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Complete colourings of hypergraphs

Keith Edwardsa, Paweł Rzążewskib

aComputing, University of Dundee, Dundee, DD1 4HN UK
bFaculty of Mathematics and Information Science, Warsaw University of Technology,

Warsaw, Poland

Abstract

A complete c-colouring of a graph is a proper colouring in which every pair of distinct
colours from [c] = {1, 2, . . . , c} appears as the colours of endvertices of some edge. We
consider the following generalisation of this concept to uniform hypergraphs. A complete
c-colouring for a k-uniform hypergraph H is a mapping from the vertex set of H to [c],
such that (i) the colour set used on each edge has exactly k elements, and (ii) every
k-element subset of [c] appears as the colour set of some edge. In this paper we exhibit
some differences between complete colourings of graphs and hypergraphs. First, it is
known that every graph has a complete c-colouring for some c.

In contrast, we show an infinite family of hypergraphs H that do not admit a complete
c-colouring for any c. We also extend this construction to λ-complete colourings (for
0 < λ ≤ 1), where condition (ii) is substituted with: at least λ

(
c
k

)
different colour sets

appear on edges.
We establish upper and lower bounds on a maximum degree, which guarantees the

existence of a complete colouring of any hypergraph. Moreover, we prove that it is NP-
complete to determine if a given hypergraph has a λ-complete colouring. Next, we show
that, unlike graphs, hypergraphs do not have the so-called interpolation property, i.e., we
construct hypergraphs that have a complete r-colouring and a complete s-colouring, but
no complete t-colouring for some t such that r < t < s.

Finally, we investigate the notion of λ-complete colourings of graphs (i.e., 2-uniform
hypergraphs). We show that λ-complete colourings have the same interpolation property
as complete colourings. Moreover, we prove that it is NP-complete to decide whether a
tree with

(
c
2

)
edges has a λ-complete c-colouring, which strengthens the result by Cairnie

and Edwards [JGT, 1997].

Keywords: complete colouring, achromatic number, hypergraph, strong colouring
2010 MSC: 05C70, 68R10

1. Introduction

For an integer c, a c-colouring of a graph G is complete if it is proper, i.e., no two
adjacent vertices have the same colour, and for every pair of colours in [c] := {1, 2, . . . , c}
there exists an edge of G, whose endvertices receive exactly these colours. The concept of
complete colourings was introduced in 1967 by Harary, Hedetniemi, and Prins [17] in the
language of (complete) homomorphisms to a complete graph. It is well known that every
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graph has a complete colouring (i.e., a complete c-colouring for some c). Indeed, every
colouring of G using the minimum possible number of colours (i.e., the chromatic number
χ(G) of G) is necessarily complete. Since any complete colouring is proper, clearly we
cannot obtain any complete colouring with less than χ(G) colours. Thus it makes sense
to ask what is the maximum possible number of colours in a complete colouring. This
number is called the achromatic number of G, and denoted by ψ(G).

Complete colourings and achromatic number have been extensively studied by many
authors, both from a purely combinatorial, and from a computational perspective. For
example Cairnie and Edwards [4] investigated the achromatic number of trees T with
bounded degrees. They provided some tight bounds for ψ(T ) and a polynomial algorithm
computing it. These results were later extended by Edwards [8] to the fragmentable classes
of graphs with bounded vertex degrees. Intuitively, a class of graphs is fragmentable if
every member of it can be split into disjoint components of constant size by removal of
a small fraction of vertices. All graph classes admitting a separator theorem (e.g. planar
graphs) are fragmentable.

On the other hand, determining the achromatic number is known to be NP-complete
for cographs and interval graphs (see Bodlaender [2]), and even for trees (see Cairnie and
Edwards [3]). We refer the reader to the survey by Edwards [9] for more information
about the topic. We also point out the regularly updated bibliography maintained by
Edwards [7].

A natural step is to generalise the concept of complete colourings to wider families
of combinatorial objects. For example, Edwards [10] considered complete colourings of
directed graphs, and investigated similarities and differences between the cases of graphs
and digraphs.

Another natural way is to generalise the concept to hypergraphs. There are two natural
ways of doing this, following from the fact that there are two common ways of defining
proper colourings of hypergraphs. The first (and more common) variant was introduced
by Erdős and Hajnal [14] and requires that no edge is monochromatic (see also Toft [19]).
Such a colouring is sometimes called weak colouring. In the other variant, called strong
colouring or rainbow colouring, we require that no two vertices belonging to a single edge
share the same colour (see e.g. Agnarsson, M. Halldórsson [1]).

Nešetřil, Phelps, and Rödl [18] considered complete colourings of hypergraphs, which
are proper in the weak sense, and for every pair of colours a, b there exists an edge,
whose colour set is exactly {a, b}. A different concept was recently introduced by Dęb-
ski, Lonc, and Rzążewski [6]. Here a complete colouring of a k-uniform hypergraph H
(alternatively called its achromatic colouring) is a proper strong colouring of H, with
the additional property that every k-element set of colours appears on some edge of H.
The authors of [6] showed that if the input hypergraph belongs to a fragmentable class
and has bounded degree, then it has a complete colouring with many colours (in fact,
asymptotically matching the trivial upper bound), similarly to the case of graphs (see
Edwards [11], Cairnie and Edwards [3]).

It is perhaps interesting to mention so-called mixed hypergraphs, which are triples
(V,E, F ), where V is the set of vertices, and E and F are families of subsets of V
(called edges and co-edges, respectively). Voloshin [21, 22], and Tuza and Voloshin [20]
investigated colourings of mixed hypergraphs, such that no edge is monochromatic and
every co-edge contains two vertices with the same colour. This problem has a similar
flavour to complete colourings, forbidding the number of colours from growing too much
(in particular excluding colouring each vertex with a unique colour).
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In this paper we investigate the differences between complete colourings (in the strong
sense) of graphs and hypergraphs. We show that some basic properties of complete
colourings of graphs do not carry over to the case of hypergraphs.

First, as mentioned before, every graph has a complete colouring. This is, however,
not the case with complete colourings of uniform hypergraphs. As already noted by
Dębski et al. [6], there are uniform hypergraphs which have no complete colouring. In
Section 3 we show that for any k ≥ 3 and arbitrarily large n there exists a connected
k-uniform hypergraph with n vertices and maximum degree Θ(n1/k), which does not
have any complete colouring. Moreover, for any 0 < λ ≤ 1, they do not even have any
strong c-colouring, where at least λ

(
c
k

)
k-subsets of colours appear on edges (we call such

colourings λ-complete). On the other hand, we show that every k-uniform hypergraph
with the maximum degree o(n1/(k+2)) has a complete colouring.

With this knowledge, it makes sense to ask how hard it is to decide if a given k-uniform
hypergraph admits a complete colouring or a λ-complete colouring. In Section 4 we show
that this problem is NP-complete for all k ≥ 3 and all 0 < λ ≤ 1.

Next, we turn our attention to the so-called interpolation. Harary, Hedetniemi, and
Prins [17] have shown that if a graph G has a complete colouring with r colours, and
another with s colours for some s > r, then it has a complete colouring with t colours for
every r ≤ t ≤ s. Thus since χ(G), ψ(G) respectively are the least and greatest number
of colours for which a complete colouring of G exists, G has a complete colouring with t
colours if and only if χ(G) ≤ t ≤ ψ(G). In Section 5 we show that such an interpolation
property does not hold in the case of uniform hypergraphs.

Finally, we consider the notion of λ-complete c-colourings of graph (i.e., 2-uniform
hypergraphs). For 0 < λ ≤ 1 and a graph G, let ψλ(G) denote the maximum number
of colours, for which G has a λ-complete colouring. Clearly ψ1(G) = ψ(G) and ψλ(G) ≥
ψλ′(G) for all λ′ > λ. We prove that the λ-complete colourings have the interpolation
property: for every t, such that χ(G) ≤ t ≤ ψλ(G), the graph G has a λ-complete
colouring with t colours. Moreover, we show that the problem of determining whether a
tree with

(
c
2

)
edges has a λ-complete c-colouring (i.e., whether c ≤ ψλ(G)) is NP-complete

for any 0 < λ ≤ 1, even if the radius of the input tree is 3.
The paper concludes with several open questions and possible directions for further

research.

2. Preliminaries

A hypergraph H is a pair (V,E), where V denotes its vertex set, and elements of E,
called edges, are non-empty subsets of V . A hypergraph H is k-uniform if every edge has
exactly k-elements. Clearly graphs are exactly 2-uniform hypergraphs.

By the degree of a vertex v, denoted by deg v, we mean the number of edges contain-
ing v. By ∆(H) we denote the maximum vertex degree in the hypergraph H. A hyper-
graph H = (V,E) is connected if the graph G(H) = (V,E ′), where E ′ = {uv | {u, v} ⊆
e for some e ∈ E}, is connected.

A strong colouring of a k-uniform hypergraph H = (V,E) is an assignment f of
integers (called colours) to the vertices of H such that for every e ∈ E and every distinct
v, w ∈ e, f(v) 6= f(w). By χ(H) we denote the minimum possible number of colours
needed to strongly colour the hypergraph H. Observe that if H has at least one edge,
then clearly χ(H) ≥ k.

A complete colouring of a k-uniform hypergraph H is a strong colouring of H in which
every k-set of colours appears on some edge. If H has a complete colouring, then we
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denote by ψ(H) its achromatic number, which is the maximum number of colours in a
complete colouring of H. To make this parameter well-defined for all H, we set ψ(H) := 0
whenever H has no complete colouring.

We also consider the following relaxation of the notion of complete colouring. A c-
colouring of a k-uniform hypergraph H is called λ-complete for 0 < λ ≤ 1, if it is a strong
colouring and at least λ

(
c
k

)
possible k-subsets of colours appear on edges of H. Clearly a

1-complete colouring is exactly a complete colouring.

3. Hypergraphs with and without a complete colouring

A Steiner triple system is a 3-uniform hypergraph, in which every pair of vertices
appears in exactly one edge. Observe that if H is a Steiner triple system, then in any
complete colouring of H, every vertex must receive a different colour (to make the colour-
ing strong). However, since H is not a complete hypergraph, there are k-sets of colours
which do not appear on any edge of H. Observe that deg v = n−1

2
for any vertex v. Since

a Steiner triple system with n vertices exists if and only if n ≡ 1, 3 (mod 6), this gives
us an infinite family of 3-uniform hypergraphs with maximum degree Θ(n), which do not
have any complete colouring.

Below we extend this idea to construct an infinite family of k-uniform hypergraphs
with significantly smaller maximum degrees, which do not have any λ-complete colouring
(for any λ and any number of colours).

Theorem 1. For any fixed k ≥ 3 and any λ ∈ (0, 1], there exist arbitrarily large connected
k-uniform hypergraphs H with n vertices and ∆(H) = Θ(n1/k) such that H does not have
any λ-complete colouring.

Proof. Let k ≥ 3 and let c0 be the minimum integer, such that λ
(
c0
k

)
≥
(
c0
2

)
/
(
k
2

)
+ 1. A

celebrated theorem by Wilson [23] asserts that there are arbitrarily large integers c ≥ c0
such that the complete graph Kc can be decomposed into edge-disjoint copies of Kk.
Replacing each copy of Kk by a k-edge, we obtain a k-uniform hypergraph H0 with c
vertices, and H0 is regular of degree c−1

k−1 . Also any pair of distinct vertices occur together
in an edge, hence in any valid strong colouring, each vertex ofH0 receives a distinct colour.
Note that |E(H0)| =

(
c
2

)
/
(
k
2

)
. Now form a connected hypergraph H by adding a chain of

p = λ
(
c
k

)
−|E(H0)|−1 extra edges to H0. One can readily verify that p ≥ 0 by the choice

of c. Each new edge contains one vertex of the previous edge and k−1 extra vertices (the
first new edge contains one vertex of H0). Note that H has |E(H0)|+ p = λ

(
c
k

)
− 1 edges,

and n = c+ (k − 1)p = c+ (k − 1)(λ
(
c
k

)
− |E(H0)| − 1) vertices.

Now H cannot have a λ-complete colouring, as such a colouring would have to have at
least c colours, but H has fewer than λ

(
c
k

)
edges, so any colouring cannot be λ-complete.

However n = Θ(ck) while ∆(H) = c−1
k−1 + 1, so we have ∆(H) = Θ(n1/k), as required.

On the other hand, we can show that if the maximum degree of the hypergraph is
small enough, a complete colouring always exists.

Theorem 2. Let Γ be a class of k-uniform hypergraphs with no isolated vertices and such
that for H ∈ Γ, ∆(H) = o(n1/(k+2)), where n = |V (H)|. Then there exists n0 such that
every H ∈ Γ with n ≥ n0 vertices has a complete colouring.

Proof. Let ε be a positive number, whose value will be specified later and let n0 be such
that ∆(H) < ε·n1/(k+2) for every H ∈ Γ with n ≥ n0 vertices. Let H be such a hypergraph
and let m be the number of its edges.
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We shall use the following greedy procedure to choose a maximal set M of edges of H,
such that for any edges e1, e2 ∈ M there is no edge e of H, which intersects both e1 and
e2 (note that in particular this implies that e1, e2 are disjoint). The procedure is iterative.
Set H0 := H and M0 := ∅. At every step i ≥ 1, we select an arbitrary edge e of Hi−1
and set Mi := Mi−1 ∪ {e}. Then we obtain Hi from Hi−1 by removing the edge e, all
edges intersecting e, and all edges intersected by an edge intersecting e. The procedure
is terminated after step ` if H` has no edges. Set M := M`.

At every step we add exactly one edge toM and discard at most 1+k ·(∆(H)−1)(1+
k · (∆(H)− 1)) ≤ k2 · ε2 · n2/(k+2) edges. Thus |M | · (k2 · ε2 · n2/(k+2)) ≥ m and therefore
|M | ≥ m

k2·ε2·n2/(k+2) . Since H does not contain isolated vertices, we have m ≥ n/k and thus
|M | ≥ nk/(k+2)

k3·ε2 .
Let c be equal to k · bε · n1/(k+2)c. We shall show that H has a complete colouring

with c colours. The number of k-elements subsets of colours is
(
c
k

)
=
(
k·bε·n1/(k+2)c

k

)
≤

kk

k!
· εk · nk/(k+2).

Choosing ε < k+2

√
k!

kk+3 we obtain that
(
c
k

)
≤ |M |. Thus for every k-set of colours C

we can choose a distinct edge e ∈ M and colour the vertices in e so that each of them
receives a different colour from C.

The only thing left is to colour the remaining vertices, keeping in mind that no two
vertices from a single edge should receive the same colour. We will do this in a greedy way.
Note that no edge containing an uncoloured vertex intersects two edges of M , so such an
edge cannot already have received the same colour on two distinct vertices. The number
of forbidden colours for a vertex v is at most deg v · (k − 1) ≤ (k − 1) · bε · n1/(k+2)c < c.
Thus there is always at least one colour, which can be used for v.

4. Computational hardness

In this section we investigate the complexity of deciding if a given hypergraph has a
λ-complete colouring. Let us start with the following auxiliary lemma.

Lemma 3 (Folklore). The problem of deciding if a given k-uniform hypergraph H has a
strong colouring with at most k + 1 colours is NP-complete for any fixed k ≥ 2.

Proof. It is clear that the problem is in NP. For k = 2 we obtain the 3-Colouring
problem of graphs, which is NP-hard.

To show NP-hardness for k ≥ 3, we shall use a reduction from 3-Colouring. For a
graph G = (V,E) with n′ vertices, we define a k-uniform hypergraph HG with the vertex
set VH = V ∪{u1, u2, . . . , uk−2}. The edge set ofHG is EH = {e∪{u1, u2, . . . , uk−2}|e ∈ E}.
Clearly HG is k-uniform. We claim that HG has a strong colouring with k + 1 colours if
and only if G is 3-colourable.

Suppose thatHG has a strong colouring ϕ with k+1 colours. Without loss of generality
assume that ϕ(ui) = i for all i = 1, 2, . . . , k − 2 (each of these vertices has to receive a
different colour). We claim that ϕ|V is a proper colouring of G with colours k−1, k, k+1.
Clearly there is no vertex v ∈ V with ϕ(v) ≤ k − 2. Moreover, there is no edge vw ∈ E
such that ϕ(v) = ϕ(w), since vw is contained in an edge of HG.

Now suppose that G has a proper colouring ϕ with colours 1, 2, 3. It is easy to see
that we can obtain a proper strong k + 1-colouring of HG by setting ϕ(ui) = i+ 3 for all
i = 1, 2, . . . , k − 2.

Now we are ready to show the main result of this section.
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Theorem 4. For every fixed k ≥ 3 and every constant 0 < λ ≤ 1 it is NP-complete
to decide whether the input k-uniform hypergraph H has a λ-complete colouring (for any
number of colours).

Proof. The problem is clearly in NP. We reduce from strong k-colouring (k − 1)-uniform
hypergraph, which is NP-hard (see Lemma 3). Let A = (V,E) be a (k − 1)-uniform
hypergraph. Notice that we may assume that A contains a (k − 1)-uniform k-clique,
i.e., a subset S of k vertices, such that all (k − 1)-element subsets of S belong to E
(otherwise we can consider an equivalent problem of strong k-colouring of the hypergraph
A′ consisting of A and a (k − 1)-uniform k-clique, disjoint with A).

For the construction H we will need to have a set of p ≥ k new vertices c1, c2, . . . , cp,
and a set of edges on c1, c2, . . . , cp so that any two distinct vertices lie in some edge; let
the minimum number of edges necessary to do this be f(p). Note that by the well-known
Theorem of Wilson [23], we have f(p) = O(p2).

We pick integers p and s (depending on p) such that

p ≥ k

and
pk + f(p) + s ≥ λ

(
p+ k

k

)
and

p|E|+ f(p) + s < λ

(
p+ k + 1

k

)
.

First, since f(p) = O(p2) and k ≥ 3, it is clear that for any sufficiently large p, we have
λ
(
p+k
k

)
> pk + f(p), so set s := dλ

(
p+k
k

)
e − (pk + f(p)).

Then we need to choose p such that also

p|E|+ f(p) + s < λ

(
p+ k + 1

k

)
,

that is, such that

p(|E| − k) +

⌈
λ

(
p+ k

k

)⌉
< λ

(
p+ k + 1

k

)
.

Thus we require that

p(|E| − k) < λ

(
p+ k + 1

k

)
−
⌈
λ

(
p+ k

k

)⌉
= λ

(
p+ k

k − 1

)
−O(1).

Since k − 1 ≥ 2 we can clearly choose p as required, and p (and s) will be polynomial in
|E|.

Now to construct H we start with V (the vertices of A) and add the p new vertices
c1, c2, . . . , cp. Next, we add edges of the following form: EA = {e ∪ {ci} : e ∈ E, i ∈ [p]}.
Then we add f(p) edges on the vertices c1, c2, . . . , cp so that each pair of these vertices
occurs together in an edge. Let Ec be the set of these edges. Finally, we add s disjoint
edges on new vertices, call them Efree. Note that |E(H)| = p|E|+ f(p) + s < λ

(
k+p+1
k

)
.

We claim that A has a strong k-colouring if and only if H has a λ-complete colouring.
First suppose A is strongly k-colourable and fix such a colouring on vertices of V ,

call these colours 1, 2, 3, . . . , k (note that since A contains a k-clique, we use exactly k
colours on A). For each i ∈ [p], we colour the vertex ci with the colour k + i. Thus we
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are using c := k+ p colours. Every k-subset of colours containing one colour from [c] \ [k]
and k − 1 colours from [k] appears on some edge from EA. Also every edge in Ec has
a distinct set of colours. Thus, in total, pk + f(p) k-subsets of colours appear on edges
of H. Finally, we colour the edges in Efree using s further k-tuples of colours not used
previously. Summing up, the number of k-tuples of colours that appear on edges of H is
pk + f(p) + s = dλ

(
c
k

)
e ≥ λ

(
c
k

)
.

Now suppose there is a λ-complete c-colouring of H, for some integer c. Observe that
c ≥ k + p. Indeed, each of vertices c1, c2, . . . , cp must receive a distinct colour. Moreover,
since A contains a k-clique, we must use at least k colours on vertices of A. Finally,
because of edges in EA, we cannot assign the same colour to some ci and a vertex in V .

However we cannot have c > k + p, because then λ
(
c
k

)
≥ λ

(
k+p+1
k

)
> |E(H)|. Thus

c = k+ p, and so exactly k colours appear on the vertices of V , which implies that A has
a strong k-colouring.

5. Interpolation

For an undirected graph G, it was shown in [17] that if G has a complete colouring
with r colours, and another with s colours, s > r, then it has a complete colouring with t
colours whenever r ≤ t ≤ s. Thus since χ(G), ψ(G) respectively are the least and greatest
number of colours for which a complete colouring of G exists, G has a complete colouring
with t colours if and only if χ(G) ≤ t ≤ ψ(G).

We show below that this interpolation result fails in the case of uniform hypergraphs.

Theorem 5. Let k ≥ 9 be a positive integer. There exists a k-uniform hypergraph H
which has a complete k-colouring and a complete r-colouring for some r > k, but no
complete t-colouring for some t with k < t < r.

Proof. We will define a k-uniform k-partite hypergraph with vertex sets V1, . . . , Vk, where
Vi = {vi1, . . . , vir} for each i = 1, . . . , k. For a vertex vij, we will refer to i as the part
of the vertex and to j as its position (see Figure 1). Each edge of the hypergraph will

3

Parts

1

. . .

...

V1 V2 V3 Vk

r

Positions

2

Figure 1: Parts and positions of vertices in the hypergraph H.
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contain one vertex from each set Vi, thus each edge is of the form {vipi | 1 ≤ i ≤ k}; we
will denote this edge by the vector (p1, . . . , pk).

The hypergraph H contains all edges (p1, . . . , pk) such that the pi are all distinct, and
the sequence p1, . . . , pk contains at most four monotonic sections, i.e., it changes direction
from increasing to decreasing or vice versa at most three times. More formally, (p1, . . . , pk)
is an edge of H if and only if

|{i | 2 ≤ i ≤ k − 1 and (pi+1 − pi)(pi − pi−1) < 0}| ≤ 3.

We claim first that, provided r is large enough compared to k, any two vertices in
different parts and at different positions are contained in some edge, i.e., if vab and vcd are
vertices with a 6= c and b 6= d, then there is an edge containing both vab and vcd.

To see this, we can assume without loss of generality that a < c.
Case 1: The parts a and c are not consecutive, so c > a+1. Pick z such that a < z < c.
Case 1(a): |b− d| ≤ r/3. Then clearly either b, d ≤ 2r/3 or b, d ≥ r/3. If b, d ≤ 2r/3,

then provided r is large enough compared to k, we can pick an edge (p1, . . . , pk) such
that pa = b, pc = d, and the sequence p1, . . . , pk is decreasing on p1, . . . , pa, increasing on
pa, . . . , pz, decreasing on pz, . . . , pc and increasing on pc, . . . , pk.

The case when b, d ≥ r/3 is similar, starting with an increasing sequence on p1, . . . , pa.
Case 1(b): |b − d| > r/3. The cases b < d and b > d are similar, so suppose b < d.

Then we can pick an edge (p1, . . . , pk) such that pa = b, pc = d, and the sequence p1, . . . , pk
is decreasing on p1, . . . , pa, increasing on pa, . . . , pc and decreasing on pc, . . . , pk.

Case 2: The parts a and c are consecutive, so c = a + 1. Then we can pick an edge
(p1, . . . , pk) such that pa = b, pc = d, as follows: if b ≤ r/2, choose p1, . . . , pa to be
decreasing, otherwise increasing, similarly if d ≤ r/2, pc, . . . , pk is increasing, otherwise
decreasing.

Note that three changes of direction in the sequence p1, . . . , pk are essential to ensure
that any two vertices in different parts and at different positions are contained in some
edge; for example, the vertices v21 and v42 do not occur together in any edge with at most
two changes of direction.

Next we observe that H has a complete k-colouring and a complete r-colouring.
Complete k-colouring: We take a colour set {c1, . . . , ck} and, for each i, colour every

vertex of part Vi with colour ci. This is clearly a valid colouring (because no edge contains
two vertices from the same part), and every edge contains each of the colours, so the
colouring is complete.

Complete r-colouring: We take a colour set {x1, . . . , xr} and, for each j, colour every
vertex in position j with colour xj. Again this is clearly a valid colouring (because no
edge contains two vertices in the same position), and it is also clearly complete because
for any k-element subset of the colours, say {xp1 , . . . , xpk}, where xp1 < · · · < xpk , the
edge (p1, . . . , pk) contains each of these colours.

Now consider t such that k < t < r, and suppose that H has a complete t-colouring.
Fix such a colouring. Let C be the set of colours which occur on only a single part of H,
and X be the set of colours which occur on at least two parts.

First consider a colour x ∈ X. By assumption, x occurs in more than one part. If
it also occurred in more than one position, there would be two vertices with the same
colour both contained in some edge, and the colouring would not be proper. Thus all
occurrences of x are in the same position. Also two colours in X cannot share the same
position, because then no edge would contain both of these colours, and the colouring
could not be complete.
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Since t < r, there are less than r colours in X, and therefore less than r positions
whose vertices can be coloured by colours from X. Thus at least one vertex in each part
is coloured with a colour from C. Also at most one colour from C can occur on each part,
since otherwise there would be two colours from C which do not occur together in any
edge, and the colouring could not be complete. Hence there are exactly k colours in C;
let the colour associated with part Vi be ci.

Since |C| = k, we have |X| = t − k. So to summarise, (i) t − k positions j have an
associated colour xj ∈ X which occurs only in position j (in each case on at least two
parts), and (ii) each part Vi also has an associated colour ci which occurs only in part Vi
(and occurs at least once). Each vertex vij is coloured either with the colour ci or (if it
exists) the colour xj.

Note that there are t − k positions which have an associated colour and therefore
r − t+ k which do not. Thus provided that

t− k > 4(r − t+ k + 1)

(or equivalently t > 4r+5k+4
5

), there exist five consecutive positions J, . . . , J+4 all of which
have an associated colour in X. Form a k-element set S of colours containing the five
colours xJ , . . . , xJ+4 and the bk/2c colours c2i associated with the even numbered parts.
Since k ≥ 9, k ≥ 5 + bk/2c; the remaining colours in S can be chosen arbitrarily.

We claim that no edge has its vertices coloured with the set S. For suppose (p1, . . . , pk)
is such an edge. The vertex in each even numbered part V2i must be coloured with the
associated colour c2i, thus the other colours must occur in odd numbered parts. For
each j = J, . . . , J + 4, there must be a vertex coloured xj, and this vertex must be in
position j (and in an odd numbered part). No other vertex can be in any of the positions
J, . . . , J + 4, since no edge contains two vertices in the same position. Thus the vertex
in each even numbered part has position outside the range J, . . . , J + 4. The five vertices
coloured xJ , . . . , xJ+4 can be in any five distinct odd numbered parts, but between any
two consecutive ones there is a vertex in an even numbered part whose position is outside
the range J, . . . , J+4. Hence the sequence p1, . . . , pk has at least four changes of direction,
a contradiction. Thus H has no complete t-colouring.

Observe that in fact χ(H) = k and ψ(H) = r. To see that we could not have a
complete colouring with more than r colours, note that we can partition the colours into
sets C and X as above, and each colour in X is associated with a unique position. If
|X| < r, then as above there must be k colours in C, so since there are more than r
colours, we must have |X| > r − k, and the argument above shows that the colouring
cannot be complete. On the other hand, if |X| = r, then every position has an associated
colour, and in addition there must be at least one colour in C, say colour ci used on
Vi. If ci occurs fewer than k times on Vi, then no edge contains both ci and the colours
corresponding to the positions where ci occurs. However if ci occurs at least k times on
Vi, then no edge can contain the set of colours corresponding to any k of these positions.

Hence we have the following slightly stronger theorem:

Theorem 6. Let k ≥ 9 be a positive integer. There exists a k-uniform hypergraph H
which has a complete χ(H)-colouring and a complete ψ(H)-colouring, but no complete
t-colouring for some t with χ(H) < t < ψ(H).

A minimum colouring of a graph is necessarily complete, but this is not the case for
hypergraphs, even when some complete colouring exists (with more colours).
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Theorem 7. There exists a 3-uniform hypergraph H which has a complete r-colouring
for some r > χ(H), but no complete χ(H)-colouring.

Proof. As above we construct a hypergraph with k parts and r positions, in this case with
k = 4 and r > 4. The edge set contains every edge with 3 vertices in distinct parts and
distinct positions; every edge has a vertex in part 4.

As before, it is easy to see that for any two vertices in different parts and different
positions, there is an edge containing the two vertices. Hence for example, the 4 vertices
vii, i = 1, 2, 3, 4, must all have distinct colours. Clearly χ(H) = 4, since we can colour
each part with a distinct colour. Also, colouring each position with a distinct colour
clearly gives a complete r-colouring.

Now consider any colouring, with t colours say, and as before let C be the set of colours
which occur on just one part, and X be the set of colours which occur on at least two
parts. If |X| < r, then some position has no X colour, hence C ≥ 4 and there is at
least one colour associated with each part. So either t > 4, or we have the 4-colouring
above, which is not complete since no edge has the colour set {c1, c2, c3}. Thus there is
no complete 4-colouring.

6. λ-complete colourings of graphs

In this section we investigate how the properties of complete colourings of graphs
generalise to λ-complete colourings. In particular, we consider interpolation and compu-
tational complexity.

6.1. Interpolation
Recall that Harary, Hedetniemi, Prins [17] proved that for any graph G and any t,

such that χ(G) ≤ t ≤ ψ(G), the graph G has a complete t-colouring. Now we show the
following.

Theorem 8. Let 0 < λ ≤ 1 be a fixed real, and let G be a graph. Then for any t, such
that χ(G) ≤ t ≤ ψλ(G), the graph G has a λ-complete t-colouring.

Proof. If t ≤ ψ(G), then G has a complete t-colouring, and thus a λ-complete colouring
for any λ. By the assumption, the claim holds also for t = ψλ(G). Let us assume that
ψ(G) < t < ψλ(G) and suppose G has a λ-complete (t + 1)-colouring f . We will show
that it has a λ-complete t-colouring.

For each colour c ∈ {1, 2, . . . , t + 1}, let d(c) be the number of distinct colour pairs
containing c, which appear on some edge of G under the colouring f , and choose c′ ∈
{1, 2, . . . , t + 1}, such that d(c′) is minimum possible. Since t + 1 > ψ(G), the colouring
f is not complete, so there is a colour c′′, such that the pair {c′, c′′} does not appear on
any edge of G. Let f ′ be the colouring of G defined as follows: f ′(v) = f(v) if f(v) 6= c′

and f ′(v) = c′′ if f(v) = c′. Clearly f ′ is a proper t-colouring of G. We claim that f ′ is
λ-complete.

Let K (K ′, respectively) be the number of distinct colour pairs that appear on edges
of G under f (f ′, respectively). Note that K ′ ≥ K − d(c′). If d(c′) ≤ λt, then

K ′ ≥ K − d(c′) ≥ λ

(
t+ 1

2

)
− d(c′) ≥ λ

(
t+ 1

2

)
− λt = λ

(
t

2

)
,
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and we are done. On the other hand, K ≥ (t+ 1) · d(c′)/2, so if d(c′) > λt,

K ′ ≥ K − d(c′) ≥ (t+ 1) · d(c′)

2
− d(c′) =

(t− 1) · d(c′)

2
> λ

t(t− 1)

2
= λ

(
t

2

)
,

which completes the proof.

6.2. Computational complexity for trees
Let us start with recalling a result on harmonious colourings of star forests by Edwards

and McDiarmid [13]. A harmonious colouring of a graph G is a proper C-colouring, in
which every pair of distinct colours appears at most once on a edge of G.

Lemma 9 (Edwards, McDiarmid [13]). Let F be a forest consisting of t stars F1, . . . , Ft
with sizes (i.e. number of edges) m1 ≥ m2 ≥ · · · ≥ mt respectively, and let C ≥ t. Then
F can be coloured harmoniously with C colours so that the centres of the stars all receive
distinct colours if and only if

k∑
i=1

mi ≤
k∑
i=1

(C − i) for each k = 1, . . . , t.

Now we prove the main result of this section, which is a generalisation of the hardness
of finding complete colouring of trees, shown by Cairnie and Edwards [4].

Theorem 10. Let λ be a rational constant with 0 < λ ≤ 1. It is NP-complete to decide
whether a tree T with

(
K
2

)
edges has a λ-complete K-colouring, even if the radius of T is

at most 3.

Proof. The problem is obviously in NP. To prove completeness, we reduce from the NP-
complete problem Numerical 3-Dimensional Matching [16]:

Instance Disjoint sets W , X, and Y , each containing m elements, a size
s(a) ∈ Z+ for each element a ∈ W ∪X ∪ Y , and a bound B ∈ Z+.

Question Can W ∪ X ∪ Y be partitioned into m disjoint sets A1, . . . , Am,
such that each Ai contains exactly one element from each of W , X, and
Y and such that, for 1 ≤ i ≤ m,

∑
a∈Ai

s(a) = B?

Note that Numerical 3-Dimensional Matching is NP-complete in the strong
sense [16] thus we can restrict our attention to instances for which B and each s(a) is at
most p(m) for some fixed polynomial p. It is helpful to assume that m is odd, this is easy
since we can just add new elements with sizes B − 2, 1, 1 to W , X, and Y if necessary.
Also note that we can assume that each s(a) ≤ B and that each s(a), and B, is a multiple
of m, for otherwise we can replace each s(a) by ms(a) and B by mB. Finally we assume
that the sum of the sizes of all the elements in W ∪X ∪Y is mB. Let W = {w1, . . . , wm},
and similarly for X and Y .

Now given an instance I of Numerical 3-Dimensional Matching, satisfying these
constraints, we choose K and construct a tree T with radius 3 and

(
K
2

)
edges as follows:

We choose the integer C to be the least integer greater than or equal to 6B +m+ 7,
such that

λ

(
C + 3

2

)
≥ mC − 1

2
m(m+ 1) + 3(B + 1)(C −m) + 3C + 3.
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Note that in the case λ = 1, this gives (with equality) C = 6B + m + 7. Note also that
the difference

D = λ

(
C + 3

2

)
− (mC − 1

2
m(m+ 1) + 3(B + 1)(C −m) + 3C + 3)

can be at most
(
C+3
2

)
−
(
C+2
2

)
= C + 2.

We will take the number of colours K to be C + 3.
Now we construct the tree T , shown in Figure 2. First we construct 3 sets SW , SX ,

SY , each containing C stars. The sets SX and SY each contain one star Sa of size s(a) for
each a in X and Y respectively, and C−m stars of size B+1. The set SW contains a star
Sa of size s(a) +C− 1

2
(m+ 1)−B for each a ∈ W , and C−m stars of size B+ 1. (Recall

that m is assumed to be odd.) Later we will add one more leaf to some of the stars of
size B + 1. In Figure 2 the quantity s(a) +C − 1

2
(m+ 1)−B is shown as s(a)+. Denote

by VW , VX , VY the set of centres of the stars in SW , SX , SY respectively; these vertices are
shown as open circles in Figure 2.

Now add 3 new vertices rW , rX , and rY , and join rW to each element of VW , rX to
each element of VX and rY to each element of VY . In addition we join rW to rX and rY ,
and add one further new vertex qX , joined to rX .

Note that the number of edges of the tree constructed so far is

∑
a∈W∪X∪Y

s(a) +mC − 1

2
m(m+ 1)−mB + 3(C −m)(B + 1) + 3C + 3

= mC − 1

2
m(m+ 1) + 3(C −m)(B + 1) + 3C + 3.

We now add one extra leaf to dDe of the stars of size B + 1, so that we have dDe stars
of size B + 2. Note that the number of stars of size B + 1 was 3(C −m), and we have
3(C −m) = 3C − 3m ≥ C + 12B + 2m+ 14− 3m ≥ C + 11m+ 14 > C + 2 ≥ dDe since
B ≥ m by assumption, hence there will be enough stars available. We add the extra leaf
first to stars in SW , then SX , then SY as long as necessary. Call the current tree T ′, with
edge set E ′. Note that |E ′| = dλ

(
K
2

)
e.

Now add a set QW of
(
K
2

)
− |E ′| new vertices, each joined to rW (these vertices and

edges are represented by the dotted triangle in Figure 2). This completes the construction
of the tree T . Note that T is easily constructed from I in polynomial time.

We now claim that the tree T has a λ-complete K-colouring if and only if I has a
solution. First suppose that T has such a colouring.

Let EW be the set of all edges incident with rW ; these are the dashed and dotted edges
in Figure 2. Let E− = E \ EW = E ′ \ EW (these edges are shown solid in Figure 2),
and let V − be the set of endpoints of the edges in E−. Then V − = V \ ({rW} ∪ QW ).
Note that E ′ consists of E− together with the C edges joining rW to the elements of VW
and the edges (rW , rX) and (rW , rY ) (thus E ′ consists of the solid and dashed edges in
Figure 2). We now establish a number of properties of the colouring. We may assume
that vertex rW has colour C + 1.

1. The number of colour pairs which appear on T is at most |E ′|. To see this note that
the number of colour pairs which can appear on E− is at most |E−| = |E ′|−(C+2).
However the number of pairs which can appear on EW is clearly at most C+2 (since
each pair contains the colour C + 1), so the result follows.
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. . .

. . . . . . . . .

. . .

. . .

. . .

. . .

. . .

(
K
2

)
− |E ′|

. . .. . .

s(w1)
+ s(wm)+ s(x1) s(xm) s(y1) s(ym)

rW

B + 2 B + 2 B + 2 B + 1 B + 1 B + 1

rY
qXrX

. . .

First dDe stars of size B + 2, rest of size B + 1

QW

Figure 2: The tree T . Triangles represent stars, with the number of leaves given by the label.

2. Since the number of colour pairs is at least dλ
(
K
2

)
e = |E ′|, it follows that exactly

|E ′| colour pairs occur on T . Thus both E− and EW have the maximum possible
number of colour pairs, and these sets of pairs are disjoint. Thus (i) every edge of
E− has a different colour pair, (ii) every pair involving colour C + 1 occurs on EW ,
(iii) the colour C + 1 does not occur on V −. It also follows that for any colour c,
the number of edges in E− with an endpoint coloured c cannot be more than C+ 1.

3. The vertices rX and rY must have distinct colours, since if rX and rY have the same
colour c, then at least 2C + 1 > C + 1 edges of E− have an endpoint coloured c.

4. Hence rW , rX , rY have distinct colours, and so we can assume that rX and rY are
coloured C + 2 and C + 3 respectively.

5. Colour C + 3 cannot be used on any vertex v ∈ VX , because then the number of
edges in E− with an endpoint coloured C + 3 would be at least C + d(v) > C + 1.

6. From above, C + 1 does not appear on any vertex in V −, in particular it cannot be
used on VX . Also, to avoid repeated colour pairs, the vertices in VX must all have
distinct colours, so we conclude that they have the colours 1, . . . , C in some order.
Also, the vertex qX must have colour C + 3.

7. The edge incident to qX uses the colour pair (C+ 2, C+ 3), hence the vertices in VY
cannot use colours C + 1 or C + 2, and must all have distinct colours. Thus these
vertices also use the colours 1, . . . , C in some order.
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8. No vertex of VW can use colour C + 2 or C + 3 because then the number of edges of
E− with an endpoint coloured with one of these colours would be too large. Hence
the vertices of VW all have colours from the set {1, . . . , C}.

9. No two of the vertices Sw1 , . . . , Swm can have the same colour c, because if Swi
, Swj

have colour c, then the number of edges of E− with an endpoint coloured c is at
least s(wi) + s(wj) + 2C − (m + 1) − 2B > C + 1. Hence we can assume that the
vertices Sw1 , . . . , Swm have colours 1, . . . ,m respectively. Note that we do not claim
that all the vertices of VW have distinct colours.

10. The leaves attached to the vertices in VW ∪VX∪VY must all be coloured with colours
from {1, . . . , C}, since C + 1 does not occur on V − and all pairs involving C + 2
and C + 3 are used elsewhere in E−.

We now focus attention on the stars SW ∪ SX ∪ SY with centres in VW ∪ VX ∪ VY . As
noted above, we can assume that the centre of the star Swi

is coloured i for i = 1, . . . ,m.
Now the total size of the stars with centres coloured 1, . . . ,m can be at most the number
of colour pairs which could occur on their edges, which is(

m

2

)
+m(C −m) = m(C − 1

2
(m+ 1)),

while the total size of the stars Swi
, i = 1, . . . ,m is

m(C − 1

2
(m+ 1)−B) +

m∑
i=1

s(wi).

Hence the total size of the stars from SX and SY with centres coloured 1, . . . ,m is at most

mB −
m∑
i=1

s(wi).

Since the total size of the objects in X ∪Y is exactly this number, and all of the stars not
of the form Sa have size B + 1 or B + 2 which is greater than any element of W ∪X ∪ Y ,
then the only way in which this is possible is if the stars Sxi , i = 1, . . . ,m have centres
coloured 1, . . . ,m in some order and similarly for the stars Syi . But then let

Ai = {a| centre of Sa has colour i}.

Then for each i = 1, . . . ,m, Ai contains exactly one element from each of W , X, and Y ,
and since the leaves of the stars with centres coloured i all have distinct colours, then

C − 1

2
(m+ 1)−B +

∑
a∈Ai

s(a) ≤ C − 1

hence ∑
a∈Ai

s(a) ≤ B − 1 +
1

2
(m+ 1).

But since m divides B and each s(a), then the sum on the left must in fact be at most
B, and since the sum of all the elements in W ∪X ∪ Y is mB, the sums must be equal
to B. Hence the instance I of Numerical 3-Dimensional Matching has a solution.
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Conversely suppose that we have a solution A1, . . . , Am to the instance I. Colour
rW , rX , rY with colours C + 1, C + 2, C + 3 respectively, qX with colour C + 3, and the
elements of QW arbitrarily.

Then let the forest Fi consist of the stars Sa, a ∈ Ai, for each i = 1, . . . ,m, and consist
of one star of size B + 1 or B + 2 from each of SW , SX , and SY for i = m+ 1, . . . , C. Let
the size of Fi be Mi, so that

Mi = C − 1

2
(m+ 1)

for i = 1, . . . ,m,. For i ≥ m + 1, each Mi is the sum of three integers, each B + 1 or
B + 2. By reordering if necessary, we can assume that Mm+1 ≥ · · · ≥ MC , and so since
C − 1

2
(m+ 1) > 3B + 6, we have M1 ≥ · · · ≥ MC Also because of the way we added the

extra leaves, we can assume that for each i ≥ m+ 1, Mi −Mi+1 ≤ 1.
Note that the total size of all the Mi is

C∑
i=1

Mi = mC − 1

2
m(m+ 1) + 3(C −m)(B + 1) + dDe

= λ

(
C + 3

2

)
− (3C + 3)

≤
(
C + 3

2

)
− (3C + 3)

=

(
C

2

)
=

C∑
i=1

(C − i).

Then by Lemma 9 the stars in SW ∪ SX ∪ SY can be harmoniously coloured with C
colours such that all of the centres in Fi have colour i, provided that for each k = 1, . . . , C,

k∑
i=1

Mi ≤
k∑
i=1

(C − i).

Now if k ≤ m, then

k∑
i=1

Mi = k(C − 1

2
(m+ 1))

= kC − 1

2
k(m+ 1)

≤ kC − 1

2
k(k + 1)

=
k∑
i=1

(C − i),

with equality when k = m. Now consider the case where m < k ≤ C. Write f(k) =

15



∑k
i=1Mi −

∑k
i=1(C − i). Then

f(k) =
k∑
i=1

Mi −
k∑
i=1

(C − i)

=
m∑
i=1

Mi +
k∑

i=m+1

Mi −
m∑
i=1

(C − i)−
k∑

i=m+1

(C − i)

=
k∑

i=m+1

Mi − (C − i).

Then clearly f(m) = 0 and from above f(C) ≤ 0. Since Mi − Mi+1 ≤ 1, the terms
Mi − (C − i) in the sum are non-decreasing, and it follows that f(k) ≤ 0 whenever
m < k ≤ C.

Using this harmonious colouring to colour the vertices of the stars gives a K-colouring
of T in which every edge of E ′ has a distinct colour pair. Hence the colouring uses at
least E ′ = dλ

(
K
2

)
e colour pairs, so is λ-complete.

7. Conclusion and open problems

Let us conclude the paper by making a few suggestions for further investigations.
First, there is a gap between the exponent 1

k+2
in the function of ∆(H), which guarantees

the existence of a complete colouring, and the exponent 1
k
for which a hypergraph exists

with no λ-complete colouring (see Section 3). It would be of interest to close this gap.

Problem 1. For any k ≥ 3, find a constant δk, such that:

(a) for every class Γ of k-uniform hypergraphs with maximum degree o(n1/δk), every
sufficiently large H ∈ Γ admits a complete colouring,

(b) there exists an infinite family of k-uniform hypergraphs with maximum degree
Θ(n1/δk) and no λ-complete colouring for any 0 < λ ≤ 1.

In Section 4 we have shown determining whether a k-uniform hypergraph has a λ-
complete colouring is NP-complete, so there is little hope to find a polynomial algorithm
for this problem. The complexity of the trivial brute-force algorithm is nn · nO(1) =
2n logn·nO(1). It is interesting to know if this naive approach can be significantly improved.

Problem 2. Design an algorithm deciding if a given n-vertex uniform hypergraph ad-
mits a λ-complete colouring in time 2O(n), or show that existence of such an algorithm
contradicts some widely accepted complexity assumption (like ETH, see [5]).

Finally, in Section 5, for any k ≥ 9, we presented a construction of a k-uniform
hypergraph H with a complete χ(H)-colouring and a complete ψ(H)-colouring, but no
complete t-colouring for some t satisfying χ(H) < t < ψ(H). There are two natural
directions in which this result could be strengthened.

Problem 3. Does there exist a 3-uniform example of a hypergraph for which interpola-
tion fails?

Problem 4. Does there exist a hypergraph H with a complete χ(H)-colouring and a
complete ψ(H)-colouring (where ψ(H) ≥ χ(H) + 2) but no complete t-colouring for any
t satisfying χ(H) < t < ψ(H)?
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