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Abstract

While infectious disease outbreaks are often summarised by population averages such as

the reproductive number, variation between individuals in terms of onwards

transmissions modulates the degree of unpredictability of an epidemic, and it needs to

be accounted for in models of infection control. This heterogeneity among individuals

can be quantified by the dispersion parameter k of the o↵spring distribution, a

distribution that defines the number of secondary infections per infected individual. I

have developed an inference framework to estimate k and other epidemiological

parameters by fitting stochastic transmission models to both incidence time series and

the pathogen phylogeny. Applying the framework to simulated data, I found that more

accurate, less biased and more precise estimates of the reproductive number and k were

obtained by combining epidemiologic and phylogenetic analyses. Accurately estimating

k was necessary for unbiased estimates of the reproductive number, but it did not a↵ect

the accurate estimation of epidemic start date and the probability of sampling an

infection. I further demonstrated that inference was possible in the presence of

phylogenetic uncertainty by sampling from the posterior distribution of phylogenies. In

addition to methodological contributions, I found that the inclusion of sequences in

statistical inference for polio improved the precision of parameter estimates. Based on

sequences collected from patients during a poliovirus outbreak, the estimated values of k

were high regardless of the data used. On the other hand, the k estimates were low when

a transmission model was fit to environmental sequences collected in Pakistan, which is

still endemic for wild poliovirus. Furthermore, analysis of environmental sequences was

informative of seasonality parameters whereas inference from incidence time series alone

was not. This type of analysis using environmental sequences would be useful as polio

eradication draws to a close as the number of symptomatic cases approaches zero.
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Notation

A
t

Number of lineages through time at time step t

�t Size of simulation time step

Epi
t

Number of reported cases at time step t

H
i

Time step in which individual i becomes infected

I
t

The number of infectious individuals at time step t

I
total

Number of individuals infected during an outbreak

Inc
t

Incidence, i.e. the number of reported cases at time step t

k Dispersion parameter of the negative binomial

�
t

Pairwise coalescent rate at time step t

N Population size (of infected individuals)

Ne E↵ective population size (of infected individuals)

� O↵spring distribution

Phy
t

Phylogenetic data at time step t

R
0

Basic reproductive number

R
t

E↵ective reproductive number at time step t

�2 Variance of the o↵spring distribution

T
g

Generation time

U
t

Time intervals between events at time step t

Z
i

Number of secondary infections caused by infected individual i
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Abbreviations

AFP Acute Flaccid Paralysis

BSP Bayesian skyline plot

CNS Central nervous system

ESS E↵ective sample size of samples from the posterior distribution, e.g. using MCMC

FATA Federally Administered Tribal Areas in Pakistan

GPEI Global Polio Eradication Initiative

HIV Human Immunodeficiency Virus

HPD Highest posterior density

KP Khyber Pakhtunkhwa, a province in Pakistan

K-S Kolmogorov-Smirnov distance

MCC Maximum clade credibility

MCMC Markov Chain Monte Carlo

MERS-CoV Middle East Respiratory Syndrome coronavirus

N
e↵

E↵ective number of particles

OPV Oral polio vaccine

pH1N1 Pandemic H1N1

PMCMC Particle Markov Chain Monte Carlo

PV Poliovirus

RMSD root mean squared deviation

SARS Severe Acute Respiratory Syndrome

SEIR Susceptible-Exposed-Infected-Removed model of disease transmission
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SIR Susceptible-Infected-Removed model of disease transmission

T
MRCA

Time to the most recent common ancestor

VDPV Vaccine-Derived Poliovirus

VP Virion Protein of poliovirus

WPV Wild type poliovirus
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Chapter 1

Introduction

In this Chapter I will introduce statistical inference methods that use epidemiological

data or pathogen genetic data to estimate model parameters, and e↵orts to integrate the

analyses for the purpose of epidemiological inference. I will then demonstrate how

incorporating pathogen genetic data can help quantify heterogeneity in individual

infectiousness and highlight the importance of estimating the o↵spring distribution for

epidemiological inference. Despite advances in inference methods and the increasing use

of pathogen genetics, analyses of polio data have not benefitted from these methods.

Thus I will also provide background information on poliovirus and how an integrated

inference framework that uses epidemiological and genetic data can benefit polio

research. Parts of this chapter have been adapted from my review article (Li et al.,

2014; attached in Appendix A).

1.1 Statistical inference in epidemiology

Transmission models are hypotheses expressed using mathematics, describing how an

infection spreads through the population. Commonly used compartmental models track

changes in the number of individuals in each disease state and movements between disease

states (Anderson and May, 1991). For example, the simple susceptible-infected-removed

(SIR) model tracks the number of susceptible, infected, and recovered individuals over

time, and describes outbreak dynamics of infectious diseases (Kermack and McKendrick,

21



22 Chapter 1. Introduction

1927). The rate at which individuals move from one disease state to the next is determined

by model parameters.

Inference of parameter values is possible by fitting mathematical models to data, which is

also useful for model comparison and selection. Parameters estimated from data provide

information on disease epidemiology. In the context of outbreaks, useful parameters to

know include the reproductive number, and the generation time.

A simple approach to model fitting is by minimising the distance between model

simulations and observed incidence time series, e.g. curve fitting using least squares.

However, this assumes that the observed time series includes all infected individuals.

For most infectious diseases, reporting of infected individuals is incomplete due to

under-reporting or asymptomatic infections (Gamado et al., 2013). For infectious

diseases such as poliovirus, less than 1% of infections result in symptoms that are

reported in incidence time series. Inference in these cases requires an observation model

in addition to the transmission model to describe the process by which data are

generated.

Before discussing inference methods for incidence time series, I will briefly touch upon

the two approaches to statistical inference, namely frequentist and Bayesian. The former

approach regards data as a random realisation of the model, and thus parameter

estimation involves finding the parameter values that maximises the frequency at which

the data set could be observed. The goal of frequentist parameter estimation is to

obtain point estimates of parameter values for a data set. Bayesian inference, on the

other hand, characterises the posterior probability distribution of parameters rather

than just a point estimates by updating prior belief about parameters (prior probability)

with information from data (likelihood). In this thesis, I adopt the Bayesian inference

method.

Regardless of the approach used to estimate parameters, a function is needed to describe

the probability of observing data given a set of parameter values, i.e. the likelihood. For

temporally correlated data, such as incidence time series, data points cannot simply be

treated as independent observations. Like other state space models, the underlying

transmission process captured by compartmental models is Markovian, and the

observations are conditionally independent given the latent transmission model.
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Because analytical solutions of likelihood functions are not usually available for

nonlinear and stochastic models, such as those used in infectious disease epidemiology,

Markov Chain Monte Carlo (MCMC) methods are frequently used to characterise the

distribution of interest through sampling (Metropolis et al., 2004). For Bayesian

analysis, the marginal posterior distribution of a parameter is of interest, which is the

probability distribution of each parameter while integrating over all other parameters.

Often the joint distribution of parameters is also of interest, especially for parameters

that are highly correlated. At each iteration, new parameter values are proposed and are

accepted with a probability proportional to its marginal posterior probability. By

iteratively sampling parameter values and unobserved epidemic history, the MCMC

method can be used to estimate parameters based on time-series data, while taking into

account stochasticity in the transmission model (Lekone and Finkenstädt, 2006).

Separately proposing epidemic trajectory and parameter values in an MCMC framework

is ine�cient if there are many parameters and if the epidemic history is highly stochastic.

This is because the epidemic history is highly correlated with parameter values. The

development of particle MCMC (PMCMC) has enabled the calculation of the marginal

parameter likelihood by integrating over possible stochastic epidemic histories (Andrieu

et al., 2010). The cost of simulating multiple epidemic trajectories is o↵set by the more

stable estimates of likelihood. Another advantage of using PMCMC is the co-estimation

of the epidemic history at the same time as parameter estimation, which means no further

simulations are needed to infer the epidemic history from the set of estimated parameter

values.

Application of the PMCMC algorithm to infectious disease data has been limited.

Examples include the analyses of the Middle East Respiratory Syndrome coronavirus

(MERS-CoV) (Cauchemez et al., 2014), Ebolavirus (Camacho et al., 2015). In all these

cases, only the time series data have been used to estimate parameter values. In the

next section, I will discuss the role that pathogen phylogenies play in parameter

inference, and how PMCMC can be used to estimate parameters from both

epidemiological time series and phylogenetic data.
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1.2 Phylodynamic inference

In parallel with developments in epidemiological inference, the field of phylodynamics

arose to enable inference of epidemiological parameters from pathogen sequences. As

sequencing technology has become more accessible and a↵ordable, genetic analysis has

played an increasingly important role in infectious disease research. Sequencing pathogens

can confirm suspected cases of an infectious disease, discriminate between di↵erent strains,

and classify novel pathogens. In addition to examining individual pathogen sequences,

multiple sequences can be analysed together using phylogenetic methods to elucidate

evolutionary history (Smith et al., 2009). If an outbreak is densely sampled, then the

pathogen phylogeny is informative of the underlying transmission network and helps to

uncover who infected whom (Cottam et al., 2008; Gardy et al., 2011; Jombart et al.,

2014).

Just as mathematical modelling can be used to analyse surveillance data to reveal details

of disease transmission (Section 1.1), analysis of pathogen genomes employs mathematical

frameworks to link epidemiological, demographic and evolutionary processes to temporal

changes in population-level genetic diversity. Whereas phylogenetics aims to delineate the

relationship between individuals, population genetics aims to link population processes

to observed patterns of genetic diversity. Inferring the pathogen population history is

based on the genealogy of sampled sequences and is often carried out in a retrospective

population genetics framework known as the coalescent (Kingman, 1982b). A genealogy

describes the ancestry of sampled individuals. Going backward in time, pairs of lineages

coalesce when they share a common ancestor until the last two lineages coalesce at the

time to the most recent common ancestor for the entire sample (T
MRCA

). Because the

coalescent assumes a small sample compared to the population size, it is an especially

useful method for analysing infectious diseases with mild or asymptomatic infections for

which time series of reported cases severely underestimates prevalence.

Because of the simplistic assumptions of population genetics models, the population size

inferred using coalescent-based methods cannot be directly interpreted as pathogen

population size (prevalence of infection N). It is rather the e↵ective population size Ne,

which refers to the size of a Wright-Fisher population that would produce the same level
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of genetic diversity as observed in the sample. In real populations, the variance of the

o↵spring distribution is higher than expected in a Wright-Fisher population due to

heterogeneity in host infectiousness, non-random mixing of the population, and

migration events. The consequence of a large variance is that the discrepancy between

the e↵ective and census population sizes is greater (Magiorkinis et al., 2013).

Accounting for the dispersion of the o↵spring distribution is especially important when

analysing infectious disease data because of the widespread occurrence of transmission

heterogeneity (Lloyd-Smith et al., 2005).

The coalescent method has been used to reconstruct Ne dynamics in the past, e.g. for

dengue (Bennett et al., 2010), HIV-1 (Grassly et al., 1999; Volz et al., 2013; Faria et al.,

2014), and influenza (Fraser et al., 2009). However, Ne is an abstract statistic that is not

always proportional to the prevalence of infection N . Theoretical developments linking

epidemiological model parameters to Ne (Volz et al., 2009, 2012; Koelle and Rasmussen,

2012) have enabled direct estimation of prevalence of infection N , as well as estimation

of parameters relevant to public health such as the basic reproductie number R
0

and

generation time T
g

, which is related to the durations of latency and infectiousness.

An alternative population genetics approach is the birth-death model, which describes

the probability distribution of a genealogy given rates of transmission, removal, and

sampling (Stadler, 2010; Stadler and Bonhoe↵er, 2013). These rates can be constant

over time, as was the case for the original birth-death model, or can change in step-wise

fashion (Stadler et al., 2013) or according to compartmental models of disease

transmission (Kühnert et al., 2014; Leventhal et al., 2014). Unlike the coalescent

framework, the birth-death model is still valid for densely sampled populations, which

makes it more useful for studying smaller outbreaks. However, the birth-death model

strongly depends on the sampling times of sequences, and thus accurate inference

depends on correctly specifying the sampling process which is not always possible (Volz

and Frost, 2014). The coalescent makes no assumptions about the sampling probability

of sequences except that it is small, and is thus applicable to a greater range of epidemic

situations.

Given the flexibility of the coalescent, I have adopted this model for statistical inference

in this thesis. For the remainder of this thesis, I will assume a coalescent-based approach
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to phylodynamic inference, i.e. estimation of model parameters given the underlying

pathogen genealogy.

Packages such as BEAST (Drummond and Rambaut, 2007) and MrBayes (Ronquist et al.,

2012) have integrated phylogenetic reconstruction with phylodynamic inference, thereby

streamlining inference of epidemiological parameters from sequence data. However, the

epidemiological models implemented in BEAST are simple models such as exponential

or SIR. Furthermore, stochastic models can only be implemented in BEAST if the exact

likelihood can be calculated, which is only possible for simple models. To integrate over

both phylogenetic space and stochasticity in epidemiological dynamics, an inference can

be repeated for a set of sampled phylogenies (Volz and Pond, 2014). This is also the

approach adopted in the analyses presented in this thesis.

The contribution of genetic data to epidemiological studies is evident in recent epidemics of

emerging and re-emerging infectious diseases. For example, despite the dearth of sequence

data from the MERS-CoV outbreak (Centers for Disease Control and Prevention, 2014),

coalescent-based analysis of only 10 genomic sequences produced estimates of time to

most recent common ancestor (March 2012; 95% November 2011 June 2012), R
0

(1.21;

95% CI 1.08-1.40) and doubling time (43 days; 95%CI 23-104) (Cauchemez et al., 2014).

Without further sequencing of the animal reservoirs, the authors could not infer whether

these estimates applied to the animal reservoir or the human epidemic. The credible

intervals around the estimates were unsurprisingly large given the small sample size.

Another example is the contribution of pH1N1 sequences during the swine flu pandemic.

Analysing 11 haemagglutinin sequences collected over one month, the start date of the

epidemic was estimated to be in late January 2009 (Fraser et al., 2009). Repeating the

phylogenetic and molecular clock analyses with a further 12 sequences shifted the

estimated start date 2 weeks earlier. Fitting an exponential growth model to the

sequence data, an estimate of R
0

was estimated to be 1.22, slightly lower than inferred

from epidemiological data but with overlapping confidence intervals. To determine at

which point during the pandemic coalescent analysis would have provided accurate and

precise estimates of evolutionary rate, R
0

and T
MRCA

, real-time estimates of these

parameters were obtained for genomic sequences collected in North America (Hedge

et al., 2013). Accurate estimates could be obtained as early as May when 100 viral
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genomes had been sequenced, with more precise estimates obtained by the end of June

2009 when 164 had been sequenced. However the inclusion of more sequences of longer

length only slightly improved the accuracy of initial estimates (Hedge et al., 2013).

1.3 Integrated analysis

As both epidemiological data and pathogen genetics are informative of the underlying

transmission process, there is a trend towards using both epidemiological and genetic

data in an integrated inference framework. The two types of data contribute di↵erent

information regarding the spread of an infectious disease. Phylodynamic methods using

the coalescent do not require knowledge of the sampling probability of sequences. These

methods are thus useful for quantifying the size of the infected population when the

reporting probability is low and varies over time. On the other hand, uncertainty

intervals surrounding parameter values estimated from genetic data tend to be larger

than those estimated from epidemiological data (Rasmussen et al., 2011). This is

because evolutionary processes as well as the transmission process shape the pathogen

phylogeny, which reduces the information the pathogen phylogeny can provide on the

spread of disease.

Informally, inference results from pathogen genetic data can be visually compared to

those from epidemiological data. Skyline plots (Drummond et al., 2005) and skygrid

plots (Gill et al., 2013) track changes in pathogen diversity (strictly NeT
g

) over time,

and are often visually compared to reported incidence time series to determine similarity

(Hedge et al., 2013; Bennett et al., 2010). Fitting parametric models of population growth

to pathogen genetic data produce estimates of epidemic growth rate (Pybus et al., 2001).

These estimates can then be used to infer the reproductive number if the generation

time distribution is known. For pH1N1, coalescent analysis of early sequences produced

estimates of R
0

that were slightly lower than values estimated from incidence time series

though the confidence intervals still overlapped (Fraser et al., 2009).

Discrepancies in inference results from genetic data compared to those from

epidemiological data suggest that some assumptions made in the population genetics

model, epidemiological model, or both are wrong (Rasmussen et al., 2014a). An
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integrated approach where the same transmission models are fit to both genetic and

epidemiological data can help to identify the model that best describes both data sets,

and find parameter estimates consistent with both sets of data.

For densely sampled outbreaks, methods exist to jointly infer phylogenies and

transmission trees from sequences and epidemiological information (Ypma et al., 2013;

Didelot et al., 2014). However reconstructing transmission trees is not feasible for large

outbreaks or for under-reported infectious diseases. Instead, transmission models such

as those fit to incidence time series can be fit to the pathogen phylogeny from a sparsely

sampled outbreak. Definition the coalescent process using transmission model

parameters has facilitated this type of inference by linking rates of coalescence to

incidence and prevalence of infection (Volz et al., 2009; Volz, 2012; Koelle and

Rasmussen, 2012). Combining these formulations of the coalescent with the PMCMC

algorithm, Rasmussen et al. (2011) showed that a joint inference framework can be used

to estimate epidemiological parameters from both pathogen phylogeny and incidence

time series.

So far the joint inference framework has only been applied to a single set of simulated data

so far (Rasmussen et al., 2011). A more recent paper (Rasmussen et al., 2014a) where

the inference framework was applied to viral phylogenies for dengue produced estimates

of prevalence over time, which was visually compared to incidence time series. No results

were presented where models were fit to both incidence time series and phylogeny to

estimate prevalence. Given that the PMCMC algorithm has been successfully used to

analyse both epidemiological and phylogenetic data for a simulated data set, it would

be interesting to test the inference framework on a wider range of parameter values with

more simulations and apply the framework to real data to assess the value of an integrated

inference approach. The real data that I analyse in this thesis are for polio, which will be

discussed in more detail later in Section 1.5.

Furthermore, as the inference framework only works for a single phylogeny, the

phylogeny is not estimated from genetic data at the same time as parameter estimation.

Repeated inference from di↵erent phylogenies sampled from BEAST analysis of genetic

data yields similar results (Rasmussen et al., 2014a,b), although the data in these papers

were collected over a number of years and the uncertainty in branching times was small.
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In this thesis, I will focus on the analysis of outbreak data. Integrating over

phylogenetic uncertainty for outbreak data is important as the resolution of the viral

phylogeny in terms of branching times is often poor.

Another extension that can be made to a joint inference framework is the inclusion of the

o↵spring distribution in the stochastic epidemic model that is fit to data. This statistical

distribution is important for accurate parameter estimation using the coalescent, and when

fitting stochastic epidemic models to outbreak data. More details on this distribution and

its relevance for epidemiological inference is given in the following section.

1.4 Overdispersed o↵spring distribution

1.4.1 Definition

The reproductive number is an important statistic for infectious diseases, and it is defined

as the average number of infections caused by an infected individual during the course

of their infection. This statistic is useful for determining whether an outbreak is dying

out, or for estimating the critical vaccination threshold. It is a summary statistic for

infection spreading in a population and is therefore dependent on properties of both the

population at risk and of the infectious pathogen. However, there is often significant

variation around this number between individuals due to heterogeneities in susceptibility

and infectiousness between individuals (Becker and Britton, 1999). This variation can

lead to unpredictable epidemic dynamics especially at the beginning of outbreaks when

few individuals are infected.

The distribution of secondary infections per infected individual is known as the

‘o↵spring distribution’. While not specified in typical compartmental models used in

epidemiology, the o↵spring distribution is a concept integral to branching process

models (Harris, 2002). Infectious disease outbreaks are more unpredictable when the

variance in the o↵spring distribution is large. While the outbreaks are more likely to die

out when the variance is large, the ones that do take o↵ tend to be larger than

outbreaks where the o↵spring numbers are more homogenous (Lloyd-Smith et al., 2005;

Garske and Rhodes, 2008; de Silva et al., 2012a).
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In terms of inference, the variance of the o↵spring distribution a↵ects estimation of

prevalence from pathogen phylogeny (Koelle and Rasmussen, 2012; Magiorkinis et al.,

2013). This is because phylodynamic inference methods using the coalescent need to

rescale the timescale according to the variance of the o↵spring distribution to use the

original coalescent derivations for the simple Wright-Fisher model of population genetics

(Kingman, 1982b). Thus characterising the o↵spring distribution is important for

accurate estimation of epidemiological parameters when using pathogen phylogeny.

1.4.2 Dispersion parameter k of the negative binomial

To characterise the o↵spring distribution requires specification of a statistical distribution

for the o↵spring numbers. If the sample variance is greater than the expected variance

according to a model, the o↵spring distribution is considered overdispersed. The negative

binomial is often used for biological count data (Bliss and Fisher, 1953; Shaw et al.,

1998) including contact tracing data for infectious diseases (Lloyd-Smith et al., 2005;

International Ebola Response Team et al., 2016). In the case of infectious disease spread,

the negative binomial corresponds to a Gamma-Poisson mixture in which the infectious

period is Gamma-distributed and the number of transmissions during that infectious

period is Poisson distributed.

The negative binomial is usually used to describe the number of successful trials given r

total trials and a probability of success p. For the purposes of infectious disease research

it is more intuitive to parameterise the distribution by its mean R = pr

1�p

and dispersion

k = r. The variance �2 = R(1 + R

k

) is larger when k is small.

In a typical compartmental model, the o↵spring distribution is not directly specified

but depends on the generation time distribution and the structure of the population.

For an unstructured SIR model, the resulting o↵spring distribution is the geometric,

which reflects the Poisson transmission process and exponentially distributed duration

of infection. Heterogeneity can be introduced by including sub-populations modelled by

di↵erent compartments with di↵erent levels of infectiousness.
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Figure 1.1: E↵ect of overdispersed o↵spring distribution (small k) on transmission
heterogeneity. In an unstructured SIR model, the o↵spring distribution is geometric
which means k = 1. At k = 1 (dashed line), the top 65% of individuals ranked by the
number of onward transmissions cause 99% of infections. A reproductive number of R = 2
is assumed here.

1.4.3 Inferring k from data

Using contact tracing data, the value of k has been estimated for a range of directly

transmitted infectious diseases with many examples of highly overdispersed o↵spring

distribution. A classic example of an infectious disease with highly overdispersed

o↵spring distribution is severe acute respiratory syndrome (SARS), for which a k of 0.16

(0.11, 0.64) was estimated for the outbreak in Singapore (Lloyd-Smith et al., 2005).

More recently for the Ebola outbreak in West Africa, k was estimated to be between

0.03 and 0.52, depending on assumptions regarding sampling (International Ebola

Response Team et al., 2016). The consequence of small k is that a small number of

infected individuals contribute to the majority of transmissions (Figure 1.1). During the

SARS epidemic in 2003, for example, there were many reports of extreme

superspreading events (Riley et al., 2003). Similarly, there were superspreading events

reported at funerals and in healthcare settings during the Ebola outbreak (Faye et al.,

2015).

Obtaining contact tracing data is di�cult as it is expensive and time-consuming, and
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sampling is usually incomplete due to under-reporting. In the absence of contact tracing

data, it is possible to estimate k from final size distributions (Garske and Rhodes, 2008;

Blumberg and Lloyd-Smith, 2013). For a single outbreak, estimating k is di�cult using

epidemiological data alone. The pathogen phylogeny might be more informative of the

dispersion parameter k because the times between coalescent events are shorter when k

is small. For endemic settings, the rate of coalescence increases linearly with the variance

of the o↵spring distribution (Kingman, 1982b). However, this is not the case in epidemic

situations when the reproductive number changes over time (Koelle and Rasmussen, 2012).

Adapting the original Wright-Fisher derivations for time-varying population sizes, Fraser

and Li (2017) derived the coalescent for an arbitrary o↵spring distribution in a time-

varying population (details provided in Chapter 2).

In the inference framework developed in this thesis, I focus on estimating

epidemiological parameters concurrently with the dispersion parameter k using various

transmission models. While branching process models contain o↵spring distribution

parameters, typical compartmental models do not. A di↵erent formulation of the

compartmental model is therefore needed to enable estimation of k by fitting such a

model to data, and this is discussed in Chapter 3.

1.5 Polio

The inference methods discussed in Sections 1.1 to 1.3 have mainly focused on highly

prevalent diseases (e.g. HIV, influenza, dengue) and emerging infectious diseases (SARS,

Ebola). Thus, I applied the inference framework developed in this thesis to poliovirus

data to highlight the value added by genetic data. Furthermore, there are not estimates

of k for poliovirus in the literature, so inference of k from data should provide information

on the level of overdispersion in the population and the extent to which superspreading

contributes to infection spread.
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1.5.1 Background

Poliomyelitis is a paralytic disease mainly a↵ecting children. Its aetiological agent,

poliovirus, is an enterovirus in the Picornaviridae family. The poliovirus genome is 7,500

nucleotides long with a single open reading frame. The resulting polyprotein is

autocatalytic and yields 4 structural (Virion Protein 1-4; VP1-4) and 7 non-structural

proteins (Racaniello and Baltimore, 1981). There are three wild poliovirus serotypes.

Wild type 1 poliovirus (WPV1) causes the most morbidity and mortality, WPV2 has

been eradicated, and WPV3 has not been observed since November 2012 (World Health

Organization, 2016).

The virus is mainly transmitted faecal-orally although the oral-oral route is also possible

where hygiene standards are high (Minor, 2004). Most infections are asymptomatic or

result in only mild symptoms. However, poliovirus can occasionally become viraemic,

and cross the blood-brain-barrier to infect the motor neurones in the central nervous

system (CNS) causing paralysis (Centers for Disease Control and Prevention, 2012).

Poliovirus can also enter the CNS via peripheral nerves in the muscle (Ren and

Racaniello, 1992). It is not clear what the risk factors are for paralysis, although

injections of non-poliovirus vaccines shortly before poliovirus infection have been shown

to increase the risk of paralysis (Sutter et al., 1992). The case-fatality rate of

poliomyelitis varies between di↵erent age groups, with adults at most risk of death

during the acute phase of poliovirus infection (Nathanson and Kew, 2010).

As there is no e↵ective cure, prevention via vaccination is crucial for poliovirus control.

There are two classes of poliovirus vaccines, both protective against paralytic symptoms.

The first is the inactivated polio vaccine (IPV) administered via injections, which provides

long-term protection against paralysis but does not stop virus carriage and shedding (Salk

et al., 1984). The oral polio vaccine (OPV) contains live attenuated viruses to induce gut

immunity and thus prevent shedding of live virus (Sabin, 1957). The downside is that OPV

replicates in the gut and mutates back into a virulent form for 1 in 1,000,000 vaccinated

individuals (Fine and Carneiro, 1999). Furthermore, vaccine-derived poliovirus (VDPV)

can spread to unvaccinated individuals and cause potentially large outbreaks.

The Global Polio Eradication Initiative (GPEI) was established in 1988 on the heel of
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smallpox eradication. The annual incidence of poliomyelitis has decreased by > 99% from

350,000 in 1988 to just 74 in 2015 (World Health Organization, 2016). Polio is a good

target for eradication for several reasons. First, vaccines that are cheap and e↵ective

means that immunisation alone can stop poliovirus circulation. Secondly, humans are

the only host for poliovirus, which means there are no animal reservoirs to seed new

infections after eradication (Dowdle and Birmingham, 1997). Thirdly, chronic infections

have rarely been observed except in immunodeficient patients (Dowdle and Birmingham,

1997; de Silva et al., 2012b; Dunn et al., 2015), so there is unlikely to be a pool of latently

infected individuals.

There are, nevertheless, many challenges to polio eradication. Political instability can

cause gaps in vaccine coverage and allow re-emergence of polio in previously polio-free

regions, as illustrated by the 2013 outbreak in Syria (Eichner and Brockmann, 2013),

and the reappearance of polio in Nigeria after being undetected for 2 years (Centers for

Disease Control and Prevention, 2016). Achieving high vaccine coverage is also hindered

by attacks against health workers such as in Pakistan (Centers for Disease Control and

Prevention, 2013). Both WPV and VDPV need to be eradicated to stop polio cases from

occurring. The latter requires the withdrawal of OPV to prevent the spread of VDPV, a

process that began in April 2016 with the removal of type-2 poliovirus in the OPV (World

Health Organization, 2013).

1.5.2 Surveillance

Another challenge for polio eradication, and for studying polio epidemiology in general,

is that most infections are asymptomatic.

As polio eradication approaches completion, it is vital to have a sensitive surveillance

system to detect any remaining cases. The standard surveillance system for polio is

detection of acute flaccid paralysis (AFP) cases (World Health Organization, 2004).

However AFP is not a polio-specific symptom, and most AFP cases are not due to

poliomyelitis as the eradication program approaches completion. Furthermore, the

sensitivity of AFP surveillance is constrained by the large number of asymptomatic

infections per paralytic case (Nathanson and Martin, 1979). Knowledge of the
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case-to-infection ratio is important for quantifying the extent of PV infections in a

population and acts as a marker for eradication progress.

There have been very few studies on the case-to-infection ratio; the most often quoted is

the prospective study carried out in America in the 1950s (Melnick and Ledinko, 1953).

In this study, 22,900 children under 15 were serologically tested before and after a polio

epidemic. The overall case-to-infection ratio was 1:82 with 63 paralytic cases resulting

from 5,200 infected children. The case-to-infection ratio increased with age, from 1:175 in

children under 1 to 1:95 in 10-14 year olds. Because the total number of paralytic cases

was quite low, there is great uncertainty surrounding these estimates. In a separate study

in Finland during the 1954 polio epidemic, the ratio was found to be 1:250 before the

epidemic and 1:110 during the epidemic (Penttinen and Patiala, 1961). Clearly the case-

to-infection ratio varies between age-groups, populations and other environmental factors.

However a temporally fixed ratio of 1:200 is often used for inference of infection prevalence

(Wringe et al., 2008). Deviations from this fixed value could produce large di↵erences in

incidence and prevalence, which would impact other epidemiological estimates such as

reproductive number and timing of the first infection.

1.5.3 Using pathogen genetics to characterise polio

epidemiology

Existing work involving polio sequence data mainly focuses on the evolutionary

relationships between isolates. The introduction of sequence data to poliovirus

surveillance increased the resolution of strain identification from serotypes to genotypes

that were associated with specific geographic locations (Kew et al., 1995). For example,

phylogenetic analysis of environmental sequences collected in Gaza, Israel revealed two

separate importation events when endemic circulation of poliovirus was suspected (Hovi

et al., 2012). In endemic settings, phylogenetic analysis of environmental sequences have

been used to identify transmission links between Afghanistan and Pakistan (Angez

et al., 2012).

Despite the extensive use of genetic data in polio surveillance and research, there is no

existing literature on demographic inference from polio sequence data. Given the
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potential of genetic analysis to produce more informed estimates of case-to-infection

ratio, a phylodynamic approach that incorporates coalescent-based genetic analysis with

epidemiological investigation of polio could yield important estimates of infected

population size that would help monitor the progress towards the eradication end goal.

Poliovirus is one of the fastest evolving human pathogens with substitution rates of

1 ⇥ 10�2 substitutions/site/year (Jorba et al., 2008). Therefore the genealogical

relationship between samples can be inferred at greater resolution than would be

possible if sequence divergence was small. Furthermore, the coalescent assumes that the

sample size is much smaller than the population size, which is a characteristic of polio

epidemiology due to the low probability of developing paralysis and under-reporting of

cases (Centers for Disease Control and Prevention, 2012). The ratio between infections

and reported cases was estimated to be 200:1 in a prospective study when serological

tests were performed on a population before and after an epidemic (Melnick and

Ledinko, 1953); no extensive studies of the infection-to-case ratio has since been carried

out. Incorporating genealogical information based on sequence data would help to

elucidate temporal and spatial variations in the proportion of infections resulting in

reported cases.

Genetic analysis can shed light on the case-to-infection ratio as coalescent methods can

be used to infer the prevalence of infection in the population. However this depends on

the accurate estimation of the variance of the o↵spring distribution.

1.6 Aims and structure of the thesis

The two main aims of this thesis are

1. to develop and implement a statistical inference framework for integrated analysis

of epidemiological and genetic data in an outbreak setting,

2. and to use the statistical inference framework to analyse poliovirus data.

For sparsely sampled diseases, there is currently only one publication so far that uses an

integrated approach to epidemiological inference (Rasmussen et al., 2011). However the



1.6. Aims and structure of the thesis 37

paper only used an integrated approach for one simulated dataset, did not consider the

o↵spring distribution, and only used a single pathogen phylogeny for inference. In this

thesis, I develop an integrated inference approach that can be used to fit models with

arbitrary o↵spring distributions and can integrate over estimates from multiple

phylogenies (details in Chapter 2). I test the inference framework on a larger set of

simulated data compared to Rasmussen et al. (2011) with results in shown in Chapter 3.

Because existing programs for PMCMC are not suitable for analysing phylogenetic data,

I provide a parallelised implementation of the framework in C++

(github.com/lucymli/EpiGenMCMC) with an accompanying R package

(github.com/lucymli/EpiGenR) to facilitate data input and output. The code is

available at on GitHub and is attached in Appendix B.

Furthermore, I apply the inference framework to real data from a poliovirus outbreak

(Chapter 4) to demonstrate the value added by including genetic data in the

epidemiological analysis of poliovirus, which has not been done before. In Chapter 5, I

demonstrate that the sequence data from environmental samples can also be used to

estimate epidemiological parameters, which is useful for post-eradication surveillance of

poliovirus.

Finally in Chapter 6 I will discuss limitations of the inference framework presented here,

implications for polio endgame, and how it can be extended and applied to other infectious

diseases.
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Chapter 2

Inference framework

To estimate epidemiological parameters including k from both epidemiological data and

pathogen phylogeny, I wrote an implementation of the particle Markov Chain Monte Carlo

(PMCMC) algorithm (Andrieu et al., 2010) in C++. Before introducing PMCMC and

providing details of my implementation, I will first introduce the coalescent and the Fraser

and Li (2017) formulation of the coalescent that is used in my inference framework. Section

2.3.2 is part of a manuscript (Fraser and Li, 2017); equations were derived by Christophe

Fraser, and both Christophe Fraser and I contributed to the writing of the manuscript.

2.1 Notation

The inference framework presented in this Chapter brings together methods and

terminology from the coalescent, infectious disease epidemiology, and particle filtering.

To avoid confusion, I will first define terms and notations used in this thesis.

The inference method here uses epidemic simulations to calculate the likelihood of

parameter values. Epidemics are stochastically simulated in discrete time steps, where

each time step lasts �t. Individual i become infected at time step H
i

, and infects Z
i

other individuals (‘o↵spring’) during the course of their infection. Z
i

is drawn from an

o↵spring distribution �
t

where t = H
i

. The mean and variance of �
t

are the

reproductive number R
t

= E(Z
i

|H
i

= t) and �2, respectively. In this thesis, I use a

39



40 Chapter 2. Inference framework

negative binomial o↵spring distribution parameterised by the mean R
t

and dispersion

parameter k, where �2

t

= R
t

(1 + R

t

k

).

At time step t, the simulated epidemic trajectory X
t

comprises two numbers: incidence

Inc
t

and pairwise coalescent rate �
t

. The coalescent rate is calculated using Equation 2.15

based on the time-varying prevalence I
t

and reproductive number R
t

, and the generation

time T
g

and dispersion of the o↵spring distribution k which are invariant over time.

Raw epidemiological data are in the form of line lists, in which each row i = {1, ..., I
total

}

contains information on individual i including the time step in which they become infected

H
i

. Line lists Epi
t

are aggregated temporally into time series that record the reported

number of individuals infected on a daily (or less frequent) basis. For infectious diseases

with rapidly changing dynamics, size of the simulation time step could be less than the

time unit of reporting. For example, if a simulation time step is 0.25 days and cases are

reported on a daily basis, then the aggregated number of cases Inc
t:(t+3)

=
t+3P
x=t

Inc
x

in the

simulation and the number of reported case on that day Epi
t:(t+3)

are used to calculate the

likelihood. For simplicity, the derivations below assume that the simulation time steps

correspond to the reporting time steps.

Phylogenetic data Phy
t

comprise the number of lineages through time A
t

and times

between events U
t

. Unlike epidemiological data where Epi
t

is a number, both A
t

and U
t

are vectors including one or more numbers. More details will be provided in Section

2.3.2.

2.2 Overview of inference framework

The aim of the inference method presented in this chapter is to obtain the posterior

distribution of parameter values given epidemiological and phylogenetic data (Figure

2.1). These parameters define the rates in a disease transmission model, which

mathematically describes hypotheses regarding how an infectious disease spreads in the

population. Because transmission models are often nonlinear and stochastic, it is not

possible to directly calculate the probability of observing disease data given a set of

parameter values. I therefore use a PMCMC approach to estimate parameter values by
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comparing stochastic model simulations at various parameter values with the data. The

coalescent provides the likelihood function linking the pathogen phylogeny to a

simulated epidemic trajectory.

Marginal	likelihood	calcula0on	
using	par0cle	filtering	
(Sec	2.4.1)	

Uncertainty	in	
phylogeny	(Sec	2.4.2)	

Epidemiological	
Data	
Epi	

Gene1c	Data	
S	

Phylogene1c	
Data	
Phy	

Simulated	
Epidemic		

X	

Transmission	
Model	

Parameters	θ	

P(Phy|X)	
Coalescent	
likelihood		
(Sec	2.3)	

P(Epi|X)	
Binomial	
PDF	

Likelihood:	
P(Data|X)	

Figure 2.1: Overview of inference approach. To obtain a sample of parameter values
distributed according to the posterior density, a Particle Markov Chain Monte Carlo
(PMCMC) approach is used. The MCMC part of the algorithm samples parameter
values from the posterior distribution, while the particle filtering part is used to calculate
the marginal likelihood P (D|X) while integrating over stochastic simulations. The
coalescent provides the likelihood for the phylogenetic data, which are inferred from
genetic (sequence) data using a phylogenetic reconstruction program such as MrBayes.
Uncertainty in the reconstructed phylogeny needs to be accounted for and this is discussed
in Section 2.4.2.

The method will be applied to simulated data 3 and polio data in Chapters 4 and 5.
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2.3 Coalescent

2.3.1 Derivations of the original coalescent

For n individuals sampled from a population with N individuals, the sample genealogy

can be constructed by tracing back the ancestry of sampled individuals until the most

recent common ancestor is found. For infectious diseases, the total population from which

the sample is taken refers the population of infected individuals, and the MRCA refers

to the most recently infected individual who caused transmission chains that ultimately

led to the infection of the sampled individuals. The coalescent provides the probability

density function for times of coalescence in a sample genealogy going backward in time

as a function of N . This allows the coalescent to be used in epidemiological inference

within a PMCMC framework, as the likelihood of simulated epidemic trajectories can be

calculated given a genealogy.

While the true topology and coalescent times of a sample genealogy are not usually known

for infectious diseases, the genealogy can be approximated by reconstructing the dated

phylogeny of pathogen sequences where branch lengths are in units of time. Neutral

evolution, lack of within-host diversity, and lack of co-infections are assumed so that the

disease spread is the only process shaping the pathogen phylogeny.

For the derivations in this and next sections, I assume that the dated phylogeny matches

the true genealogy. Uncertainty in phylogeny and ways to incorporate this uncertainty

are discussed later in this Chapter.

This original coalescent (Kingman, 1982b) was derived for a sample genealogy from a

simple Wright-Fisher population model (Fisher, 1930; Wright, 1931). The main

assumptions of Kingman’s coalescent (1982b) are:

1. Discrete, non-overlapping generations. All infected individuals recover at the at the

same time, and pass on their infections at the time of recovery.

2. Fixed population size. Infectious disease at endemic equilibrium so the prevalence

of infection does not change over time.
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3. Multinomial o↵spring distribution with equal probabilities. All individuals are

similarly infectious.

4. No population structure or migration.

5. Small sample size compared to the population size N .

Despite the unrealistic and simplistic assumptions of Wright-Fisher, the coalescent

derivations are robust to violations of assumptions 1-3 so long as time is re-scaled

appropriately (Kingman, 1982a; Gri�ths and Tavare, 1994; Möhle, 1998). In Section

2.3.2, I will present derivations of the coalescent (Fraser and Li, 2017) that allows

time-varying population size and arbitrary o↵spring distribution. Extensions of the

coalescent have been made to incorporate population and geographical structure,

although these are ignored for the analyses carried out in this thesis (Notohara, 1990;

Hudson, 1991; Volz, 2012). However, the assumption of small sample size is necessary

for the coalescent derivations to hold, as the derivations are at the limit N ! 1.

If two individuals are sampled at generation r, the total number of lineages is n = 2. The

probability of no coalescent event in generation r � 1 is calculated as

1� p
2

=
N

N

N � 1

N
= 1� 1

N
. (2.1)

Thus, the probability of coalescence p
2

between two lineages is

p
2

=
1

N
. (2.2)

For n > 2 sampled lineages, there are
�
n

2

�
number of pairs of lineages between which

coalescence can occur. This assumes that the number of sampled lineages is small

compared to N , and thus no more than one coalescent event is likely to occur within a

single generation. The probability of a coalescence between 2 of n lineages p
n

is
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p
n

=

�
n

2

�

N
. (2.3)

The number of generations until a coalescence between 2 of n lineages T (n) follows a

geometric distribution:

P (T (n) = d) =

�
n

2

�

N
(1�

�
n

2

�

N
)d�1. (2.4)

As N tends to 1 leading to a small probability of coalescence, and rescaling time to units

of N generations, the geometric converges to an exponential distribution with rate n

2

P (
T (n)

N
= m)

n

2
e�

n

2m, (2.5)

where m is time measured in N generations.

Because time u is usually measured in continuous time units, and if we know the generation

time T
g

, then we can substitute m = u

NT

g

into Equation 2.5

P (
T (n)

NT
g

= u) =
A

r

2

N
e
�

A

r

2
N

u

T

g . (2.6)

The generation time for infectious diseases refers to the time interval between one

individual becoming infected and that individual passing on the infection to another

person.

For n > 2, the times to coalescence are a series T
MRCA

= {T (n)

MRCA

, T
(n�1)

MRCA

, ..., T
(2)

MRCA

}.

The probabilities of observing this series is thus
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P (T
MRCA

) =
Y

i

�
n

2

�

N
e�

(n2)
N

u. (2.7)

It can be concluded that for the Wright-Fisher model, rate of coalescence is inversely

related to N . In terms of epidemiological inference, this means that when multiple

coalescent events occur in a short period of time, the conclusion would be that the

number of infected individuals is small. However, this relationship changes if the

o↵spring distribution is more overdispersed than can be captured by a symmetric

multinomial model. If the assumption of constant N still holds but the variance of the

o↵spring distribution increases �2, the rate of coalescence for a given pair of sampled

individuals is higher than in the original Wright-Fisher model (Figures 2.2A and B). In

this case, N inferred based on the rate of coalescence in the genealogy would be lower

than expected.

For populations where the variance of the o↵spring distribution �2 is greater than that

for the Wright-Fisher model, the population size estimated based on the genealogy is the

e↵ective population size Ne. Although an abstract concept, Ne refers to the size of a

Wright-Fisher population that would generate the same distribution of coalescent times

as that observed in the sample genealogy. If the population size does not change over

time, N is related to Ne via Ne = N

�

2 (Kingman, 1982b).

2.3.2 Coalescent with an arbitrary o↵spring distribution

While the relationship Ne = N

�

2 holds for endemic settings, prevalence of infection can

change quickly during outbreaks. This means that the expected times to coalescence

(Figure 2.2C). Furthermore, as discussed in Chapter 1, the o↵spring distribution can be

highly overdispersed for many infectious diseases.

To incorporate time-varying population sizes and time-varying o↵spring distribution,

Fraser and Li (2017) provided coalescent derivations based on a population with discrete

non-overlapping generations.

In generation r there are N
r

individuals indexed by i = {1, ..., N
r

}. The probability mass
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function �
r

(⌫) of an o↵spring distribution describes the probability of individual having

⌫ o↵spring in the next generation. The o↵spring distribution at generation t has a mean

of

R
r

=
1X

⌫=0

⌫ · �
r

(⌫) (2.8)

and a variance of

�2

r

= [
1X

⌫=0

⌫2�
r

(⌫)]�R2

r

. (2.9)

Each individual i in generation r will have Z
i

number of o↵spring in generation r+1, with

probability �
r

(Z
i

). The total number of o↵spring, and thus the number of individuals in

the next generation, is

N
r+1

=
N

rX

i=1

Z
i

(2.10)

The total number of pairs of individuals in generation r is
�
N

r+1

2

�
. The proportion of these

pairs that shared a common parent in generation r is

p
r

=

N

rP
i=1

�
Z

i

2

�

�
N

r+1

2

� =

N

rP
i=1

Z2

i

�
N

rP
i=1

Z
i

N2

r+1

�N
r+1

. (2.11)

which can be interpreted as the pairwise coalescent rate per generation.

Assuming a large population size N
r

, then the observed mean and variance are equal to

the expectation (Equation 2.8) and variance (Equation 2.9) of the o↵spring distribution,

which means
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R
r

=

N

rP
i=1

Z
i

N
r

=
N

r+1

N
r

(2.12)

and

�2

r

=

N

rP
i=1

Z2

i

N
r

�R2

r

(2.13)

Re-arranging Equations 2.12 and 2.13 produces the following expressions: N
r

= N

r+1

R

r

and
N

rP
i=1

Z2

i

= (�2

r

+R2

r

)N
r

, respectively. Substituting these expressions and Equation 2.10 into

Equation 2.11 results in a definition of p
r

in terms of the N
r+1

, and R
r

and �2

r

:

p
r

=
(�2

r

+R2

r

)N
r

�N
r+1

N2

r+1

�N
r+1

=
(�2

r

+R2

r

)Nr+1

R

r

�N
r+1

(N2

r+1

�N
r+1

)

=

�

2
r

R

r

+R
r

� 1

(N
r+1

� 1)
(2.14)

which can be approximated by the following expression when N
r+1

is large

p
r

⇡
�

2
r

R

r

+R
r

� 1

N
r+1

(2.15)

The expression in Equation 2.15 reduces to other formulations of the coalescent depending

on assumptions of the o↵spring distribution. According to Wright-Fisher population

dynamics, R
r

= 1 and �2

r

= R
r

. Thus
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p
r

=
1

N
r+1

. (2.16)

In an endemic setting where �2

r

6= R
r

and R
r

= 1, Equation 2.15 becomes

p
r

=
�2

r

N
r+1

. (2.17)

These are the same as those derived in Kingman (1982b). Compared to the expression

for the coalescent rate in endemic settings (Equation 2.17), Fraser and Li’s (2017)

formulation of the coalescent rate depends on the mean as well as the variance of the

o↵spring distribution. If Equation 2.17 is used in an outbreak setting, this can lead to

erroneous estimates of the prevalence of infection especially when the reproductive

number is large.

These discrete time calculations can approximate continuous time dynamics when

generation time is small, such as for acute infectious diseases. The coalescent rate in

continuous time is given by �(u) pr
T

g

at time u = rT
g

.

For compartmental models, Volz et al. (2009) derived the continuous-time coalescent rate

for an SIR model

�(u) = 2
Incidence(u)

Prevalence(u)2
. (2.18)

In an SIR model, the reproductive number R(u) = �(u)S(u)T
g

, where �(u) is the per-

capita transmission rate and S(u) is the number of susceptible individuals at time u.

Incidence is calculate as Incidence(u) = �(u)S(u)Prevalence(u), which means R(u) =

Incidence(u)

Prevalence(u)

T
g

. The o↵spring distribution is geometric, which results from the mixture of a

Poisson transmission process and an exponentially distributed duration of infectiousness

T
g

. The mean and variance of the geometric o↵spring distribution are R(u) and R(u)2 +
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R(u), respectively. This assumes that R(u) = 1�p

p

is the mean number of failures, given

a probability of success p. Equation 2.18 can be derived from Equation 2.15 by setting

N
r+1

= Prevalence(u):

�(u) =
2R

Prevalence(u)T
g

=
2 Incidence(u)

Prevalence(u)

T
g

Prevalence(u)T
g

= 2
Incidence(u)

Prevalence(u)2
. (2.19)

In the analyses presented in Chapters 3-5, I use the negative binomial to capture

overdispersion in the o↵spring distribution. I assume that the reproductive number

varies with small discrete time step t while the dispersion k does not change over time.

Because variance of the negative binomial is �2

t

= R
t

+
R

2
t

k

, the coalescent rate in a time

step sized �t is

�
t

=
R

t

(1 + 1

k

)

N
t+1

T
g

. (2.20)

2.3.3 Coalescent likelihood

In the inference framework, likelihood given the genetic data is calculated as the

probability of observing a dated phylogeny given a simulated epidemic trajectory. The

coalescent rate given in Equation 2.15 is calculated for each simulated epidemic

trajectory, and the rate parameterises an exponential distribution whose probability

density function is used to calculate the probability of observing the time intervals

between coalescent events.

The likelihood given a phylogeny is calculated in a piecewise fashion for small time

intervals (see Figure 2.3 for example). The small time intervals are unequal in size, and

bounded by the times for one of 3 ‘events’: end of a simulation time step (total of T
n

T

steps), coalescence (total of n
tips

� 1 events), or sampling (total of n
tips

events). The
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length of each time interval between events is denoted by U
s

where

s = {1, ..., n
T

+ 2n
tips

� 1}, and the number of lineages at the end of each interval is A
s

.

Let the function g(t) return a vector of indices of time intervals the phylogeny

corresponding to simulation time step t. The phylogenetic data at simulation time step t

are summarised by Phy
t

= {U
g(t)

, A
g(t)

}.

At each simulation time step t, I calculated the coalescent likelihood sequentially for each

time interval s 2 g(t),

P (Phy
t,s

|�
t,s

) =

8
><

>:

�
A

s

2

�
�
t

e�(
A

s

2 )�t

U

s if interval s starts with a coalescent event

e�(
A

s

2 )�t

U

s otherwise

(2.21)

where �
t

is calculated from the simulated epidemic trajectory using Equation 2.15.

When data are sparsely sampled, the epidemiological and phylogenetic data can be

considered to be independent. Thus, when inferring from both types of data, the overall

likelihood is calculated as the product of epidemiological and phylogenetic likelihoods.

2.3.4 Average skyline

The coalescent likelihood is not only useful for calculating the probability of

phylogenetic data, it can also be used to estimate the maximum likelihood value of the

e↵ective population size Ne, i.e. the classic skyline plot (Pybus et al., 2000). If there is

prior information on the o↵spring distribution and generation time, the skyline plot can

be converted to estimates of prevalence over time using Equation 2.15.

It is often useful to calculate the skyline which provides a non-parametric estimate of

infection prevalence over time. A popular method for constructing the skyline in BEAST

(Drummond et al., 2005), which uses the coalescent to calculate the prior probability of

node times given a particular skyline. This requires specification of a prior for the skyline

itself, and the choice of this prior might influence the resulting distribution of phylogenies

and skyline especially for datasets with low diversity. When the number of substitutions
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separating di↵erent sequences in a sample is small, the uncertainty in branching times is

large, and the posterior distribution of prevalence estimates might be biased by the prior

rather than informed by the data.

I took an alternative approach to estimate the skyline whereby I separated the processes

of phylogeny and skyline reconstruction. Instead of a coalescent prior on branching

times, I placed a uniform distribution on branching times which was an option in

MrBayes (Ronquist et al., 2012) but not BEAST. The skyline was inferred after

phylogeny reconstruction as detailed below. This approach circumvents the need to

define a tree prior that depends on the e↵ective population size, and does not rely on

the coalescent to produce a posterior distribution of phylogenies.

MrBayes produces a posterior sample of phylogenies, which can be converted to dated

phylogenies using the molecular clock rate estimated for each phylogeny. The classic

skyline is estimated for each phylogeny in the posterior sample. The median and 95%

highest posterior density (HPD) intervals of Ne estimated from the phylogenies are then

calculated at each time point. While this does not capture the full uncertainty in

estimating population history from the phylogeny using the coalescent, I assume that

the maximum likelihood skyline has much higher probability than other skylines.

Derivations for the skyline are provided below. The skyline plot optimises the likelihood

function for each time interval delimited by coalescent events indexed by b. Within each

inter-coalescent interval b, there are s
b

sampling events. Each interval b is divided into

s
b

+ 1 sub-intervals indexed by a delimited by sampling events. Let �
ab

be an indicator

function that is 1 if sub-interval a starts with a coalescent event, and is 0 otherwise. Let

A
ab

be the number of lineages in sub-interval a of inter-coalescent interval b, and U
ab

be

the length of the sub-interval a of inter-coalescent interval b. Using these definitions, the

log-likelihood for a given inter-coalescent interval is given by

logP (Phy
b

|Ne
b

) =

s

b

+1X

a=1

[�
ab

log(

✓
A

ab

2

◆
1

Ne
b

)�
✓
A

ab

2

◆
U
ab

Ne
b

] (2.22)

The e↵ective population size Ne that maximises the log-likelihood of each inter-coalescent
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interval b is obtained by di↵erentiating the log-likelihood function (Equation 2.22) with

respect to Ne
b

and setting the derivative to 0. I am using the log-likelihood instead of

the likelihood expression as the derivations are more straightforward, and the maximum

log-likelihood estimate is the same as the maximum likelihood estimate of Ne. Because

time intervals are separated by coalescent events, there is only one coalescent-ended sub-

interval within each inter-coalescent interval, and thus �
ab

= 1 only when a = s
b

+1. Thus

the expression for N̂e, the maximum likelihood estimate of Ne is

@

@Ne
b

[logP (Phy
b

|Ne
b

)] =
@

@Ne
b

(log[

✓
A

(s

b

+1)b

2

◆
1

Ne
b

])� @

@Ne
b

s

b

+1X

a=1

(

✓
A

ab

2

◆
U
ab

Ne
b

) = 0

0 =
@

@Ne
b

(log

✓
A

(s

b

+1)b

2

◆
)� @

@Ne
b

(logNe
b

)�
s

b

+1X

a=1

(

✓
A

ab

2

◆
U
ab

)
@

@Ne
b

(
1

Ne
b

)

0 = 0� 1

Ne
b

+

s

b

+1X

a=1

(

✓
A

ab

2

◆
U
ab

)
1

Ne2
b

N̂e
b

=

s

b

+1X

a=1

(

✓
A

ab

2

◆
U
ab

)

(2.23)

An R implementation of the average skyline is provided the SmoothSkylines function in

my R package EpiGenR (github.com/lucymli/EpiGenR). More details on the R package

is provided later in Section 2.4.7

2.4 Inference framework

2.4.1 Particle MCMC

The aim of the statistical inference framework presented here is to obtain the Bayesian

posterior distribution P (✓|D) / P (D|✓)P (✓), where ✓ = (✓
1

, ..., ✓
n

✓

) is a vector of n
✓

parameters with parameter space ⇥ = (⇥
1

, ...,⇥
n

✓

). The prior probability P (✓) is updated

with the likelihood of parameters given the data D. For compartmental transmission

models, it is not usually possible to analytically solve the likelihood function. To solve this
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problem, particle filtering has been implemented within an Markov chain Monte Carlo

(MCMC) framework to estimate the likelihood by integrating over stochastic epidemic

trajectories (Andrieu et al., 2010). A stochastic model simulation generates an epidemic

trajectory X
0:n

T

from time step 0 to n
T

describing the temporal changes in incidence,

prevalence, and reproductive number. Initial model conditions are given by X
0

. Data

comprise incidence time series and phylogenetic data D
1:n

T

= {Epi
1:n

T

,Phy
1:n

T

}.

The overall marginal likelihood is calculated sequentially for each discrete time step

indexed by t = {1, ..., n
T

} (Equation 2.24; Figure 2.4).

P (D
1:n

T

|✓) =
Z

P (D
T

|X
0:n

T

, ✓)P (X
0:n

T

|✓)dX
0:n

T

=

Z
n

TY

t=1

h
P (D

t

|X
t

, ✓)
i
P (X

0

|✓)
n

TY

t=1

h
P (X

t

|X
t�1

, ✓)
i
dX

0:n

T

(2.24)

The proposal distribution of the MCMC needs to be tuned to optimally explore parameter

space. The standard deviation �
i

of proposal distribution q(✓⇤
i

|✓
i

) is adjusted to optimise

the acceptance probability of parameter ✓
i

. The acceptance probability a
i

of parameter

i is calculated periodically (e.g. every 200 iterations). If a
i

< a
lower

or a
i

> a
upper

, the

standard deviation of the proposal distribution �
i

is reduced or increased, respectively

using

�⇤
i

= �
i

e0.5⇤(a✓�a

opt

) (2.25)

where a
opt

= 0.234 is the optimal acceptance probability for an MCMC chain (Roberts

et al., 2001). Samples from MCMC were taken after x number of tuning steps (for the

simulation data, x = 50).
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2.4.2 Incorporation of phylogenetic uncertainty

Using a fixed phylogeny to infer parameters would not cause problems if confidence in

the internal node times were high. However, low diversity among pathogen sequences

reduces the resolution of the phylogeny and thus increases the uncertainties in

parameter estimates. Phylogenetic reconstruction programs such as MrBayes (Ronquist

et al., 2012) produce a posterior distribution P (Phy|Seq) of phylogenies Phy given the

sequences Seq. To estimate marginal posterior probability P (✓|Seq), I can integrate over

the phylogenies Phy: P (✓|Seq) =
R
Phy

P (✓|Phy)P (Phy|Seq)dPhy. The MCMC algorithm

within MrBayes generates samples from P (Phy|Seq). Taking a random sample from the

posterior distribution P (Phy|Seq), I can estimate the marginal posterior density

P (✓|Seq) using Equation 2.26.

P (✓|Seq) = 1

M

MX

m=1

P (✓|Phy(m)). (2.26)

Although this approach requires a large amount of computational resources, the ability to

parallelise multiple MCMC chains makes this approach faster than methods that estimate

phylogeny at the same time as implementing particle filtering.

A potential issue of pooling results for randomly sampled phylogenies is that the

likelihoods given some phylogenies are lower than others, whereas in a joint inference

framework the posterior phylogenies would agree both with the sequence data and the

transmission model. Methods exist to correct for the potentially biased distribution of

posterior phylogenies whereby the posterior distribution of phylogenies are sampled

using an importance sampling scheme (Meligkotsidou and Fearnhead, 2007). This

approach would provide a more accurate way of aggregating results of inference using

di↵erent phylogenies, but might be hindered by the additional computational costs.

An alternative approach to integrate over phylogenetic uncertainty that I tried was to

sample a new phylogeny from the posterior distribution of phylogenies generated using

MrBayes. The proposal distribution was empirically constructed by constructing a

distance matrix for the set of posterior phylogenies. Each pairwise distance was
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calculated as the absolute di↵erence in T
MRCA

s of the two phylogenies. Applying this

approach on simulated data led to no proposed phylogeny being accepted. Because the

coalescent likelihood is dependent on the coalescent times and lineages-through-time,

distance as calculated by the T
MRCA

was probably not the best measure of di↵erence

between phylogenies. More sophisticated measures to quantify the distance between

trees have recently been developed (Kendall and Colijn, 2015). However, a large sample

of phylogenies would be required to ensure each phylogeny has a su�cient number of

similar phylogenies. Otherwise, phylogeny proposals would never be accepted during

MCMC.

One more approach that I tried was to integrate over all phylogenies during particle

filtering. Instead of calculating the likelihood of each particle based on a single phylogeny,

I calculated the average likelihood across all phylogenies and then averaged across those

likelihoods to get an overall marginal likelihood that integrates over both stochasticity and

phylogenetic uncertainty. However, this implementation was highly ine�cient due to long

computation times. Perhaps this approach can work for data sets where the phylogenetic

uncertainty is small, and thus a small sample of phylogenies covers the range of possible

phylogenies.

2.4.3 Pseudocode

Pseudocode of the inference procedure is provided below. I assume that both

epidemiological and phylogenetic data are used.

1. Sample M phylogenies indexed by m from the posterior distribution of a Bayesian

phylogenetic reconstruction program Phy
(m)

1:n

T

.

FOR each phylogeny m in 1 to M

2 Calculate marginal likelihood L := P (D|✓init) using particle filtering and set

✓ := ✓init. (See particle filtering algorithm below)

FOR iteration i in 1 to MCMC iterations

3 Propose new parameter values ✓⇤ := q(✓⇤|✓) where q(·) is the proposal

distribution.
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4 Calculate the marginal likelihood L⇤ = P (D|✓⇤) using the particle filtering

algorithm below.

5 Calculate acceptance probability of new parameters p
a

= q(✓|✓⇤)P (✓

⇤
)P (D|✓⇤)

q(✓

⇤|✓)P (✓)P (D|✓) .

6 Draw a random number z ⇠Unif(0, 1). IF z < p
a

THEN ✓ = ✓⇤ and

L := L⇤ ELSE ✓ := ✓.

END LOOP

8 Remove first 50% of samples as burn-in and sample every x iterations from ✓

values accepted by MCMC.

9. Concatenate samples from all phylogenies, and calculate the median and 95% highest

posterior density intervals.

The particle filtering algorithm used to calculate the marginal likelihood is given below.

J is the number of particles, where each particle is associated with an epidemic trajectory

X
(j)

0:n

T

, and a particle weight !(j).

FOR time t in 1 to n
T

FOR particle j in 1 to J

1 Simulate X
(j)

1

according to the model.

2 Set the weight to the likelihood !(j) := P (D
t

|X(j)

t

).

END LOOP

3 Calculate the mean weight !̄
t

:= 1

J

JP
j=1

!(j).

4 Use a multinomial distribution with probabilities ⌦(j) = !

(j)

JP
i=1

!

(j)

to resample J

particles for the next time step.

END LOOP

5. Calculate the marginal likelihood L(✓|D
1:T

) =
TQ
t=1

!̄
t

END LOOP
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For incidence time series, the likelihood calculation uses the probability mass function of

the binomial: P (Epi
t

|X(j)

t

) =
�
X

j

t

Epi

t

�
⇢Epi

(j)
t (1 � ⇢)X

(j)
t

�Epi

t , where ⇢ is the probability of a

case being reported. If the simulation time step is smaller than the reporting period for

incidence data, then I only calculate the likelihood every x number of simulation time

steps, such that x�t is equal to or greater than the reporting period.

2.4.4 Summary statistics

Inference results are presented by calculating the median and 95% highest posterior

density (HPD) interval of the posterior sample of parameter estimates, which is the

smallest interval that captures 95% of parameter values in the posterior.

Because MCMC produces autocorrelated samples from the posterior, I used the e↵ective

sample size (ESS) to ensure that a chain has converged and su�cient numbers of samples

have been generated to approximate the posterior density.

During particle filtering, an e↵ective number of particles N
e↵

can be calculated after each

resampling step to determine the how representative the particles are of the posterior

distribution of epidemic trajectories. This is calculated using

N
e↵

=
1

JP
j=1

(⌦(j))2
. (2.27)

N
e↵

is small when only a few particles have significantly large weight. The number of

particles should be chosen such that N
e↵

remains large enough during all steps of particle

filtering. More discussion on choosing the number of particles is presented in Section

2.4.5.

2.4.5 Number of particles and resampling frequency

As with other Monte Carlo approaches, the accuracy of the marginal likelihood estimate

increases with the number of particles. The marginal likelihood calculated using particle
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filtering is unstable if not enough particles are used. This leads to low acceptance rates

for parameters and the MCMC chain getting ‘stuck’ at certain parameter values.

To test how many particles are needed, I repeatedly estimated the likelihood of a set of

parameter values using particle filtering (Figure 2.5). With 1,000 particles, the marginal

likelihood can vary by 17.9 log likelihood units even though the same model, parameter

values, and data are used. Increasing the number of particles to 10,000 reduced the range

of the marginal likelihood estimates to 1.8 log likelihood units. When this was repeated for

another set of parameter values with much lower likelihood, even 10,000 was not enough

to reliably estimate the marginal likelihood (Figure 2.5A).

The number of particles required for stable estimation of the marginal likelihood depends

on a number of factors, but in particular on the length of the time series. : for time

series with 25, 50 and 100 time points, 75, 200 and 500 particles, respectively, are need

to achieve 30% acceptance rate Andrieu et al. (2010).

Another factor that a↵ects the number of particles is how far are the current parameter

values from the maximum likelihood parameter values. Repeating particle filtering at

parameter values with lower likelihood, I found that the marginal likelihood is unstable

even when 10,000 particles are used (Figure 2.5B).

The consequence of unreliable estimates of the marginal likelihood is imprecision and

possible bias in the posterior distribution of parameters. Estimating only the reproductive

number, the posterior distribution estimated using 100 particles was not only broader

but centred around a larger R
0

compared to the posterior estimates obtained using 5,000

particles (Figure 2.6). The posterior distribution of R
0

estimated using 1,000 particles was

similar to that obtained using 5,000 particles, suggesting that 1,000 would be su�cient

if only R
0

was estimated. More particles woudl scale with the number of parameters

estimated.

When only 100 particles were used, simulations with lower R
0

were less likely to be

captured in the sample of particles than when 5,000 particles were used. Although the

particle filter should provide unbiased estimate of the marginal likelihood (Andrieu et al.,

2010), epidemic simulations from a single infected individual are likely to die out within

the first few generations and therefore particle depletion is an issue when the number of
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particles is small relative to the extinction risk. Consequently, the marginal likelihood

is only estimable when R
0

is high due to the reduced risk of extinction. The number of

particles should therefore reflect the risk of particle depletion during particle filtering.

Although the particle filter produces an unbiased estimate of marginal likelihood, it is

very computationally intensive. The number of particles required scales with the length

of simulations, the number of transitions in the model, and the reporting probability of

cases. As I simulated from the index case, the epidemic trajectories at the beginning of

simulations were highly unpredictable. Datasets with overdispersed o↵spring

distribution further increased the stochasticity of simulations, necessitating a large

number of particles to obtain a stable estimate of the marginal likelihood. In our

implementation, I needed 10,000 particles for k = 0.1 and at least 1,000 for k = 1. For

simpler models, approximations such as the Kalman filter can be used. The strength of

PMCMC, however, is the applicability to a wide range of models including

high-dimensional ones (Sheinson et al., 2014).

By default, resampling takes place at set intervals, e.g. every 10 simulation time steps.

Because resampling adds to the computation time of particle filtering, resampling can be

limited to when the N
e↵

drops below a threshold. The N
e↵

is inversely correlated with the

variance in particle weights, and calculated as (
P

J

j=1

(⌦(j))2)�1 for time step t. However,

if the N
e↵

regularly drops below the threshold, then the gain in computational time might

be insignificant.

The importance of resampling frequently is demonstrated in Figure 2.7. Before the

epidemic simulation begins, there are 0 infected individuals and 0 reported cases in the

data. Thus all particle weights are equal to 1. After the epidemic simulation begins but

before the first data point, epidemics might take o↵ in some particles but die out in

others. At the time of the first reported case, the filtering step removes all particles with

extinct epidemics, and resamples with replacement from the epidemics that have taken

o↵. If there were not enough particles, there is a possibility that all particles have 0

weight (N
e↵

= 0). If only a few particles having significant weights, then the N
e↵

is very

small and the resulting marginal likelihood might be unreliable.

Later in the time-series, the selection pressure on particles decreases as the simulations

followed more deterministic paths. Although not implemented in this thesis, a particle
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filtering scheme that adaptively changes the number of particles would be useful. For

example, a large number of particles is usually needed at the beginning of an outbreak

time series due to large amounts of stochasticity, but this number can be reduced once a

threshold number of infected individuals is surpassed.

2.4.6 Performance

The time per MCMC iteration depends on the length of the time series data, the number

of particles and the number of random number draws per simulation time step. For a

simulated dataset with around 130 time steps, it took 0.77 seconds per MCMC iteration

on a Linux cluster with 20 cores (Imperial College High Performance Computing Service,

2016) using 20,000 particles and both incidence time series and pathogen phylogeny for

inference.

2.4.7 EpiGenMCMC program and EpiGenR package

Although there are existing software and packages to conduct MCMC, PMCMC, and

phylodynamic inference, none was su�cient to perform the statistical inference

described in this Chapter. The popular R package pomp (King et al., 2016a,b) provides

an extensive set of inference methods including PMCMC for fitting state space models

such as stochastic compartmental transmission models to time series data. However the

package is not suitable for fitting to phylogenetic data, and it is not easily parallelisable

to make use of multiple cores on high performance computing clusters. SSM

(https://github.com/sballesteros/ssm) is a more e�cient implementation of PMCMC

that is a standalone program, and it has been used in the recent Ebola outbreak to

estimate the real-time e↵ective reproductive number. Again, this program does not

make use of phylogenetic data in inference.

On the other hand, the main software used for parameter inference from genetic data

are BEAST (Drummond and Rambaut, 2007) and BEAST2 (Bouckaert et al., 2014)

packages. These packages have made phylodynamic inference more accessible by providing

a graphical user interface. As of now, nevertheless, neither BEAST nor BEAST2 has
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implemented a particle filter in estimating the likelihood. While the birth-death model

implemented in BEAST2 enables inference of the reproductive number using stochastic

SIR models, the model does not account for heterogeneous transmission and is currently

limited to a small set of epidemiological models.

To use the PMCMC algorithm with both epidemiological and phylogenetic data, and to

enable estimation with a large number of particles, I wrote my own implementation of the

algorithm in C++. The code is available on Github: github.com/lucymli/EpiGenMCMC.

Parallelisation of the particle filter was achieved through OpenMP. Particle simulations

were split between cores (20 on Imperial College HPC).

I used thread-specific random number engines from the GSL library to ensure thread

safety, which was important to ensure that particle simulations were independent. The

Standard Library random number generators were not guaranteed to ensure thread safety,

causing some particle simulations to be correlated.

While the C++ program provides at least 2 orders of magnitude speed-up compared to

an R implementation, parsing data especially phylogenetic data is not straightforward. I

therefore developed a package to interface with the EpiGenMCMC program, with

functions to parse phylogenetic data and line lists and generate input files necessary to

run the C++ program. The R package can be downloaded using

devtools::install github("lucymli/EpiGenR").

2.5 Summary

I developed a statistical inference framework to solve the problem of inference from both

epidemiological and genetic data while incorporating phylogenetic uncertainty and

estimating overdispersion of the o↵spring distribution. This implementation is

parallelised and can be used on high performance computing clusters to reduce

computation time. The implementation of Fraser and Li’s (2017) formulation of

coalescent likelihood enables the estimation of dispersion parameter k of the o↵spring

distribution by model fitting. Such an analysis is presented in the next Chapter.
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Figure 2.2: Expected time to coalescence for two sampled lineages depends on
the underlying population dynamics and o↵spring distribution. A For Wright-Fisher
populations, the expected time to coalescence is inversely proportional to the population
size N . B When the o↵spring distribution follows a negative binomial with dispersion
k = 1 with variance �2 instead of a Poisson distribution, the expected time to coalescence
is proportional to �

2

N

. C When the population size varies over time, the expected time to

coalescence also changes over time and is proportional to
R

r

(1+

1
k

)

N

r

, where R
r

and N
r

are
the mean reproductive number and population size at generation r. Time is defined in
discrete generations indexed by r.
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Figure 2.3: An example of using Equation 2.15 to calculate the coalescent likelihood.
The overall likelihood is based on the product of likelihoods for intervals (delimited by
solid vertical lines). And the likelihood for each interval is calculated as the product of
the likelihood for each sub-interval. Sub-intervals are separated by coalescence, sampling
event, or simulation time step (dotted vertical lines). Assume that the prevalence is N

t=5

and N
t=6

at time steps 5 and 6 (purple solid lines). The coalescent rate �
t

is calculated
using Equation 2.15. The number of lineages is tracked by the variable A

n

= {A
1

, A
2

, A
3

}.
During sub-interval 1, the probability of two lineages out of three coalescing after U

1

is

p
1

=
�
A1

2

�
�
t

e�(
A1
2 )�t

U1 . The probability of no coalescent events during sub-interval 2 is

p
2

= e�(
A2
2 )�t

U2 , and during sub-interval 3 is p
3

= e�(
A3
2 )�t

U3 . The overall likelihood for this
interval is thus p = p

1

p
2

p
3

. The time components of variables A
nt

and U
nt

are dropped
for simplicity.
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Figure 2.4: (A) The median and range of simulated epidemic trajectories during particle
filtering (PF). (B)-(D) show the steps that occur during 1 iteration of PF. (B) J
epidemics (particles) are simulated. The frequency distribution of the simulated X

t

is
proportional to the probability density P (X

t

|X
t�1

, ✓). (C) The weight of each simulated
epidemic (particle) is calculated according to the likelihood P (D

t

|X
t

, ✓). (D) Particles are
resampled with replacement according to multinomial distribution where probabilities are
the normalized particle weights. Further details of the PF implementation are given as
pseudocode and discussed in more detail in Section 2.4.
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Figure 2.5: Increasing the number of particles increases the precision of the marginal
likelihood calculated during particle filtering. Using the SEIR model that will be applied
to polio data in Chapter 4, I set the parameter values to maximum likelihood values
presented in (Blake et al., 2014). Particle filtering was repeated 1,000 times and the
distribution of marginal likelihoods is shown here. With 1,000 replicates, the marginal
likelihood calculated for the same set of parameter values varied across a range of 17.91
log likelihood units. This range reduced to 2.86 and 1.82 for 5,000 and 10,000 particles,
respectively. Changing R

c

to 4, the marginal likelihood estimates are lower and highly
variable even if 10,000 particles are used.
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for time step t. (C) The distribution of particle weights after each simulation step. An
individual can become an incident case after an incubation period with a mean of 16.5
days. The probability of an incident case being reported is 1 in 200.



Chapter 3

Integrated analysis of phylogenetic

and epidemiological data to estimate

k

As discussed in Chapter 1, superspreading is a common phenomenon in infectious

disease epidemiology. The o↵spring distribution captures the variation in the number of

secondary infections per infected individual. Small values of the dispersion parameter k

are indicative of superspreading. In this chapter, I use simulated data to demonstrate

how k can be estimated from epidemiological and phylogenetic data, and explore the

e↵ects of phylogenetic uncertainty on parameter estimates.

This chapter is part of a manuscript that I submitted to Molecular Biology and

Evolution titled “Quantifying transmission heterogeneity using both pathogen

phylogenies and incidence time series”.

3.1 Introduction

The intensity of epidemics is often summarised by the reproductive number R, the

average number of secondary infections caused by a typical infectious individual over the

course of their infectious period. This statistic is useful for determining whether an

67
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epidemic can take o↵ and if so the final size of the epidemic. However, large variation

between individuals is frequently observed in outbreaks of directly transmitted acute

infections leading to superspreading events such that a few individuals cause most of the

infections (Lloyd-Smith et al., 2005). The o↵spring distribution captures the

distribution of secondary infections per infectious individual and can be parameterised

by a negative binomial with mean R and dispersion k. Small values of k, which lead to

superspreading events, can a↵ect the e↵ectiveness of control strategies due to the

presence of superspreaders (Garske and Rhodes, 2008).

Inferring the value of k from data is not straightforward, even in the presence of contact

tracing data as many infections may be asymptomatic or not reported. The o↵spring

distribution fit to incomplete transmission chain data has to be corrected for biased and

under-reporting (International Ebola Response Team et al., 2016). Obtaining precise

estimates of k from just incidence time series is usually not possible because k only a↵ects

the noisiness of the incidence time series at low numbers.

Besides epidemiological data in the form of incidence time series, pathogen population

genetics are playing an increasingly important role in inferring epidemiological parameters

(Volz et al., 2009; Koelle and Rasmussen, 2012; Volz, 2012; Stadler et al., 2013; Kühnert

et al., 2014). For coalescent-based approaches, the o↵spring distribution is integral to the

inference process as it a↵ects the relationship between the underlying epidemic and the

observed distribution of coalescent (branching) events in the pathogen phylogeny. When

the o↵spring distribution is overdispersed, shorter intervals between coalescent times in

the pathogen phylogeny are observed. This is expected as coalescent events correspond

to transmission events during the epidemic and superspreaders can cause the aggregation

of many transmission events within a short period of time.

Given that epidemiological parameters could be estimated either from epidemiological

data or from phylogenetic data, combining the analysis of both types of data should

provide more accurate and precise estimates. Rasmussen et al. (2011) found that

estimating parameters jointly from both incidence time series and pathogen phylogeny

reduced uncertainties in estimates of parameters and the prevalence over time. However,

this work did not allow for uncertainty in the pathogen phylogeny and was limited to

simple SIR models. While Rasmussen et al. (2014b) showed that parameter estimates
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did not significantly change for phylogenies of sequences collected over many years, the

uncertainty in pathogen phylogeny during outbreaks is generally greater and needs to be

accounted for to ensure accurate estimation of transmission parameters.

Using the statistical inference framework developed in this thesis (Chapter 2), I fit a

stochastic compartmental model with an explicit o↵spring distribution to estimate k and

other epidemiological parameters from outbreak data. I simulated outbreaks to assess the

accuracy, precision, and bias of parameter estimates, and in the presence of phylogenetic

uncertainty.

3.2 Method

3.2.1 Details of simulations

I simulated data sets according to a Susceptible-Infected-Removed (SIR) model under 6

combinations of basic reproductive number R
0

= {2, 5} and k = {0.1, 1, 10}. R
0

values

of 2 and 5 are reasonable for directly transmitted viral infections (Ferguson et al., 2005;

Fraser et al., 2004). Although they do not capture the full range of possible R
0

values for

directly transmitted infectious diseases, I was more interested in the impact that di↵erent

values of k has on parameter estimation. The values of k were selected because they

capture the plausible range of values for k. The lowest of k estimated for a range of

infectious diseases was 0.16 for SARS (Lloyd-Smith et al., 2005). Because the implicit

assumption of classic SIR models is that the o↵spring distribution follows the geometric,

the scenario of k = 1 is considered. The variance of the o↵spring distribution does not

change significantly for k > 10, and thus I did not consider values of k > 10.

Assuming a constant population size N = 20, 000, the S
t

and I
t

track the number of

susceptible and infectious individuals at time t, while the number of recovered individuals

is given by N � S
t

� I
t

. The duration of infection is exponentially distributed with rate

� = 0.2 day�1. The reproductive number at time t was calculated as R
t

= R
0

S

t

N

. More

details about the simulated datasets are found in Figures 3.2A and Figure 3.2B.

Epidemics were simulated with time steps of �t = 0.1 days, starting with 1 infected
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individual I
0

= 1 and S
0

= 19, 999. At each time point t, the number of people recovering

was drawn from a binomial distribution QI!R

t

⇠ Bin(I
t

, �dt). Another random number

was drawn from the negative binomial to determine the number of new infections QS!I

t

⇠

NBin(R
t

QI!R

t

, kQI!R

t

), which translated to a variance of QI!R

t

R
t

(1 + R

t

k

). This meant

that all secondary infections caused by an individual occurred at the end of the infectious

period. This approximation was not an issue for these simulations due to the short

infectious period; it would not be suitable for analysis of chronic infections.

All parameter values used to generate the parameters, as well as prior distributions used

during inference, are listed in Table 3.1.

Table 3.1: Parameters of the SIR model used to generate the simulated outbreak data.
The prior distribution of the epidemic start date T

0

is bounded by the time of the first
reported case or the time of root in the phylogeny, whichever is earlier.

Parameter Value Prior
Population N

Total

20,000 -
Initial number of infected I 0 1 -
Duration of infection (days)
1

�

- Uniform(3,7)

Basic reproductive number R
0

- Uniform(1,20)
O↵spring distribution
dispersion parameter k

- 1

k

⇠Uniform(1⇥ 10�4, 1⇥ 104)

Reporting probability ⇢ - Uniform(0.0,1.0)
Time of first infection T

0

- Uniform(01-Jan-16,·)

Simulations continued until the epidemic died out. I only kept the simulations with a

final epidemic size of at least 10.

To generate the observation data I randomly sampled individuals with probability ⇢ =

{0.01, 0.1} at the time of recovery. As I tracked who-infected-whom, I reconstructed

the dated phylogeny for the sampled individuals. The branching points corresponded

to transmission times, and tip dates corresponded to sampling times, i.e. the times of

recovery.

3.2.2 Details of MCMC

At the start of an MCMC chain, the initial parameter values were set to their true

parameter values in the case of simulated data to reduce convergence time. I simulated
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Figure 3.1: Pipeline to generate simulated data. A comparison is made between an
example outbreak simulated with k = 0.1 (A) and with k = 10 (B). For each set of
data, an outbreak is simulated according to a modified SIR model (see Section 3.2.1).
The transmission network shown in the top panel of each figure. A proportion of infected
individuals are sampled when they recover. The genealogy of the sampled individuals is
constructed based on the transmission tree and represented as a dated phylogeny (bottom
left plot of each figure). The sampled individuals are also aggregated on a daily basis to
produce a time series of daily incidence (bottom right plot). The node colours in the
transmission tree scale with the number of secondary infections, with the most infectious
individuals coloured red, and the least infectious coloured yellow.
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Figure 3.2: Details of simulation data analysed in this chapter.
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an additional 100 data sets from the stochastic SIR model with true parameter values

R
0

= 2, k = 1, and ⇢ = 1%, but starting the MCMC chains at parameter values far from

their true values and using a heated chain at the beginning of the MCMC (multiplying

p
a

by a factor).

For the simulated data, up to 500,000 MCMC iterations were carried out, sampling

parameter values every 100 iterations. Convergence was determined by calculating the

e↵ective sample size after removing the first 50% of samples as burn-in. Samples with

an e↵ective sample size less than 200 were removed from the final result plot.

At each iteration of the MCMC, I used a Gaussian distribution q(✓⇤
i

|✓
i

) to generate a new

parameter value ✓⇤
i

centred around the old parameter value ✓
i

, where i = {1, ..., n
✓

} and

n
✓

is the total number of parameters to be estimated. For k, I estimated its reciprocal 1

k

so the proposal distributions were centred around 1

k

instead.

The standard deviation �
i

of proposal distribution q(✓⇤
i

|✓
i

) was adjusted to optimise the

acceptance probability of parameter ✓
i

. During the first 20,000 proposals of a parameter

✓
i

, the acceptance probability of the parameter a
i

was calculated every 200 proposals. If

a
i

< 0.15 or a
i

> 0.75, the standard deviation of the proposal distribution �
i

was adjusted

using Equation 2.25.

3.2.3 Incorporating phylogenetic uncertainty

For one of the outbreaks simulated using R
0

= 2 and k = 0.1 and sampled with 1%

probability, I simulated sequence evolution down the sampled phylogeny using seq-gen

(Rambaut and Grassly, 1997). In addition to the sampled sequences, I also simulated the

sequence evolution of an outgroup so that the tree could be rooted. Each sequence was

1000 nucleotides in length with equal equilibrium frequencies of A, C, T, and G. I used

the JC69+� model of substitution (Jukes and Cantor, 1969) with a rate of substitution

of 0.15 per site per year. This value was at least 10 times higher than reported rates for

viral evolution. Polioviruses, for example, evolve at a rate of ⇠ 0.01 substitutions per site

per year (Jorba et al., 2008). I used an artificially high value to ensure that su�cient

divergence between sequences sampled during the outbreak so that su�ciently resolved

phylogenies could be reconstructed. There was still uncertainty around branching times
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despite the high rate of substitution.

After obtaining the sequence data, I used MrBayes (Ronquist et al., 2012) to estimate

the phylogeny assuming a strict molecular clock and a JC69+� model, which included a

single rate parameter and gamma-distributed heterogeneity in rates among sites. I used

the outgroup sequence to root the phylogenies, and the tip sampling dates to estimate the

rate of nucleotide substitution. From the resulting posterior distribution, I sampled 100

dated phylogenies. I divided the branch lengths of phylogenies measured in substitutions

per site by the estimated molecular clock rates to obtain dated phylogenies. For each

dated phylogeny, I re-estimated the epidemiological parameters. An overall posterior

distribution was obtained by concatenating samples of parameter values obtained for

each phylogeny.

3.2.4 Assessing accuracy of estimates

I assessed the accuracy, bias and precision of parameter estimates. The accuracy was

determined by the percentage of simulations for which the true parameter value was

within the 95% HPD interval of estimates. Bias was the distance between the median

parameter estimate and the true parameter value. Finally, the precision was determined

by the root mean squared deviation (RMSD) using the formula
q

1

n

P
n

i=1

(✓
i

� ✓̂)2), where

✓
i

for i = 1, .., n were the n values of parameter ✓ sampled from the posterior distribution

of the parameter and ✓̂ was the true parameter value.

3.3 Results

3.3.1 Overview of analyses

I tested the PMCMC inference framework on simulated data first to determine the

accuracy of parameter estimates, assess the value of phylogenetic data in epidemiological

inference, and to demonstrate the importance of estimating k. For the simulation study,

I generated 60 simulated data sets using a stochastic SIR model under various

combinations of R
0

, k and reporting probability ⇢ (see Figures 3.2A and 3.2B). Each
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data set comprised a phylogeny and an incidence time series for a sample of infected

individuals. The phylogeny is a dated phylogeny representing the genealogy of the

sampled individuals. For each data set, I performed 3 sets of inference: using incidence

time series; using phylogenetic data; or using both. The following parameters were

concurrently estimated: R
0

, T
g

, k, T
0

, and ⇢ (only when incidence time series were used

during inference). The results are shown in Figure 3.3 and Table 3.2.

To assess the consequences of not estimating k, I re-estimated all other parameter values

except k for 30 of the simulated data sets (those with ⇢=1% sampling) while fixing k = 1.

Again, I conducted statistical inference 3 times using one or both sets of data. The

posterior estimates are shown in Figure 3.4.

For one of the simulated data sets (R
0

= 2, k = 0.1), I simulated the evolution of

pathogen sequences down the true phylogeny to obtain a sample of pathogen sequences.

Using MrBayes (Ronquist et al., 2012) to reconstruct the phylogeny from the pathogen

sequences, I obtained a posterior distribution of phylogenies given the simulated

pathogen sequences. I then sampled 100 phylogenies from this posterior distribution and

re-estimated the parameter values using each sampled phylogeny. The posterior

estimates using all phylogenies are shown in Figure 3.5.

For all the parameter estimation above, I set the initial parameter values to be very

close to the true parameter values (those used to simulate the data). To test that I can

obtain the true parameter values in the absence of prior information, I generated 100

extra simulated data sets using R
0

= 2, k = 1 and ⇢ = 1%. For each of these, the initial

parameter values were randomly sampled from the prior distributions for the parameters.

The precision, bias, and accuracy of estimates are presented in Table 3.4.

3.3.2 Phylogenetic data are more informative than

epidemiological time series for estimating k given an

accurately constructed phylogeny

Based on data simulated from an SIR model, pathogen phylogeny was needed to

accurately estimate the dispersion parameter k of the o↵spring distribution when k was



76Chapter 3. Integrated analysis of phylogenetic and epidemiological data to estimate k

Table 3.2: Precision (RMSD), bias, and accuracy (true value found in HPD) of parameter
estimates when fitting models to either epidemiologic, genetic, or both types of data.
The estimates of epidemic start dates T

0

were converted to the number of days after an
arbitrary date. These statistics were evaluated for each set of simulated sequences and
then averaged across all simulations that used both sets of data, only epidemiological
data, or only phylogenetic data. For bias and precision, I normalised the statistics by the
true parameter value.

Data R
0

:RMSD R
0

:Bias R
0

: in HPD k:RMSD k:Bias k: in HPD
Both 0.15 -0.08 100% 13.70 -0.03 66.7%
Epi 0.17 -0.04 100% 673.94 93.43 100.0%
Phy 0.19 -0.12 100% 19.78 -0.19 100.0%
Data T

0

:RMSD T
0

:Bias T
0

: in HPD ⇢:RMSD ⇢:Bias ⇢: in HPD
Both 11.52 0.27 100% 0.106 -0.065 62.5
Epi 11.50 0.39 100% 0.127 -0.100 83.3
Phy 12.54 -1.35 100% NA NA NA

small (Figure 3.3). This suggested that superspreading events left su�cient signal to

allow inference of k in the phylogeny but not the incidence time series. There was

insu�cient signal in the epidemiological time series to determine the value of k.

Although using both epidemiological and phylogenetic data produced the least biased

and most precise estimates of k, the accuracy was lower than using each set of data

alone. In fact, using phylogenetic data alone seemed to produce the most accurate

estimates that were only slightly less precise and slightly more biased (Table 3.2).

I also estimated the basic reproductive number R
0

, time of the first infection T
0

, and

probability of sampling an infectious individual in the incidence time series ⇢. There were

no noticeable di↵erences between estimates of these parameters when only epidemiologic,

only phylogenetic, or both data sets were used for inference (Figures 3.3 B-D). I did not

estimate ⇢ when just using the phylogenetic data, as the reporting rate ⇢ referred to the

probability that an infection appeared in the incidence time series.

Estimates of the R
0

and k were closer to the true value when both genetic and

epidemiological data were used in inference, compared to fitting to each set of data

individually (Table 3.2). The accuracy of estimates for T
0

and ⇢ while fitting to both

sets data was similar to fitting to epidemiological or phylogenetic data alone.
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Figure 3.3: Parameter estimates from simulated data for (A) k, (B) R
0

, (C-D)
reporting rate when simulated data were sampled at 1% and 10%, and (E) date of first
infection. Within each of the 6 panels of each subplot, the results of inference from both
epidemiological and phylogenetic data (left), only epidemiological data (middle), and
only phylogenetic data (right) are shown. The horizontal lines denote the true parameter
value for that set of parameters, i.e. the parameter value used to simulate the data. The
boxes with a horizontal line in the middle indicate the median and 95% HPD interval
of parameter estimates pooled from all simulations for that parameter set. The vertical
lines with a single red dot denote the median and 95% HPD interval of each individual
simulation. I did not estimate the reporting rate when inferring just from phylogenetic
data, as the reporting rate referred to the probability that an infection appeared in the
incidence time series. A uniform prior distribution was used for all parameters, with
bounds described in Table 3.1
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3.3.3 Estimates of R0 were biased if k was fixed at the incorrect

value
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Figure 3.4: Parameter estimates when reporting rate was 1 in 100 and k was fixed to
1. Estimates are shown for for (A) R

0

, (B) reporting rate, and (C) date of first
infection. Within each of the 6 panels of each subplot, the results of inference from
both epidemiological and phylogenetic data (left), only epidemiological data (middle),
and only phylogenetic data (right) are shown. The horizontal dashed lines denote the
true parameter value for that set of parameters, i.e. the parameter value used to simulate
the data. The boxes indicate the median and 95% HPD interval of parameter estimates
pooled from replicate simulations. The vertical lines with a single dot denote the median
and 95% HPD interval of each individual simulation. Simulations where the MCMC chain
did not converge were left out of the plot. Estimates of the reporting rate did not include
inference from phylogenetic data, as the reporting rate refers to the probability that an
infection appears in the epidemiological time series.

The dispersion parameter k of the o↵spring distribution is usually not estimated when

fitting compartmental models. I investigated the e↵ects of assuming the wrong value

of k on parameter estimates, especially on R
0

estimates. The implicit assumption of

compartmental transmission models is that the o↵spring distribution is geometrically

distributed, which was equivalent to fixing k = 1 in the negative binomial. For a subset of
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Table 3.3: The Kolmogorov-Smirnov (K-S) distance between the posterior distributions
of R

0

estimated assuming a geometric o↵spring distribution (i.e. fixing k = 1) and those
estimated while estimating k (see results in Table 3.2 and Figure 3.3). K-S values closer
to 1 reflect larger discrepancies between the posterior distributions, whereas those close to
0 suggest no di↵erence in posterior distributions. The numbers in the brackets denote the
range of K-S distances from di↵erent sets of simulated data, and the number preceding
the brackets denotes the median K-S distance.

k Both Epi Phy
0.1 0.725 (0.078, 0.956) 0.000 (0.000, 0.125) 0.201 (0.000, 0.887)
1 0.325 (0.111, 0.979) 0.151 (0.078, 0.247) 0.422 (0.142, 0.777)
10 0.646 (0.135, 0.977) 0.066 (0, 0.101) 0.395 (0.067, 0.954)

simulated outbreaks (those where I sampled 1% of individuals), I re-estimated parameters

with a fixed k = 1.

I compared these results (Figure 3.4) to those obtained when k was also estimated (Figure

3.3), and found significant di↵erences in R
0

estimates when the true value of k 6= 1. This

was evidenced by an increase in the Kolmogorov-Smirnov distances (Massey Jr, 1951), a

measure of distance between two distributions, when the true value of k 6= 1 compared to

when the true value of k = 1 (Table 3.3). However, this was only the case for inference

using phylogenetic data. Those using just epidemiological time series were una↵ected by

assumptions of k.

Estimates of the reporting rate and the epidemic start date were not a↵ected by

assumptions of k, regardless of the data used during inference.

3.3.4 Estimation from multiple phylogenies

For a subset of data (those generated using R
0

= 2 and k = 0.1), I re-estimated the

parameters for each phylogeny inferred from the simulated sequences (Figure 3.5).

Estimates of R
0

and k obtained from inferred phylogenies instead of the true phylogeny

reduced precision and increased bias, although estimates of k were still more precise

than those estimated from epidemiological data (Table 3.2). Interestingly, estimates of

the epidemic start date were less biased when using inferred phylogenies than the true

phylogeny, although this might be due to the sample phylogeny randomly having a tree

height further away from the epidemic start date.



80Chapter 3. Integrated analysis of phylogenetic and epidemiological data to estimate k

3.3.5 Changing initial parameter values

At the start of an MCMC chain, the initial parameter values were set to their true

parameter values in the case of simulated data to reduce convergence time. I simulated

an additional 100 data sets from the stochastic SIR model with true parameter values

R
0

= 2, k = 1, and ⇢ = 1%, but starting the MCMC chains at parameter values far from

their true values. Using a heated chain at the beginning of the MCMC (multiplying p
a

by a factor), I found that the MCMC chain converged on the same posterior distributions

as when the initial parameter values were close to the true parameter values (Table 3.4).

Table 3.4: The precision (RMSD), bias and accuracy (% in HPD) of parameter estimates
when the initial parameter values were very far from the true parameter values, averaged
across 100 simulations for the parameter combination R

0

= 2, k = 0.1, and ⇢ = 1%. The
RMSD and bias values presented here have not been normalised. The MCMC chain was
initially heated to accept jumps to parameter sets with low posterior densities in order to
escape local optima.

Data R
0

: RMSD R
0

: Bias R
0

: in HPD k: RMSD k: Bias k: in HPD
Both 0.3028 0.0702 100% 0.08970 -0.03504 100%
Epi 0.4018 0.0678 100% 0.09206 -0.07422 100%
Phy 0.3574 0.1344 100% 0.08810 -0.05097 100%
Data T

0

: RMSD T
0

: Bias T
0

: in HPD ⇢: RMSD ⇢: Bias ⇢: in HPD
Both 12.9879 1.5898 100% 0.001551 -0.001024 100%
Epi 12.6207 -0.8961 100% 0.001795 -0.001174 100%
Phy 14.2418 -1.0382 100% NA NA NA

3.4 Discussion

Building on methods that enable parameter inference for stochastic models and

phylodynamic approaches integrating both epidemiological and phylogenetic data, I

presented a framework for quantifying the o↵spring distribution dispersion k while

inferring key epidemiological parameters from both types of data. The addition of

pathogen phylogeny to epidemiological inference was necessary to accurately estimate

the dispersion of the o↵spring distribution k. This would be useful for detecting

superspreading dynamics in infectious disease outbreaks where data from densely

sampled transmission networks are not available.

Existing approaches to epidemiological inference from pathogen phylogeny do not usually
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account for overdispersion in the o↵spring distribution (Volz et al., 2009). While the

variance of the o↵spring distribution can be increased by dividing the population into a

limited number of infectious categories (Volz and Pond, 2014), the number of secondary

infections per individual lies on a continuum in real populations. Also, discretisation of

infectiousness requires a structured coalescent approach whereas estimating the o↵spring

distribution parameters assumes homogeneous mixing.

The use of a single representative phylogeny to infer epidemiological parameters is

su�cient for well-resolved phylogenies. Rasmussen et al. (2014b) found that parameters

of an HIV transmission model were broadly consistent amongst 10 phylogenies sampled

from Bayesian phylogeny reconstruction in BEAST. As these sequences were collected

over a number of years, there was su�cient confidence in the branching times that

di↵erent phylogenies sampled from the posterior distribution produced similar estimates.

In an outbreak setting when transmission happens over a short time compared with

viral evolution, greater uncertainty in branching times meant that I needed to use a

larger number of phylogenies to be confident of the posterior distribution of parameters.

A potential source of bias in the k estimates is from the strong prior I placed on the value

of k such that highly super-spreading scenarios would have greater prior density than

more homogeneous settings. Random draws from the prior distribution I used would

yield a mean of 0.00142 and a median of 0.0002, with interquartile bounds of 0.00013 and

0.0004. A more suitable prior would have been a uniform prior on k between 0 and 10

as increases in k above 10 would not a↵ect the clustering of cases that much. However,

despite the strong prior density, the posterior densities of k did not conform to the prior,

which suggests that there was su�cient signal in the data to identify the most likely values

of k.

The conclusion that the method presented in this chapter can be used to accurately

estimate k needs to be caveated by the fact that this relies on accurate phylogenetic

reconstruction. Despite the high mutation rate used to simulate the sequence data in

Section 3.3.4, the uncertainty in k was much greater than when the true phylogeny was

used for inference. The mutation rate was at least an order of magnitude faster than

rates reported for viruses with short generation times (Du↵y et al., 2008). The choice

for the high mutation rate was because the simulated epidemics were over a short period
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of time (around 100 days). The polio outbreak analysed in Chapter 4 lasted almost a

year, for example. Su�cient numbers of mutations are necessary to resolve the tree.

However, despite the high rate of nucleotide substitution in this case, there was still

significant uncertainty in the branching times. This could be due to the phylogenetic

reconstruction programs forcing bifurcations in the tree, even if the true phylogeny

contained multifurcations due to superspreading events.

Further studies are required to more extensively test the inference method in the presence

of phylogenetic uncertainty, perhaps with simulations lasting a longer period of time,

and in a larger population but with the same number of sequence samples. The latter

could improve the resolution of the phylogeny as multifurcations in the true phylogeny

would be much less likely. Additionally, this needs to be repeated for a greater number of

epidemiological parameter combinations rather than just one, which was the case in this

chapter.

While the simulation parameters and model used in this chapter are di↵erent from those

used to analyse poliovirus data in the next two chapters, they were chosen for their

simplicity so that the accuracy of the inference framework could be assessed. These

simulations shown here are comparable to other directly transmitted infections such as

pandemic influenza the early stages of pandemic influenza where R
0

= 1.5 and T
g

= 1.91

were estimated (Fraser et al., 2009). The scenarios with higher R
0

values are less likely to

occur in emerging outbreaks, but illustrate the potential use of this inference framework

in settings with higher transmission intensities.

Although the particle filter produces an unbiased estimate of marginal likelihood, it is

very computationally intensive. The number of particles required scales with the length

of simulations, the number of transitions in the model, and the reporting probability of

cases. As I simulated from the index case, the epidemic trajectories at the beginning of

simulations were highly unpredictable. Datasets with overdispersed o↵spring

distribution further increased the stochasticity of simulations, necessitating a large

number of particles to obtain a stable estimate of the marginal likelihood. In our

implementation, I needed 10,000 particles for k = 0.1 and at least 1,000 for k = 1. For

simpler models, approximations such as the Kalman filter can be used. The strength of

PMCMC, however, is the applicability to a wide range of models including
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high-dimensional ones (Sheinson et al., 2014).

An issue that I did not explore was the e↵ect of sampling strategy on phylodynamic

inference. In the analysis of simulated data, I assumed that a uniform sampling strategy

in which every infected individual was equally likely to appear in the data. However, in an

epidemic setting reporting rates may change over time due to many factors. During the

Tajikistan poliovirus outbreak, for example, there were proportionally fewer pathogen

isolates that were sequenced during the peak of the epidemic compared to early and

late phases. On the other hand, surveillance systems may improve after an outbreak is

declared, resulting in denser sampling. Coalescent analyses are particularly sensitive to

the sampling strategy. Non-random sampling in which individuals from epidemiologically

linked clusters were more likely to be sampled resulted in under-estimate of the e↵ective

population size (de Silva et al., 2012a).

Beyond state space models, PMCMC can be applied to a wider class of epidemic models

as long as they can be simulated to produce trajectories of the number of infectious

individuals over time, and that the mean and variance of the o↵spring distribution can

be defined. Branching process models are often used to analyse data from the start of an

epidemic as they assume no density-dependent e↵ects. Although they do not satisfy the

Markovian requirement, their likelihood can also be estimated using a PMCMC approach,

as long as the timings of future ‘o↵spring’ are tracked in each particle.

The simulations presented in this Chapter demonstrate that the inference framework

described in Chapter 2 can account for demographic stochasticity to quantify

heterogeneity between individuals at the same time as estimating other epidemiological

parameters. Including uncertainty in the phylogeny reduced confidence in estimated k

and further work is necessary to explore the e↵ects of phylogenetic uncertainty on the

accuracy of epidemiological parameters. This inference method could be applied to

rapidly evolving viral infections including polio (see Chapters 4 and 5).
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Figure 3.5: Parameter inference by integrating over multiple phylogenies. For one of
the simulated data sets (R

0

= 2, k = 1), I simulated the evolution of a 1000-nucleotide
gene using the HKY+� substitution model. Using MrBayes to reconstruct the phylogeny
from the sequences of the sampled individuals, I obtained a posterior distribution of
phylogenies given the sequences. Sampling 100 trees from this posterior distribution, I
re-estimated the parameters using both incidence time series and pathogen phylogeny for
each of the sampled phylogenies. The horizontal lines show the median and 95% HPD
intervals of parameter estimates for each of the 100 trees. The red vertical lines denote
the true parameter values. The red distributions are the posterior distributions obtained
by pooling the parameter estimates from all 100 analyses, and the blue distributions are
the posterior distributions obtained using the true genealogy of sampled individuals.



Chapter 4

Phylodynamic analysis of the 2010

Tajikistan poliovirus outbreak

I showed that the inference framework described in Chapter 3 can be used to recover the

true parameter values of simulated outbreaks by fitting a compartmental transmission

model to one or both of epidemiological data and pathogen phylogeny. In this Chapter,

I will apply the inference framework to real data from a poliovirus outbreak.

This chapter is part of the manuscript that I submitted to Molecular Biology and

Evolution titled “Quantifying transmission heterogeneity using both pathogen

phylogenies and incidence time series”.

4.1 Introduction

Despite the elimination of poliovirus from most of the world, poliovirus outbreaks can

still occur as long as poliovirus remains endemic in a few countries. Gaps in immunity

can lead to potentially large outbreaks of polio in non-endemic countries. In 2010, for

example, importation of wild poliovirus type 1 (WPV1) occurred in 10 countries that

were previously polio-free (Centers for Disease Control and Prevention, 2010).

The largest outbreak in 2010 occurred in Tajikistan, which resulted in 518 cases of

poliomyelitis (Centers for Disease Control and Prevention, 2010). The build-up of a

85
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large susceptible population combined with delayed response to the outbreak led to this

large outbreak. Fitting a compartmental transmission model to incidence time series

aggregated from acute flaccid paralysis (AFP) surveillance data, Blake et al. (2014)

estimated the reproductive numbers for people in di↵erent age groups and the number

of infections prevented by supplementary immunisation activity (SIA) rounds. The

epidemic history was not co-estimated along side parameter values. Although simulating

from the maximum likelihood parameter values helped to quantify stochasticity in the

system, uncertainties in prevalence over time were not available.

Another di�culty in Blake et al. (2014) and other polio modelling papers was the need

to assume a case-to-infection ratio to estimate epidemiological parameters. Polio cases

are identified through AFP surveillance, but because most infections are asymptomatic,

the case-to-infection ratio (i.e. reporting probability) is very low. Although a 1 in 200

case-to-infection ratio is often assumed for modelling purposes (Melnick and Ledinko,

1953; Grassly et al., 2006; Blake et al., 2014), this ratio can vary temporally, spatially,

by age, and by serotype. Accurate estimation of the case-to-infection ratio is needed to

quantify the extent of poliovirus spread. In an outbreak setting, this can help to estimate

the true size of the infected population, and thus plan intervention strategies accordingly.

Furthermore, in the long term, the case-to-infection ratio is needed to determine the

length of time that needs to pass after the last reported case of polio before eradication

can be declared (Eichner and Dietz, 1996; Kalkowska et al., 2015).

Using the statistical inference approach presented in Chapter 2, I aimed to

1. estimate case-to-infection ratio, with and without pathogen phylogenies,

2. compare parameter estimates obtained through maximum likelihood and those

obtained using PMCMC,

3. and determine if su�cient information can be derived from pathogen phylogenies

during an outbreak to estimate epidemiological parameters.
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4.2 Method

4.2.1 Data

According to WHO guidelines, two stool samples should be taken within two weeks of

an individual being diagnosed with acute flaccid paralysis (AFP). Stool specimens are

tested for wild and vaccine-derived polioviruses, and viral isolates are sequences. On

occasion, stool collection does not take place within 2 weeks of paralysis, or the patient is

lost to follow-up. In such cases, the patient is designated a polio-compatible case if their

symptoms are compatible with that of poliovirus.

Data used for the analysis in this Chapter were collected during the 2010 outbreak of

WPV1 in Tajikistan, which resulted in 463 laboratory-confirmed and 58

polio-compatible cases between February and July 2010, inclusive (Centers for Disease

Control and Prevention, 2010). I constructed the incidence time series by aggregating

cases on a daily basis according to their dates of paralysis and age group. This data set

was divided into three age groups: 0-5, 6-14, and 15+ years, which corresponded to the

target age groups of supplementary immunisation activities (Centers for Disease Control

and Prevention, 2010).

A total of 116 Virion Protein 1 (VP1) sequences were obtained from the stool samples

in Tajikistan with Genbank accession numbers KC880365-KC880521 (Yakovenko et al.,

2014). Each sequence was associated with the date of collection, but age groups were

ignored.

Not all isolates confirmed to be WPV1 were sequenced, nevertheless, due to lack of

resources to process all samples (Figure 4.1). Changes in the sampling rate of sequences

do not have an e↵ect on inference from phylogeny data because the coalescent likelihood

does not depend on the sampling rate.

4.2.2 Phylogenetics

The K80+� model (Kimura, 1980) was selected as the substitution model as it returned

the lowest Bayesian Information Criterion (BIC) score in jModelTest2 (Guindon and
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Figure 4.1: Temporal and spatial distribution of the 2010 Tajikistan outbreak of wild
poliovirus type 1 (WPV1). (A) Weekly incident case numbers (red bars) of WPV1 during
the 2010 Tajikistan outbreak, and the number of cases for which a virus sequence was
obtained (blue bars). The sampling dates are the dates of symptoms onset. Note that
the bars are not stacked but superimposed. The spatial distribution of data is shown in
(B) and (C). The sizes of circles are proportional to (B) the number of cases in a district
(largest is 73), and (C) the number of cases for which sequences were obtained (largest is
19).

Gascuel, 2003; Darriba et al., 2012). This model of substitution included two rates for

transitions and for transversions, and assumed equal base frequencies and

gamma-distributed heterogeneity in rates among sites. Phylogenies were rooted using an

outgroup sequence sampled in Uttar Pradesh, India in 2009 (GenBank: KC800662)

A maximum likelihood tree was constructed in RAxML (Stamatakis, 2014) using the GTR

+ � model. The K80 model was not available in RAxML and the GTR +� model had

the lowest BIC score out of all available nucleotide substitution models in the program. A
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root-to-tip plot was created from the resulting maximum likelihood tree by plotting the

distance (number of substitutions) from the root node to each tip against the sampling

times. A strong correlation as measured by the R2 shows that the sequences evolve

according to a strict molecular clock.

The posterior distribution of phylogenies was estimated using MrBayes (Ronquist et al.,

2012), assuming a K80+� model of substitution and a strict molecular clock. I used 5

million generations with 1 cold and 3 heated chains and sampled every 1,000 generations.

The first 50% of samples were removed as burn-in. The tip dates were fixed to the dates

of sampling. As with the simulated data, dated phylogenies were obtained by dividing

the branch lengths of reconstructed phylogenies by the molecular clock rate. I sampled

100 dated phylogenies from the MrBayes posterior and estimated parameter values based

on each phylogeny.

An averaged skyline was created from the sampled phylogenies from MrBayes using the

pipeline described in Section 2.3.4. To compare this to Bayesian skyline plots, I also

analysed the sequences using BEAST (Drummond and Rambaut, 2007). I carried out 2

independent MCMC runs with 100 million generations, sampling every 5,000 generations,

and with a 50% burn-in. After checking that the e↵ective sample size was greater than

200 for all parameters in both chains, the chains were merged.

4.2.3 Statistical inference

I fit to the polio data a modified SEIR model similar to that used in Blake et al. (2014) but

with an explicit o↵spring distribution. Let the transitions between states indexed by age

group i be Q
t,i

= {QS

i

!E

i

t,i

, QE

i

!I

i

t,i

, QI

i

!R

i

t,i

, QS

i

!R

i

t,i

}, where each transition corresponds

respectively to a new infection, an infected person becoming infectious, recovery, and

vaccination. The transitions are drawn from the following probability distributions
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where �
1

is the rate of becoming infectious, �
2

is the rate of recovery, and V
t

is an indicator

function equal to 1 on the following dates and 0 otherwise: 6 May, 20 May, 3 June, 17

June 2010.

To determine the number of infections, I assumed that all secondary infections caused

by each individual occurred at the same time as the generation time was short. The

reproductive number of each age group at time t was R
t,i

= 1

�2

P
j

�
t,ij

S
t,j

. All density-

dependent transmission rates �
t,ij

where i 6= 1 and j 6= 1 were assumed to be a proportion

of the transmission rate amongst children of the youngest age group: �
1,1

�
p

. The number

of transitions from susceptible to exposed individuals was drawn from a negative binomial

distribution parameterised by its mean and dispersion parameters

QS

i
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i

t,i

⇠ NBin(R
t,i

QI

i
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i

t,i

, kQI

i

!R

i
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) (4.4)

Whereas in the simulations I assumed the time of case reporting coincided with the

time of recovery, here I could not make that assumption as symptoms may manifest

even if an individual is no longer infectious. The incubation period refers to the time

interval between infection (S
i

! E
i

) and the onset of paralytic symptoms. Instead, I

adopted the approach used in Blake et al. (2014) and modelled the incubation period

as an Erlang distribution with mean ⇠ = 16.5 days and a shape parameter of ↵ = 16,

which was equivalent to the sum of ↵ independent exponential variables with rate 1

16.5

per day. I obtained these values by fitting the Erlang distribution to observed data on

incubation periods Casey (1942), and estimating the maximum likelihood values of the

distribution (Figure 4.2). In practical terms, this meant having 16 compartments where

the progression from one to the next was exponentially distributed. During simulations,
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Figure 4.2: The best-fitting Erlang distribution (red line) for the incubation period data
(black dots) from Casey (1942). The Erlang distribution with mean ⇠ = 16.5 days and a
shape parameter of ↵ = 16 produced the best fit as assessed by least-squares.

individuals who became infected (S
i

! E
i

) also moved from the S
i

to the first incubation

period compartment. Their progression in the SEIR compartments was independent of

their progression down the 16 incubation period compartments.

The likelihood P (Phy
t

|X
t

) is calculated as described in Section 2.3.3, but using X
t

=

E
t

+ I
t

. The SEIR model used in this Chapter is akin to an SIR model with gamma-

distributed generation time because I still simulated secondary infections at the end of

an individual’s infectious period. Because the latent period was very short compared to

the infectious period, I approximated the coalescent likelihood with the same formula as

above, replacing I
t

with E
t

+ I
t

and setting T
g

as the duration of infection.

Although I included age-structure in the simulation model, I ignored age-structure in the

likelihood calculation based on the phylogeny. This is due to the low sampling probability

(less than 1 in 200) of poliovirus sequences. Let A = A
1

+A
2

+A
3

, where A
i

be the number

of lineages at time step t in age group i.. The time index t is dropped for simplicity

According to derivations of the coalescent for structured SIR models (Volz, 2012), the

overall coalescent rate at simulation time step t is
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where �
ij

= 1 if i = j and 0 otherwise. Because the low reporting probability of polio

infections is less than 1 in 200 and not all reported cases were sequenced in the case of the

Tajikistan outbreak, I
j
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and thus
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where the transmission rate �S =
P

i

P
j

�
ij

S
i

. Thus, the overall coalescent rate of an

age-structured population is approximately equal to the unstructured coalescent rate,

when the probability of an infected individual appearing in the sample is low.

I fixed the initial susceptible population sizes to the maximum likelihood estimates

obtained in Blake et al. (2014). I also placed a strong prior on the duration of

infectiousness based on likelihood profile obtained in Blake et al. (2014). Fixed

parameter values and prior distributions on estimated parameters are outlined in Table

4.1.

I used 10,000 particles and up to 150,000 MCMC iterations sampling every 20 iterations.

The Markov chains were terminated earlier than 150,000 iterations if estimates of the

marginal posterior density had an ESS of at least 100.
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Parameter Value Estimated Prior
Population sizes in thousands
N

Total,1

, N
Total,2

, N
Total,3

656,
1249,
372

No -

Susceptible individuals at start (in
thousands) S

0,1

, S
0,2

, S
0,3

109.6,
176.1,
104.2

No -

Initial number of infected I
0,1

, I
0,2

, I
0,3

1,0,0 No -
Mean duration of latency T

l

= 1

�1
4 No -

Mean duration of infectiousness T
i

= 1

�2
- Yes Gam(↵ = 5.12, � =

1.7)
Initial reproduction number of children
aged 0-5 years R

c

- Yes* (proposal
and prior on �)

Unif(0.00001, 0.1)

Initial reproduction number of people >5
years R

a

- Yes* (proposal
and prior on
�
p

)

Unif(0.00001, 1.0)

O↵spring distribution dispersion parameter
k

- Yes Unif(0.00001, 1000)

Infection:Case ratio (inverse of reporting
fraction) 1

⇢

- Yes Unif(1,1⇥ 106)

Time of first infection T
0

- Yes
Vaccine e�cacy � - Yes Unif(0.0, 1.0)
Mean and shape parameters of the Erlang
distributed incubation period ⇠, ↵

16.5
days,
16

No

Table 4.1: Model parameters of the transmission model fit to Tajikistan polio data. Values
of fixed parameters are given in the column ‘Value’. The population was divided into 3
age groups: 0-5 years, 6-14 years and 15+ years. The initial numbers of susceptibles were
fixed to the maximum likelihood estimates from Blake et al. (2014). Vaccinations took
place on the following dates: 06 May, 20 May, 03 Jun, 17 Jun and 17 Jun 2010. On these
dates, individuals were moved from the susceptible to the recovered compartment with
probability �. Gamma distributions are parameterised by the shape and scale parameters.
*The reproductive numbers R

c

and R
a

were calculated from the estimated transmission
rate amongst young children �, the relative transmission rate between all other groups
�
p

, the duration of infectiousness 1

�2
, and numbers of susceptibles S

0

.

4.3 Results

4.3.1 Phylogenetics

Although poliovirus is one of the fastest evolving viruses, the short duration of the

outbreak combined with the short length of VP1 sequences meant that the uncertainties

in branching times were large. Based on the maximum likelihood phylogeny, the rate of
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Figure 4.3: The maximum clade credibility (MCC) phylogeny for 116 wild poliovirus type
1 VP1 sequences from the 2010 Tajikistan outbreak. The MCC phylogeny was constructed
from the posterior distribution of Bayesian phylogenetic analysis carried out in MrBayes
3.2 (Ronquist et al., 2012). The horizontal bars are the 95% highest posterior density
intervals of branching time estimates.

substitution as estimated by the slope of the linear regression of divergence from root

against time was 1.39(0.86 � 1.93) ⇥ 10�2 substitutions per site per year (Figure 4.4).

Usually poliovirus evolution follows a strict molecular clock (Jorba et al., 2008).

However, the short duration of the outbreak meant that the sampling times did not

correlate strongly with divergence from the root.

Bayesian analysis of the poliovirus sequences using MrBayes also yielded wide intervals
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around estimates of molecular clock rate: 1.04(0.67� 1.38)⇥ 10�2 substitutions per site

per year. The Bayesian analysis yielded 95% highest posterior density interval estimates

around branching times, which were all very wide (Figure 4.3).
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Figure 4.4: Root-to-tip distance as measured in substitutions per site for Tajikistan WPV1
sequences. The slope measures the substitution rate estimated to be 1.39(95%CI : 0.86�
1.93)⇥ 10�2 substitutions per site per year. Each dot represents a sequence. The line is
the best-fitting linear model with the 95% confidence interval shown in the shaded region.

4.3.2 Non-parametric inference of Ne

To determine if there was su�cient signal in the pathogen phylogeny to infer parameter

values, I estimated the e↵ective population size Ne over time using the Bayesian skyline

plot (BSP) approach in BEAST and using the average skyline pipeline outlined in Section

2.3.4. Both sets of Ne estimates yielded wide credible intervals (Figure 4.5). While

the BSP suggested plateauing in infection numbers, the average skyline captured the

rise and fall in prevalence of infection. Despite the uncertainty in Ne, the median Ne

estimates suggested that there was su�cient information in the phylogeny to estimate

model parameters.
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Figure 4.5: Estimates of e↵ective population size based on poliovirus sequences collected
during the 2010 Tajikistan outbreak. Two methods were used to estimate the e↵ective
population size over time: Bayesian skyline plot (BSP) as implemented in BEAST
(Drummond and Rambaut, 2007) and the average skyline as described in Section 2.3.4.
A generation time T

g

of 10 days was used to convert the y-axis from NeT
g

to Ne.

Parameters Both Epi Phy Blake et al.
2014

R
c

2.58 (2.23-2.98) 2.62 (2.07-3.32) 1.79 (1.46-2.11) 2.18 (2.06-2.45)
R

a

0.59 (0.48-0.7) 0.57 (0.44-0.69) 0.95 (0.15-1.47) 0.46 (0.42-0.52)
k 64.044 (1.842-

518.102)
68.956 (0.003-
728.782)

6.661 (0.119-
349.728)

1

T
g

06 Dec 09 (06 Nov
09-25 Dec 09)

13 Jan 10 (13 Dec
09-27 Jan 10)

13 Jan 10 (13 Dec
09-27 Jan 10)

17 Dec 09 (21 Nov
09-6 Jan 10)

Infections
per case

1 in 290 (212-369) 1 in 349 (213-496) NA 1 in 200

Vaccine
e↵ectiveness

71.3% (53.9%-
85.9%)

57.1% (24.3%-
77.2%)

57.1% (24.3%-
77.2%)

69% (55%-80%)

Table 4.2: Posterior parameter estimates for the 2010 Tajikistan poliovirus outbreak
compared with the maximum likelihood estimates obtained in Blake et al. (2014)).

4.3.3 Phylodynamic inference

The posterior distributions of parameters are presented in Figure 4.6, and the median and

95% HPD intervals are in Table 4.2.
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I obtained more precise estimates of the reporting rate when using both epidemiological

and phylogenetic data. These estimates are dependent on the initial number of

susceptibles, which I fixed to their maximum likelihood estimates obtained by fitting to

epidemiological data only (Blake et al., 2014). The initial number of susceptibles was

di�cult to estimate without a very strong prior and necessitated a much longer MCMC

chain to obtain su�cient samples from the posterior distribution. To obtain estimates of

other parameters within a reasonable amount of time, I did not estimate the initial

number of susceptibles.

The basic reproductive number of children aged 0-5 years R
c

was estimated to be 2.58

(2.23-2.98) when both epidemiological and phylogenetic data were used in inference. These

values were intermediate between estimates using just epidemiological data, and estimates

using just phylogenetic data. The maximum likelihood estimate of 2.18 from Blake et al.

(2014) was included within the 95% highest posterior density (HPD) interval except when

only phylogenetic data were used for inference.

The posterior distributions of the reproductive number of older children and adults R
a

all

included the maximum likelihood estimate of 0.46. Adding the phylogenetic data did not

significantly alter parameter estimates. This was not surprising as the credible interval

surrounding estimates using just phylogenetic data was much wider.

The value of k was likely high, indicating the lack of superspreading dynamics. The

estimated values were 6.7 (0.1-349.7) when only genetic data were used for inference.

These values were much higher when epidemiological data were used: 69.0 (2.6 ⇥ 10�3-

729.8), and when both data sets were used at the same time: 64.0 (1.8-518.1).

Given the large credible intervals around estimates of vaccine e↵ectiveness per campaign

using phylogenetic data, only epidemiological data were informative of this parameter.

The credible intervals using just epidemiological data included the maximum likelihood

estimate from Blake et al. (2014) at 69% (55%-80%).

Finally, the estimated start date of the epidemic for analysis using both data sets,

epidemiological data only, and phylogenetic data only all overlapped with each other, as

well as with estimates from Blake et al. (2014).

Overall, it seemed like incidence time series were more informative for estimates of
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reproductive number, k, and vaccine e↵ectiveness than pathogen phylogeny alone.

However, in all these cases, including the pathogen phylogeny improved the precision of

estimates.

4.4 Discussion

While phylodynamic analyses have been used to characterise the epidemiological dynamics

of other viral diseases such as influenza and HIV, such methods are not widely used for

poliovirus analysis. Molecular surveillance through sequencing of poliovirus isolates has

mainly been used for tracking the geographic spread of poliovirus in endemic countries

(Angez et al., 2012), detecting orphan lineages which are indicative of long-term silent

transmission (Gumede et al., 2014), and reconstructing the history of pathogen diversity

(Burns et al., 2013). Although model-based parameter inference has been used to analyse

epidemiological data for polio (Grassly et al., 2006; Mangal et al., 2013; Blake et al.,

2014), it has not been used to analyse viral sequence data.

The gold standard of polio surveillance has traditionally been through Acute Flaccid

Paralysis (AFP) surveillance, in which stool samples from patients with AFP symptoms

are tested for the presence of poliovirus. As the number of poliovirus infections

decreases, there might be too few symptomatic cases reported through AFP surveillance

to provide su�cient data in terms of incidence time series and viral sequences.

Environmental sampling of poliovirus shed by asymptomatically infected individuals will

thus play an increasingly important role in monitoring poliovirus and quantifying its

epidemiology as eradication gets closer.

In all cases, the confidence intervals obtained through profile likelihood were smaller than

the 95% HPD intervals, even when only the incidence data are used for inference. This

shows that integration over stochastic outcomes is important for fully describing the range

of plausible parameter estimates.

Despite the uncertainty in phylogenetic topology and molecular clock rate, integrating

over parameter estimates obtained for individual trees produced estimates of

reproductive number, epidemic start date, and k. However, the 95% HPD interval
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ranges were larger when using phylogenetic data compared to using incidence time

series. In terms of vaccine e↵ectiveness, most information came from the incidence time

series rather than phylogenetic data. In this model, polio incidence dropped

immediately after SIA campaigns but the prevalence of infection did not change as

sharply. Perhaps these changes in prevalence of infection due to SIA campaigns did not

leave noticeable patterns on the pathogen phylogeny, hence the lack of information on

the per-campaign e↵ectiveness of SIAs from the pathogen phylogeny.

Very large values of k were estimated for this outbreak, which appear implausible for a

directly transmitted infectious disease (Lloyd-Smith et al., 2005). The wide distribution

of posterior values for k could be due to the flat prior and lack of information in the

phylogeny to precisely estimate k. Furthermore, the combination of short gene segment

(906 bases) and rapid progression of the epidemic meant that the phylogeny could not

be accurately characterised. As discussed in Chapter 3, more simulation studies are

required to explore how phylogenetic uncertainty a↵ects estimates of k, and further

methodological developments may be required to fully integrate this uncertainty in

epidemiological inference.

The prior on the fraction reported ⇢ could also have su↵ered from bias from the prior

distribution, as the mean of the prior was 2⇥10�6. However, the data seemed su�ciently

informative to overcome this strong prior as the posterior values of ⇢ were much higher

than that and in line with expected values.

As I did not estimate the initial number of susceptibles, I was able to obtain a broad

estimate of the case-to-infection ratio using just the incidence time series. However, more

precise estimates of the case-to-infection can be obtained by using both incidence time

series and pathogen phylogeny.

To summarise, the addition of pathogen phylogeny to statistical inference improved the

precision of case-to-infection ratio estimates, which were lower than the 1:200 value

usually used in modelling of poliovirus transmission. Compared to the maximum

likelihood parameter estimates based on incidence time series only (Blake et al., 2014),

the Bayesian estimates here had broader credible intervals because of the incorporation

of stochasticity in epidemic trajectories. Despite the increase in computation time,

conducting a Bayesian analysis using the PMCMC approach is needed to fully capture
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the uncertainty in parameter estimates. Finally, the analysis here shows that parameter

estimates from pathogen phylogeny are mostly consistent with incidence time series.

However, the pathogen phylogeny here was not as informative as in the simulated

epidemics (Chapter 3) due to uncertainty in branching times. The rapidity of the

Tajikistan outbreak reduced the reliability of phylogenies constructed from sequences.

In the next Chapter, I will show how pathogen phylogeny constructed from sequences

collected over a long period of time is more informative of certain parameters than

incidence time series.
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Data: Both Epi Phy
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Figure 4.6: Posterior densities of epidemiological parameters for the 2010 WPV1 outbreak
in Tajikistan. The estimated parameters include (A) the reproductive number of 0-5 year
olds, (B) the reproductive number for 5+ year olds, (C) k, (D) the date of first infection,
(E) infections per reported case, and (F) vaccine e↵ectiveness per campaign.The solid and
dashed vertical lines are the maximum likelihood estimates and 95% confidence intervals
estimated in Blake et al. (2014). The solid vertical lines not accompanied by dashed lines
correspond to parameter values that were fixed and not estimated.



102 Chapter 4. Phylodynamic analysis of the 2010 Tajikistan poliovirus outbreak



Chapter 5

Phylodynamic analysis of

environmental polio sequences

In this Chapter, I demonstrate that epidemiological models can be fit to sequence data

from polioviruses isolated in wastewater and sewage samples. Environmental

surveillance was set up in Pakistan in 2009 to supplement acute flaccid paralysis (AFP)

surveillance of symptomatic polio cases. As the incidence of poliovirus infections

decreases, environmental surveillance is playing an increasingly important role in

monitoring the spread of poliovirus and quantifying infection numbers. Using the

inference framework in Chapter 2, I estimate the average reproductive number of wild

type-1 poliovirus (WPV1) each year between 2012 and 2015 in Pakistan based on just

the environmental sequences, and compare the results to those obtained from analysing

just incidence time series from AFP surveillance and highlight information added by

analysing environmental sequences. The genetic data analysed in this chapter were

sequenced by Sohail Zaidi and colleagues at the Pakistan National Institute of Health.

5.1 Introduction

The incidence of symptomatic cases of WPV1 has been on a downward trend for the

last two decades. In 2015, there were only 75 confirmed cases of wild type-1 poliovirus

(WPV1) globally. While the gold standard of polio surveillance is through Acute Flaccid

103
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Paralysis (AFP) reporting, AFP surveillance can only detect symptomatic cases which

occur in less than 1 in 200 infections. Because poliovirus infects the gut, viral particles

are shed into the environment via faeces. By setting up sampling sites in sewage

networks, poliovirus particles shed by infected individuals can be detected irrespective of

symptoms. Environmental surveillance is thus particularly helpful at the end of the

eradication programme as it is sensitive to infections even when there are no

symptomatic infections. However, the sensitivity of environmental surveillance depends

on a converging sewage system, distance of sampling sites from source (toilets), and

sampling frequency (Hovi et al., 2012).

In countries already free of poliovirus, environmental surveillance data enable early

detection of silent poliovirus transmission. In 2013, for example, the detection of WPV1

sequences in the environment in Israel led to mass immunisation campaigns with oral

poliovirus vaccine (OPV) to boost the population immunity, so that infections can be

halted before a paralytic case of polio occurs. In endemic settings such as Pakistan,

environmental surveillance supplements AFP surveillance in detecting poliovirus

infections. Furthermore, phylogenetic reconstruction of environmental sequences is

informative of the spatial routes of poliovirus spread (Alam et al., 2014, 2016).

Environmental sampling sites were set up in Pakistan in 2009 (Angez et al., 2012). Since

then, monthly samples have been taken from these sites. Thus there is su�cient number

of sequences and sequence diversity to build phylogenies that are informative of

epidemiological parameters. Estimates based on the sequences should therefore be more

precise than those obtained for the Tajikistan outbreak analysis. However, analysis of

data collected over several years from a large, endemic country presents additional

challenges compared to outbreak analysis. First, using compartmental models that

require specification of susceptible numbers was di�cult because the proportion of

susceptible changed due to routine immunisation, supplementary immunisation activity,

births, deaths, as well as infections. To overcome this issue, I used a branching process

model instead which tracked infected numbers only assuming no saturation e↵ects.

Secondly, annual variations in transmission rates have been observed in many temprate

and sub-tropical countries including Pakistan with peak transmission occurring in late

summer/autumn (Nathanson and Kew, 2010). I therefore included seasonality
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Figure 5.1: Age distribution of acute flaccid paralysis cases confirmed to be caused by
wild type-1 poliovirus in Pakistan between 2012 and 2015, inclusive.

parameters in the transmission model to allow the reproductive number to vary

according to the time of year.

Using data from 2012 to 2015, I estimated parameters of a transmission model using

just environmental sequences, just incidence time series (from AFP surveillance), or both

types of data. The results below highlight the epidemiological insight that can be gained

from analysing environmental surveillance data, which will become increasingly important

during the last stages of eradication.

5.2 Method

5.2.1 Data

Sequences analysed in this chapter were obtained from 38 environmental sampling sites

in 13 cities across Pakistan (Alam et al., 2016). The viral isolates were sequenced in the

906-nucleotide VP1 region. Each sequence was associated with the date of sampling.

Between 2012 and 2015, inclusive, 369 environmental samples tested positive for WPV1,

resulting in 683 sequences. More than one sequence per environmental sample appeared

in the data set if these sequences were more than 1% divergent, suggesting the

co-circulation of separate lineages in the population. As Sanger sequencing was used to

obtain sequences, multiple sequences from a single environmental sample was only
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possible if multiple plaques were sequenced.

Incidence time series were constructed from AFP cases confirmed to be caused by WPV1

and with an onset of paralysis between 2012 and 2015, inclusive. A total of 518 cases

were reported in this period, with most reported cases of paralytic polio occurring in

children under the age of 5 (Figure 5.1). This di↵ered from the Tajikistan outbreak

during which older children and adults were infected and reported as cases (Blake et al.,

2014). Consequently, the model fit to data in this Chapter is not structured by age, and

estimated sizes of the infected population correspond to children under 5.

5.2.2 Phylogenetics

I used jModelTest2 (Guindon and Gascuel, 2003; Darriba et al., 2012) to determine the

best substitution model for the environmental WPV1 sequences in Pakistan. To reduce

computation time, I sampled up to 2 sequences for each month between January 2012

and December 2015, inclusive. The resulting dataset comprised 294 sequences. The top

3 models with the lowest Bayesian Information Criterion (BIC) were SYM+�, K80+�

and K80+� + I. Due to its simplicity, and agreement with the model used to analyse

the Tajikistan sequences, I chose K80+� as the substitution model for phylogenetic

reconstruction.

To estimate the rate of substitution, I used the smaller set of 294 sequences to construct

a maximum likelihood phylogeny using RAxML (Stamatakis, 2014), again to reduce

computation time. A root-to-tip plot was created from the resulting maximum

likelihood tree.

For the Bayesian reconstruction of viral phylogeny in MrBayes (Ronquist et al., 2012),

I analysed all 683 sequences. I used 3 million generations, sampling every 5000 and

removing the first 50% of samples as burn-in.

5.2.3 Model

Unlike the Tajikistan analysis in Chapter 4, there are no reliable estimates of population

immunity in Pakistan. Furthermore, the sampling dates of sequence data are over a longer



5.2. Method 107

period of time: 4 years compared to 6 months in the case of Tajikistan. This means that

a compartmental model should also include births and deaths. Assuming the size of the

susceptible population does not significantly change due to infection events within each

year, I used a continuous-time branching process model instead, which only tracks the

number of infected individuals. In this model, the e↵ective reproductive number R
t

varies

according to the time of year and undergoes step changes at the end of each year:

R
t

= R̄
f(t)

(1 + ↵cos(2⇡(t�t+ ⌧))), (5.1)

where f(t) is a function that returns the year in which time step t occurs, R̄
f(t)

is the

average reproductive number in year f(t), ↵ is the amplitude of seasonal variation, and

⌧ is the timing of peak reproductive number.

In a continuous-time branching process, each individual i gets infected at time step H
i

and

recovers at time step H
i

+W
i

where W
i

�t ⇠ discretised Gamma(a, b) is the generation

time drawn from a gamma distribution with shape parameter a and scale parameter b, and

�t is the size of each simulation time step. I used a gamma generation time distribution

with a mean of ab = 10.8 days and variance ab2 = 62.2 days2. These parameters are based

on estimated values of generation time obtained in the Tajikistan analysis in Chapter 4.

The mean duration of infectiousness estimated from the Tajikistan data was 6.8 days,

and the assumed duration of latency was 4 days Paul (1955), thus resulting in a mean

duration of infection of 10.8 days. Assuming exponentially distributed periods of latency

and infectiousness, I adjusted the resulting gamma distribution parameters to match the

mean and variance.

Secondary infections occur at the time of recovery. A number Z
i

is drawn from a

negative binomial distribution to determine the number of secondary infections caused

by individual i at time step H
i

+ W
i

. The negative binomial is parameterised by the

mean and variance rather than the total number of trials and the probability of success.

The negative binomial distribution has mean R
t

and variance R
t

(1 + R

t

k

), where k is the

dispersion parameter, and t = H
i

+W
i

.
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5.2.4 Inference

Using the inference framework presented in Chapter 2, I fit the model to environmental

sequences, to incidence time series, and to both at the same time. Although the two

data sets were not necessarily collected from the same individuals, the inference approach

I have developed in this thesis assumes that epidemiological data and genetic data are

independently sampled from the same population of infected individuals. Thus inferred

parameter values using either or both data sets should reflect the parameter values of

the same population. The estimated parameters and their prior distributions are given

in Table 5.1. Unlike in Chapter 4, I placed a beta prior on the case-to-infection ratio ⇢

(Figure 5.2). This prior placed less weight very low values of case-to-infection ratio.

To reduce the computation time, I drew 1000 random numbers from the gamma generation

time distribution at the start of each MCMC iteration. On each core that the PMCMC

was run, the program randomly selected a starting position in the array of 1000 numbers

to obtain the generation time of the first infection. With each subsequently infected

individual, the generation time of that individual was obtained by shifting the pointer

along the matrix by 1. Each particle tracked the times of recovery for currently infected

individuals, so this information was retained during particle filtering.

Because there is less stochasticity in transmission dynamics compared to the Tajikistan

outbreak, I used 2,000 particles for the analyses as this was su�cient to obtain reliable

estimates of the marginal likelihood. Each simulation time steps was �t = 0.25 days.

I used up to 1 million MCMC iterations, sampling parameter values every 20 iterations.

The first 25% of samples in each chain were removed as burn-in. Chains were terminated

early if the e↵ective sample size of the posterior exceeded 100 to reduce computation time.

The median length of the chain was 105,840, and the shortest chain had 39,420 iterations.

5.2.5 Phylogeography

To determine the level of spatial structure in the population, I estimated the migration

rate between provinces from the full set of 683 sequences using discrete phylogeographic

methods in BEAST2 (Bouckaert et al., 2014). In this analysis, geographic location was
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Figure 5.2: The beta prior placed on the case-to-infection ratio ⇢ with parameters ↵ = 1
and � = 3.

treated as a trait that switches between states (provinces) according to a Markov transition

matrix, similar to nucleotide or amino acid evolution (Lemey et al., 2009).

In addition to migration rate parameters for pairs of provinces, indicator parameters were

also estimated to determine if migration rates between pairs of provinces were significantly

above 0. The migration rate matrix was assumed to be symmetric, which meant that the

direction of migration was not inferred.

The discrete phylogeography analysis was carried out in BEAST2 with 60 million

MCMC iterations, sampling every 25,000 iterations, and discarding the first 6 million

(10%) iterations as burn-in.

5.3 Results

5.3.1 Spatiotemporal distribution

The environmental sampling sites were located in major cities (Figure 5.3A), however the

spatial distribution of AFP cases was much wider (Figure 5.3B).

The overall number of environmental samples collected in Pakistan increased over time

(Figure 5.4) as a reflection of the increasing number of sampling sites. The proportion

of samples positive for WPV1 varied over time, perhaps reflecting seasonal changes in
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Figure 5.3: Cities in Pakistan with environmental sampling sites (A), and where confirmed
wild type 1 polio cases have been detected between 2012 and 2015, inclusive (B).
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Parameter name Value Estimated Prior
R̄

2012

- Yes unif(0.01, 10.0)
R̄

2013

- Yes unif(0.01, 10.0)
R̄

2014

- Yes unif(0.01, 10.0)
R̄

2015

- Yes unif(0.01, 10.0)
Amplitude of seasonality ↵ - Yes unif(0.1, 1.0)

Timing of peak ⌧ - Yes unif(0.0, 2.0)
k - Yes* unif(0, 1⇥ 105.0)

Generation time shape a 1.88 No -
Generation time scale s 5.76 No -

Initial infected I
0

- Yes unif(1.0, 1⇥ 106)
Case-to-infection ratio ⇢ - Yes beta(1.0, 3.0)**

Table 5.1: Parameters of the branching process model fit to Pakistan data. For those
that are estimated, the prior distributions are given. Fixed parameter values are given in
column 2. The generation time distribution is gamma distributed with mean as = 10.8
days and variance as2 = 62.2 days2. The reproductive number at time t R

t

is calculated
using Equation 5.1. *k is not estimated when just using incidence time series. As shown
in Chapter 2, epidemiological data in the form of incidence time series are not informative
of the value of k. **The beta prior distribution is illustrated in Figure 5.2.
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Figure 5.4: Monthly time-series of the numbers of (A) confirmed WPV1 cases, (B)
environmental surveillance (ES) samples, and (C) proportion of ES samples that tested
positive for wild type-1 poliovirus.

Although the majority of infections over the 2012-2015 period occurred in the Federally
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Administered Tribal Areas (FATA), there were no environmental sampling sites in that

region (Figure 5.5). The peak in case numbers in 2014 was also observed in the number

and proportion of positive environmental samples for some of the provinces (Balochistan

and Punjab). After removing seasonal trend, the spearman’s rank correlation coe�cient

between the number of confirmed WPV1 cases (from AFP surveillance) and the number

of positive environmental samples was 0.54. This suggested the two sources of data were

moderately correlated in terms of counts.

5.3.2 Viral evolution

Root-to-tip analysis revealed substitution rates of 8.77⇥ 10�3 (7.81⇥ 10�3 - 9.73⇥ 10�3,

95% confidence interval) substitutions per site per year (Figure 5.6). I obtained slightly

higher estimates when I used a Bayesian approach implemented in MrBayes (Ronquist

et al., 2012): 9.3 ⇥ 10�3 (8.45 ⇥ 10�3 - 1 ⇥ 10�2, 95% HPD interval). The median

estimates were lower than those estimated in the Tajikistan analysis, but the 95% HPD

intervals here are also narrower. This is because there is greater diversity between these

environmental samples compared to sequences collected during the Tajikistan outbreak,

and thus the phylogeny is better resolved.

Assuming a constant rate of nucleotide substitution and neutral evolution, I used the

posterior distribution of phylogenies obtained through MrBayes to infer the averaged

skyline (as described in Chapter 2), i.e. the e↵ective number of infectious individuals over

time Ne (Figure 5.7). There was signal for seasonal patterns in transmission using all

sequences across the country, and at province levels. The skyline inferred from trees of

uniformly sampling sequences also displayed seasonal trends (not shown), indicating that

these trends are not an artefact of sampling.

The annual cycles in transmission rates were more evident in the Ne estimated using the

average skyline plot (Figure 5.7) than in the rate of polio AFP cases over time (Figure

5.4). This suggested that seasonal patterns in transmission potential left a more distinct

signal on the viral phylogenies from environmental sequences than on the incidence time

series.
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Figure 5.5: Monthly time-series of the numbers of confirmed WPV1 cases, environmental
surveillance (ES) samples, and proportion of ES samples that tested positive for wild
type-1 poliovirus in 6 provinces in Pakistan: Balochistan, FATA, Gilgit Baltistan, Khyber
Pakhtunkhwa, Punjab, and Sindh.

5.3.3 Epidemiological parameters estimated using model fitting

The skyline plot suggested that there was su�cient signal in the pathogen phylogeny

to quantify seasonal trends in transmission. Thus I fit a stochastic branching process



114 Chapter 5. Phylodynamic analysis of environmental polio sequences

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

R2 = 0.78

Slope = 8.77 × 10−3

0.02

0.03

0.04

0.05

2012 2013 2014 2015 2016
Date

R
oo

t−
to
−t

ip
 d

ive
rg

en
ce

Figure 5.6: Maximum likelihood estimate of the rate of divergence. Based on the
maximum likelihood phylogeny constructed in RAxML, I regressed the root-to-tip distance
measured in substitutions per site against tip sampling times. I obtained estimates of
R2 = 0.78 and a divergence rate of = 8.77(95%CI : 7.82, 9.72) ⇥ 10�3 substitutions per
site per year. Each dot represents one sequence in the sample. The line is the best-
fitting regression line. The shaded region shows the 95% confidence interval around the
best-fitting regression line.
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Figure 5.7: The average skyline plot for (A) all sequences in Pakistan, and for individual
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generation time of T
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represent the 95% HPD intervals around Neestimates
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Figure 5.8: Posterior distributions of parameter values estimated for Pakistan data
collected between 2012 and 2015. The estimated parameters include (A-D) the average
annual reproductive numbers from 2012 to 2015, (E) amplitude of seasaonal variation,
(F) peak reproductive number during a year, (G) k, (H) initial number of infected
individuals, and (I) case-to-infection ratio.

model with a reproductive number that varied with time. The resulting estimates are

listed in Table 5.2, with the full posterior distribution of each parameter visualised in

Figure 5.8. The average reproductive number was estimated to be around 1 for all 4 years

between 2012 and 2015, regardless of which source of data was used during inference.
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Table 5.2: Median and 95% Highest Posterior Density bounds of parameter estimates
inferred from wild poliovirus 1 sequences, from polio case reports, and from both at the
same time.

Both AFP ENV
Amplitude 0.063 (0-0.166) 0.111 (0-0.293) 0.078 (0-0.387)
R

t

peak time 19 Sep (16 Jul-03 Dec) 07 Jun (26 Jan-26 Nov) 22 Sep (11 Jul-15 Dec)
k 0.215 (0.004-1.296) Not estimated 0.152 (0.002-0.306)
Initial number
of infectious

2,776 (487-5,524) 22,366 (12-52,963) 3,992 (505-27,806)

Case:Infection 1:5,943 (458-52,195) 1:1,998 (216-17,254) Not estimated
R

2012

0.992 (0.957-1.028) 0.945 (0.823-1.065) 0.987 (0.769-4.185)
R

2013

1.018 (0.988-1.057) 1.04 (0.89-1.207) 1.032 (0.949-1.227)
R

2014

1.013 (0.976-1.05) 0.999 (0.865-1.146) 1.009 (0.733-1.095)
R

2015

0.919 (0.773-1.006) 0.979 (0.813-1.236) 0.88 (0.521-1.502)

This is consistent with infectious disease dynamics at endemic equilibrium. Although

there appeared to be a reduction in the reproductive number in 2015 when analysing

environmental sequences, the uncertainty in parameter estimates was also larger in 2015.

To confirm the apparent decrease in the reproductive number from 2014 to 2015, I would

need to analyse more recent environmental sequence data collected in 2016.

When just environmental sequences were used, the estimated dispersion parameter k ⇡

0.15 meant that when R = 1, just 1% of infected individuals caused 80% of infections.

A similar estimate of k was obtained when both the environmental sequences and the

incidence time series were used during inference. This value is consistent with other

directly transmitted acute infectious diseases such as SARS and measles (Lloyd-Smith

et al., 2005). I did not estimate k when inferring from just incidence time series, as

incidence time series are not informative of the value of k (Chapter 3). Based on the

median estimates of seasonal amplitude ↵, variation in reproductive number was likely

present and small. However, I could not exclude zero seasonality in the reproductive

number since all 3 credible intervals contained the amplitude parameter ↵ = 0.

The estimated case-to-infection ratio using just AFP time series was very low at 1:1,998

(216-17,254). The estimate was even lower when environmental sequences were also

included in the analysis: 1:5,943 (458-52,195).

The posterior distribution of the initial number of infected individuals was very flat when

only incidence time series data were used for inference. This was perhaps a reflection of
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Figure 5.9: Posterior distribution of migration rates between provinces. The median and
95% HPD intervals of migration rates between pairs of provinces are given in the table.
Symmetric migration rates were assumed, hence the empty cells in the table.

the small number of reported cases at the beginning of 2012, which was not su�ciently

informative of the number of infectious individuals at the start of the time series.

5.3.4 Phylogeographic analysis

To determine the relative contributions of infections from each province, separate skylines

were calculated using sequences from each province (Figure 5.7). Punjab and Sindh

appeared to have the largest contributors to infection. Seasonal trends in Ne were evident

in the skyline plot for each province, suggesting that seasonal trends in transmission were

present in all provinces.

Ne would be over-estimated if migration rates between provinces were low due to the

strong spatial structure. To quantify the migration rate based on sequences alone, I

estimated the migration rates between provinces in BEAST2 (Bouckaert et al., 2014) by

treating provinces as discrete traits. The pair with the highest migration rate was between

Khyber Pakhtunkhwa (KP) and Punjab (Figure 5.9). Other links were found between

Balochistan and Punjab, Balochistan and Sindh, and Sindh and Punjab.

The low or zero migration rates estimated for most province pairs suggested that poliovirus

transmission was highly spatially structured.
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5.4 Discussion

Using just the VP1 gene sequences of poliovirus isolates collected in the environment, I

was able to estimate model parameters and characterise the transmission dynamics of

WPV1 in the population. These estimates were broadly consistent with those obtained

by analysing incidence time series except the timing of peak transmission, although the

estimates from environmental sequences were likely more reliable given the smaller

uncertainty around the estimates. Thus, even in the absence of symptomatic cases, the

epidemiological dynamics of poliovirus can be deduced by analysing the environmental

sequences. While there are still AFP cases, nevertheless, both sequence data and

incidence time series should be jointly analysed as this would produce the most precise

parameter estimates.

Although the incidence time series provided higher point estimates (median) of the

seasonality amplitude parameter than the viral phylogeny, the credible intervals were

also much larger, indicating less clear signals of seasonality.

Besides providing more precise estimates of seasonality parameters, pathogen phylogeny

was informative of the value of k. Because the pathogen phylogeny was more precisely

estimated here compared to the Tajikistan analysis in Chapter 4, there was su�cient

signal in the pathogen phylogeny to estimate k, whose value was similar to that of

SARS which was characterised by superspreading events (Riley et al., 2003). The highly

overdispersed o↵spring distribution means that a small group of individuals are

contributing to poliovirus transmission, which are evident in environmental sequence

data but are not picked up by traditional surveillance of symptomatic cases.

The estimated case-to-infection ratios (⇠ 1 in 6,000) were much lower than those estimated

for the Tajikistan outbreak (⇠ 1 in 300). While this value is low, it is on the same

order of magnitude as case-to-infection values estimated for poliovirus serotypes 2 and 3

(Nathanson and Kew, 2010). One possible reason for the low values might be due to areas

in Pakistan with poorer surveillance than the rest of the country. Political instability due

to the Taliban insurgency in the FATA region of Pakistan could have contributed to low

reporting rates in the region (Hussain et al., 2016).

Unlike the prior used in the analysis of the Tajikistan poliovirus outbreak in Chapter 3



120 Chapter 5. Phylodynamic analysis of environmental polio sequences

which was biased towards very low case-to-infection ratios ⇢, the prior on ⇢ used in this

chapter was a beta distributionwhere the mean was 0.25 and the interquartile interval

was [0.09, 0.37]. This was a more reasonable distribution as values of ⇢ < 0.1 had similar

prior densities but ⇢ > 0.1 had increasing smaller prior densities. The resulting posterior

distribution did not conform to this beta prior, suggesting that it was informed by the

data.

Results of the phylogeographic analyses were consistent with existing knowledge of

epidemiological links between Balochistan and Sindh, and lack of movement between

KP/FATA and Balochistan (Alam et al., 2016).

In terms of implementation, I only needed 2,000 particles for the analysis in this

Chapter, unlike the analyses of simulated outbreak data (Chapter 3) and data from the

Tajikistan outbreak of WPV1 (Chapter 4) that required 10,000 particles. This was

because simulations did not start from a single infected individuals as polio is still

endemic in Pakistan. Fewer particles were therefore needed to capture the stochasticity

in epidemiological dynamics.

A major caveat in the analysis presented here is the assumption of a panmictic

population. The low migration rates estimated using discrete phylogeography were

indicative of strong population structure. Structured coalescent approaches (Rasmussen

et al., 2014b) could be used to infer migration rates between provinces using both

epidemiological and phylogenetic data, though the number of sequences per geographic

region might not be su�ciently large to obtain precise estimates of migration rates. A

potential workaround would be to divide the sequences not according to the province,

but using a binary division e.g. North-South. Ongoing work on estimating connectivity

at the district level using spatial models can help to determine the most suitable

population structures (Molodecky, unpublished).

Besides the lack of spatial structure, another limitation of this study was the lack of data

from Afghanistan. Because the border between Pakistan and Afghanistan is porous in

many places leading to many cross-border transmissions (Angez et al., 2012), this might

cause over-estimates of Ne and thus prevalence of infection in Pakistan.

In addition to data from a broader geographic range, analysis of more recent sequences
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would improve the precision of reproductive number estimates during 2015. This is

because including 2016 sequences would increase the number of coalescent events in the

phylogeny during 2015, and thus increase the precision of parameter estimates for 2015.

This would help to determine if there is a real decreasing trend in the reproductive

number.

Another set of data that could be informative of epidemiological dynamics is the collection

of poliovirus sequences sampled from AFP patients. Comparing parameter estimates

from human and environmental sources of poliovirus sequences can further validate the

parameter estimates, or could highlight di↵erences in the processes generating the two

sources of WPV1 sequences. I have just begun this analysis as the Pakistan team recently

(Dec 2016) shared the WPV1 sequence data from AFP cases in Pakistan between 2012

and 2015.

Finally, more complex epidemiological models could be fit to the data to incorporate

changes in the case-to-infection ratio, which I assumed to be constant over time in this

Chapter. A more detailed analysis could be done by estimating a case-to-infection ratio

for each year, and for each administrative region.

To summarise, the estimates based on environmental sequences were corroborated by

parameters estimated from incidence time series alone. Furthermore, the inclusion of

environmental sequences helped to quantify seasonality and heterogeneity in individual

infectiousness. As polio eradication approaches completion, the number of AFP cases

will continue to decline. At the same time, the number of environmental sampling sites

is continuing to increase (Asghar et al., 2014). Using the approach presented here,

environmental sequences of poliovirus can be used to quantify the remaining number of

individuals infected with poliovirus even in the absence of symptomatic cases.
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Chapter 6

Discussion

In this Chapter, I summarise the methodological developments and epidemiological

findings presented in Chapters 2-5. Caveats of these studies are discussed in Section 6.2.

Finally, extensions to the present work are presented in Section 6.3.

6.1 Summary of thesis contributions

The methodological problem addressed in this thesis was that of inference. While

mathematical models have been used in epidemiology for many decades, inference

frameworks that estimate parameters of nonlinear, stochastic models have only emerged

over the last two decades. Estimating parameters from epidemiological data help to

quantify underlying biological processes and transmission events, and can be useful for

designing public health policies and predicting the future trends of an infectious disease.

The inference framework presented in Chapter 2 addressed three challenges in

epidemiological inference:

1. combined analyses of incidence time series and pathogen genetic sequence data;

2. estimation by integrating over model stochasticity and phylogenetic uncertainty;

3. quantifying heterogeneity in individual transmissibility by fitting transmission

models that allow for arbitrary variance in the o↵spring distribution (number of

secondary infections).

123
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Various inference approaches have been previously been developed to address a subset of

these problems. The inference framework described in this thesis is related to previous

e↵orts to integrate inference from epidemiological and phylogenetic data (Rasmussen

et al., 2011) in which the first challenge and, to a certain extent, the second challenge

were addressed. The additional contributions made by this thesis include estimation of

heterogeneity in individual transmissibility and integration over uncertainty in the

underlying phylogeny. While in Rasmussen et al. (2014a) and Rasmussen et al. (2014b)

the authors did estimate parameters using 10 di↵erent phylogenies, they did not pool

together the estimates, and the phylogenies had relatively little uncertainty in branching

times compared to phylogenies from outbreaks.

In terms of implementation, the PMCMC algorithm is available in a small number of

existing program including SSM (Dureau et al., 2013), LibBi (Murray, 2013), and the R

package pomp (King et al., 2016b). However, these implementations are not applicable to

phylogenetic data because they were designed for time series data. Rasmussen et al.

(2014b) provided a Java implementation of PMCMC that fits to both epidemiological

and phylogenetic data. However the code is not parallelised and no longer maintained.

The implementation provided here provides a parallelised C++ implementation of

PMCMC that works on multi-core CPUs, and also an R package that simplifies the

process of send data to and parsing the output of the C++ program

(github.com/lucymli/EpiGenMCMC). This combination balances computational speed

and ease of utilisation.

Developments in phylodynamic inference, on the other hand, have focused on using

pathogen phylogenies to reconstruct epidemic history and estimate epidemiological

parameters. Bayesian phylogenetic reconstruction programs such as BEAST

(Drummond and Rambaut, 2007; Drummond et al., 2012), BEAST2 (Bouckaert et al.,

2014), and MrBayes (Ronquist et al., 2012) have focused on simultaneous estimation of

mutation model parameters and parameters of simple, deterministic population models

such as exponential and logistic growth coalescent models (Gri�ths and Tavare, 1994).

Non-parametric estimation of demographic parameters is possible using skyline

approaches (Drummond et al., 2006). Skyline approaches estimate Ne · T
g

, the product

of e↵ective population size and generation time. As discussed in Chapter 2, these values
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are correlated with, but not necessarily proportional to the prevalence of infection.

More recently, an alternative population genetics approach using the birth-death model

has been implemented in BEAST2 to directly estimate epidemiological parameters such

as the reproductive number (Kühnert et al., 2014). The limitations of using a birth-death

approach are the requirement to fix or estimate the sampling probability, and the large

credible intervals surrounding parameter estimates (Boskova et al., 2014).

Application of the framework to simulation data highlighted the important role that

phylogenies play in estimating the dispersion parameter k that determines the extent

to which transmissions cluster in the population. Estimating k is not only useful for

accurate inference from phylogenetic data using coalescent approaches, but also provides

information on the likelihood of superspreading and the e↵ectiveness of interventions.

Although there have been developments in structured coalescent approaches, there are few

phylodynamic methods that incorporate individual variation in transmission. One such

method was used to estimate the variance of the o↵spring distribution for the 2014 Ebola

outbreak by structuring the population into two infectiousness classes (Volz and Pond,

2014). However, discretising infectiousness might not capture extreme superspreading

events, and definitions of high and low risk groups (as is done in studies of sexually

transmitted diseases) are not always appropriate for viral infectious diseases.

In addition to methodological contributions, I also demonstrated that phylodynamic

analyses of poliovirus sequences can shed light on outbreak dynamics as well as endemic

patterns. In the case of the Tajikistan analysis, the addition of poliovirus sequences

helped to narrow down the range of possible case-to-infection ratios. My analysis of

environmental sequences from Pakistan demonstrated that viral sequences can help to

quantify seasonality even though incidence time series did not reveal such patterns.

When the reporting probability varies over time, seasonal patterns of transmission are

not as evident in incidence time series as in phylogenetic patterns. Most importantly,

this analysis showed that in the absence of reported cases, environmental sequences can

be used to estimate the size of the infected population and the reproductive number.

These are key indicators of progress towards eradication. After the disappearance of

symptomatic polio cases or in areas where AFP surveillance is challenging,

environmental surveillance will play a vital role in monitoring the decline of poliovirus
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transmission in the population. Although environmental surveillance has been

implemented in some countries for 2 decades, new countries are setting up

environmental surveillance sites such as the UK (Public Health England, 2016).

Compared to our analysis of outbreak data from Tajikistan, the analysis of poliovirus

data collected over the course of several years from Pakistan di↵ered in terms of the

transmission model and computational requirements. Unlike in an outbreak setting,

compartmental models for long-term dynamics of an infectious disease need to include

birth and death rates, in addition to quantification of immunity. To overcome this issue,

I used a branching process model instead that produced estimates of the mean annual

e↵ective reproductive number. I assumed a seasonally changing reproductive number,

with a step change in the mean at the end of each calendar year. For more complex

dynamics, more breaks points would be needed to account for changes in transmission

dynamics. However, this would increase the number of parameters that need to be

estimated, which means longer computation time for PMCMC to reach convergence.

6.2 Limitations

6.2.1 Accuracy of phylogenetic inference

In all the analyses carried out in this thesis, I assumed that a dated phylogeny or a

posterior distribution of phylogenies was accurately estimated. However, the rooting

of the phylogeny and estimates of the molecular clock can both a↵ect the accuracy of

parameter estimation. For example, initial phylogenetic analysis during the 2014 outbreak

of Ebolavirus suggested that these lineages diverged from viral lineages that caused Ebola

outbreaks in the 70s (Baize et al., 2014). This would suggest a large Ne for the Ebolavirus

population. However, Dudas and Rambaut (2014) noted that the divergence of Guinea

sequences from those of previous outbreaks was because they were sequenced most recently

and had accumulated the highest number of substitutions. Assuming that the Ebolavirus

genome followed a molecular clock model, the tree was re-rooted at the lineage that caused

an outbreak in 1976. According to the re-rooted phylogeny, Ebolavirus associated with

the 2014 outbreak likely descended from the lineage that had previously caused outbreaks
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in West Africa in the early 2000s, instead of silently circulating for decades.

6.2.2 Evolutionary assumptions

The use of pathogen phylogeny in the inference framework presented in this thesis was

based on the assumption of neutral evolution and lack of recombination. In the case

of poliovirus analyses, the VP1 sequence that was analysed is under strong negative

selection as the VP1 protein is a viral surface protein that interacts with host cell receptors

(Jorba et al., 2008). However, most substitutions are synonymous, which means they

do not change the amino acid sequence and have little biological consequence. Neutral

evolution can therefore be assumed in such cases as there is no selection pressure on these

synonymous mutations.

Recombination is highly prevalent amongst poliovirus strains (Lukashev, 2005), and

analysis of whole genome sequences from the 2010 Tajikistan outbreak revealed multiple

recombination events (Yakovenko et al., 2014). However, recombination with the VP1

gene is rare, which means the standard coalescent approach can be used for inference

(Jorba et al., 2008).

Extending the method to other pathogens or to the whole poliovirus genome would require

considerations for these evolutionary complexities. Possible extensions to the method to

incorporate selection and recombination events are discussed in Section 6.3.

6.2.3 Assumptions of the coalescent with arbitrary o↵spring

distribution

In Fraser and Li’s (2017) formulation of the coalescent, the mean and variance of the

o↵spring distribution were assumed to be constant during each discrete generation of

disease transmission. This discrete generation scheme can approximate the overlapping

generations in real disease epidemics if the generation time is short. This was the case

for the simulated and real infectious disease data analysed in this thesis. However, if the

reproductive number changed rapidly relative to the generation time, the coalescent rate



128 Chapter 6. Discussion

might change significantly during a single generation of disease transmission and lead to

biased parameter estimates.

6.2.4 Population structure in the transmission model

Although I have considered individual-level heterogeneity, I did not consider population

structure except for the Tajikistan analysis in Chapter 4. For that analysis, I structured

the population by age but ignored this age structure when calculating the coalescent

likelihood due to the low sampling rate (see Section 4.2.3 for more details). For the

Pakistan analysis, I did not structure the population by age because almost all infections

occurred in children under 5. Phylogeographic analysis suggested strong spatial structure

given the low rates of migration between regions. The lack of spatial structure in the model

fitted to the Pakistan could have a↵ected inference results. For example the estimate

reproductive numbers might not be reflective of each province. The results in Chapter

5 highlighted the information available in environmental sequences, but further work

involving structured models is necessary to produce accurate estimates of parameter values

at the provincial level.

6.2.5 Variable reporting probability

Incomplete reporting is a common issue in infectious disease research due to asymptomatic

cases and under-reporting. The wrong assumption about the reporting probability can

lead to biased estimates of infection prevalence, final epidemic sizes and reproductive

numbers (Gamado et al., 2013).

Often when estimating epidemiological parameters from incidence time series, the

reporting proportion is estimated as a constant (Blake et al., 2014; Camacho et al.,

2015). In the analysis of simulated data in Chapter 3, I demonstrated that reporting

probability can be estimated from incidence time series if the initial state variable values

are fixed, but more accurate and precise estimates were obtained by incorporating

phylogenetic data in statistical inference. Thus, pathogen phylogeny can be analysed

along other epidemiological data to improve estimates of the reporting probability. A
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limitation was that I assumed a constant reporting probability ⇢ for all the analyses in

this thesis. However, the reporting probability can change over time, for example when

an outbreak is covered in the media or as a result of changes in the investments made in

surveillance systems. In addition to temporal changes in reporting probability, there

might be overdispersion in the reporting probability. This can be modelled using a

negative binomial distribution, which was used for the analysis of the recent Ebola

outbreak for example (Camacho et al., 2015).

6.2.6 Initial parameter values

A major issue of PMCMC and MCMC algorithms, in general, is the choice of initial

parameter values. If the starting values are too far from the most probable values, then

the MCMC chain will get stuck in regions of low likelihood. In Chapter 3, I used chain

heating at the start of the MCMC to allow large jumps in parameter space. If prior

information on the parameter values is available, for example from field studies or using

values estimated using alternative inference methods, then these values can be used to

narrow down the choice of initial parameter values.

Regardless of the method of choosing the initial parameter values, there is always the

risk of convergence at a local optimum. Ideally, multiple chains of MCMC are run with

di↵erent starting values. Due to computational and time constraints, I did not do this

for all the simulation results presented in Chapter 3. For the poliovirus analyses, I ran

two chains for the inferences using only epidemiological data, but not when phylogenetic

data were used.

6.2.7 Optimisation

Beyond optimisations of the computational implementation, the actual algorithm for

PMCMC can be modified to reduce computation time. The number of particles does

not need to be fixed for the duration of particle filtering. For datasets with less

overdispersion, or when the number of infections is large, the number of particles could

be reduced as the set of plausible epidemic trajectories is less variable. This would
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require an automated system of determining when to reduce particles, which I have not

so far implemented.

In Chapter 5, I showed that fewer particles were needed if epidemic simulations began

with a few hundred infected individuals. However, this was not done for simulations in

Chapters 3 and 4 as these were focused in outbreak settings. In these settings, the first few

generations of infections are highly stochastic as the initial number of infected individuals

is only one. Not incorporating this stochasticity could lead to under-estimates of k and

the reproductive number. Because low values of k correlates with high rates of extinction,

simulating from a single infection penalises against values of k that are too low.

Besides the intensive marginal likelihood calculation using particle filtering, MCMC

algorithms are generally di�cult to implement because of low acceptance rates. There

exist variations of the particle filter that forego MCMC altogether. The SMC2 algorithm

(Chopin et al., 2013) uses particle filtering not only to calculate the marginal likelihood

but also to update the parameter values. Instead of an MCMC algorithm that carries

out a random walk across parameter space, the SMC2 algorithm uses particle filtering to

generate samples of ✓ from P (✓), and then uses particle filtering as described in Chapter

2 to calculate the marginal likelihood of each sample of ✓. The sample of ✓ is then

updated by resampling with probabilities proportional to the marginal likelihoods

P (D|✓). The resulting sample of ✓ is distributed according to P (✓|D). On the one hand,

this approach is more parallelisable than PMCMC as the marginal likelihood calculation

for each set of parameter values can be sent to a di↵erent node, and the marginal

likelihood calculation itself can be parallelised across di↵erent cores of that node.

However, this approach requires a su�ciently large sample of ✓ to cover the possible

range of parameter values, which might be di�cult if there are many parameters.

Both PMCMC and SMC2 are computationally intensive. For simple epidemiological

models with few parameters and data from a small number of time steps, Approximate

Bayesian Computation (ABC) methods o↵er an alternative that requires less

computational time. Sequential versions of ABC use particle filtering to estimate the

posterior distribution of parameters P (✓|D) (Toni et al., 2009). In such algorithms,

various parameter values sampled from the prior distribution P (✓) are used to generate

epidemic simulations, which are compared to real data (time series or sequence data)
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and the prior distribution accordingly updated. These steps are repeated until the prior

distribution no longer changes. The resulting distribution should correspond to the

posterior distribution P (✓|D).

6.3 Future directions

While the coalescent results are robust to changes in the assumptions about discrete

generations and o↵spring distribution, violations of the evolutionary assumptions have

more consequences with regards to parameter estimates. Various methods have been and

are being developed to incorporate more complex evolutionary processes and population

dynamics. In this section I present extensions that can be made to the inference framework

presented in this thesis.

6.3.1 Population structure

In the environmental polio sequence analysis (Chapter 5), I fit an unstructured

transmission model to incidence and phylogenetic data. Given the strong spatial

structure in Pakistan, it would be interesting to co-estimate reproductive numbers for

each province while taking into account migration between di↵erent locations. For

epidemiological data, gravity and radiation models have been used to capture the spread

of individuals in continuous two-dimensional space (Simini et al., 2012), and there are

numerous compartmental models that capture movements between discrete locations.

Similarly for genetic analysis, continuous phylogeography methods have been developed

to reconstruct locations of ancestral lineages (Lemey et al., 2010; Guindon et al., 2016;

Bouckaert, 2016). Discrete phylogeographic methods also exist (De Maio et al., 2015;

Kühnert et al., 2016; Mueller et al., 2016) such as the implementation in BEAST2

(Lemey et al., 2009) that was used to analyse environmental polio sequences (Chapter

5). These rely on coalescent methods for structured populations (Volz, 2012) that

estimate transition rates between di↵erent locations. While structured coalescent models

have been fit to pathogen phylogeny (Rasmussen et al., 2014a,b), there is no study yet

that simultaneously fits a structured transmission model to both epidemiological and
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genetic data. Just as an integrated method can improve the accuracy and precision of

parameter estimates, an inference framework that fits the same spatial model to both

epidemiological and phylogenetic data could improve estimates of migration rates and

epidemiological parameters for each discrete location.

6.3.2 Recombination

Another evolutionary force a↵ecting the coalescent approach is frequent recombination,

which is a common feature of a wide range of viral and bacterial pathogens (Awadalla,

2003). In the presence of recombination, phylogenies reconstructed from sequences are

no longer meaningful and can lead to wrong parameter estimates. The analyses of

poliovirus sequences were based on the assumption of no recombination. Even though

many recombination hotspots have been detected in the polio genome, the VP1 gene is

highly conserved and recombination events within this region are rare (Jorba et al.,

2008). However, if the analyses were extended to the whole genome, then recombination

events would need to be accounted for. The ancestral recombination graph (ARG) was

developed to jointly estimate coalescent and recombination parameters (Gri↵ths and

Marjoram, 1997). Computational optimisations allowed application of ARG to

large-scale genomic sequences (Rasmussen et al., 2014c). However, the use of ARG in

infectious disease research is still limited. Thus, further developments in this area would

allow the extension of phylodynamic inference methods to more complex data sets

including bacterial data sets.

6.3.3 Selection

Besides recombination, positive and negative selection pressures can impact the

relationship between demographic processes such as disease transmission and the

pathogen phylogeny. This can lead to biased estimates of the prevalence of infection

(Bedford et al., 2011). For other viruses where there is directional selection, e.g.

influenza lineages adapting to escape the immune system, it is vital to account for these

selection pressures to accurately recover the epidemiological history.
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6.3.4 Within-host evolution

In addition to performing analyses with longer sequences, there is also a need to develop

methods that exploit as many sequences as possible. For population studies, available

sequences are often subsampled to remove individuals from the same household or in the

same close contact network to have a representative sample of the population.

Furthermore, sequences from the same individuals are often discarded, though these may

be informative for within-host evolution. Although some e↵ort has been made to link

within-host to between-host evolution (Didelot et al., 2014; Vrancken et al., 2014), the

e↵ect of within-host evolution on population genetic inference is still not well-studied.

Combining analyses across di↵erent scales could improve the accuracy of epidemiological

predictions and provide better mechanistic explanations of observed trends.

6.3.5 Real-time estimation

While I showed that parameter estimation is possible using data from the whole outbreak,

it would also be interesting to determine the smallest amount of data necessary to recover

the parameter estimates. Using genomic data collected in North America during the

swine flue outbreak, Hedge et al. (2013) found that accurate estimates of R
0

and T
MRCA

of the tree could be obtained as early as May 2010, by which point 100 viral genomes

had been sequenced. At the beginning of an outbreak, stochasticity plays a large role in

determining the outcome of the emerging outbreak. Inference from data collected during

these early stages might produce parameter estimates with greater uncertainty bounds as

few cases are sampled. Joint analysis of epidemiological and genetic data would be useful

in this case to produce more precise and accurate estimates of parameters, therefore it

would be interesting to conduct a study using simulated data to see when joint analysis

becomes useful.

6.3.6 Application to other pathogens

Besides wild-type polioviruses, vaccine-derived poliovirus (VDPV) can also cause

paralysis due to reversion of the live attenuated virus in the oral poliovirus vaccine.
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Although infections caused by VDPVs usually only spread to a few individuals before

dying out, outbreaks can occur if VDPVs start circulating (cVPDV) in

under-immunised populations. In Nigeria, for example, cVDPV2 has continuously been

detected since 2005 (Burns et al., 2013). A joint analysis of cVDPV2 sequences with

incidence time series from AFP surveillance of cVDPV2 cases could help to estimate the

remaining pool of individuals infected with cVDPV2.

Most phylodynamic methods have been applied to viruses because of the rate of

evolution is on a similar time-scale to outbreaks. However, whole-genome sequencing of

bacterial isolates is becoming more widespread and can help to uncover genetic

determinants of clinical severity, elucidate pathogen-host interactions and quantify

evolutionary rates at within- and between-host levels Wilson (2012). Epidemiological

investigations using bacterial genomes have also been possible even though bacteria

acquire point mutations at a lower rate per base than viruses because longer bacterial

genomes should provide su�cient genetic resolution for phylogenetic analysis. For

example, whole-genome sequencing has been used to refine the tuberculosis transmission

network built using contact information Gardy et al. (2011), an outbreak of MRSA in a

hospital and surrounding community in near real-time Harris et al. (2013).

Regardless of the pathogen that is analysed, there is an increasing trend in epidemiological

research to integrate di↵erent sources of information for inference. As demonstrated in

this thesis and previous work, combining the analyses of di↵erent types of data such as

epidemiological and genetic data can improve the accuracy of and reduce uncertainty in

parameter estimates.
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REVIEW

Genomic analysis of emerging pathogens:
methods, application and future trends
Lucy M Li*, Nicholas C Grassly and Christophe Fraser

Abstract

The number of emerging infectious diseases is
increasing. Characterizing novel or re-emerging
infections is aided by the availability of pathogen
genomes. In this review, we evaluate methods that
exploit pathogen sequences and the contribution
of genomic analysis to understand the epidemiology of
recently emerged infectious diseases.

Introduction
When a pathogen crosses over from animals to humans,
or an existing human disease suddenly increases in in-
cidence, the infectious disease is said to be ‘emerging’.
The number of emerging infectious diseases (EIDs) has
increased over the last few decades, driven by both an-
thropogenic and environmental factors [1]. These include
the expansion of agricultural land, which increases the ex-
posure of livestock and humans to infections in wildlife
[2]; a greater volume of air traffic, enabling EIDs to rapidly
spread across the world [3,4]; and climate change, which
alters the ecology and density of animal vectors, thereby
introducing diseases to new geographic locations [5].
Novel strains of existing pathogens also have the potential
to cause large epidemics. The over- and misuse of anti-
microbial drugs have contributed to the growing number
of drug-resistant pathogen strains [6,7].
Detecting, characterizing and responding to an EID re-

quires co-ordination and collaboration between multiple
sectors and disciplines. Laboratory-based research helps
to characterize the pathogen and its interactions with
host cells, but is less useful for quantitative understanding
of population-level disease dynamics. Modeling approaches
enable a large number of hypotheses to be tested, which
might not be logistically or ethically feasible in laboratory
and field experiments. In addition to characterizing past

* Correspondence: mengqi.li09@imperial.ac.uk
Department of Infectious Disease Epidemiology, Imperial College London, St
Mary’s Campus, London W2 1PG, UK

disease dynamics, modeling future trends informs deci-
sions regarding outbreak response and resource allocation
[8]. Modeling plays an especially important role in epi-
demiological studies of infectious disease spread, because
the transmission of infectious disease between individuals
is not directly observable. At the individual level, trans-
mission times and who infected whom are typically un-
known. And at the population level, disease burden needs
to be inferred from observable data. Important public
health questions such as how quickly an epidemic spreads
and how many people will be infected are hard to quantify
without a mechanistic understanding of underlying factors
driving disease transmission. By expressing disease spread
in mathematical terms, statistical properties of epidemics
can be estimated to help address specific questions regard-
ing disease spread and control efforts [9].
Another discipline contributing to the study of EIDs is

pathogen genomics. As sequencing technology has be-
come more accessible and affordable, genetic analysis
has played an increasingly important role in infectious
disease research. Sequencing pathogens can confirm sus-
pected cases of an infectious disease, discriminate between
different strains, and classify novel pathogens. In addition
to examining individual pathogen sequences, multiple se-
quences can be analyzed together using phylogenetic
methods to elucidate evolutionary [10] and transmission
[11] history. Just as mathematical models of disease trans-
mission help to capture the epidemiological properties of
an infectious disease, modeling the molecular evolution of
pathogen genomes is important for phylogenetic methods.
Besides characterizing the genetics and evolution of a

pathogen, mathematical models used in population genet-
ics link demographic and evolutionary processes to tem-
poral changes in population-level genetic diversity. The
coalescent population genetics framework was developed
so that demographic history could be inferred from the
shape of the genealogy linking sampled individuals [12,13].
More recently, the birth-death model has been applied
to infectious diseases to infer epidemiological history
from a genealogy [14,15]. Given the link between pathogen

© 2014 Li et al.; licensee BioMed Central Ltd. The licensee has exclusive rights to distribute this article, in any medium, for 12
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evolution and disease transmission, there is a trend towards
integrating both epidemiologic and genetic data in the same
analytical framework [16-18].
In this review, we provide an overview of recent devel-

opments in genomic methods in the context of infectious
diseases, evaluate integrative methods that incorporate
genetic data in epidemiological analysis, and discuss
the application of these methods to EIDs.

Role of genetics in studying infectious diseases
Over the last two decades, sequence data have increased
in quality, length and volume due to improvements in
the underlying technology and decreasing costs. As a re-
sult, pathogen sequences are regularly collected during
routine surveillance and clinical studies. Just as mathem-
atical modeling can be used to analyze surveillance data
to reveal details of disease transmission (Box 1), analysis

of pathogen genomes employs mathematical frameworks
to elucidate pathogen biology, evolution and ecology
(Figure 1).
At the most basic level, mathematical models are used

to find the optimal alignment of pathogen sequences.
Multiple sequence alignment is useful for finding highly
conserved or variable regions, shedding light on the mo-
lecular biology of the pathogen. Furthermore, coupling
sequences with clinical information can help identify the
contribution of polymorphic sites to disease. Revealing
the evolutionary history of a pathogen requires a quanti-
tative description of relatedness. Based on polymorphic
sites in the sequence alignment, a model of sequence
evolution is then used to reconstruct the phylogeny [19].
Often, there is insufficient genetic diversity in the sample
to fully infer the phylogeny without ambiguity. In such a
case, it is useful to consider a tree as an unknown set of

Figure 1 Contribution of genomic analysis to epidemiological studies of emerging infectious diseases. (a) Genomic analysis begins with
obtaining a multiple sequence alignment of pathogen sequences from which a phylogeny can be built to represent the evolutionary relationship
between samples. Further population genetic analysis using the coalescent framework can reveal the population history of the pathogen based
on the sample phylogeny. (b) Coupling phylogeny with additional information is useful for uncovering zoonotic origins, the spatiotemporal
patterns of disease spread, and transmission chains. The results of such phylogenetic analysis should be interpreted with care as the direction of
transmission is not always clear and there might exist missing intermediate links. (c) Coalescent analysis of pathogen genealogy is used to
characterize past epidemiological dynamics and estimate epidemiological parameters, such as the reproductive number.
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parameters and obtain its posterior probability distribution
using a Bayesian framework, such as the Markov Chain
Monte Carlo (MCMC) approaches [20,21].
Biological samples from which pathogen genetic ma-

terial is sequenced are usually associated with geographic
or temporal information (Figure 1b). When this additional
information is available, phylogenetic methods can reveal
the spatiotemporal spread of the pathogen in the popula-
tion. If an outbreak is densely sampled, then the pathogen
phylogeny provides information about the underlying trans-
mission network and helps to uncover who infected whom
[22,23], though phylogenetic clustering alone is usually
not sufficient to prove direct transmission or direction of
infection (Figure 1b).
Incorporating sampling times helps to convert a phyl-

ogeny specified in units of nucleotide substitutions to a
phylogeny specified in units of time [24]. The conver-
sion is straightforward if sequence evolution follows a
strict molecular clock, whereby the rate of substitution
remains constant over time. However, selection pressure
and population bottlenecks can lead to changes in the
rate of substitution [25]. More flexible models have been
developed to incorporate time-varying rates of evolution
[26,27]. With branch lengths in units of real time, the
start date of an epidemic can be estimated. Whereas
phylogenetics aims to delineate the relationship between
individuals, population genetics aims to link population
processes to observed patterns of genetic diversity. In-
ferences regarding pathogen population history are
based on the genealogy, or ancestry, of sequences
from sampled individuals, and often carried out in a
retrospective population genetics framework known
as the coalescent [12] (Box 2). A genealogy describes the
ancestry of sampled individuals. Going backwards in time,
pairs of lineages coalesce when they share a common an-
cestor, until the last two lineages coalesce at the time of
the most recent common ancestor (TMRCA) for the en-
tire sample.
Since the turn of the century, the coalescent has been

increasingly applied to infectious disease research to infer
epidemic history from pathogen sequences, thereby link-
ing pathogen evolutionary history to disease epidemiology
(Figure 1c). The method is especially useful for analyzing
infectious diseases with mild or asymptomatic infections,
for which case-based surveillance data severely underesti-
mate prevalence, because the coalescent assumes a small
sample compared to the population size [28-30].
Other approaches have been developed to make epi-

demiological inferences from genetic data. Of particular
note is the birth-death model [31], which describes the
rates of transmissions, recoveries and deaths, and sam-
pling events in terms of the sample genealogy [14]. Just
as there are coalescent methods incorporating population
structure [32-34] and compartmental models [35-37],

similar methods exist in the birth-death framework
[38,39]. Unlike the coalescent framework, the birth-
death model is still valid for densely sampled populations,
which makes it more useful for studying small outbreaks.
However, accurately inferring epidemiological parameters
depends on correctly specified sampling proportions [40].
Although the two approaches are methodologically differ-
ent, both aim to reconstruct pathogen population history
and produce estimates of epidemiological parameters,
such as the reproductive number (R0). The focus on the
coalescent framework in this review is due to its more
pervasive use in the literature and its greater versatility
when integrated with epidemiological models compared
to birth-death models.
Because of the simplistic assumptions of population gen-

etics models, the population size inferred using coalescent-
based methods cannot be directly interpreted as pathogen
population size (prevalence of infection). It is rather the
effective population size, Ne (Box 2), which refers to the
size of a Wright-Fisher population that would produce the
same level of genetic diversity as observed in the sample.
In real populations, the variance of the offspring distribu-
tion (Box 1) is higher than expected in a Wright-Fisher
population due to heterogeneity in host infectiousness,
non-random mixing of the population, and migration
events. The consequence of a large variance is that
there is a greater discrepancy between the effective and
census population sizes [41]. Accounting for the disper-
sion of the offspring distribution is especially important
when analyzing infectious disease data because of the
widespread occurrence of transmission heterogeneity [42].
Another statistical property of epidemics affecting the

results of modeling studies is the generation time distri-
bution, which describes the time between infection of
the primary case and of secondary cases. Obtaining an
estimate of the generation time is important for two rea-
sons. First, estimates of R0 from the initial growth rate
of an epidemic depend on the generation time distribu-
tion [43]. As R0 is the mean of the offspring distribution,
its value affects the relationship between the effective
population size, Ne, and the census population size, N.
Second, the coalescent model was originally specified in
units of generations, and so estimates in this framework
need to be converted to natural units using the gener-
ation time, Tg.
Because transmission events are rarely observed, the

generation time distribution is often approximated by
the distribution of the serial interval, which is the time
between onset of symptoms in the primary and second-
ary cases. The two distributions generally share the same
mean but might have different variances [44]. Furthermore,
the observed generation time decreases as the epidemic
grows but increases again after the epidemic peak due to
right censoring [45].
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Integrating genetics with other data
As both sequence and surveillance data contain informa-
tion regarding the transmission process, simultaneously
analyzing both datasets should yield more accurate esti-
mates of epidemiological parameters than separate analyses
[17]. The recently established discipline of phylodynamics
takes an interdisciplinary approach to understand the
pathogen phylogenetics and epidemiology in terms of
disease transmission.
Most efforts thus far have focused on enhancing phylo-

genetic and population genetic analyses by incorporating
spatial and temporal information about the sequences.
The molecular clock model assumes a constant rate of
evolution and thus helps to estimate the time of the most
recent common ancestor of the sample, which approxi-
mates the start date of an epidemic. Molecular clock ana-
lysis has been used to date the emergence of a range of
emerging pathogens from HIV [46] to multidrug-resistant
Streptococcus pneumoniae [47].
Linking geographic information with sequences can re-

veal the spatial spread of infectious disease. Phylogenetic
reconstruction of seasonal influenza (H3N2) sequences has
revealed the contribution of viral circulation in temperate
regions to the global genetic diversity of influenza, and de-
termined that not all epidemics in temperate regions are
seeded by strains from South East Asia [48,49]. Also using
global sequences, hepatitis C virus (HCV) subtypes were
shown to spread from developed to developing countries
[50]. Finally, phylogeographic analysis of methicillin-resistant
Staphylococcus aureus samples identified England as the
source of the EMRSA-15 lineage [51].
By contrast, there have been relatively few studies in-

corporating genetic data into epidemiological frame-
works. Although genetic analysis plays an important role
in elucidating transmission links in disease outbreaks
[20,21,52], its integration with epidemiological models to
understand population-level disease dynamics has been
more limited. In one of the first papers to link coalescent
inference to mathematical models in epidemiology, the
effective population sizes of HIV-1 subtypes A and B
were estimated from the maximum likelihood trees of
viral sequences [53]. In addition to revealing population
sizes, Pybus et al. [54] estimated the R0 values of HCV
subtypes (1a, 1b, 4 and 6) by inferring the epidemic
growth rate from viral genealogy. Taking integration a
step further, the coalescent process has been described
for compartmental epidemiological models such as the
Susceptible-Infected-Recovered (SIR) model, thereby en-
abling epidemiological parameters to be inferred from the
genealogy [35]. To infer demographic history from both
pathogen genomes and epidemiological data, Rasmussen
et al. [17] developed a Markovian framework in which the
population size at each time step was estimated by taking
into account both the surveillance data and the genealogy.

The epidemic history reconstructed using both datasets
was more accurate than when analyzing each type of data
separately.
In all the above methods, the genealogy of the sampled

sequences was fixed. However, there might be great uncer-
tainty regarding the order and the timing of coalescence,
especially if the sequences are sampled within a short time
period. While genealogical reconstruction using Bayesian
MCMC approaches allows phylogenetic uncertainty to be
incorporated into estimates of population size [13,31], an
integrative model is lacking in which uncertainties arising
from both genetic and epidemiological data are incorpo-
rated during demographic reconstruction.

Application to emerging pathogens
Models of pathogen evolution and mechanistic models of
disease spread have increased in complexity. There is also
greater computational power to test these models with
data. However, these sophisticated models have mostly
been applied to infectious diseases for which abundant
data are available. For example, new methods are most
often tested on the HIV-1 pandemic [15,34,35,55], for
which data have been extensively collected from various
settings and sources since the virus was first character-
ized three decades ago. It is worthwhile to evaluate how
genomic methods have been applied to other diseases
that have emerged more recently. In this section, we will
present three case studies of recently emerged infec-
tious diseases to illustrate the power and shortcomings
of genomic methods discussed in this review.

Ebola virus emergence in West Africa
Since emerging in Guinea in March 2014, Ebola virus
(EBOV) has spread to other countries in Western Africa,
resulting in the largest outbreak of Ebola since it was first
identified in 1976. The first viral genomes were made
available just a month after alarm was raised about a new
Ebola outbreak in Guinea [56], with further sequences col-
lected in Sierra Leone [57]. By aligning all the genomes, a
number of polymorphic sites were identified, including
eight in highly conserved regions of the genome. Further
association studies are needed to clarify the role of these
genetic variants in determining disease outcome. Using
the sampling dates of the sequences and a molecular clock
model, phylogenetic analysis of 81 EBOV sequences re-
vealed a start date of February 2014 in Guinea, spreading
to Sierra Leone by April 2014 [57].
Uncovering the relationship between the 2014 EBOV

lineage and previous EBOV outbreaks has proved trick-
ier than understanding the disease dynamics during the
2014 outbreak. Initial phylogenetic analysis suggested
that lineages causing the present outbreak did not clus-
ter with EBOV strains that caused earlier outbreaks in
Central Africa [56]. However, Dudas and Rambaut [58]
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noted that the divergence of Guinea sequences from
those of previous outbreaks was because they were se-
quenced most recently and had accumulated the high-
est number of substitutions. Assuming that the EBOV
genome followed a molecular clock model, the authors
re-rooted the tree to a lineage that caused an outbreak
in 1976 [58]. Instead of silently circulating in West Africa,
the EBOV lineage causing the current outbreak likely
descended from a lineage that previously caused outbreaks
in the Democratic Republic of Congo.
These studies highlight two issues. First, correct rooting

of a phylogeny is important for accurate inference of past
epidemic history. Correct rooting can be achieved by
using an out-group, but one was not available in the case
of this EBOV strain. This leads onto the second issue.
Without sequences from animal hosts, the mechanism by
which EBOV was sustained between outbreaks remains
unknown.

Middle East respiratory syndrome coronavirus
Middle East respiratory syndrome coronavirus (MERS-
CoV) first appeared in Saudi Arabia in 2012, and has
since been reported in several neighboring countries in
the Arabian Peninsula and on other continents [59].
Despite the dearth of sequence data, coalescent-based

analysis of 10 genomic sequences produced estimates of
the TMRCA (March 2012; 95% confidence interval (CI):
November 2011 to June 2012), R0 (1.21; 95% CI: 1.08,
1.40), and doubling time (43 days; 95% CI: 23, 104 days)
[60]. Without further sequencing of the animal reser-
voirs, the authors could not infer whether these esti-
mates applied to the animal reservoir or the human
epidemic, because the methods are agnostic as to where
transmission and evolution occur. The credible intervals
around the estimates were unsurprisingly large given the
small sample size.
Unlike the 2014 EBOV outbreak, which is sustained by

human-to-human transmission [57], there appears to
have been multiple introductions of MERS-CoV into the
human population. Identification of the animal reservoir
is therefore crucial for establishing risk factors of infec-
tion and planning appropriate interventions to control
the disease. Since bats are reservoirs for other corona-
viruses, their being a reservoir host is possible. A 182-
nucleotide-long region of the RNA-dependent RNA
polymerase gene was found to be 100% identical be-
tween a viral sample from a patient in Saudi Arabia
and from a bat nearby, though the region is known to
be highly conserved [61]. However, antibodies against
human MERS-CoV have been detected in dromedary
camels [62], the camel MERS-CoV genome is similar
to human MERS-CoV [62], and there are reports of
close contact between patients and camels [63]. Phylo-
genetic analysis of coronavirus sequences from bats,

dromedaries and humans indicate a bat origin, with drom-
edary camel as an intermediate host [64]. It is possible that
there are other animal reservoirs not yet sampled, which
highlights the need to carry out extensive animal sur-
veillance to characterize the emergence of an infection
in humans.

Unraveling the complex evolutionary history of pandemic
H1N1 influenza
With sequences collected over three decades from humans,
pigs and birds, the origin of the pandemic H1N1 influenza
A strain (pdmH1N1 or ‘swine flu’) was elucidated soon
after emergence. Within two months of the first reported
case of swine flu in humans, genomic analysis of the novel
influenza strain had been carried out. A phylogeny was
constructed for each of the eight genomic segments with
sequences from humans, swine and birds. Comparison of
these eight phylogenies revealed a complex history of reas-
sortment with a mixture of gene segments from all three
groups. The start of the pandemic was estimated to be the
end of 2008 or early 2009, and the dates of the reassort-
ment events leading to pdmH1N1 were also obtained
[10]. Without good surveillance of influenza in the animal
reservoir, the origin of the novel strain would have been
difficult to uncover.
By analyzing 11 hemagglutinin sequences collected over

a one-month period, the start date of the epidemic was
estimated to be in late January 2009 [65]. Repeating the
phylogenetic and molecular clock analyses with a fur-
ther 12 sequences shifted the estimated start date two
weeks earlier. Fitting an exponential growth model to
the sequence data, R0 was estimated to be 1.22, slightly
lower than inferred from epidemiological data but with
overlapping confidence intervals.
To determine at which point during the pandemic co-

alescent analysis would have provided accurate and precise
estimates of evolutionary rate, R0 and TMRCA, real-time
estimates of these parameters were obtained for genomic
sequences collected in North America [66]. Accurate esti-
mates could have been obtained as early as May, when
100 viral genomes had been sequenced. More precise esti-
mates could have been obtained by the end of June, when
164 had been sequenced. However, inclusion of more se-
quences of longer length only slightly improved the accur-
acy of initial estimates [66].

Future directions
Most statistical models in population genetics have fo-
cused on the application of such methods to viruses, al-
though this bias is perhaps unsurprising given the large
proportion of EIDs caused by viruses [1]. Whole-genome
sequencing of bacterial isolates is becoming more wide-
spread, and can help to uncover genetic determinants of
clinical severity, elucidate pathogen-host interactions, and
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quantify evolutionary rates at within- and between-host
levels [67]. Epidemiological investigations using bacterial
genomes have also been possible. Even though bacteria
acquire point mutations at a lower rate per base than
viruses, longer bacterial genomes have provided suffi-
cient genetic resolution for phylogenetic analysis. For
example, whole-genome sequencing has been used to
refine the tuberculosis transmission network built using
contact information [21], and to investigate an outbreak of
methicillin-resistant Staphylococcus aureus in a hospital
and surrounding community in near real-time [68]. The
need for longer sequences when conducting epidemio-
logical studies of bacterial infections adds to the per-sample
cost of sequencing, and more computational resources are
required for coalescent-based inference of pathogen his-
tory. However, this latter limitation may be overcome by
only analyzing polymorphic sites if samples are similar.
Demographic reconstruction of emerging bacterial path-

ogens using coalescent-based approaches has been limited
compared to work on viral pathogens. In one such study,
the temporal changes in genetic diversity of Streptococcus
pneumoniae in Iceland were estimated based on the co-
alescent model [47]. This study was limited to a single
multidrug-resistant lineage in a single location, with
data collected over decades. Over longer evolutionary
time-scales, the accumulation of diversity through re-
combination can obscure phylogenetic relationships.
More complex evolutionary models would be required
to taken into account these genomic changes, increasing
the uncertainty surrounding demographic estimates from
genomic data.
In addition to performing analyses with longer sequences,

there is also a need to develop methods that exploit as
many sequences in the sample as possible. For population
studies, available sequences are often subsampled to re-
move individuals from the same household or in the same
close contact network to have a representative sample of
the population. Furthermore, sequences from the same in-
dividuals are often discarded, though these may be in-
formative for within-host evolution. Although some effort
has been made to link within-host to between-host evolu-
tion [52,69], the effect of within-host evolution on popula-
tion genetic inference is still not well studied. Combining
analyses across different scales could improve the accur-
acy of epidemiological predictions and provide better
mechanistic explanations of observed trends.

Conclusion
Genomic studies have contributed to better understanding
of EIDs and their spatiotemporal spread. Sophisticated
statistical methods have been developed to uncover the
epidemiological features of infectious diseases based on
the genealogy of their sequences. There is also growing

Box 1. Key concepts in mathematical modeling of
infectious disease transmission

Representing infectious disease transmission in a mathematical

framework requires distilling complex observations into simple

but informative expressions. Perhaps the most important statistical

property of interest to an epidemiologist is the basic reproductive

number, R0, which represents the mean number of secondary

infections caused by each infected individual in a wholly

susceptible population. An epidemic can only occur if R0 > 1. As

an epidemic progresses, or if there is pre-existing immunity in a

population, R0 is no longer appropriate for describing the number

of secondary infections per primary infection. Instead the effective

reproductive number, R, is used. Another important statistical

property of an epidemic is the generation time, Tg, which is the

mean time between when an individual becomes infected and

when they infect others. The combination of R0 and Tg provides

an indication of how quickly an epidemic will spread.

The most common type of model used in infectious disease

research is the compartmental model. Given a set of parameters,

a compartmental model tracks the temporal dynamics of

subpopulations that are characterized by disease status. For

example, a Susceptible-Infected-Recovered (SIR) model describes

the changes in the number of susceptible, infected and recovered

(and immune) individuals. R0 can be calculated by inferring the set

of model parameters that can generate the epidemiological

dynamics most similar to those observed in the data.

Increasingly, model parameters are inferred in a Bayesian framework.

Bayesian inference finds the posterior probability distribution of

parameters, given prior information and the data. Exploring all

possible parameter combinations is intractable. The use of Markov

Chain Monte Carlo (MCMC) for Bayesian statistical inference has

enabled efficient estimation of the posterior probability distribution

when the distribution cannot be computed analytically [70].

Obtaining estimates of R0 and Tg is not always sufficient to predict

epidemic trajectory if there is significant heterogeneity between

individuals. The offspring distribution with mean R and variance σ2

describes the probability distribution of the number of secondary

infections caused by each infected individual. In compartmental

models, the offspring distribution is not explicitly specified but

follows from the specification of the model - in the case of the SIR

model it follows a geometric distribution. For certain diseases, the

offspring distribution is more dispersed than captured by the geometric

distribution [42]. In other words, most individuals cause no further

infections whereas a few individuals are super-spreaders who cause

the majority of infections. Accurate estimate of σ2 is important for

predicting epidemic outcome and assessing control measures.
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effort to integrate genomic analysis with analysis of epi-
demiological data. In recent cases of EIDs, genomic data
have helped to classify and characterize the pathogen, un-
cover the population history of the disease, and produce
estimates of epidemiological parameters.
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Appendix B

Vignette for generating simulated
data in EpiGenR and interfacing
with EpiGenMCMC
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library(EpiGenR)	
library(ape)	
library(ggplot2)	
library(grid)	
library(gridExtra)	
fig.counter	<-	list()	
knitr::opts_chunk$set(warning=FALSE,	error=TRUE,	message=FALSE,	echo=TRUE)

1. Simulate epidemic data
2. Convert line list data and pathogen phylogeny into list objects
3. Construct input objects for inference
4. Call the EpiGenMCMC program to estimate parameters

1.
Simulate
epidemic
data

In the example here, I simulate an epidemic according to a stochastic SIR model, which is a state space
model with 3 state variables: Susceptible, Infected, and Removed. Two events can occur to change the
state variable values: infection and recovery. Simulation takes in discrete steps indexed by , where each
step size is . During each small time interval , the number of recovery events given 
infected individuals and a recovery rate of  is approximate binomial .
Assuming all onward transmissions occur at recovery, the number of infection events during a time
interval  follows the offspring distribution which I model using the negative binomial 

.
we assume an S->I->R model of disease progression in which susceptible individuals become infected
and capable of infecting others, and later recover and stop being infectious. The time to recovery is
exponentially distributed with rate . Upon recovery, an infector infects  number of individuals. The
number of onward infections, i.e. `offspring’, caused by each infected individual is a random variable
drawn from a negative binomial offspring distribution  with mean , dispersion
parameter , and variance . The mean of the offspring distribution is the reproductive
number of the infectious disease, and is related to the basic reproduction number  via the proportion of
susceptible individuals in the population: . The parameter  determines the level of
overdispersion in the population. At smaller values of , most individuals do not cause any further
infections while a few contribute to most of the transmission events.
Setting  5,000,  2,  0.5, and duration of infectiousness  5 days, we can simulate the
outbreak using

seed.num	<-	1010113	
set.seed(seed.num)	
sim.outbreak	<-	simulate_sir(params,	dt,	total_dt,	min_epi_size,	max_attempts,	TRUE)
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The offspring distribution of the simulated epidemic follows a negative binomial distribution

par(mar=c(5.1,	4.1,	0.25,	0.25))	
offspring	<-	rnbinom(10000,	mu=R0,	size=k)	
hist(offspring,	xlab="Number	of	onward	infections",	main="")	
legend("topright",	legend=paste0("R0=",	round(R0,	2),	"	and	k=",	k))

Figure 1. The offspring distribution of the simulated epidemic assuming R0=2 and k=0.5.
The final epidemic size was 4,052.

Simulated
epidemic
trajectories

The epidemic trajectories denoted by the incidence and prevalence curves are shown in the Figure 2
below. Assuming that infectious individuals are reported at the time of recovery, the incidence curve
shows the daily number of reported cases.

P1	<-	ggplot(data.frame(time_series_from_line_list(sim.outbreak)))	+	theme_bw()	+	
		geom_bar(aes(x=time,	y=incidence),	stat="identity")	+	
		xlab("Days	since	start	of	epidemic")	+	
		ylab("Incidence	per	day")	+	ggtitle("A")	
P2	<-	ggplot(data.frame(x=(1:sim.outbreak$total_dt)*dt,	Prevalence=sim.outbreak$prevalence))	+	
		theme_bw()	+	geom_line(aes(x=x,	y=Prevalence))	+	
		xlab("Days	since	start	of	epidemic")	+	ggtitle("B")	
grid.arrange(P1,	P2,	ncol=1)
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Figure 2. The daily incidence (A) and prevalence (B) of the simulated epidemic.

2.
Convert
line
list
data
and
pathogen
phylogeny
into
list
objects
Transmission
Tree

By setting to we can track who infected whom in the outbreak and thus reconstruct the transmission tree.
From the transmission tree, we can infer the pathogen phylogeny which describes the ancestral
relationship between pathogen isolates from infected individuals.

sim.transmission.tree	<-	as.data.frame(get_transmission_tree(sim.outbreak$infected))	
sim.transmission.tree$from	<-	as.factor(sim.transmission.tree$from)	
sim.transmission.tree$to	<-	as.factor(sim.transmission.tree$to)	
fig.counter.sim.graph	<-	fig.counter

We can visualise the transmission network using the function. Below is the transmission network of the
first 100 infected people.
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Figure 3. Transmission tree.

Phylogeny

The phylogenetic tree is related to the transmission tree. In the case of the latter, parents are represented
by internal nodes whereas in the case of phylogenies, parents are represented by an external node (tip).
The function produces the phylogenetic tree for a given outbreak. Figure 4 is the phylogenetic tree of the
first 100 individuals to be infected during the epidemic.

tree	<-	get_phylo(sim.outbreak$infected)

par(mar=c(0.5,	0.5,	0.5,	0.5))	
not.sampled.tips	<-	101:length(tree$tip.label)	
subtree	<-	drop.tip(tree,	not.sampled.tips)	
plot(subtree)
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Figure 4. Phylogeny of the first 100 individuals to be infected during the simulated epidemic, out of a total

of $N=$4052.

Producing
time-series
data
from
simulation

Inferring parameters of dynamic disease models such as the SIR require data to be in time-series format,

i.e. a quantity per time step. For epidemiologic data, this could be the number of reported cases per day.

If data collected during an outbreak is in the form of a line list where each line contains information about

an infected individual, this can be converted to time-series format using the function . The first column

should contain the ID of the infected individual and the second column the time of reporting. Here we

assumed that an individual was reported upon recovery.

sampling.prob	<-	0.01	
data.dt	<-	1	
set.seed(seed.num)	
sampled.sim.outbreak	<-	downsample(sim.outbreak,	strategy="proportional",	prob=sampling.prob)	
epi_data	<-	time_series_from_line_list(sampled.sim.outbreak,	step_size=data.dt)	
head(epi_data)

##						time	incidence	
##	[1,]				1									0	
##	[2,]				2									0	
##	[3,]				3									0	
##	[4,]				4									0	
##	[5,]				5									0	
##	[6,]				6									0

And the phylogeny of the randomly sampled individuals is given in Figure 5.

subtree	<-	drop.tip(reorder.phylo(tree,	"postorder"),	which(!(1:length(tree$tip.label)	%in%	
sampled.sim.outbreak$sampled_individuals)))	
plot(subtree,	show.tip.label=FALSE)
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Figure 5. Phylogeny of 43 randomly sampled individuals. This is a subtree of the full phylogeny of N=4052
individuals.

gen_data	<-	time_series_from_tree(subtree,	step_size=data.dt)

We can also obtain time-series data for both at the same time:

all_data	<-	get_data(epi=sampled.sim.outbreak,	phy=subtree,	dt=data.dt)	
str(all_data)

##	List	of	2	
##		$	epi:	num	[1:156,	1:2]	-77	-76	-75	-74	-73	-72	-71	-70	-69	-68	...	
##			..-	attr(*,	"dimnames")=List	of	2	
##			..	..$	:	NULL	
##			..	..$	:	chr	[1:2]	"time"	"incidence"	
##		$	gen:	num	[1:78,	1:2]	1	2	3	4	5	6	7	8	9	10	...	164



##			..-	attr(*,	"dimnames")=List	of	2	
##			..	..$	:	NULL	
##			..	..$	:	chr	[1:2]	"time"	"incidence"

3.
Construct
input
objects
for
inference
Create
input
files
for
EpiGenMCMC
program

param_list	<-	create_params_list(	
		param_names=c("R0",	"k",	"rateI2R",	"N",	"S",	"reporting",	"time_before_data"),	#	All	parameter	
values	
		init_param_values=c(R0,	k,	1/Tg,	N,	S,	sampling.prob,	10),	#	Initial	parameter	values	
		params_to_estimate=c("R0",	"k",	"rateI2R",	"reporting",	"time_before_data"),	#	Names	of	
parameters	to	be	estimated	
		transform=c(NA,	"inverse",	"inverse",	NA,	NA),	#	The	algorithm	will	estimate	the	value	of	the	
transformed	parameter	
		prior=c("unif",	"unif",	"unif",	"beta",	"unif"),	#	Prior	distribution	
		prior_params=list(c(1.0,	100.0),	c(1.0,	10000.0),	c(1.0,	30.0),	c(1.0,	3.0),	c(0.0,	300.0)),	#	
Parameters	for	the	prior	distribution	
		proposal_params=list(c(0.5,	1.0,	100.0),	c(1.0,	1.0,	10000.0),	c(1.0,	1.0,	30.0),	c(0.05,	0.0,	
1.0),	c(20.0,	0.0,	300.0))		
#	SD	of	proposal	distribution,	and	the	range	of	parameter	values	to	be	explored	
)	
mcmc_options	<-	create_mcmc_options	(particles=1000,	iterations=1000,	log_every=1,	
pfilter_every=20,		
																																					which_likelihood=0,		
								#	0=	use	both	epi	and	genetic	data,	1=use	only	epi	data,	2=use	only	genetic	data	
																																					pfilter_threshold=1.0,
																																	log_filename="log.txt",	traj_filename="traj.txt")	

input_files	<-	EpiGenR::generate_cpp_input_files(dt=dt,	params=param_list,	
mcmc_options=mcmc_options,	
																																																	initial_states=unlist(init.states),	
data=all_data)

4.
Call
the
EpiGenMCMC
program
to
estimate
parameters
EpiGenR::run_pMCMC("path/to/pmcmc",	input_files,	wait=FALSEs)
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