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Abstract 
 

In this paper we analyze the time series of 12,000+ networks of traders in the e-mini 
S&P 500 stock index futures contract and empirically link network variables with 
financial variables more commonly used to describe market conditions. We show that 
network variables lead trading volume, intertrade duration, effective spreads, trade 
imbalances and other market liquidity measures. Network variables reflect 
information, information asymmetry and market liquidity and significantly presage 
future market conditions prior to volume or liquidity measures. We also find two-way 
Granger-causality between network variables and both returns and volatility, 
highlighting strong feedback between market conditions and trading behavior.  
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Financial markets bring buyers and sellers together, aggregating information for 

price discovery and providing liquidity for uninformed orders. Indeed, numerous 

models show that trading outcomes—prices, volume, volatility, and liquidity—

emerge from the complex mix of information flows and liquidity demands of 

individual buyers and sellers.1 More recent work directly connect network metrics to 

information flows (Babus and Kondor (2016)), dealer structure (Li and Schürhoff 

(2014)), order shredding/inventory management (Kyle, Obizhaeva, and Wang (2016)), 

and information percolation/market connectivity (Duffie, Malamud, and Manso 

(2015)).2 Each of these works serve to motivate an empirical examination of financial 

markets through the lens of network technology. 

In this paper we use established network analysis tools to characterize the 

time series dimensions of information and liquidity flows in the e-Mini S&P stock 

index futures market. We find strong and significant contemporaneous correlations 

between network statistics and financial variables, with network statistics 

significantly leading (Granger-causing) intertrade duration, trading volume, and 

other liquidity metrics. The fact that network statistics consistently lead these more 

traditional market metrics suggests that network statistics serve as primitive 

measures of market information and liquidity, lending support to the various 

                                                 
1 See, for instance, Copeland and Galai (1983), Glosten and Milgrom (1985), Kyle (1985), Admati and Pfleiderer 
(1988), Foster and Viswanathan (1990, 1993, 1994). The theoretical literature on limit order markets includes 
Parlour (1998), Foucault (1999), Biais, Martimort and Rochet (2000), Parlour and Seppi (2003), Foucault, Kadan 
and Kandel (2005), Back and Baruch (2007), Goettler, Parlour, and Rajan (2005, 2009), Large (2009), Rosu (2009), 
and Biais and Weill (2009), among others. 
2 Other related works by DeMarzo, Vayanos, and Zwiebel (2003), Gale and Kariv (2003), Acemoglu, Dahleh, Lobel, 
and Ozdaglar (2008), and Golub and Jackson (2010) explore learning in social networks (rather than the financial 
networks we study here). 
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theoretical models of information flows, trading strategies and information 

percolation in financial markets. Moreover, network statistics change prior to volume 

and duration changes, metrics which have been heretofore ascribed to capture 

information in financial markets.3 

We further explore whether measurement noise helps to explain the fact that 

network variables significantly lead more traditional market metrics. We find that, 

while the distributions of network statistics are largely unrelated to the noise-to-

signal ratio in the market, duration, effective spread and Herfindahl trade measures 

are all (at least marginally) affected by market noise. 

 Importantly, the e-Mini S&P stock index futures market matches buyers and 

sellers electronically and anonymously, with time-price priority. In this regard, our 

findings are not driven by personal, business, or other social ties more typically 

explored with network theory, but rather represent a clean test of spontaneous order 

theory, where markets exhibit order brought about by mutual adjustments to market 

prices (see Ferguson (1767) and Hayek (1948)).4 Moreover, this spontaneous order is 

consistent with models by Babus and Kondor (2016), Kyle et al. (2016), and Duffie et 

al. (2015) where information manifest in trading networks leads to changes in market 

information and liquidity. 

 Our findings also support models of information percolation in networks. For 

example, Golub and Jackson (2010) show that beliefs of network agents converge to 

                                                 
3 See Epps and Epps (1976) and Engle and Russell (1998). 
4 Ferguson (1787) notes that people “stumble upon establishments, which are indeed the result of human action, 
but not the execution of any human design.” To describe this order Hayek (1948) coins the term catallaxy, meaning 
‘to admit in the community’ or ‘to make friends’ (notions familiar to social networks). 
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the truth if and only if the influence of the most central agents diminishes as the 

network grows. We show that a small group of market-makers extract mark-ups and 

deviations from the fundamental price are higher when the influence of the market-

makers is also higher. Likewise, Duffie et al. (2015) show that information percolates 

more effectively in markets with more transactions (higher volume) or in markets 

where traders are highly connected if duration is sufficiently large.  

While network analysis is data intensive, the fact that network statistics lead 

volume, duration and liquidity metrics suggests that there is value in monitoring 

network statistics from a regulatory and policy perspective. In Cohen-Cole, 

Patacchini and Zenou (2015) the propagation of incentives or strategic trading 

behavior in the interbank network generates systemic risk. Billio, Getmansky, Lo 

and Pelizzon (2012) and Brunetti, Harris, Mankad and Michailidis (2016) also use 

network analysis to identify and quantify financial crisis periods. 

We also document that network statistics capture complex feedback 

mechanisms in the time series with network variables exhibiting bi-directional 

Granger-causality with returns and volatility, suggesting that trading strategies 

evolve dynamically in response to changing market conditions. To highlight this 

dynamic, we simulate an agent-based trading model which replicates the 

contemporaneous correlations between financial and network variables, but exhibits 

no Granger-causality. Overall, we reject the null hypothesis of random trading 

patterns in transactions among market participants and support trading models 

motivated by information flows (Babus and Kondor (2016)), information percolation 
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(Duffie et al. (2015)), and trading strategies (Kyle et al. (2016)), which predict 

persistent trading patterns.  

Our results are robust to different equity index futures markets (e-mini Dow 

Jones and Nasdaq 100 futures), different observation periods (May and August 2008), 

and different network sampling frequencies (240 and 600 transactions). In the same 

E-mini S&P500 futures market that we study, Cohen-Cole, Kirilenko and Patacchini 

(2015) demonstrate how much a market shock is amplified by the network of traders 

and how widely it is transmitted across the network. They demonstrate that network 

pattern of trades captures the relations between behavior in the market and returns, 

showing that network spillovers explain as much as 90% of the individual variation 

in returns. 

Our study using the time-series properties of network statistics complements 

other recent work exploring networks in different settings. In addition to Billio et al. 

(2012) and Brunetti et al. (2016), Leitner (2005) and Babus (2009) model bank 

networks to explore contagion issues. Similarly, Allen and Gale (2000) and Upper 

(2006) highlight how common asset holdings can drive interconnectedness within 

bank networks. Braverman and Minca (2014) describe how common holdings can 

transmit financial distress in bank networks with the severity of contagion depending 

on both the level and liquidity of common holdings. Similarly, Lagunoff and Schreft 

(1998) develop a model which shows that a high level of interconnectedness may 

increase financial fragility. Cabrales and Gottardi (2014) note a trade-off between 
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risk-sharing and contagion within networks, while Acemoglu, Ozdaglar and Tahbaz-

Salehi (2015) find that financial contagion is a function of the network structure.5 

The paper proceeds as follows. In Section 1, we describe our unique high 

frequency data and our network and financial variables. In Section 2, we show 

examples of different trading networks and use these examples to illustrate how our 

network statistics relate to financial variables. In Section 3, we present 

contemporaneous correlations and lead-lag (Granger-causality) tests among network 

and financial variables. Section 4 explores  the information content of trading 

networks. We conclude with Section 5. 

 

1. High Frequency Data, Network Metrics, and Financial Variables 

To build our trading networks, we use audit trail, transaction-level data for 

over 7.2 million regular transactions (executed between 9:30 a.m. ET and 4:00 p.m. 

ET) in the September 2009 e-mini S&P 500 futures contract during August 2009.6 

The e-mini S&P 500 futures contract is a highly liquid, fully electronic and cash-

settled. The data contain the date, time (up to the second), unique transaction 

identifier (which enables us to order transactions sequentially within each second), 

                                                 
5 See also De Vries (2005) and Acharya and Yorulmazer (2008). Roukny, Battiston, and Stiglitz (2016) show credit 
market networks can affect regulators’ capacity to assess systemic risk. Bank networks are also connected to 
systemic risk (see e,g, Elsinger, Lehar and Summer (2006), Cifuentes, Ferrucci and Shin (2005), Allen and Babus 
(2010) and Allen, Babus and Carletti (2012), Caccioli, Farmer, Foti and Rockmore (2013) and Roukny, Bersini, 
Pirotte, Caldarelli and Battiston (2013). 
6 We also replicate our results with trades in the e-mini Nasdaq 100 and e-mini Dow Jones stock index futures 
contracts and in e-mini S&P 500 futures data from May 2008, August 2008 and August 2009. For brevity, we 
report only August 2009 e-mini S&P 500 results. 
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executing and opposite trading accounts, and opposite brokers, buy/sell flag, price, 

and quantity;7 31,585 unique accounts trade during our August 2009 sample. 

Since our goal is to explore links between financial variables and network 

statistics, we first determine a sampling frequency that ensures our financial 

variables are not contaminated by market microstructure noise. We apply both the 

Andersen, Bollerslev, Diebold and Labys (2000) volatility signature plot and Bandi 

and Russell (2006) technique and find that the smallest acceptable sampling window 

must contain at least 50 transactions. Cognizant that networks constructed over such 

a small number of transactions can be too sparsely connected to adequately capture 

the dynamic nature of the informational and liquidity forces that drive markets, we 

use 600 transactions to construct meaningful trading networks. 

1.1 Networks and Network Metrics 

Over the entire month of trading, we construct 12,032 sequential (non-

overlapping) trading networks, each comprised of 600 consecutive trades.8 Following 

network terminology, a network consists of nodes and edges. We define a node as an 

individual trader (trading account) and an edge that connects a pair of nodes as a 

trade between two traders. In our work the edges are directed, with buys representing 

edges pointed toward a trader and sells representing edges pointed away from a 

trader. Multiple transactions between traders are represented by a single directed 

edge pointed toward the buyer and away from the seller, even if the prices and 

                                                 
7 We applying standard filters designed to look for recording errors and outliers in the price and quantity series 
(see Hansen and Lunde (2006)) and find no irregularities in the data. 
8 Since the number of trades during the trading hours is seldom precisely divisible by 600, we complete the final 
network for each day with the trades reported after the close. Our results are robust to excluding this final 
network of each day. 
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quantities of each transaction differ. Additionally, from network terminology the 

degree of a node is the number of edges connected to it, with indegree (outdegree) 

representing the number of edges pointing toward (away from) the node. For clarity, 

we use the terms buydegree and selldegree to represent indegree and outdegree, 

respectively. 

Quantitative analysis of networks employs a set of standard metrics.  We focus 

on network metrics that represent the properties of information and liquidity in 

markets. Centrality, for instance, quantifies the importance of a specific trader in a 

network. Although several centrality measures exist, we use degree centrality to 

characterize how “central” a particular trader is in terms of its trading, utilizing the 

buy/sell indicators in our data to construct buydegree and selldegree centrality—

representing the number of bilateral purchases and sales, respectively, for each 

trader in the network.9 

We then compose aggregate centralization from individual trader centrality 

measures that characterizes the inequality in degree among all traders in the 

network. Specifically, we compute a centralization Gini (GB,S) for buyers (B) and 

sellers (S) defined as: 

G ,
∑ 2 1

∗
 

                                                 
9 Note that buydegree and selldegree do not fully capture the role of a trader in the network.  For instance, a 
trader that does not execute a large number of trades but serves to connect otherwise disconnected traders may 
be very central, but will have relatively low buydegree and selldegree measures. 
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summing over all N traders, where ki is the ith trader's buydegree and selldegree, ri, 

i=1,…,N, is each trader's rank order number10 and E is the number of unique 

connections between traders present among the 600 trades in each network. By 

construction, GB and GS are 0 if every trader has the same number of buy and sell 

connections, and positive with increasing degree inequality. Maximum centralization 

occurs when one trader does all the buying or selling in the network.  

Using the above formula, we compute network-wide centralization as the 

difference between GB and GS. Intuitively, centralization can be interpreted as the 

presence of a dominant buyer (close to 1) or a dominant seller (close to -1) within the 

600-trade network. The absolute value of centralization (|centralization|) therefore 

represents the presence of a dominant trader on either side of the market. In 

economic terms, centralization is a measure of informed trading or strong net demand 

for liquidity in the market. 

Table I presents summary statistics for the network variables across all 12,032 

networks in our sample.11 Centralization is approximately symmetric and ranges 

from -0.74 to +0.65 with a mean near zero and standard deviation of 0.17. 

|Centralization| ranges from 0.0 to 0.74 with mean 0.14 and standard deviation of 

0.10. The mass of this distribution is more than one standard deviation away from 

zero, which can be interpreted as inequality in the number of buy versus sell matches 

per trader. 

                                                 
10 The trader with the highest centrality ranks highest, the trader with the second highest centrality ranks second, 
and so on. We rank buydegree and selldegree centrality separately. 
11 Each network variable is stationary and exhibit persistent autocorrelations. Jarque-Bera (1980) tests reject the 
null of normality at standard significance levels. 
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Assortativity in networks represents the tendency of “like to be connected with 

like” for any node (Newman (2002)). For our purposes, we use each trader's buydegree 

and selldegree to assess assortativity within our networks, examining the propensity 

of highly connected buyers to trade with highly connected sellers, for instance. In an 

assortative network, buyers/sellers with many edges (high buydegree/selldegree 

nodes) are more likely to connect to similar buyers/sellers. In a disassortative 

network, buyers/sellers with many edges tend to connect to buyers/sellers with few 

edges. In real markets, block trades between two large traders represent 

disassortative networks, while large orders “walking the book” against many small 

counterparties represents assortative networks. As in Golosov, Lorenzoni and 

Tsyvinski (2009), small uninformed traders seeking to elicit information about asset 

values by making small offers may encounter large, informed traders (generating 

assortativity) or other small traders (generating a disassortative market). 

We measure assortativity by the Pearson correlations between buydegree and 

selldegree for all edges present in the network. Using the notation above, over all 

edges Ei.j we calculate four pairwise correlations ρ(kibuy, kjbuy), ρ(kibuy, kjsell), ρ(kisell, 

kjbuy), and ρ(kisell, kjsell) corresponding to the four conditional degree distributions 

(buydegree ki,jbuy and selldegree ki,jsell) for each connected trader pair i and j. 

Intuitively, the coefficient ρ(kisell, kjbuy) measures the correlation between the number 

of unique buyers to whom a seller is selling to and the number of unique sellers that 

those buyers are buying from. A negative correlation indicates that when a seller 

matches with many buyers, those buyers are buying from few or no other sellers. 
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From these four correlations, we construct an aggregate assortativity index 

(AI) for each network 

1
4

, 	 , , 	 ,  

computed over all edges, where the scaling factor, ¼, assures that the assortativity 

index falls between -1 and 1. By construction, the assortativity index captures 

patterns in networks that feature large degree dispersion. For example, the 

assortativity index is high in a network that contains dominant traders or 

intermediaries—in either case, trades occur between parties that differ in both 

connectivity and liquidity provision/removal. 

Intuitively, assortativity represents a measure of asymmetric information or 

liquidity imbalance in a trading network.12 For instance, one large buyer matched 

with a number of small sellers exhibits high assortativity while a large buyer matched 

with a single large seller exhibits low assortativity. Indeed, if large orders are “shred” 

into smaller trades (perhaps stemming from inventory concerns as in Kyle et al. 

(2016)), assortativity will be high. Likewise, the presence of informed traders who 

have a greater number of counterparties will increase assortativity as in Babus and 

Kondor (2016). 

As Table I shows, the assortativity index in our sample ranges from -0.06 to 

+0.34, with a mean of 0.04 and standard deviation of 0.04.  This positive mean stems 

in part from the skewed degree distributions. Most buyers have low buydegree and, 

                                                 
12 Glosten (1987), Stoll (1989), George, Kaul and Nimalendran (1991) and Madhavan, Richardson and Roomans 
(1997) each model asymmetric information components in quoted bid-ask spreads. 
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on average, buy from a seller with high selldegree. Similarly, most sellers have low 

selldegree and, on average, sell to buyers with high buydegree. This pattern is 

consistent with a market populated by a small number of highly connected 

intermediaries who trade with many liquidity-demanding (or informed) traders. 

Clustering is a measure of transitivity in the network, i.e. if i trades with j, and 

j trades with k, clustering measures whether i also trades directly with k. We quantify 

clustering using the global clustering coefficient (CC) (Newman (2002)): 

3 ∗ 	
 

where T represents the total number of “connected triples” of three traders (i, j and 

k) and Tclosed represents the number of “closed triples” where i trades with j, j trades 

with k, and i also trades directly with k.13 

Economically, the clustering coefficient represents liquidity in the market. 

Connected triples represent the presence of at least one short-term liquidity provider. 

Intuitively, large clustering coefficients represent greater liquidity. In the extreme 

case where a single trader provides liquidity, no closed triples exist and the clustering 

coefficient is zero. At the other extreme, where all triples involve three traders 

connected as a “closed triple”, the clustering coefficient is 3. Higher clustering levels 

(connectivity) are also linked to higher levels of information in Duffie et al. (2015).  

As shown in Table I, the clustering coefficient in our sample ranges from 0.0 to 

0.23, with an average of 0.05 and standard deviation of 0.03. On average, there is 

                                                 
13 We treat the edges as undirected in the clustering coefficient since intermediation/liquidity involves both buying 
and selling. Fagiolo (2007) discusses directed clustering coefficients. 
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only a slight tendency for traders to cluster in this market. Indeed, the average 

clustering coefficient we observe is nearly identical to the coefficient we would expect 

by randomly connecting traders. 

Dispersion of information or liquidity in the market may be measured using 

connected components. A connected component is the set of all traders connected with 

each other through bilateral trading. The largest strongly connected component 

(LSCC) is the maximum number of traders that can be reached from any other trader 

by following directed edges.  

We compute the largest strongly connected component as: 

 

where LSCCMax is the raw count of traders in the LSCC and N is the total number of 

traders in the market. This ratio ranges between 1/N (one trader connects all other 

traders) and 1 (all traders are connected to all other traders). 

A larger LSCC forms when many traders are both buying and selling, that is 

when the supply of liquidity is dispersed among many traders. For example, a large 

strongly connected component is likely to emerge as a result of a large number of limit 

orders rather than one large market order. Since the LSCC is scaled by the total 

number of traders in the market, the arrival of concentrated net demand for liquidity 

will manifest itself in a smaller LSCC. Similar to clustering, a larger LSCC indicates 

greater connectivity, which is linked to higher levels of information in Duffie et al. 

(2015). Golosov et al. (2009) focus on the time-dimension of information diffusion 

either between differentially informed agents, or from homogeneously informed to 
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uninformed agents. As Table I indicates, the portion of the network occupied by the 

largest strongly connected component varies significantly, ranging from 0.00 to 0.52, 

with a mean of 0.09 and standard deviation of 0.06. While both clustering and LSCC 

represent liquidity/market information, the mean and variability in LSCC are 

significantly larger, suggesting that the two metrics are not equivalent.  

1.2  Financial Variables 

For each of the 12,032 network sampling periods, we also compute market 

returns, volatility, intertrade duration, trading volume, and more standard liquidity 

measures including effective bid-ask spreads, and signed volume, buy/sell trade 

imbalances. These variables typically describe financial market conditions. Lastly, 

given that clustering and centralization may be related to market concentration, we 

also construct a Herfindahl measure of buy/sell trade concentration during each 

interval. Descriptive statistics for these financial variables are shown in Table II.14 

Market returns contain valuable information about the true underlying price 

formation process, but may also contain market microstructure noise, measurement 

errors, and seasonal patterns (Engle (2000)). We compute open-to-close market 

returns as the log difference between the last and the first transaction price for each 

network period. We remove the predictable intraday seasonal component from raw 

returns by regressing returns on a constant and a sequence of dummy variables for 

each half-hour during the trading day and use the unexplained term as our measure 

                                                 
14 As with our network variables, all financial variables in our sample are stationary and (other than returns) 
highly persistent, with significant autocorrelation coefficients at 1, 5, and 10 lags.  
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of market returns.15 As shown in Table II, returns range from -0.15 to +0.20, are 

centered on zero with standard deviation of 0.04 and are slightly negatively skewed. 

We use three measures to estimate volatility during each sampling interval 

period: absolute returns, squared returns, and the log difference between the 

maximum and minimum prices (price range). For the results reported below, we use 

price range as an estimate of volatility.16 Importantly, however, our main results are 

not affected by the choice of volatility estimator. As shown in Table II, across 12,032 

sampling intervals, volatility averages about 0.06 percent, corresponding to an 

annual volatility of 23.56 percent. Volatility ranges from 0.02 to 0.29 percent, with a 

standard deviation of just 0.02 percent. 

Trading volume contains valuable information about the underlying price 

formation process, because volume together with observed transaction prices may be 

driven by a common latent factor.17 We compute trading volume as the number of 

contracts both bought and sold during each network interval. Volume ranges from 

1095 to 7706 with an average of 2629 and standard deviation of 636 contracts. 

Intertrade duration can be interpreted as a proxy for the arrival of new 

information or liquidity to the market (Engle and Russell (1998) and Engle (2000)). 

While the concept of duration in Duffie et al. (2015) differs somewhat from intertrade 

duration, they show that markets with more transactions (or with greater 

                                                 
15 We apply the same technique and use a Fourier flexible form to remove seasonality from all variables and 
examine alternative close-to-close returns with similar results. 
16 Range-based volatility estimators are more efficient than return-based volatility estimators (see, e.g., Parkinson 
(1980), Garman and Klass (1980), Beckers (1983), and Brunetti and Lildtholdt (2006)). Christensen and Podolskij 
(2007) use the price range to compute realized volatility in high frequency data. 
17 The vast literature on the properties of trading volume includes Clark (1973), Epps and Epps (1976), Tauchen 
and Pitts (1983), Admati and Pfleiderer (1988), Easley and O'Hara (1992), and Andersen (1996), among others. 
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connectivity) have higher information if duration is sufficiently low. We compute 

three measures of duration (total period duration, volume-weighted period duration, 

and the average of the 599 durations) and report results for total period duration—

the time elapsed during the network interval. Our main results are not affected by 

the choice of duration estimator. As shown in Table II, duration ranges from zero to 

344 seconds with 600 transactions occurring every 40.8 seconds, on average. 

Liquidity reflects the ease with which a security can be bought or sold without 

a significant price change. Unlike trading volume and duration, liquidity is not 

directly observable and has multiple dimensions. Indeed, our network variables 

capture some of these dimensions. We also compute more traditional liquidity 

metrics, like effective spreads, signed volume and trade imbalances.18 The effective 

spread captures the implied cost of trading and is equal to twice the square root of 

the first order autocovariance of returns over each interval (Stoll (1978)). Signed 

volume (buy minus sell volume) and trade imbalances (number of buys minus sells) 

capture the propensity for buy and sell orders to match up during the interval. 

The e-mini S&P 500 contract is extremely liquid. Table II shows that the 

average effective spread is less than 0.8 cents, with a maximum effective spread of 

just over two cents during our sample period.  The raw Amihud illiquidity measure 

(unreported) also has mean, median, and standard deviation very close to zero and 

indicates it takes about 21 contracts (or over $1 million) to move prices by one tick 

(0.25 index points). While mean and median signed volume and trade imbalances are 

                                                 
18 We also compute Amihud illiquidity measures using both contract volume and dollar trading volume with 
nearly identical results. 
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very small, the market can be imbalanced, with maximum signed volume exceeding 

5000 contracts and maximum buy imbalance at 13 trades. These extreme cases 

suggest that market liquidity can be stressed during the short intervals we study. 

Table II also displays a Herfindahl measure computed over each trading 

interval to compare with the clustering and centralization metrics we apply from 

network statistics.  As shown, the Herfindahl trades statistic is less variable than 

most other variables, with a minimum of 0.0002, maximum of 0.0013 and standard 

deviation of just 0.0001.19 

 

2. Illustrative Examples 

Prior to conducting the time-series statistical analysis for the network and 

financial variables, we present statistics from representative trading networks to 

illustrate the key concepts and the intuition behind our approach. Figure 1 presents 

three actual trading networks from our data, accompanied by network statistics and 

financial variables. The three trading networks are chosen to display relatively high 

values of centralization (left column), assortativity (middle column), and both 

clustering and the largest strongly connected component (right column). 

The left column of Figure 1 presents a network with one dominant seller 

(perhaps an informed trader or trader with strong liquidity demand) matched with 

many small buyers. As shown in Panel A, this trading network has a large negative 

centralization coefficient, intermediate levels of assortativity and LSCC, and a small 

                                                 
19 In unreported results we also construct a Herfindahl volume metric with nearly identical results. 
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clustering coefficient. As shown in Panel B, this network is also associated with a 

large negative market return, high volatility, intermediate trading volume, and low 

duration. Liquidity, volatility, duration and return statistics suggest that strong 

liquidity demand drains a significant portion of market liquidity and made a 

considerable price impact. Indeed, the signed volume and trade imbalance are 

accompanied by a large negative return, volatility, and short intertrade duration 

suggesting a large market order which quickly “walks the book.” 

The center column of Figure 1 presents a trading network with a relatively 

large buyer trading with several moderately-sized sellers through a number of 

intermediaries. As shown in Panel A, this network is characterized by intermediate 

centralization and clustering levels, suggesting that the net demand for liquidity is 

relatively balanced, with slightly negative signed volume but positive trade 

imbalance. Moreover, high assortativity means that large traders are mostly matched 

with many small traders (rather than with each other); and the small LSCC suggests 

that just a few intermediaries provide liquidity. As shown in Panel B, this network is 

associated with good liquidity and relatively low effective spreads. Furthermore, this 

network is characterized by high duration and relatively low volume—these 600 

trades are relatively small. This network is associated with intermediate positive 

market returns and volatility. Overall, these market conditions represent a handful 

of intermediaries supplying liquidity to smaller traders. 

The right column of Figure 1 presents a trading network with greater 

dispersion among buyers and sellers of various sizes, reflected in zero centralization 
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(no dominant buyer or seller) and low assortativity (like traders trade with like). High 

levels of clustering and LSCC, suggest that the net supply of liquidity is dispersed 

among many traders. Indeed, this trading network exhibits zero returns accompanied 

by good liquidity—low signed volume imbalance, zero trade imbalance and relatively 

large trading volume. 

These three examples illustrate our conjecture that network statistics and 

standard financial variables capture different dimensions of market conditions. 

Indeed, since information and liquidity appear to drive both network and financial 

variables, the two sets of variables are likely to be statistically interrelated as well. 

We formally examine the statistical relation between network metrics and traditional 

financial variables below. 

 

3. The Statistical Relation between Network and Financial Variables 

We first examine contemporaneous correlations among network and financial 

variables and then test for lead-lag relations between and among these variables. 

Panel A in Table III reports contemporaneous correlations among network variables. 

Although centralization is not correlated with other network variables, the other 

network variables are often strongly correlated with each other. |Centralization| is 

negatively correlated with both the clustering coefficient and the LSCC. That is, when 

a dominant trader increases net demand for market liquidity, counterparties to that 

dominant trader are less likely to trade with each other. Conversely, the high positive 

correlation between clustering and LSCC suggests that dispersed net liquidity supply 
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among many traders is often accompanied by strong liquidity demand. Assortativity 

is relatively uncorrelated with centralization and clustering, but is strongly 

negatively correlated with the LSCC—both higher assortativity and lower LSCC 

reflect greater liquidity imbalances.  

Panel B in Table III examines this economic intuition more closely with 

contemporaneous correlations between financial and network variables. 

Centralization is strongly correlated with returns, signed volume and trade 

imbalances. While |centralization| is positively correlated with volume and 

volatility, it is negatively correlated with duration, effective spreads and trade 

concentration. Intuitively, a large order (with high |centralization|) that walks the 

limit order book results in higher volatility and volume with lower duration. 

Higher asymmetric information or greater liquidity imbalance, as represented 

by assortativity, is negatively correlated with volume and volatility, but largely 

unrelated to more traditional market metrics. The former suggests that higher 

asymmetric information or liquidity imbalance is accompanied by a reduction in both 

volatility and trading volume. The latter suggests that asymmetric information, as 

represented by assortativity, is not related to signed volume or trade imbalances. 

Clustering is positively correlated with volume and negatively correlated with 

effective spreads and volatility. Intuitively, since clustering captures short-term 

market making activities, greater intermediation improves liquidity, smooths 

volatility and enhances trading volume. Clustering is also highly negatively 

correlated with trade concentration (Herfindahl trades). The LSCC, the dispersion of 
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net liquidity supply, is positively correlated with both volume and volatility. The 

LSCC, however, is not significantly correlated with other more traditional financial 

market variables.  

While the contemporaneous correlations suggest a link between network and 

financial variables, we now examine whether this link reflects a redundancy in the 

data or whether network variables add incremental value to more traditional market 

quality metrics. We use the time series of data to examine the lead-lag relations 

among network and financial variables and conjecture that network metrics serve as 

primitive measures of information and liquidity.  

We apply standard Granger causality tests in vector autoregressive (VAR) 

models among network and financial variables.20 Table IV provides the p-values of 

Granger-non-causality tests among the five network variables. Centralization 

neither Granger-causes nor is Granger-caused by other network variables (p-values 

equal to 0.65 and 0.37, respectively). As a system, however, the remaining network 

variables are both jointly Granger-caused by (and jointly Granger-cause) each other 

(p-values between 0.00 and 0.05), indicating strong feedback effects within our 

network statistics. Indeed, most pair-wise tests are also significant. 

Table V presents p-values for the Granger-non-causality tests between 

network variables and each financial variable both jointly and independently. In 

Panel A, we find that returns and volatility are jointly both Granger-caused by and 

                                                 
20 Since the variables exhibit heteroskedasticity and serial correlation, we estimate VAR models using generalized 
method of moments (GMM) and Newey-West robust standard errors. Standard tests show that the VAR model 
must include all five network variables. The Akaike and Schwartz Information Criteria indicate an optimal lag-
length of twelve. 
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Granger-cause network variables (p-values of 0.00 and 0.01 for returns and 0.00 and 

0.00 for volatility, respectively). Centralization drives the result for returns, with 

strong bi-directional Granger-causality. For volatility, we find strong bi-directional 

Granger-causality (feedback effects) between volatility and each network variable. 

Panel B in Table V reports test results for intertrade duration and volume. We 

find strong evidence of one-way causality—duration and volume are both Granger-

caused by each network variable, both individually and jointly (joint p-value = 0.00). 

While duration leads the LSCC and volume leads assortativity, neither duration nor 

volume lead network variables jointly (p-values = 0.20 and 0.16, respectively). These 

results indicate that network statistics significantly lead both duration and trading 

volume. To the extent that duration and volume proxy for information arrival, 

network statistics reflect forthcoming changes in market conditions. 

Lastly, Panels C and D show that network variables jointly Granger-cause 

signed volume, trade concentration, effective spreads and trade imbalances. These 

strong results suggest that the demand and supply of liquidity are reflected in 

network variables prior to emerging in more traditional liquidity measures. While 

individual pair-wise tests vary significantly, we find no feedback effects here. Taken 

as a whole, these network statistics lead short-term changes in both liquidity and 

market concentration as well. 

For comparison, Table VI displays bi-variate VAR Granger-causality tests 

between traditional liquidity metrics and the traditional market statistics of returns, 

volatility, volume and duration.  Contrary to the tests with network statistics, we find 
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bi-directional causality among many of these variables—they are jointly determined 

contemporaneously. Effective spreads, in particular, exhibit bi-directional relations 

with volatility, volume and duration. Trade imbalances (Panel B) are unrelated to 

these other market statistics. Interestingly, we find no leads or lags between these 

traditional liquidity measures and returns, in stark contrast to the strong bi-

directional effects between network statistics and returns. These results confirm that 

network metrics capture market conditions that are not reflected in traditional 

market descriptors. In fact, network metrics significantly presage future market 

conditions at very short horizons. 

 

4. Information, Noise and Network Formation 

4.1 Information 

For greater perspective on real world trading networks, we examine the time 

series properties in both re-wired networks and simulated networks. We first re-wire 

our networks using each active trader while preserving the degree distribution: e.g. 

if trader i in a given network sells (buys) three times, in the re-wired network node i 

still sells (buys) three times but to randomly assigned counterparties in the same 

network. We re-compute all the network variables in the re-wired networks to 

compare with the actual trading networks. If the trading networks are randomly 

formed, there will be no difference between the trading and re-wired networks. 

In contrast to the high correlations found between trading network variables 

and financial variables, we find almost no correlations with statistics generated from 
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re-wired networks.21 Moreover, the results from the Granger-non-causality tests do 

not hold for the re-wired network. These findings support the notion that the trading 

networks do not form randomly, but rather reflect information flows and/or 

information percolation. 

Secondly, we explore the source of the bi-directional Granger-causality that we 

find between network and financial variables by constructing an agent-based 

simulation model of a limit order market that is devoid of a feedback mechanism. The 

simulated networks allow for heterogeneous beliefs about the price process, but 

impart no intentionality or memory upon the traders. Consequently, we might expect 

to find significant correlations among network and financial variables, but not 

necessarily evidence of Granger-causality since feedback effects are not included.22 

Generally, we find that the simulated executions generate contemporaneous 

correlations similar to, but less significant than, those from real market data. The 

correlations between network variables and between network and financial variables 

are displayed in Table VII. As with the market data, we find strong correlations 

between returns and centralization. The simulation also sheds light on the possible 

sources of this high correlation. We find that the mechanics of the impatient order 

submission strategy raises the correlation: when a large buy order at a high price is 

matched against several existing sell orders network centralization is high. Matching 

a large number of sell orders to a single buy order likely reflects the large buy order 

walking up the book, so contemporaneous returns are also high. 

                                                 
21 To conserve space, we do not report the results. 
22 Details on the simulation are included in the Appendix 
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Generally, correlations between volatility and |centralization|, and between 

the Hefindhal index and |centralization| are also relatively high in the simulated 

networks. These results suggest that the order matching process can generate 

contemporaneous correlations between financial and network variables in the 

absence of any economic motivation (other than the prescribed urgency to trade built 

in to simulate perishable information). 

Granger-causality tests among simulated variables lack the dynamic structure 

found in live market data, as might be expected.23 Indeed, Granger-causality tests 

among network and financial variables are generally insignificant and yield few 

feedback effects, indicating a very poor fit. This suggests that the Granger-causality 

results that we find in the actual market data arise as a result of the strategic 

behavior of traders (as in Cohen-Cole et al. (2015)) or information flows or percolation 

(as in Babus and Kondor (2016) and Duffie et al. (2015)) and are not simply artifacts 

of the order matching process. 

4.2 Noise 

We also explore whether measurement error (known to affect returns) affects 

our inferences about network statistics.24 Both financial and network variables may 

be noisy estimates of other latent variables in the market. We conjecture that 

networks measure information and market interactions among agents with less error 

                                                 
23 Reflecting the lack of dynamics in the simulated data, the AIC (SIC) selects an optimal lag-length of order one 
(zero) in the VAR specification. We use lag-length of order one. 
24 We thank an anonymous referee for moving the paper in this direction. 
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than traditional financial statistics. Borrowing from the high frequency econometrics 

literature25 we may write the observed (log) trading price as 

 
 
where  is the fundamental (true) price and  represents the market microstructure 

noise stemming from bid-ask bounce, discrete prices, etc. The effects of noise on 

observed prices depends on the properties of the noise itself. In particular, if we 

compute returns as  

∆ ∆ ∆  

and if  is autocorrelated and also correlated to  then ∆  is a moving average 

process and the effects of the error term can be substantial. While we select the 

optimal sampling frequency to minimize the effects of the error when computing daily 

realized volatilities, other financial variables might also be affected by noise. 

Conversely, our network variables utilize only the direction of trades and do not 

include information about prices and/or quantities, so we hypothesize that network 

variables are less affected by microstructure noise, . 

To test this hypothesis, we first compute the ratio of high-low (range) volatility 

estimates to open-to-close returns as a simple measure of the noise-to-signal ratio in 

the market. For instance, if a network interval has a large bid-offer spread (large 

value of ) and the fundamental price ( ) does not change much, the range mainly 

captures noise. Additionally, information that moves the price captures the signal, 

represented in the denominator, and the ratio of the range to the open-to-close return 

                                                 
25 See Andersen et al. (2000), Barndorff-Nielsen, Hansen, Lunde and Shephard (2009), and Zhang, Mykland and 
Ait-Sahalia (2005). 
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is a proxy for the noise-to-signal ratio (at least for the extreme cases—i.e. when large 

values of the range are associated with low returns). In fact, we concentrate on the 

right tail of the distribution of our proxy of the noise-to-signal ratio. 

Figure 2 depicts the noise-to-signal ratios for the top decile of our network 

intervals. As shown, 60 intervals (representing 0.5% of the total) contain the largest 

noise-to-signal ratios, with the ratio stabilizing around the 400th observation (3% of 

our sample). In the analysis that follows we consider both the 97th percentile and the 

95th percentile of the noise to signal ratio. 

Figure 3 depicts the distribution of the network statistics, segmenting 

networks in the 95th percentile by noise-to-signal ratio from all others. The 

observations that correspond to top quintile of the noise-to-signal ratio are in red, 

while all other observations are in green.26 Figure 3 shows that there is no material 

difference between the network variables corresponding to the top quintile of the 

noise-to-signal ratio and all other observations. Moreover, the tails of these 

distributions of network statistics appear to be more populated by observations not 

related to high noise-to-signal ratios.   

In Table VIII we present formal tests of whether the means of the network 

variables corresponding to the top quintile of the noise-to-signal ratio and the mean 

of the rest of the observations are equal. These tests clearly fail to reject the null of 

different population means—when the signal-to-noise ratio is high, network variables 

are not materially different. 

                                                 
26 Results are similar for the 97th percentile. 
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We run the same test for the financial variables and marginally reject (at 10% 

level) the null of equal means for volume, duration, effective spread and Herfindahl 

trades when comparing the top quintile of the noise-to-signal ratio to the rest of the 

sample.27 These results provide some evidence in support of our hypothesis that 

network variables contain less noise than financial variables. 

4.3 Network Formation 

Given that patterns emerge in network statistics, we also formally test the 

mark-up hypothesis of Li and Schürhoff (2014)—that more central traders can 

estimate their own contemporaneous influence in the market and can then use this 

advantage to more accurately predict future market returns. To do so we first isolate 

the top seven traders (by trading volume) and compute the following over each 

network interval. Let  be the quantity transacted between accounts  and  in 

period . Then, ∑ , ∈ 7, ∑ , ∈ 7, and 

 and  is a centrality measure for the top seven traders, analogous to centrality 

computed across all traders individually. We then run the following regression: 

, 	 , ,  

where , , ,  are the day of the week, hour, minute, and second fixed effects. 

The mark-up hypothesis implies that central traders make markets so that 0, 

and learn from this central position and can forecast future returns, so that 0 

and 0. 

                                                 
27 Note we do not run the test for volatility and returns since both measures are used in constructing our noise-
to-signal ratios. 
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The first column in Table IX shows that contemporaneous returns are 

negatively related to more central traders (  suggesting these traders serve an 

informal market making role. Moreover, returns also contain information from more 

central traders at up to two lags. The second column in Table IX shows that lagged 

returns are strongly positively related to more central traders for at least three lags. 

These results are consistent with the mark-up hypothesis of Li and Schürhoff (2014). 

 

5. Conclusions 

We use audit trail data that identifies trading accounts on both sides of every 

trade to construct the links between buyers and sellers in the e-mini S&P 500 stock 

index futures contract, the price discovery venue for the U.S. equity market. We 

construct a time series of more than 12,000 trading networks each comprised of 600 

sequential trades and use established network analysis tools to empirically link 

network variables with financial variables that describe market conditions. We find 

that network statistics are contemporaneously correlated with these financial 

variables, suggesting that the underlying economics that drive financial variables 

also drive network parameters. Importantly, network variables capture information, 

information asymmetry and liquidity characteristics in the e-mini S&P500 futures 

market that we study consistent with models of information flows or percolation (e.g. 

Babus and Kondor (2016) and Duffie et al. (2015)) 

Moreover, network variables are primitive determinants of market conditions, 

emerging prior to more common measures of information and liquidity, due in part to 
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the fact that network variables are less contaminated by market noise. For example, 

we find that network statistics Granger-cause trading volume, intertrade duration, 

effective spreads, trade imbalances and signed volume imbalances. We also document 

bi-directional Granger-causality between network variables and both returns and 

volatility, suggesting that network variables also capture complex feedback 

mechanisms that underlie trading strategies in financial markets. 

We conjecture that market-wide patterns of order execution are informative 

about the price formation process in order driven markets and these dynamics are 

manifest in both financial and network variables. Given the fact that network 

variables presage volume, duration and other market liquidity measures, we conclude 

that trading network analysis offers a fruitful mechanism for assessing trading 

strategies that drive price formation and liquidity supply in financial markets (as in 

Cohen-Cole et al. (2015) and Kyle et al. (2016)). 

Indeed, we form our trading networks based on common trader attributes—a 

buyer and a seller agree on a precise price and quantity at a given time and therefore 

trade. Like Billio et al. (2012), we show that networks formed not on the basis of 

personal relationships, but rather on economic considerations, reflect market 

conditions prior to more traditional volume and volatility metrics. Moreover, we find 

support for the mark-up hypothesis of Li and Schürhoff (2014)—that more central 

traders can use their information advantage to predict short horizon market returns. 

Given the strong contemporaneous link between financial and network 

variables, we believe that network analysis tools also offer new insights into the 
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behavior of financial markets. We adopt confidential data. However, financial 

networks can be formed by public data as shown in Billio et al. (2012), Diebold and 

Yilmaz (2014) and Brunetti et al. (2016). 

While the data we employ here differs from the typical social network setting 

where connections are personal, we show that networks formed by economic 

connections also reveal information about market conditions, despite the lack of social 

connections between our traders. Whether our results hold in settings where orders 

are executed via preferencing arrangements, across competitive trade execution 

venues (like the U.S. equity markets), in floor-based exchanges, or in markets where 

internalization or payments/rebates for order flow are possible remain questions for 

further research. 

 



31 
 

References 
 

Acemoglu, Daron, Munzer A. Dahleh, Ilan Lobel, and Asuman Ozdaglar, 2008, 
Bayesian learning in social networks, NBER working paper #14040. 

 
Acemoglu, Daron, Asuman Ozdaglar, and Alireza Tahbaz-Salehi, 2015, Systematic 

risk and stability in financial networks, American Economic Review 105, 564-
608. 

 
Acharya, Viral V., and Tanju Yorulmazer, 2008, Information contagion and bank 

herding, Journal of Money, Credit, and Banking 40, 215-231. 
 
Admati, Anat R., and Paul Pfleiderer, 1988, A theory of intraday patterns: Volume 

and price variability, Review of Financial Studies 1, 3-40. 
 
Allen, Franklin, and Ana Babus, 2009, Networks in finance. The Network Challenge, 

Edited by Paul Kleindorfer and Jerry Wind, Wharton School Publishing, 367-
382. 

 
Allen, Franklin, Ana Babus, and Elena Carletti, 2012, Asset commonality, debt 

maturity and systemic risk, Journal of Financial Economics 104, 519-534.  
 
Andersen, Torben G., 1996, Return volatility and trading volume: An information 

flow interpretation of stochastic volatility, Journal of Finance 51, 169-204. 
 
Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys, 2000, 

Great realizations, Risk 13, 105-108. 
 
Babus, Ana, 2009, The formation of financial networks, University of Cambridge 

working paper. 
 
Babus, Ana, and Péter Kondor, 2016, Trading and information diffusion in over-the-

counter markets, CERP discussion paper #9271. 
 
Back, Kerry, and Shmuel Baruch, 2007, Working orders in limit-order markets and 

floor exchanges, Journal of Finance 61, 1589-1621. 
 
Bandi, Federico M., and Jeffrey R. Russell, 2006, Separating microstructure noise 

from volatility, Journal of Financial Economics 79, 655-692. 
 
Barndorff-Nielsen, Ole Eiler, P. Reinhard Hansen, Asger Lunde, and Neil Shephard, 
2009, Realized kernels in practice: trades and quotes, Econometrics Journal, 12, C1-
C32. 
 



32 
 

Beckers, Stan, 1983, Variance of security price returns based on high, low and 
closing prices, Journal of Business 56, 97-112. 

 
Biais, Bruno, David Martimort, and Jean-Charles Rochet, 2000, Competing 

mechanisms in a common value environment, Econometrica 68, 799–837. 
 
Biais, Bruno and Pierre-Olivier Weill, 2009, Liquidity shocks and order book 

dynamics, NBER working paper #15009. 
 
Billio, Monica, Mila Getmansky, Andrew W. Lo and Loriana Pelizzon, 2012, 

Econometric Measures of Connectedness and Systemic Risk in the Finance and 
Insurance Sectors, Journal of Financial Economics 104, 536-559. 

 
Braverman, A. and A. Minca, 2014, Networks of common asset holdings: 

aggregation and measures of vulnerability, Available at SSRN:  
http://ssrn.com/abstract=2379669 or http://dx.doi.org/10.2139/ssrn.2379669 

 
Brunetti, Celso, Jeffrey H. Harris, Shawn Mankad and George Michailidis, 2016, 

Interconnectedness in the Interbank Market, Finance and Economics 
Discussion Series 2015-090. Washington: Board of Governors of the Federal 
Reserve System, http://dx.doi.org/10.17016/FEDS.2015.090. 

 
Brunetti, Celso, and Peter M. Lildholdt, 2006, Relative efficiency of return- and 

range-based volatility estimators, Mimeo. 
 
Cabrales, Antonio, and Piero Gottardi, 2014, Markets for information: Of inefficient 

firewalls and efficient monopolies, Games and Economic Behavior 83, 24-44. 
 
Caccioli, Fabio, J. Doyne Farmer, Nick Foti, and Daniel Rockmore, 2013, How 

interbank lending amplifies overlapping portfolio contagion: A case study of the 
Austrian banking network. arXiv preprint, arXiv:1306.3704. 

 
Christensen, Kim, and Mark Podolskij, 2007, Realised range-based estimation of 

integrated variance. Journal of Econometrics 141, 323-349. 
 
Cifuentes, Rodrigo, Gianluigi Ferrucci and Hyun Song Shin, 2005, Liquidity Risk 

and Contagion, Journal of European Economic Association 3, 556-566. 
 
Clark, Peter K., 1973, A subordinated stochastic process model with finite variance 

for speculative prices, Econometrica 41, 135-155. 
 
Cohen-Cole, Ethan, Andrei A. Kirilenko and Eleonora Patacchini, 2014, Trading 

Networks and Liquidity Provision, Journal of Financial Economics 113, 235-
251.  



33 
 

 
Cohen-Cole, Ethan, Eleonora Patacchini and Yves Zenou, 2015, Static and Dynamic 

Networks in Interbank Markets, Network Science 3, 98-123. 
 
Copeland, Thomas E. and Dan Galai, 1983, Information effects on the bid-ask 

spread, Journal of Finance 38, 1457-1469.  
 
Duffie, Durrell, Semyon Malamud and Gustavo Manso, 2015, Information 

Percolation in Segmented Markets, Journal of Economic Theory, 157, 1130-
1158. 

 
DeMarzo, Peter M., Dimitri Vayanos, and Jeffrey Zwiebel, 2003, Persuasion bias, 

social influence, and unidimensional opinions, The Quarterly Journal of 
Economics 118, 909-968. 

 
De Vries, Casper G., 2005, The simple economics of bank fragility, Journal of 

Banking and Finance 29, 803-825. 
 
Diebold, Frank X., and Yilmaz Kamil, 2014, On the Network Topology of Variance 

Decompositions: Measuring the Connectedness of Financial Firms, Journal of 
Econometrics, 182, 119-134. 

 
Easley, David and Maureen O’Hara, 1992, Adverse selection and large trade 

volume: the implications for market efficiency, Journal of Financial and 
Quantitative Analysis 27, 185-208. 

 
Elsinger, Helmut, Alfred Lehar, and Martin Summer, 2006. Risk assessment for 

banking systems. Management Science 52, 1301-1314. 
 
Engle, Robert F., 2000, The econometrics of ultra-high-frequency data, 

Econometrica 68, 1-22. 
 
Engle, Robert F., and Jeffrey R. Russell, 1998, Autoregressive conditional duration: 

A new model for irregularly spaced transaction data, Econometrica 66, 1127-
1162. 

 
Epps, Thomas W., and Mary Lee Epps, 1976, The stochastic dependence of security 

price changes and transaction volumes: Implications for the mixture-of-
distribution hypothesis, Econometrica 44, 305-321. 

 
Fagiolo, Giorgio, 2007, Clustering in complex directed networks, Physical Review E 

76, 26107. 
 
Ferguson, Adam, 1767, An Essay on the History of Civil Society. 



34 
 

 
Foster, F. Douglas, and S. Viswanathan, 1990, A theory of  interday variations in 

volumes, variances and trading costs in securities markets, Review of 
Financial Studies 4, 595-624. 

 
Foster, F. Douglas, and S. Viswanathan, 1993, Variations in trading volume, return 

volatility and trading costs: Evidence on recent price formation models, 
Journal of Finance 48, 187-211. 

 
Foster, F. Douglas, and S. Viswanathan, 1994, Strategic trading with 

asymmetrically informed traders and long-lived information, Journal of 
Finance and Quantitative Analysis 29, 499-518. 

 
Foucault, Thierry, 1999, Order flow composition and trading costs in a dynamic 

limit order market, Journal of Financial Markets 2, 99–134.  
 
Foucault, Thierry, Ohad Kadan, and Eugene Kandel, 2005, The limit order book as 

a market for liquidity, Review of Financial Studies 18, 1171–1217. 
 
Garman, Mark B., and Michael J. Klass, 1980, On the estimation of security price 

volatilities from historical data, Journal of Business 53, 67-78. 
 
Gale, Douglas, and Shachar Kariv, 2003, Bayesian learning in social networks, 

Games and Economic Behavior 45, 329-346. 
 
George, Thomas J., Gautam Kaul and M. Nimalendran, 1991, Estimation of the bid-

ask spread and its components: A new approach, Review of Financial Studies 4, 
623-656. 

 
Glosten, Lawrence R., 1987, Components of the bid-ask spread and the statistical 

properties of transaction prices, Journal of Finance 42, 1293-1307. 
 
Glosten, Lawrence R., and Paul R. Milgrom, 1985, Bid, ask and transaction prices 

in a specialist market with heterogeneously informed traders, Journal of 
Financial Economics 14, 71-100. 

 
Goettler, Ronald L., Christine A. Parlour, and Uday Rajan, 2005, Equilibrium in a 

dynamic limit order market, Journal of Finance 60, 2149–2192. 
 
Goettler, Ronald L., Christine A. Parlour, and Uday Rajan, 2009, Informed traders 

and limit order markets, Journal of Financial Economics 93, 67-87. 
 



35 
 

Golub, Benjamin, and Matthew O. Jackson, 2010, Naïve learning in social networks 
and the wisdom of crowds, American Economic Journal: Microeconomics 2, 
112-149. 

 
Golosov, Mikhail, Guido Lorenzoni, and Aleh Tsyvinski, 2009, Decentralized trading 

with private information, NBER working paper #w15513. 
 
Hansen, P. Reinhard, and Asger Lunde, 2006, Realized variance and market 

microstructure noise, Journal of Business and Economic Statistics 24,127-218. 
 
Hayek, Freidrich A., 1948, Individualism and Economic Order, University of 

Chicago Press. 
 
Jarque, Carlos M., and Anil K. Bera, 1980, Efficient tests for normality, 

homoscedasticity and serial independence of regression residuals, Economics 
Letters 6, 255–259. 

 
Kyle, Albert S., 1985, Continuous auctions and insider trading, Econometrica 53, 

1315-1335. 
 
Kyle, Albert S., Anna Obizhaeva, and Yajun Wang, 2016, Smooth trading with 

overconfidence and market power, Robert S. Smith School research paper 
#RHS 2423207. 

 
Lagunoff, Roger, and Stacey L. Schreft, 2001, A model of financial fragility, Journal 

of Economic Theory 99: 220-264. 
 
Large, Jeremy, 2009, A market-clearing role for inefficiency on a limit order book, 

Journal of Financial Economics 91, 102-117. 
 
Leitner, Yaron, 2005, Financial networks: Contagion, commitment, and private 

sector bailouts, Journal of Finance 60, 2925-2953. 
 
Li, Dan, and Norman Schürhoff, 2014, Dealer networks, Finance and Economics 

Discussion Series 95, Board of the Governors of the Federal Reserve System. 
 
Madhavan, Ananth, Matthew Richardson and Mark Roomans, 1997, Why do 

security prices change? A transaction-level analysis of NYSE stocks, Review of 
Financial Studies 10, 1035-1064. 

 
Newman, Mark E. J., 2002, Assortative mixing in networks, Physical Review Letters 

89, 208701.  
 



36 
 

Parkinson, Michael, 1980, The extreme value method for estimating the variance of 
rate of return, Journal of Business 53, 61-65. 

 
Parlour, Christine A., 1998, Price dynamics in limit order markets, Review of 

Financial Studies 11, 789-816.  
 
Parlour, Christine A., and Duane J. Seppi, 2003, Liquidity-based competition for 

order flow, Review of Financial Studies 16, 301-343. 
 
Rosu, Ioanid, 2009, A dynamic model of the limit order book, Review of Financial 

Studies 22, 4601-4641. 
 
Roukny, Tarik, Stefano Battiston, and Joseph E. Stiglitz, 2016, Interconnectedness 

as a source of uncertainty in systemic risk, Columbia Business School Research 
Paper #16-14. 

 
Roukny, Tarik, Hugues Bersini, Hugues Pirotte, Guido Caldarelli, and Stefano 

Battiston, 2013, Default cascades in complex networks: topology and 
systematic risk, Scientific Reports 3, #2759. 

 
Scheinkman, Jose A., and Wei Xiong, 2003, Overconfidence and speculative bubbles, 

Journal of Political Economy 111, 1183-1219. 
 
Stoll, H., 1978, The supply of dealer services in securities markets, Journal of 

Finance, 33, 1133-1151. 
 
Stoll, Hans R., 1989, Inferring the components of the bid-ask spread: Theory and 

empirical tests, Journal of Finance 44, 115-134. 
 
Tauchen, George E., and Mark Pitts, 1983, The price variability-volume 

relationship on speculative markets, Econometrica 51, 485-505. 
 
Upper, C., 2006, Contagion due to interbank credit exposures: what do we know, 

why do we know it, and what should we know? Working paper, Bank for 
International Settlements. 

 
Zhang, Lan, Per A. Mykland and Yacine Ait-Sahalia, 2005, A Tale of Two Time  

Scales: Determining Integrated Volatility with Noisy High-Frequency Data, 
Journal of the American Statistical Association, 100, 1394-1411. 

 
  



37 
 

Appendix—Re-wired and Simulation Results 
 

We start the simulation by endowing a fixed number of traders with orders 

which arrive with a Poisson distributed inter-arrival time and are assigned at 

random. The quantity for each order is drawn from a lognormal distribution and with 

an equal probability of being a buy or a sell order. For a sell (buy) order the price is 

set a small fixed number above (below) the last transaction price plus a log-normally 

distributed, mean zero random variable. The (log-normally distributed, zero mean) 

random variable added to the order price is consistent with an equilibrium price 

function under the assumption of heterogeneous beliefs about the true price process 

(see Scheinkman and Xiong (2003)). 

As our simulation starts, orders begin to populate the limit order book. Each 

incoming order is compared to previously placed orders by price and time priority. If 

a match between a buy and sell order is made, a transaction takes place. If an order 

is only partially filled, we attempt to match the remaining quantity against other 

orders on the book, and if no match is found, the order remains in the limit order 

book. In order to avoid stale limit orders, each order expires and is withdrawn from 

the market after 100 subsequent transactions are executed. 

We simulate orders until we attain 7.2 million transactions, segment the data 

into 12,000 networks of 600 consecutive transactions, and compute simulated 

network and financial variables for each sampling interval using the same methods 

applied to the empirically observed data. We then analyze both correlations and 

lead/lag relations among these variables to compare with actual market results. 
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Panel A: Network Metrics 

Centralization -0.736 0.044 0.000 
|Centralization| 0.736 0.044 0.000 
Assortativity 0.097 0.297 0.011 
Clustering 0.003 0.009 0.170 
LSCC 0.013 0.005 0.333 

Panel B: Traditional Financial Variables 
Returns -0.100 0.051 0.000 
Volatility 0.100 0.051 0.051 
Volume 2325 2304 3832 
Duration 10 19 14 
Effective Spread 0.007 0.005 0.009 
Signed Volume -2151 -557 -170 
Trade Imbalance -4.0 2.0 0.0 
Herfindahl Trades 7.50 7.94 9.56 

Figure 1. Trading Network Statistics This figure displays three examples of trading networks comprised of 600 sequential 
trades in the nearby e-mini S&P 500 futures contract on the CME Globex platform during August 2009. Centralization, 
|Centralization|, assortativity, clustering and the largest strongly connected component (LSCC) are computed as defined in 
Section I. Returns are open-to-close returns computed as differences between log ending and beginning prices during each 
interval. Volatility is the range between high and low prices, volume is the total number of contracts traded and duration is the 
time (in seconds) elapsed between the start and end of the network interval. Effective Spread is equal to twice the square root 
of the first order autocovariance of returns over each interval (x10-3). Signed Volume is equal to the buy volume minus the sell 
volume. Trade Imbalance is equal to the number of buy trades less the number of sell trades in each interval. Herfindahl 
Trades is the Herfindahl index computed using the number of trades traded by each trader over each interval (x10-3). 
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Figure 2: Noise-to-signal ratio. This figure displays the ratio between the range 
(high-low prices) and the open-to-close returns for the top decile of our network 
intervals. 
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Centralization |Centralization| 

  
Assortativity Clustering 

  
LSCC  

 
Figure 3: Histograms for the network variables. Observations corresponding 
to the 95th percentile of the noise-to-signal ratio are in red; all other observations 
are in green. 
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Table I: Network Variables: Summary Statistics 
The sample contains summary statistics for 12,032 networks each comprised of 600 
sequential trades in the nearby e-mini S&P 500 futures contract on the CME Globex 
platform during August 2009. Centralization, |centralization|, assortativity, 
clustering and the largest strongly connected component (LSCC) are network 
variables computed as defined in Section I. ADF probability refers to the p-value of 
the ADF test for the null of unit root. Terms in [brackets] below autocorrelation 
coefficients refer to p-values of the Portmanteau Q-test for no serial correlation at 1, 
5, and 10 lags. 

 Centralization |Centralization| Assortativity Clustering  LSCC 
Mean 0.0022 0.1373 0.0424 0.0524 0.0912 
Median 0.0037 0.1177 0.0321 0.0483 0.0857 
Maximum 0.6499 0.7356 0.3385 0.2250 0.5217 
Minimum -0.7356 0.0000 -0.0557 0.0004 0.0024 
Std. Dev. 0.1711 0.1021 0.0391 0.0282 0.0641 
Skewness -0.0200 0.9944 1.5562 0.9605 0.7500 
Kurtosis 2.9827 4.0422 6.2788 4.4588 3.6643 
ADF probability 0.0000 0.0001 0.0000 0.0000 0.0000 
Autocorrelations: 
Lag 1 

0.007 
[0.462] 

0.003 
[0.779] 

0.120 
[0.000] 

0.197 
[0.000] 

0.273 
[0.000] 

 
Lag 5 

0.079 
[0.000] 

0.013 
[0.000] 

0.074 
[0.000] 

0.085 
[0.000] 

0.132 
[0.000] 

 
Lag 10 

0.060 
[0.000] 

0.029 
[0.000] 

0.058 
[0.000] 

0.055 
[0.000] 

0.078 
[0.000] 
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Table II: Financial Variables: Summary Statistics 
The sample contains summary statistics for 12,032 networks each comprised of 600 sequential trades in the nearby e-mini S&P 
500 futures contract on the CME Globex platform during August 2009. Returns are open-to-close network returns computed as 
differences between log ending and beginning prices during each interval. Volatility is the range between high and low prices, 
volume is the total number of contracts traded and duration is the time (in seconds) elapsed between the start and end of the 
network interval. Effective Spread is equal to twice the square root of the first order autocovariance of returns, Stoll (1978), over 
each interval (x10-3). Signed Volume is equal to the buy volume minus the sell volume. When the price is constant (zero returns), 
buy/sell volume is equal to that of the previous interval. Trade Imbalance is equal to the number of buy trades less the number 
of sell trades in each interval. Herfindahl Trades is the Herfindahl index computed using the number of trades traded by each 
trader over each interval (x10-3). ADF probability refers to the p-value of the ADF test for the null of unit root. Terms in [brackets] 
below autocorrelation coefficients refer to p-values of the Portmanteau Q-test for no serial correlation at 1, 5, and 10 lags.  

  Returns Volatility Volume Duration 
Effective 
Spread 

Signed  
Volume 

Trade 
Imbalance 

Herfindahl 
Trades 

Mean 0.0002 0.0621 2628.7 40.775 7.9369 13.804 0.0145 0.0842 
Median 0.0000 0.0507 2521.0 28.000 7.9046 18.000 0.0000 0.0836 
Maximum 0.1992 0.2901 7706.0 344.00 21.256 5171.0 13.000 0.1306 
Minimum -0.1493 0.0241 1095.0 0.0000 0.0011 -4592.0 -8.0000 0.0242 
Std. Dev 0.0383 0.0191 636.06 37.926 2.1513 1219.3 1.5679 0.0126 
Skewness -0.0116 0.9046 1.9566 1.9630 0.1778 0.0462 0.0615 0.1456 
Kurtosis 2.7977 7.0270 11.016 8.1385 3.7118 2.9539 3.5352 3.1088 
ADF probability 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 
Autocorrelations: 
Lag 1 

-0.0121 
[0.185] 

0.1747 
[0.000] 

0.5211 
[0.000] 

0.5483 
[0.000] 

0.1867 
[0.000] 

0.1985 
[0.000] 

-0.0113 
[0.213] 

0.3796 
[0.000] 

Lag 5 -0.0136 
[0.363] 

0.1392 
[0.000] 

0.3378 
[0.000] 

0.3805 
[0.000] 

0.1263 
[0.000] 

0.0364 
[0.000] 

-0.0080 
[0.073] 

0.1840 
[0.000] 

Lag 10 0.0027 
[0.289] 

0.1076 
[0.000] 

0.2351 
[0.000] 

0.3299 
[0.000] 

0.0992 
[0.000] 

0.0064 
[0.000] 

0.0054 
[0.115] 

0.1249 
[0.000] 
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Table III: Correlations between Financial and Network Variables 
This table contains pairwise correlations calculated from 12,032 networks of 600 
sequential trades in the nearby e-mini S&P 500 futures contract on the CME Globex 
platform during August 2009. Centralization, |centralization|, assortativity, 
clustering and the largest strongly connected component (LSCC) are network 
variables computed as defined in Section I. Returns are open-to-close network returns 
computed as differences between log ending and beginning prices during each 
interval. Volatility is the range between high and low prices, volume is the total 
number of contracts traded and duration is the time (in seconds) elapsed between the 
start and end of the network interval. Effective Spread is equal to twice the square 
root of the first order autocovariance of returns, Stoll (1978), over each interval (x10-

3). Signed Volume is equal to the buy volume minus the sell volume. Trade Imbalance 
is equal to the number of buy trades less the number of sell trades in each interval. 
Herfindahl Trades is the Herfindahl index computed using the number of trades 
traded by each trader over each interval. * indicates statistical significance at the 5 
percent level. 

 Central 
-ization 

|Central-
ization| 

Assorta-
tivity 

Cluster-
ing  LSCC 

Panel A: 

|Centralization| 0.008     

Assortativity 0.001 0.085*    

Clustering -0.001 -0.235* -0.038*   

LSCC -0.002 -0.142* -0.550* 0.541*  
Panel B: 

Returns 0.675* -0.011 0.013 0.011 0.006 

Volatility -0.025* 0.170* -0.072* -0.034* 0.024* 

Volume 0.018 0.093* -0.052* 0.101* 0.153* 

Duration -0.006 -0.193* -0.011 0.003 -0.015 

Effective Spread -0.003 -0.157* 0.033 -0.250* -0.318 

Signed Volume 0.637* 0.007 -0.004 -0.009 -0.004 

Trade Imbalance 0.669* -0.013 0.015 0.013 0.002 

Herfindahl Trades -0.004 -0.027* 0.067* -0.621* -0.559 
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Table IV: Network Variables: p-values for the Null Hypothesis of Granger Non-causality 
The sample contains p-values for the null hypothesis of Granger non-causality for vector autoregressions (VARs) using 
the time series of 12,032 network variables each comprised of 600 sequential trades in the nearby e-mini S&P 500 
futures contract on the CME Globex platform during August 2009. Centralization, |centralization|, assortativity, 
clustering and the largest strongly connected component (LSCC) are network variables computed as defined in Section 
I. The VARs are estimated using generalized method of moments (GMM) with HAC robust standard errors and with 
optimal lag-length of 12 selected using Akaike Information Criterion. The upper right quadrant displays p-values for 
pairwise tests of the first column variable Granger-causing the first row variable, with Total representing the p-value 
for the first column variable jointly Granger-causing all variables in the first row.  The lower left quadrant displays 
p-values for pairwise tests of the first row variable Granger-causing the first column variable, with All representing 
the p-value for the first row variable jointly Granger-causing all variables in the first column. 

 Centralization |Centralization| Assortativity Clustering  LSCC Total 
Centralization  0.59 0.75 0.99 0.65 0.65 
|Centralization| 0.18  0.11 0.01* 0.04* 0.00* 
Assortativity 0.69 0.09  0.03* 0.00* 0.00* 
Clustering 0.54 0.06 0.00*  0.00* 0.00* 
LSCC 0.98 0.15 0.00* 0.06  0.00* 
All 0.37 0.05* 0.00* 0.01* 0.00*  
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Table V: Financial and Network Variables: p-values for the Null 
Hypothesis of Granger Non-causality 
The sample contains p-values for the null hypothesis of Granger non-causality for 
VARs using the time series of 12,032 network variables each comprised of 600 
sequential trades in the nearby e-mini S&P 500 futures contract on the CME Globex 
platform during August 2009. Returns, Volatility, Duration, Volume, Effective 
Spreads, Signed Volume, Trade Imbalance, and Herfindahl Trades are computed over 
each interval. Centralization, Assortativity, Clustering and the Largest Strongly 
Connected Component (LSCC) are network variables computed as defined in Section 
I. The VARs are estimated using GMM with HAC robust standard errors and with 
optimal lag-length of 12 selected using AIC.  Each number represents the p-value for 
pairwise tests between variables in each column, with arrows indicating significance 
at the 5% level. The p-values in parentheses denote that these four Network 
Variables jointly Granger-cause Financial Variables with significance at the 5 
percent level labeled *. The p-values in brackets denote that Financial Variables 
jointly Granger-cause the four Network Variables with significance at the 5 percent 
level labeled †. Centralization is used in the VAR for returns while |centralization| 
is used in the VARs for all other financial variables. 
 

   Panel A:    

 
 
 

Returns 
(0.01)* 
[0.00]† 

 

0.00 0.00 Centralization 0.00 0.00 

Volatility 
(0.00)* 
[0.00]† 

0.25 0.05 
               

Assortativity 0.00 0.04 

0.88 0.40 
Clustering 

0.00 0.00 

0.16 0.68 
                    

LSCC 0.05 0.00 

   Panel B:    

 
 
              

Duration 
(0.00)* 
[0.20] 

 

0.00 0.11 Centralization 0.48 0.00 

Volume 
(0.00)* 
[0.16] 

 

0.01 0.34 
               

Assortativity 0.05 0.03 

0.00 0.51 Clustering 0.15 0.00 

0.00 0.01 
                    

LSCC 0.14 0.00 

 
 
  



46 
 

   Panel C:    

 
 
 

Signed Volume 
(0.00)* 
[0.35] 

 

0.08 0.10 Centralization 0.84 0.20 

Herfindahl 
Trades 
(0.00)* 
[0.22] 

0.90 0.98 
Assortativity 

0.19 0.01 

0.75 0.68 
Clustering 

0.58 0.00 

0.92 0.80 LSCC 0.37 0.00 

   Panel D:    

 
 

Effective 
Spread 
(0.00)* 
[0.21] 

0.00 0.07 Centralization 0.20 0.02 

Trade 
Imbalance 

(0.03)* 
[0.18] 

0.00 0.14                
Assortativity 0.14 0.21 

0.25 0.38 Clustering 0.11 0.66 

0.00 0.42 LSCC 0.44 0.17 
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Table VI: Financial and Liquidity Measures: p-values for the Null 
Hypothesis of Granger Non-causality 
The sample contains p-values for the null hypothesis of Granger non-causality for bi-
variate VARs estimated with optimal lag-length 6 selected using the AIC over 12,032 
sequential networks each comprised of 600 sequential trades in the nearby e-mini 
S&P 500 futures contract on the CME Globex platform during August 2009. Each 
number represents the p-value for pairwise tests between variables in each column, 
with arrows indicating significance at the 5% level. Returns are open-to-close network 
returns computed as differences between log ending and beginning prices during each 
interval. Volatility is the range between high and low prices, Volume is the total 
number of contracts traded and Duration is the time (in seconds) elapsed between the 
start and end of the network interval. Effective Spread is equal to twice the square 
root of the first order autocovariance of returns, Stoll (1978), over each interval (x10-

3). Signed Volume is equal to the buy volume minus the sell volume. Trade Imbalance 
is equal to the number of buy trades less the number of sell trades in each interval. 
Herfindahl Trades is the Herfindahl index computed using the number of trades 
traded by each trader over each interval.  
 

   Panel A:    

                             
                   
          
 Signed  
Volume 

0.18 0.10 Returns 0.55 0.81 

Herfindahl 
Trades 

0.47 0.91 
            

Volatility 0.00 0.71 

0.48 0.02 
 

Volume 0.00 0.01 

0.02 0.37 
             

Duration 0.00 0.00 

   Panel B:    

               
            
              
Effective 
 Spread 

0.72 0.52 Returns 0.15 0.24 

Trade 
Imbalance 

0.05 0.00 Volatility 0.60 0.93 

0.00 0.00 Volume 0.29 0.10 

0.00 0.00 Duration 0.13 0.07 
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Table VII: Simulation Results - Correlations between Financial and 
Network Variables 
This table contains pairwise correlations between network variables each calculated 
from 12,000 simulated networks of 600 sequential trades as described in Section IV.  
Centralization, |centralization|, assortativity, clustering and the largest strongly 
connected component (LSCC) are network variables computed as defined in Section 
I. Returns are open-to-close network returns computed as differences between log 
ending and beginning prices during each interval. Volatility is the range between 
high and low prices, volume is the total number of contracts traded and duration is 
the time (in seconds) elapsed between the start and end of the network interval. 
Effective Spread is equal to twice the square root of the first order autocovariance of 
returns, Stoll (1978), over each interval (x10-3). Signed Volume is equal to the buy 
volume minus the sell volume. Imbalance is equal to the number of buy trades less 
the number of sell trades in each interval. The Herfindahl Trades measure is the 
Herfindahl index computed using the number of trades traded by each trader over 
each interval. * indicates statistical significance at the 5 percent level. 
 

 Central 
-ization 

|Central-
ization| 

Assorta-
tivity 

Cluster-
ing  LSCC 

Returns 0.605* -0.024* 0.003 -0.000 0.003 

Volatility 0.008 0.219* 0.013 0.004 -0.059* 

Volume -0.004 0.067* 0.119* 0.042* -0.028* 

Duration 0.016 0.003 0.012 -0.002 0.003 

Effective Spread 0.052* 0.039* 0.031* 0.007 -0.010 

Signed Volume 0.299* 0.009 0.043* 0.021* -0.016 

Imbalance 0.722* 0.052* -0.011 0.000 -0.022* 

Herf. Trades -0.001 -0.138* 0.001 -0.050* -0.818* 
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Table VIII: t-tests for Differences in Means by Noise-to-Signal Ratio 
Mean (0) and Std. Dev. (0) refer to the means and standard deviations of the 
network statistics calculated from the network intervals not belonging to the largest 
quintile of the noise-to-signal ratio. Mean (1) and Std. Dev. (1) refer to means and 
standard deviations of the network statistics calculated from the network intervals 
within the largest quintile of the noise-to-signal ratio. t-tests relate to the 
differences between means.  
 
 Centralization |Centralization| Assortativity Clustering LSCC 
Mean (0) 0.0000 0.0012 -0.0020 0.0010 0.0101 
Std. 
Dev. (0) 

0.1591 0.1025 0.0389 0.0279 0.1592 

      
Mean (1) 0.0116 -0.0372 0.0056 0.0057 0.0117 
Std. 
Dev. (1) 

0.1331 0.0733 0.0441 0.0319 0.1331 

      
t-test 0.041 -0.218 0.070 0.099 0.024 
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Table IX: Testing the Li and Schürhoff (2014) Mark-up Hypothesis 
This table presents results from the regression: 

, 	 , ,  

Where  is a centrality measure for the top seven traders, by net volume, , is the 
return over the network measurement interval and , , ,  are the day of the 
week, hour, minute, second fixed effects. *, ** and *** indicate significance at the 10, 
5 and 1 percent level. The mark-up hypothesis implies that 0, 0and 0. 

 Dependent variable 
Independent Variable rt kt 

kt -0.0002***  
 (0.00001)  

kt-1 0.00003***  
 (0.00001)  

kt-2 0.00002**  
 (0.00001)  

kt-3 0.00001  
 (0.00001)  

rt-1  77.882*** 
  (8.195) 

rt-2  52.083*** 
  (8.199) 

rt-3  24.678*** 
  (8.208) 

Observations 12,043 12,043 
Adjusted R2 0.032 0.011 
F Statistic 3.968*** (df = 133; 11909) 1.975*** (df = 132; 11910) 

 


