direction. This bias on the data acquired through the ex-
ploration results in a bias in the network performance observed in
this experiment.

5.4 summary

This work takes inspiration from cognitive studies showing that hu-
mans can predict others’ actions by using their own internal models.
Following this direction, a new architecture that allows a robot to
predict sensory consequences of other agents’ actions by using only
self-learned internal models has been proposed. A multimodal deep
learning architecture has been introduced that allows a robot to (1)
reconstruct missing sensory modalities, (2) predict the sensorimotor
state of itself and others, and (3) control its motion to imitate the
observed agent. This versatility represents a major advantage of the
proposed approach, that can thus be applied in different applications
to address different objectives (e.g. prediction, control, etc.). This archi-
tecture leverages advantages of developmental robotics and of deep
learning, and has been evaluated extensively on different datasets and
set-ups.

The results presented in this study show that a robot can learn to
predict others’ actions by exploiting only self-learned internal mod-
els. In this study, it has been argued that one of the main challenges
in achieving predictions of others only based on internal models of
self is the difference of the available data. While the whole set of sen-
sorimotor data is available when the robot is acting and exploring,
only visual information is available when the robot observes another
agent. This motivated the proposed strategy to reconstruct and in-
fer the missing information. In particular, the proposed variational
autoencoder allows a robot to learn probability distributions among
different sensorimotor modalities that allows to capture the kinematic
redundancy of robot and human motions.

The proposed approach can be enhanced by enforcing the vari-
ational autoencoder to learn a latent space of a certain shape, for
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example a Gaussian, from which inputs can be sampled in a more
meaningful manner.

A limitation of the current implementation is the dependence of
the reconstruction accuracy on the explored sensorimotor space. In
particular, it is possible that combinations of sensory states reached
during an imitation task are far from the training set of states used in
the training of the network. In this case the network “guesses” mo-
tor commands by sampling from the learned distribution, but the
reconstruction accuracy is usually poor due to the lack of samples
resembling the observed new sensory state. A promising direction to
overcome this issue is the implementation of more sophisticated ex-
ploration strategies, for instance curiosity-based strategies (Maestre et
al., 2015; Baranes and Oudeyer, 2010).

contributions The main contributions illustrated in this chapter
have been submitted:

• M. Zambelli, A. Cully and Y. Demiris, “A multimodal deep model for
prediction and imitation of self and others’ sensorimotor states”, IEEE
Transactions on Robotics (under review).



CHAPTER 6

Conclusions

6.1 overview of the thesis

This thesis set out to endow a robot to learn internal models in an
autonomous manner by exploiting and leveraging information from
multiple sources. This has been achieved either by considering com-
binations of multiple predictors to form ensembles of experts, and by
integrating information available to the robot from multiple sensory
modalities, such as vision, touch, proprioception. The ability of integ-
rating multiple information has shown to benefit the learning process
in several ways.

First, it has been shown that the forward model learned through
the ensemble of predictors achieved higher prediction accuracy com-
pared with alternatives and compared with any other single predictor
model. Experiments presented in Chapter 3 showed that the proposed
heterogeneous ensembles is an effective solution to achieve high pre-
diction accuracy on validation and test datasets, without the need
of fine tuning of the base models used. The proposed algorithm can
update online by relying on the combination of online, recursive or in-
cremental algorithms of different types, thus allowing for the forward
model learned to adapt over time. Results have shown that signific-
antly different algorithms can be effectively combined to achieve a
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final accurate prediction model. Finally, the proposed method proved
successful on real robot data, including multiple sensory inputs. This
is in line with the overall contribution of the thesis and contribute to
the learning of multimodal representation from self-acquired data.

Second, the integration of multiple sensory modalities in learning
an inverse model from self-acquired data has proven fundamental
for imitation tasks inherently involving multiple targets, such as play-
ing a piano keyboard. Furthermore, multimodal integration has been
shown to be fundamental when predicting observed actions. Experi-
ments presented in Chapter 4 and Chapter 5 showed that by learning
multimodal representations a robot can achieve successful execution
of multimodal tasks as well as prediction of trajectories on different
sensory spaces. The methods presented have been shown successful
on imitation tasks involving multiple modalities, as well as in learn-
ing a representation that could be used by the robot to complete
other tasks, such as predicting others’ motion. Experiments involving
the multimodal variational autoencoder have further shown that the
learned model outperforms the robot’s built-in controller on imitation
tasks, and successfully predicts others’ motion only based on internal
representations. Both methods presented in Chapter 4 and Chapter 5

achieved the goal of learning representations across sensory modalit-
ies and, at the same time, anchoring this representation to the actions
(motor commands). This feature allows the robot to use the learned
multimodal representation in different ways, e.g. control and predic-
tion.

The proposed learning approaches can constitute building blocks
in a learning architecture for an autonomous robot. Using the pro-
posed frameworks, a robot can acquire internal models from self-
exploration, using no prior knowledge on its kinematic or dynamic
structure, while leveraging information from different senses.

While many parts of the proposed approaches are biologically in-
spired, no claims are made as to the biological plausibility. The goal
was to enable robots to use important properties of human develop-
ment, such as prediction and learning abilities, not to verify or suggest
that the proposed approaches are models of the process occurring in
human brains, at either neuroscientific or psychological level.
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6.2 future directions

The methods presented in this thesis are all based on a self-exploration
(motor babbling) phase that is used by the robot to acquire sensor-
imotor data. A pseudo-random motor babbling was exploited in this
thesis to produce the exploration motions. An interesting way to en-
hance this process is to apply more advanced exploration strategies,
such as strategies based on curiosity. These strategies can improve the
solutions proposed by allowing the acquisition of a self-perception
database that covers the robot and the environment states as much as
possible. Another improvement of the current work is represented by
applying the exploration to the full body, to obtain a full body bab-
bling. This would open further interesting questions relative to the
organization of possible multiple models learned for each body part,
their organization and inter-dependency.

The ensemble learning methods presented in Chapter 3 allowed
the learner to continuously update the internal model as new data
became available. The proposed method could be enhanced by using
the input as a gate to update the ensemble weights. Characteristics of
the input signals such as magnitude or frequency can have a direct
impact on the single base models’ performance, and can thus be used
to modulate how the ensemble weights update. Moreover, the input
space can be further scaled up, enlarging the sensorimotor space to
include more dimensions (e.g. pixel information from the visual mod-
ality, or more granular representations of the pressure sensed by the
tactile skin).

The multimodal nature of the sensorimotor information available
to the robot was also considered in this thesis as a fundamental as-
pect in developing autonomous learning approaches. The method pro-
posed in Chapter 4 based on a rigid least square regression formula-
tion took into consideration multiple modalities, but the representa-
tions learned were static. The major problems of this method were
addressed by the deep learning architecture proposed in Chapter 5.
For both cases, the multimodal space can be enlarged. For example,
the full images acquired from the robot’s cameras can be considered
instead of the visual coordinates of the tracked limb. Convolutional
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neural networks have been proven to be successful in extracting valu-
able information from raw images. A larger range of visual inform-
ation could thus be used in the learning process. Another interest-
ing way to expand the multimodal information is to use language
and verbal clues (Cangelosi, 2010; Lyon, Nehaniv and Saunders, 2012;
Lyon et al., 2016; Zhong et al., 2017; Zhong, Cangelosi and Ogata,
2017).

Finally, the potential of the presented multimodal deep variational
autoencoder can be further exploited. First, the generative capability
of the model can be used to generate new unobserved sensorimotor
state by sampling the learned latent space. Second, the cross-modality
relations learned by the network can be further analysed, and ex-
ploited in order to learn, in addition to the sensorimotor trajectories,
abstract representations of the interactions with the environment (e.g.
properties of the different senses in correspondence to different ob-
jects/scenarios).

6.3 epilogue

The chapters in this thesis illustrated and examined methods for a
humanoid robot to learn its own internal models in a completely
autonomous fashion, using as little prior knowledge as possible, and
exploiting as much sensory information as possible. Inspired by find-
ings in developmental psychology, this thesis showed that self-learned
models can be used by the robot not only to make predictions about
its own sensorimotor states, but also to develop complex cognitive
tasks such as imitation, and to make predictions about other agents’
actions. The benefits of this approach are multiple, including less pro-
gramming effort for programmers/engineers, adaptability of the ro-
bot to new environments, increased versatility for the robot to learn
new skills in a more intuitive manner.



APPENDIX A

Base models

In Chapter 3, online heterogeneous ensembles of experts have been
presented. The pool of models used to build the ensemble includes
four different types of models, namely Echo State Networks (ESN),
Online Echo State Gaussian Processes (OESGPs), Locally Weighted
Projection Regression (LWPR) models and Recursive AutoRegressive
models with eXternal inputs (RARX). Here, each model is presented
in more details.

a.1 echo state networks

Echo State Networks (ESN) have been introduced by Jaeger (Jaeger,
2002). They are a class of recurrent neural network (RNN), consisting
of a large, fixed, recurrent network, where only the output weights
are trained instead of adapting all network weights. The architecture
is based on a randomly generated fixed RNN, called the reservoir. The
network is driven with the input signal, thus inducing a response in
each neuron of the reservoir. The output is then obtained as a trainable
linear combination of the responses of the reservoir units (e.g., using
standard linear regression). Instead of adapting all network weights,
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only the output weights are trained. More precisely, the state of the
reservoir is updated during training as follows
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where x
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is the state of the reservoir units at time t, u
t
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h(·) is the activation function, y
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is the desired output, W is reservoir
weight matrix, Wi is the input weight matrix, Wb is the output feed-
back weight matrix, and � is the leak rate. After training, the update
equation is the following:
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where Wo is the linear output weight matrix and  
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For online training, stochastic gradient descent can be used to up-
date the output weights iteratively:
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where ⌘ is the learning rate. To enable better convergence, Jaeger (Jae-
ger, 2002) proposed using the recursive least squares algorithm, which
for ESN consists of the following iterative updates:
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where wo,t is a row of the output weights matrix at time t and � is the
forgetting factor.
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a.2 online echo state gaussian processes

Online Echo State Gaussian Processes (OESGPs) have been introduced
in (Soh and Demiris, 2012). OESGPs combine ESN with Bayesian on-
line learning for Gaussian processes, using sparse GP approximations
to maintain the computational and storage costs fixed.

The OESGPs extend the Echo State Gaussian Process (ESGP) pro-
posed by Chatzis and Demiris (Chatzis and Demiris, 2011), which is
a Bayesian formulation of the standard echo-state network, based on
Gaussian processes (GPs). Given an observation space with elements
x, a GP is a set of random variables whereby any finite subset has a
joint Gaussian distribution (Rasmussen and Williams, 2006). A GP is
defined as

f(x) ⇠ N(m(x),k(x, x 0)), (A.9)

and it is completely specified by its mean function, m(x) = E[f(x)], and
its covariance function k(x, x 0) = E[(f(x)-m(x))(f(x 0)-m(x 0))].
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4. Maintain the size of B by removing the lowest scoring basis vec-
tor if |B| exceeds some predefined capacity.

Making predictions with the OESGP is then achieved by using the
mean and the variance of the predictive distribution:

µ⇤ = kB,t( t⇤)
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a.3 recursive autoregressive models with external in-
puts

A general way of illustrating this recursive algorithm is the recursive
least square (RLS) method (Ljung, 1998; Ljung, 1983). More in partic-
ular, the recursive AutoRegressive model with eXternal inputs (ARX)
has been considered. The ARX model structure is described by the
equation:
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where q is the delay operator. Specifically,
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This is a parametric approach, where the goal is to fit the data
with the fixed-structured model represented by the previous equa-
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tions. The user is required to choose the polynomial orders, so that
the model is in fact manually specified.

The parameters of the models can be gathered into a parameter
vector ✓ = [a
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, ...,a
n
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]T . The general form of the recursive
estimation algorithm is as follows:
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t

is the prediction of
the output y

t

based on observations up to time t - 1, and the gain
K

t

determines how much the current prediction error y

t

- ŷ
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spect to the parameters ✓, and the term Q

t

is determined using an
optimisation algorithm (such as the gradient method or the forgetting
factor method) (Ljung, 1983).

a.4 locally weighted projection regression

Locally Weighted Projection Regression (LWPR) is an algorithm for in-
cremental real-time learning of nonlinear functions. It was introduced
in (Vijayakumar and Schaal, 2000a; Vijayakumar and Schaal, 2000b),
and then used to solve different learning problems, such as learning in
high dimensional space and learning of robot models (Vijayakumar, D
’souza and Schaal, 2005; Klanke, Vijayakumar and Schaal, 2008). The
key idea behind this algorithm is to approximate nonlinear functions
by exploiting piecewise linear models, whose region validity (called
receptive field) is computed from a Gaussian function. Then, the model
final output consists of the weighted mean of all linear models.

Consider a standard regression model:

y = f(x) + ", (A.17)

where x denotes the N-dimensional input vector, y the output, and "

a zero-mean random noise term. When only a local subset of data
in the vicinity of a point x

c

is considered and the locality is chosen
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appropriately, a low-order polynomial can be employed to model this
local subset. A linear model can be considered to this end: y = �T x + ".
Nonlinear function approximations can thus be found by means of
piecewise linear models. The LWPR regression function is constructed
by combining local linear models  
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The term w
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(x) is a locality kernel that defines the area of validity of
the local models which is usually modelled by a Gaussian
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where c

k

is the centre of the k-th linear model and D

k

is its distance
metric. During training, all updates to the local models are weighted
by their activation w

k

(x), facilitating fully localised and independent
learning. A new local model is created if no existing local model
yields an activation above a certain threshold. The number K of local
models is thus adapted automatically. For learning the linear mod-
els  
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(x), LWPR employs an online formulation of weighted partial
least squares regression. In particular, within each local model, the
input data x is projected along selected directions u
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, yielding “latent”
variables s

i

with

s
i

= uT

i

x
i-1

, x
i

= x
i-1

- p
i

uT

i

x
i-1

(A.20)

where the vectors p
i

ensures orthogonality of the projections. The out-
put of the local model is then formed by a linear combination of the
latent variables:
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The number R of regression directions is automatically adapted to the
local dimensionality of the training data, and the parameters u

i

, p
i

,
and �

i

can be robustly estimated. Similarly, the distance metrics D

can be adapted using stochastic cross-validation, such that the input
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space is covered by wide receptive fields in regions of low curvature,
and narrow receptive fields where the curvature is high.

a.5 parameters used to instantiate base models

In Chapter 3, experiments have been presented where different num-
bers of base models have been instantiated.

In the case of echo state networks, different numbers of internal
nodes have been used. These were initialised as {1, 5, 10, 15, ..., 5+ 10(n-

2)}, where n indicates the number of base models instantiated for each
type of algorithm. For example, when n = 50 the set of internal nodes
used to initialise different ESNs is {1, 5, 10, 15, ..., 485}.

In the case of online echo state Gaussian processes, different length
scales have been used. These were initialised as {0.15, 0.35, ..., 0.15n} for
synthetic data, and as {1.2, 1.35, ..., 1.2+ 0.15(n- 1)} for iCub babbling data.
For example, when n = 50 the sets of length scales used to initialise
different OESGPs are {0.15, 0.35, ..., 7.5} and {1.2, 1.35, ..., 8.55}, respectively.

In the case of RARX models, different polynomial orders have been
used. Note that since each model is MISO (multiple input single out-
put) the order n

b

is always necessarily equals to 1, while the order of
the A polynomial, i.e. n

a

, can vary. The order n

a

was thus initialised
as {1, 2, ...,n}, where n indicates the number of base models instantiated
for each type of algorithm. For example, when n = 50 the set of poly-
nomial orders used to initialise different RARX models is {1, 2, ..., 50}.
The parameter n

k

was set equal to 1, to account for one step delay in
the data observed.

In the case of LWPR models, different activation thresholds have
been used. These were initialised as {0.05, 0.1, ..., 0.05n}. For example,
when n = 50 the set of internal nodes used to initialise different LWPR
models is {0.05, 0.1, ..., 2.5}.

Note that in all cases parameters were chosen in order to gener-
ate models of increased complexity, starting from the instantiation of
small models first.
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APPENDIX B

Further experiments on the Baxter robot

The experiments carried out on the Baxter robot and presented here
demonstrate that the proposed ensemble learning method used to
learn internal forward models can be applied to different robotic plat-
forms. This is because the proposed method does not make any prior
assumptions on the robot structure and is only based on data collec-
ted by the robot from self-exploration.

Baxter is a humanoid robot with two 7 degrees-of-freedom arms
and equipped with a RGB camera on the head. The right arm has been
used to perform motor babbling, visual data have been acquire from
the head camera, and proprioceptive data (joints’ positions) have been
recorded from the motors’ encoders. Motor babbling was performed
engaging four of the seven degrees of freedom of one of the Baxter
arms, and was realised by issuing pseudo-random sinusoidal velocity
commands, programmed in order for the arm to move within the field
of view of the head camera. Visual information, consisting of the pos-
itions of the lower and upper arm in the visual space (2D-coordinates
computed from visual features) was collected from the head camera.
Joints’ encoders values (measured in radiants [rad]) have been used
for the proprioception modality, while pixel positions have been used
for the visual modality. In particular, for each frame the 2D feature
points tracked as part of the moving robot limb have been collected.
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Figure B.1: Visual information (Baxter experiment). OpenCV feature detec-
tion and segmentation from motion are performed on the frames
recorded from the head camera of the Baxter. Clusters identifying
limb parts are represented.

A segmentation algorithm proposed in (Jung, Ju and Kim, 2014) has
then been applied to identify parts of limbs in the visual frames. This
algorithm is able to automatically cluster parts of the image accord-
ing to motion, so that feature points moving together are clustered as
one limb part. The frame size of the images acquired from the robot
camera is 480⇥ 300 pixels. Independent movements were identified for
the upper and lower arm of the Baxter, as shown in Figure B.1. The
position of the limb in the vision space is computed as the position in
the 2D image space of the centre of the clusters identified in the visual
frames. This approach is thus robust against differences in shape, di-
mension, specific morphological characteristics.

The base models and the ensemble models are evaluated in terms
of root mean squared error. The ensemble predictors are compared
against the single base models, against an offline implementation
of a standard tree-based bagging ensemble for regression (Breiman,
1996a), and against the homogeneous online ensemble obtained by
applying the same ensemble integration algorithm but adopting ho-
mogeneous structures as base models (that is ensembles of ESNs only,
of OESGPs only, of RARXs only, and of LWPRs only).

Experiments have been carried out also on the task of making multiple-
step-ahead predictions. To realise a multiple-step-ahead predictor from
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Figure B.2: Block scheme of the “naive” iterative k-step-ahead prediction
model. Motor commands u, and future motor commands u

d

(as-
sumed known) are used on the robot’s motors and as input to the
forward (ensemble) model. The state x includes the propriocep-
tion and visual information. The multiple-step ahead prediction
x

0 is obtained through the ensemble model.

the learned forward model, a simple implementation has been con-
sidered, based on feeding one-step-ahead predictions as input to the
models that produced them. This implementation is sometime re-
ferred to as “naive”, due to the fact that uncertainties generated in
each iteration step of prediction are not considered. Denoted by y

the sensory state of the robot (in this case formed by the visual and
proprioceptive information), and by u the velocity commands issued
to the robot joints, it is assumed that l previous states x(i), for i = {(t- l), ..., t},
as well as k future velocity commands u

d

(i), i = {t + 1, . . . , t + k}, are
known. This assumptions are realistic, since the previous outputs and
inputs are available from the past experience of the robot, while the
future commands (up to a certain number of steps ahead) can be
thought of as already planned. In this implementation, the one-step-
ahead predictions, performed by the base learners, are fed back as in-
put for the next prediction together with the next motor command. To
achieve the k-step-ahead prediction, this iteration is repeated k times.
A representation of this implementation is depicted in Fig. B.2.

Results are reported in Table B.1. Each predictor has been evalu-
ated both in short-term and long-term prediction performance. The
one-step-ahead predictions obtained with the proposed online hetero-
geneous ensemble are in all the cases more accurate than those of
all the other alternative solutions. The accuracy obtained by the pro-
posed heterogeneous online ensemble method is approximately 20

to 85% higher compared to single predictors and homogeneous en-



136 further experiments on the baxter robot

Table B.1: RMSE scores for one-step-ahead and 30-step-ahead predictions.
Scores in the proprioceptive space are given in [deg], while scores
in the visual space are given in [pxl]. The proposed online hetero-
geneous ensemble achieves the best accuracy (scores in bold).

Proprioceptive
or Visual
Element

Single base models Offline Online Homogeneous Ensembles Proposed Online Heterog.
Ensemble Method

ESN OESGP RARX LWPR Tree-based
Bagging

Homog.
ESN

Homog.
OESGP

Homog.
RARX

Homog.
LWPR

Heterog.
Ensemble

1
-s

te
p-

ah
ea

d
pr

ed
.

Shoulder Pitch 0.1222 0.1157 0.0419 0.0447 0.0442 0.0502 1.7683 0.0414 0.0413 0.0356
Shoulder Roll 0.0449 0.0733 0.0429 0.0505 0.0438 0.0650 1.7072 0.0424 0.0456 0.0351
Shoulder Yaw 0.0508 0.0803 0.0440 0.0460 0.0452 0.0787 1.9564 0.0435 0.0438 0.0365
Elbow Flexion 0.0439 0.1089 0.0421 0.0431 0.0437 0.0981 2.0010 0.0417 0.0421 0.0341

End-Eff. Cl., x 0.7773 0.8174 0.4862 1.2963 0.7996 0.4368 0.8178 0.4348 0.5812 0.4340
End-Eff. Cl., y 0.7656 0.7735 0.6853 7.4233 1.1394 0.7496 0.7762 0.5997 0.8709 0.5909
Arm Cluster, x 0.5028 0.5741 0.4809 2.1376 0.9796 0.5029 0.5586 0.4692 0.6012 0.4566
Arm Cluster, y 0.2035 0.2134 0.2035 0.2095 0.2137 0.2036 0.2129 0.2024 0.2063 0.2019

3
0

-s
te

p-
ah

ea
d

pr
ed

.

Shoulder Pitch 0.2079 2.7314 0.5012 0.2315 0.5165 0.1865 1.0378 0.5011 0.2109 0.0732
Shoulder Roll 0.1244 9.8553 0.4373 0.1419 0.4509 0.0949 0.8140 0.4372 0.1352 0.0779
Shoulder Yaw 0.1626 2.9569 0.5053 0.2227 0.5217 0.1494 2.8191 0.5050 0.1995 0.0932
Elbow Flexion 0.1941 2.3872 0.5130 0.2102 0.5290 0.1838 0.7002 0.5127 0.1899 0.0867

End-Eff. Cl., x 2.0561 4.3716 6.1392 6.4310 6.3767 1.9003 2.6667 6.1233 5.6672 1.8755
End-Eff. Cl., y 2.7494 3.2962 10.0669 9.8536 10.4510 2.6049 3.1516 9.9824 9.6420 2.4407
Arm Cluster, x 2.4029 4.8824 6.2943 6.8732 6.5788 2.4016 2.8459 6.2938 6.0330 2.1155
Arm Cluster, y 1.3193 4.9293 1.3833 1.4951 1.3963 1.3187 4.4614 1.3829 1.2383 1.0501

sembles, and 50 to 60% higher compared to the accuracy obtained
with the tree-based model.

The proposed online ensemble achieves the best performance also
in the multiple-step-ahead prediction task, outperforming single pre-
dictors, the tree-based offline ensemble and homogeneous ensembles.
In this case, the proposed heterogeneous online ensemble method out-
performs single models and homogeneous ensembles by approxim-
ately 30 to 98% in accuracy, and the offline tree-based ensemble by
approximately 30 to 60%. In this experiment, the prediction horizon
of k = 30 has been taken into consideration, corresponding to roughly
�T = 3 seconds in the future. This time horizon is usually the time
within small base actions take place.

The high prediction accuracy achieved by the heterogeneous en-
semble is useful, for practical purposes, e.g. to improve a robot’s per-
formance in control tasks involving precise positioning of the end-
effector or localisation of the end-effector in the robot’s vision space.
The heterogeneous ensemble allows to achieve the highest perform-
ance both in short and long term predictions, providing an accurate
model for sensorimotor representations involving both propriocep-
tion and vision.



APPENDIX C

Robots

This thesis has been developed using mainly the iCub robot (Metta
et al., 2010) (Fig. C.1, left). The Baxter robot (Baxter - Redefining Robot-
ics and Manufacturing - Rethink Robotics) (Fig. C.1, right) has also been
considered for some experiments (see Appendix B). Experiments on
the iCub have been carried out using some of the open source C++
libraries relative to the robotics platform and relying on the middle-
ware YARP (Yet Another Robot Platform) (Metta, Fitzpatrick and Nat-
ale, 2006). Experiments on the Baxter have been programmed using
Python based libraries of the robotic platform, and relying on ROS
(Robot Operating System) (Quigley et al., 2009). Finally, a MIDI key-
board has also been used. All these tools are described in more details
below.

c.1 the icub robot

The iCub is a humanoid robot originally developed as part of the EU
project RobotCub. It is a 1 metre high humanoid robot, with dimen-
sions similar to that of a 3.5 year old child, and it represents a testbed
for research into human cognition and artificial intelligence.
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Figure C.1: The iCub (left) and the Baxter (right), humanoid robots used in
the experiments presented in this thesis.

The robot is controlled by an on-board PC104 controller which com-
municates with actuators and sensors using CANBus. It utilises ten-
don driven joints for the hand and shoulder, with the fingers flexed
by teflon-coated cable tendons running inside teflon-coated tubes, and
pulling against spring returns. It has 53 motors that move the head,
arms and hands, waist, and legs. It is endowed with multiple sensors,
including RGB-cameras for vision, motor encoders for the sense of
proprioception (body configuration), tactile sensors for the sense of
touch, microphones for audition.

The tendon system allows to embed a considerable number of degrees-
of-freedom, however the response of the joints to motor commands
can present delays and imprecisions in positioning. This can result for
example from wear or different temperature/humidity conditions.

Such environment conditions also influence the tactile sensors. The
tactile sensor network (i.e. skin) of the iCub robot is organized into
patches. A patch is a set of tactile sensors that are physically con-
nected one to the other and that are read by the same microcontrol-
ler. Each patch is composed by triangular modules, each consisting
of 10 tactile sensors (taxels), with two additional small ones that are
thermal pads. Compensated tactile data were used in the experiments
presented in this thesis. These values are floating point numbers in
[0, 255], where 0 means no pressure. The size of the vector of tactile
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signals acquired depends on the skin part. The hand, and in particu-
lar the fingertip, was considered in the experiments presented. Hand
data are described by 192 taxels, where the first 60 refer to the finger-
tips data (12 taxels per fingertip).

Visual data used in the experiments presented in this thesis was
acquired from the robot’s on-board cameras. A resolution of 320⇥ 240

pixels was used, so that the position of the hand in the visual field
was defined in pixel coordinates. Although the resolution of the visual
data could allow to achieve high accuracy in locating the hand of the
robot in the visual field, the precision of the visual positions was lim-
ited by the tracking algorithm used. The final information obtained
was nonetheless sufficient to achieve the goal of the studies presen-
ted.

The software libraries run on the iCub are largely written in C++
and use YARP for external communication with off-board software
implementing higher level functionalities. The software developed to
perform the presented experiment was implemented using different
languages. The exploration policies, the forward models and the mul-
timodal imitation based on multimodal matrices were implemented
using Matlab. The variational autoencoder was implemented in Py-
thon using Tensorflow. The modules responsible to issuing motor
commands to the robot’s joints and to read sensor data from the dif-
ferent sensors were implemented in C++. The communication and
synchronisation of the different code parts have been realised relying
on the YARP middleware.

c.2 the baxter robot

Baxter is a humanoid robot developed by Rethink Robotics. It is ap-
proximately 1.8 meters in height and it has two 7 degrees-of-freedom
arms and various sensors including force, position, and torque sens-
ing for each joint. There are two RGB cameras at the endpoints of
two limbs. Another RGB camera is present on the robot’s head. Only
the head camera has been used in the experiments presented in this
thesis. A resolution of 480⇥ 300 was used to acquire visual data. A sig-
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nificant limitation in using the head camera is the restricted field of
view that can be captured from it. In order to collect data of the arm
babbling, limited movements could be performed. An external cam-
era could resolve this issue, however one of the goals and challenges
of the experiments presented in this thesis was to rely on robots’ on-
board sensors.

The interfaces to control the robot using ROS are provided by the ro-
bot’s SDK. The software developed to realise the experiments presen-
ted was implemented using Python, and linked to the libraries re-
sponsible for the basic control functions on the robot. The communic-
ation between the modules developed to send babbling motor com-
mands to the robot’s joints and to read sensor data relied on ROS
nodes and topics.

c.3 yarp

YARP is a free and opensource middleware supporting a set of lib-
raries, protocols, and tools to keep modules and devices cleanly de-
coupled. While it is not an operating system for the robot, it supports
building a robot control system as a collection of programs commu-
nicating in a peer-to-peer way, with an extensible family of connection
types (tcp, udp, multicast, local, MPI, ...).

YARP consists of three main libraries: (i) a library interfacing with
the operating system(s) to support easy streaming of data across many
threads across many machines, (ii) a library performing common sig-
nal processing tasks in an open manner easily interfaced with other
commonly used libraries (e.g. OpenCV), and (iii) a library interfacing
with common devices used in robotics, such as digital cameras, motor
control boards, etc.

The YARP middleware was extensively used in the experiments per-
formed and illustrated in this thesis. It was responsible mainly for the
communications between different modules related either to the con-
trol of the robot or to the acquisition of sensor data from it. The main
means used to implement such communications were YARP ports,
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utilised to send messages of various type, such as control signals,
sensor data, signals to trigger different behaviours.

c.4 ros

The Robot Operating System (ROS) is a widely known and used
framework for developing robot software. It consists of a collection of
tools, libraries, and conventions that simplify the programming pro-
cess of robots’ behaviours, and that can be used for different robotic
platforms.

At the lowest level, ROS represents a middle-ware, which deals
with a message passing interface providing inter-process communica-
tion. This feature is the most relevant for the experiments developed
in this thesis.

ROS was used mainly to manage the communication between dif-
ferent modules responsible to run the experiments on the Baxter robot.
In particular, ROS nodes and topics were extensively utilised to send
control commands to control the robot’s joints, or to read sensor data
from the robot’s encoders or from its head camera.

c.5 midi keyboard

An Akai MIDI keyboard has been used for the experiments carried
out with the iCub. The MIDI keyboard is a piano-style user interface
keyboard device used for sending MIDI signals or commands over a
MIDI cable to a computer operating on the same MIDI protocol in-
terface. MIDI information is sent to an electronic module capable of
reproducing an array of digital sounds or samples, also referred to
as voices or timbres. MIDI is a symbolic representation of musical
information, encoding a specific instrument sample and sound para-
meters such as note volume (velocity), pitch bend and modulation
controls.

MIDI data were acquired during the experiments performed with
the iCub robot. The data collected were post-processed in order to
obtain one-dimensional signals where the amplitudes and the dur-
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ations of each note played was encoded. A C++ module was im-
plemented in order to acquire the MIDI signals from the keyboard
and transfer them through YARP. The signals thus acquired presen-
ted several issues, such as delays between the moment when a key
was pressed and the moment when the signal registered a change
of the sound produced, noise in the signals encoding a note played.
The post-processing applied thus helped cleaning the data used in the
robot learning processes.
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